®
OPEN a ACCESS Universitit Augsburg
OPUS AUGSBURG w k Universititsbibliothek

Case study: adaptive test automation for testing an
adaptive Hadoop resource manager

Benedikt Eberhardinger, Hella Ponsar, Gerald Siegert, Wolfgang Reif

Angaben zur Veroéffentlichung / Publication details:

Eberhardinger, Benedikt, Hella Ponsar, Gerald Siegert, and Wolfgang Reif. 2018. “Case
study: adaptive test automation for testing an adaptive Hadoop resource manager.” In
2018 IEEE International Conference on Software Quality, Reliability and Security Companion
(QRS-C), 16-20 July 2018, Lisbon, Portugal, 513-18. Piscataway, NJ: IEEE.
https://doi.org/10.1109/QRS-C.2018.00092.

Nutzungsbedingungen / Terms of use: licgercopyright
P -'_-T.\",rl-;!_
Dieses Dokument wird unter folgenden Bedingungen zur Verfiigung gestellt: / This document is made available under these conditions: a5\ >ﬁ
Deutsches Urheberrecht I %.‘ | =
Weitere Informationen finden Sie unter: / For more information see:) &
¥V

https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/

https://doi.org/10.1109/QRS-C.2018.00092
https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/

Case Study: Adaptive Test Automation for Testing
an Adaptive Hadoop Resource Manager

Benedikt Eberhardinger, Hella Ponsar, Gerald Siegert, and Wolfgang Reif
Institute for Software & Systems Engineering, University of Augsburg, Germany
Email: { eberhardinger, ponsar, reif } @isse.de
gerald.siegert @student.uni-augsburg.de

Abstract—Coping with adaptive software systems is one of the
key challenges testing is currently faced with. In our previous
work, we proposed to enable the test system itself to be adaptive
to the system under test as a solution. The adaptation is built
up on the concepts of a self-aware test automation enabling to
use this information to sequence, instantiate, or update the test
suite to the current situation. In our test framework the modeling
language S# allows to use a run-time model to do so in a model-
based testing approach. In this paper, we demonstrate how our
concepts of adaptive, self-aware test automation are applied to
a real world scenario: testing an adaptive resource manager of
Hadoop. We show the steps necessary to implement the approach
and discuss our experiences in this case study paper.

I. ADAPTIVE TESTS FOR ADAPTIVE SOFTWARE SYSTEMS

Adaptive software systems are characterized by their con-
tinued life cycle after the system’s development and initial
setup [1]. According to Salehie & Tahvildari [1] the life cycle
is continued in order to evaluate the system and respond to
changes at all time. Consequently, it is possible to deal with
an ever-changing environment of the software system. This
flexibility and resilience is needed and exploited in order to
overcome the increasing complexity of nowadays software
systems. Different movements, e.g., the Internet of Things,
Industry 4.0, amongst others, that percolate critical industry
and consequently everyday’s life demand the concepts of
adaptation. Consequently, effort has been put in the devel-
opment and research for engineering these kind of system,
cf. de Lemos et al. [2]. Quality assurance is a crucial part of
the overall software engineering process which is addressed
on different level, as encompassed by the state of the art
survey collection in the recent book [3]. We consider thorough
software testing as a promising way to address the needs
for high quality of adaptive software systems. One particular
challenge that we identified is the need for a powerful test
automation in order to cope with the complex system under
test (SuT). As a matter of course, there are commonly used and
well-tried approaches for test automation like JUnit or NUnit
that implement test automation for single functions or classes,
however, the automation takes a bunch of human invention
for creation, execution, and maintainability. It is even getting
worse when it comes to end-to-end testing that is mostly
carried out by capture-and-replay tools, e.g., with Selenium.
For testing autonomous systems using these test automation
tools, that is an uneven struggle: Test automation needs also

513

to become autonomous and adaptive in order to adapt itself
to the system under test (SuT). Thus, a test automation needs
to be self-aware (i.e., to know the purpose and context of test
cases), to be aware of the SuT, and to use that awareness for
decisions, like what test case to be executed next. For this
purpose, the test automation needs to be able to execute and
maintain itself as well as to adapt to the SuT. In [4], [5] we
introduced an approach for an adaptive test automation suited
for adaptive software systems. The concept builds upon an
executable-modeling paradigm of the S# modeling language
that enables to reflect the current state of the SuT onto the
model derived from the state of the environment and the SuT
that makes it possible that the test cases use the knowledge
to adapt their strategies (controlled by a reasoning engine). A
test therefore has a situational pattern that describes when it
might be executed, i.e., the test knows its purpose.

In order to demonstrate the abilities of the approach we
chose the Hadoop System' which is equipped with an adaptive
resource manager, responsible for task scheduling and alloca-
tion, as described by Zhang et al. [6], as an application case.
The application is set up in a docker? environment using a
desktop computing grid. Within this paper, we demonstrate
how our approach of adaptive test automation applies to this
complex real world application. Leading to the following
contribution delivered in this paper:

1) A case study is given for adaptive testing of a distributed,
adaptive real world software systems.

2) An S# test model for an adaptive Hadoop system is
provided for adaptive test automation.

3) An implementation of a test harness for distributed
Hadoop system connecting S#.

4) A run-time of our S# model reflecting a distributed
Hadoop System in our S# environment.

The reminder of the paper is organized as follows: Section II
introduces our adaptive test automation framework, that is
applied to test an adaptive Resource Manager of Hadoop
which is described in section III. In section IV, we show
how the S# test model is build for the case study and in
section V the test driver implementation for the adaptive test
automation of Hadoop is explained. The experiences gained by
the application of our approach to an adaptive Hadoop system

Thttp://hadoop.apache.org
Zhttps://www.docker.com

is summarized in section VI.

II. AN ADAPTIVE TEST AUTOMATION FRAMEWORK IN S#

In our previous work [4], [5], we developed an adaptive
test framework in the S# modeling language. The framework
is based on a run-time model of the SuT and its environment
that enables a self-ware and consequently adaptive test au-
tomation framework. The focus of the framework is to supply
a model-based approach to specify a test suite with information
about its intention in order to allow for adaptation of the
test execution at run-time. In order to enable the decision
making we described a rule-based reasoning approach in [4] as
well as planner based approach in [5]. Both need no further
customization to the case study and can be directly applied
on the executable model of the SuT. The executable model is
key element that needs to be build for the SuT. It builds the
foundation for the oracle that can be defined as well as the
test suite to be integrated.

A. The S# Framework: Executable Models

Our modeling framework, S#, incorporates an inte-
grated, tool-supported approach for modeling and analyzing
component-oriented systems. Its models are executable, al-
lowing them to be simulated, tested, visualized, and debugged
in addition to automatically reason about the model and its
current state. The underlying model of computation is a series
of discrete system steps, where each step takes the same
amount of time, that is important for the simulation abilities of
the models. Structural and behavioral design variants can be
modeled using the modularity and composability concepts of
S#’s modeling language, which is most useful when analyzing
the changing model of the evolving system at run-time.
S# provides a component-oriented domain specific language
embedded into the C# programming language. In other words,
S# models are represented as C# programs; conceptually,
however, these programs are still models. Even those parts
of S# models that do in fact represent software components
are not intended to be used as the actual implementations of
the real software: the models are usually an abstraction of
the real software’s behavior in order to reduce the complexity
of the model. S# inherits all of C#’s language features and
expressiveness. Every .NET library and tool can be used, in-
cluding all state-of-the-art code editing and debugging features
provided by the Visual Studio development environment.

B. Incorporating a Constraint-Based, Automated Oracle

Another gain of the run-time model, despite using it for
reasoning and executing, is the ability to evaluate the current
state of the system by a constraint-based oracle. If the mapping
of the current state of the system to the model is completed,
the constraints, defining the correct behavior, can be evaluated
fully automatically. As we have already shown in previous
work in [7], [8] a constraint-based description of the oracle can
be used very effectively for describing the intended behavior
of self-adaptive, autonomous systems. Thus, the challenge is
here the mapping between model and SuT; whereas, a state

514

in the model is discrete and within the SuT continuously.
Therefore, we use the step-wise execution model of S#, with
a micro-/macro-step semantic. After execution is finished,
we use the current snapshot of the system by sensing at
that point in time the state. Of course, this first approach
is prone to missing states and combining values of minimal
different points in time to one discrete state. However, by
the following assumptions we are able to use this concept
for our test automation: First, the system is not supposed to
change its state very fast within milliseconds in a way that it
will affect the state of the model, e.g., the number of servers
active will not change more than once from on millisecond
to another. Thus, we are able to benefit from the abstraction
made in the model here. Second, if the system violates a
constraint and a millisecond later it fulfills it again, that is not
a failure at all that we want to reveal. For adaptive systems,
that are able to recover from faulty situations, a temporary
failure is acceptable, if it is able to recover itself within a
reconfiguration. Since this reconfiguration is longer than the
inaccuracy of the measurement, we are fine here too. In the
ongoing work, we will put more effort in this mapping and
trying to verify these assumptions.

III. AN ADAPTIVE RESOURCE MANAGER FOR HADOOP

Hadoop is one of the most popular and wide-used software
platforms for big data processing and for using the MapRe-
duce paradigm to a large number of different applications
and workloads. The gain of its application depends on the
configuration of a bunch of parameters which need to be
tuned for a specific task or workload. The YARN (Yet Another
Resource Negotiator) resource manager is the component of
Hadoop which is responsible for scheduling and controlling
the workload within the cluster. The parameterization of YARN
is decisive for the job performance. The best practice for
setting the parameter is a best-effort configuration that is
based on experience or static profiling, relying on apriori
knowledge about the job. Zhang et al. [6] developed a self-
adaptive component on top of YARN. It is an implementation
of the MAPE architecture (cf. [9]), i.e., a control loop that
measures, analyzes, plans, and executes adaptation of the
parameter setting of YARN. Zhang et al. [6] showed that they
are able to speedup the Hadoop instance up to 40% in a volatile
environment compared to the best effort solution. We use the
implementation of [10] which implements the concepts of [6].
We deployed the implementation in a docker-swarm that uses
two desktop computers equipped with Intel i5-4690 processors
with 4 cores, 16 GB RAM, 512GB SSD and Ubuntu 16.04
LTS as OS. The concrete deployment configuration can be
seen in fig. 1. A prerequisite for testing is to have a set of
testable requirements. For the sake of simplicity, we only used
a subset of the overall requirements that can be extracted
from the Hadoop documentation as well as the additional
requirements of the adaptive extension documented in [6],
[10]. Nevertheless, still the full power of the framework can be
shown by using this subset. Since our test automation [4], [5] is
focused on functional testing only functional requirements of

Docker-Swarm
hadoop-compute-1

hadoop-controller hadoop-compute-n

= = =

¢ ¢ ¢
compute-1 controller compute-n
[DataNode | [NameNode | [DataNode |
[NodeManager 1. [NodeManager]
[collectd | *[ResourceManager] [collectd |

: collectd ;
graphite

Fig. 1. Docker-swarm based deployment architecture of Hadoop instance
with the adaptive extension by Zhang et al. [6], according to [10].

the YARN application are considered. The following functional
requirements are used in our case study and are implemented
in the automated oracle:

o A task will be completed, if it is not canceled

No workload is allocated to inactive, defected, or discon-
nected nodes

Parameters of the configuration are updated by the adap-
tation loop, if a certain rule applies

Defects or disconnections are recognized

IV. S# TEST MODEL FOR HADOOP TEST AUTOMATION

A first step is to build the model in our modeling language
S#. The model is used for the whole test process, i.e., the input
generation, test execution, test evaluation, and the judgment.
The overall model consists of a static and a dynamic part.
Whereas the static part describes the structure of the SuT
and its related constraints, the dynamic part is responsible
for the adaptive automation of the test suite. As the model
is executable it further incorporates the test driver.

A. Static Test Model

The static test model describes the components of the
SuT, i.e., the YARN component, as a domain model and the
requirements to be tested as a constraint-based oracle. The
model-based testing paradigm pays off in this large scale
industrial case study due to its abstraction abilities making our
approach scalable. For this purpose, the model must be focused
on the test purpose, that is defined by the set of investigated
requirements outlined before.

1) Domain Test Model: The domain test model focuses on
the test components of the SuT and their relations. Figure 2
shows the graphical representation of the classes that build
the domain test model in S#. In general, the Hadoop system
follows a client-server-architecture which is reflected in our
model: The environment of the SuT is formed by the client,
that is the component which has the most influence on the
SuT. Besides the client, the nodes and their connections to
the YARN controller are also part of the environment, i.e., the
controlled environment. This differentiation is of importance

515

G Client 1 T YarnApp
1
! 1.*
YarnController 1 YarnAppAttempt
1
1.* 1 1 1..*
AV
YarnHost <+ YarnNode 7 YarnAppContainer

Fig. 2. Graphical representation of a simplified version of the domain test
model formed by the classes describing the SuT as well as its environment
in the S# test model. YarnHost represents the basic class for all distributed
components in the cluster. The YarnNode executes a YarnApp allocated
by the YarnController. The YarnController is the adaptive part
of Hadoop. The Client is the environment which is not controlled by the
SuT. The YarnController is responsible for allocating a client’s task
(formulated as YarnApps that have different YarnAppAttempts stored in
the YarnAppContrainer) in the SuT.

/x oo %/
AdjustmentNeededConstraints = new List<Func<bool>>
{
() => YarnController.AvgResponseTime >
Model.HighResponseTimeValue ||
YarnController.AvgResponseTime <
M .LowResponseTimeValue [
YarnController.TotalServerCosts > Model.MaxBudget =
0.75
bi
/x .. %/
Listing 1. Partial S# component representing the constraint based oracle.

as the controlled environment is also used by the oracle, since
parts of the functional requirements concern this control task.
The other part of the environment, i.e., the client, is not
controlled by the SuT, it is nevertheless interacting with the
Hadoop system and driving the execution of the SuT, i.e., the
tasks or requests sent by instances of the client class.

2) Oracle Constraint Model: The basic idea and the con-
cept of the constraint based, automated oracle has been
developed and described in depth in [7], [8]. Constraining
invalid configurations within the adaptation loop enables to
respect the characteristics of adaptive software systems, that
demand for degrees of freedom to enable autonomous decision
making. First, it is necessary to transform the requirements to
constraints in order to check whether or not the requirements
are fulfilled, as shown in [11]. A key advantage of defining
these constraints on the domain test model is that it is
possible to abstract from distribution. Thus, the constraint
can be defined given a synchronized system. Indeed, the
synchronization needs to be provided by connecting the model
with the actual system, as described in section V. Listing 1
shows an excerpt of the constraint based oracle used for
the Hadoop case. The shown constraint describes, in parts,
the requirement that parameters of the configuration need to
be updated and cause an adaptation. The constraint checks
three rules that implies an adaptation of the system, i.e., a
response time outside the specified slot and an exceedance of
the budget. The constraints are formulated on the basis of the
YarnController containing the necessary information.

B. Dynamic Test Model

The dynamic test model serves mostly as a definition of the
test suite. However, not in the classical manner of representing
sequences of test cases to be executed. This is due to the
characteristics of the SuT the approach is designed for: the
adaptive software systems. Since, a main motivation is to face
adaptive systems with adaptive tests the concept of shifting
decision from design time to run-time needs to be applied to
our test setting as a fundamental concept of adaptation. This
enables for adapting the test execution by the test automation
during test execution, i.e., the run-time of testing as we
consider it. Hence, the test suite is described by two kinds
of models: one for the controlled part of the environment
of the SuT and one for the dependent environment, i.e., the
client. This distinction is also described in the static model.
The first part of the test suite is based on a fault based test
case description, the environment fault injection. The latter
part describes the environment as a probabilistic test model,
able to deliver endless test inputs, the environment profiles.

1) Environment Profiles: Environment profiles are proba-
bilistic models, Markov models, that describe the interaction
of the environment with the SuT. In case of Hadoop, the
interaction is focused on the client, that is able to submit tasks
and consequently controls the workload. Testing the YARN
controller demands a workload on the Hadoop system in order
to activate it. The basic idea of the environment profiles is to
generate test inputs that represent the most likely conditions. It
is up to the test engineer to design a good environment profile
for the test suite. For forming the environment profile for
the Hadoop case we used the most popular three benchmark
collections that apply to Hadoop as well as information for
empirical studies on the usage of Hadoop available in the
literature [12]-[14]. These benchmarks are used for tweaking
the parameters of YARN, among other things. The three
benchmark collections are Hadoop MapReduce Examples,
Intel’s HiBench?, and Statistical Workload Injector for MapRe-
duce (SWIM)*. These have been clustered to extract the
different possible tasks for Hadoop, resulting in 14 different
types of actions that are grouped in four categories:

1) Generators

o Text files: random text writer (rtw) and TestDFSIO
-write (dfs-w)
o Binary files: randomwriter (rw) and teragen (tgen)

2) Data Processing

« Read: wordcount (wc) and TestDFSIO -read (dfs-r)

« Sort: sort for text data and terasort (tsort) for binary
data

o Validate: testmapredsort (tstsort) and
date (tval) for any sorting application

3) Calculation

 pi: Quasi-Monte Carlo method for calculating 7
« pentomino (pent): solving the pentomino problem

teravali-

3https://github.com/intel-hadoop/HiBench
4https://github.com/SWIMProjectUCB/SWIM

516

4) Simple Interaction sleep and fail

After identifying the states, the transition probabilities have
to be defined. In order to figure out these values we analyzed
the benchmark as well as other common applications for
Hadoop and the remarks of Zhang et al. [6] in detail. Further,
we used the empirical analysis from the literature [12]-[14]
to ground our numbers. The result is the transition matrix
shown in table I with the transition probabilities used in
the environment profile. The states shown are the 14 actions
categorized above. Thus, a state change implies stopping
one action (or completing it) and starting the next which is
corresponding with the next state.

2) Environment Fault Injection: The second part of the test
suite is formulated as environment faults. The faults are in-
jected into the controlled environment of the YARN controller,
i.e., the nodes and the connections between nodes, controller,
and client. Any fault can be specified as transient or
persistent, stating whether the environment fault is only
active for one test step or for all remaining. Further, the en-
vironment faults are complemented by an activation criterion.
This criterion enables to specify the intention of the abstract
test case, e.g., only if few servers are active, enabling to
use this information for adaptive test execution. In [5] we
explained how a planner can be used to instantiate the abstract
test cases, i.e., which case should be activated at which step,
and in [4] we presented a rule-based reasoner, whereas the
rules are a part of an apriori specified activation criterion. Both
cases are applied in the Hadoop case in different runs.

Listing 2 shows the possible specification of an environ-
ment fault to be injected in S#. The component shown, in
this simplified version of the Node class defines different
properties of the node as well as functions. The functions are
used to represent the functionality of the component of the
SuT and also for mapping the test model with the actual SuT
for test automation. Since the node is part of environment of
the controller we implemented different test cases in form of
environment faults. There is a transient and a persistent one;
the persistent one is further using the rule based description for
enriching the abstract tests. The first parameter is mapped to a
boolean function used to describe the desired situation where
the test case should be activated. The second parameter is set
to auto in order to signal that the planner should select the
number of nodes at run-time that should be injected with the
fault if the described situation TooFewServers is present.
No annotation, as for the transient fault, implies that the fault
is activated at random.

V. S# TESTDRIVER FOR HADOOP

In order to fully automate the testing within S# it is
necessary to connect the SuT, here the Hadoop system, with
the executable S# model. The connection is established by a
test driver which is integrated in the S# code, written in C#.
To enable testing as described in section IV two functionalities
must be provided by the test driver: (1) controlling the SuT
by enabling the injection of faults (cf. section IV-B2) in the
controlled environment of the SuT and (2) monitoring the SuT

dfw rtw tg dfr we ™w so tsr pi pt tms il sl fl
dfw | 0.600 | 0.073 0 0.145 0 0 0 0 0.073 | 0.073 0 0 0.018 | 0.018
rtw | 0.036 | 0.600 0 0 0.145 | 0.036 | 0.109 0 0.036 0 0 0 0.019 | 0.019
tg 0 0.036 | 0.600 0 0 0 0 0.255 0 0.073 0 0 0.018 | 0.018
dfr 0 0.073 0 0.600 0 0.036 0 0 0.145 | 0.109 0 0 0.018 | 0.019
we 0.073 | 0.109 0 0 0.600 0 0.073 0 0.073 | 0.036 0 0 0.018 | 0.018
w 0 0.073 | 0.073 0 0 0.600 0 0 0.109 | 0.109 0 0 0.018 | 0.018
50 0 0.073 | 0.036 0 0.073 | 0.036 | 0.600 0 0.073 0 0.073 0 0.018 | 0.018
tsr 0 0 0 0 0 0 0 0.600 | 0.109 | 0.073 0 0.182 | 0.018 | 0.018
pi 0.145 | 0.109 0 0 0 0 0 0 0.600 | 0.109 0 0 0.018 | 0.019
pt 0.109 | 0.109 0 0 0 0.073 0 0 0.073 | 0.600 0 0 0.018 | 0.018
tms 0 0.145 0 0 0 0.073 0 0 0.036 | 0.109 | 0.600 0 0.018 | 0.019
wl 0.073 | 0.109 0 0 0 0 0 0 0.109 | 0.073 0 0.600 | 0.018 | 0.018
sl 0.167 | 0.167 | 0.167 0 0 0.167 0 0 0.167 | 0.167 0 0 0 0
A 0.167 | 0.167 | 0.167 0 0 0.167 0 0 0.167 | 0.167 0 0 0 0

TABLE I
TRANSITION MATRIX OF THE ENVIRONMENTAL PROFILE WITH THE PROBABILITIES USED IN THE TEST AUTOMATION OF THE HADOOP SYSTEM.
Cliiini;fgr]u:i»r :zgi;;z;édi{/arnController; bool _isActive; from C# and thus directly executed from the test framework.

public void Activate () { _isServerActive = true;

public void AddQueries (List<Query> queriesToExecute)
_executingQueries.AddRange (queriesToExecute) ;

}

[Transient] class Serve
public void Activate()

}
{

CannotActivate :

{3

Fault {

[Activation ("TooFewServers"
[Persistent] class CannotEk
public void AddQueries (L

ctedServer="auto")]
eries : Fault {
/> queriesToExecute)

, se

{

Listing 2. Simplified S# component representing a Hadoop Node.

with its controlled environment as well as the clients for the
Hadoop system. Since the SuT and the test system is part of a
distributed cluster, a connection between the test system and
the SuT needs to be established. We use SSH to establish this
connection. Thus, it is possible to use command line scripts
to execute the control commands and to gather information
from the Hadoop system for monitoring. Using command line
scripts enables to use the full power of the interface supplied
by Hadoop for the test driver. In order to keep the test system
architecture unaffected from the concrete test driver implemen-
tation the test driver is encapsulated in a particular interface.
This interface can be also used with an implementation of a
REST-based test driver. The main functionality within the test
driver implementation is to translate and transfer commands
for controlling the SuT and to receive and translate monitoring
information. The counterpart in the Hadoop system which is
needed are the scripts used to supply the relevant functionality
for controlling and monitoring.

A. Controlling the SuT

The SuT is controlled by the test driver on the one hand by
injecting faults into the controlled environment of the SuT, i.e.,
the activation of environment faults, and on the other hand by
sending a workload to the Hadoop system. The later one can be
directly generated at the test system and needs no tunneling
through the SSH connection. The workload is generated by
having function calls to Hadoop for the 14 different classes of
actions (cf. section IV-B1 and table I). The functions make use
of the workloads supplied by standard benchmarks we used for
extracting the states of our environment profile. They are called

517

Fault injection instead needs an SSH connection to the SuT
host(s). We generated command line scripts for executing
faults, making use of the supplied functionality of Docker
which is hosting the SuT. Thus, it is for example possible
to disable a network connection or to disable/shutdown a
particular node of the Hadoop system as a fault activation.

B. Monitoring the SuT

Monitoring is needed in order to update the run-time model
of S# after every step (cf. section II-A). This is the foundation
for enabling the adaptive test automation. The execution order
of the steps is fixed and determined by the test engineer. In our
case, we first updated the state of the model and afterward let
the planner execute the selected test steps after the workload
is sent to the SuT as calculated by the environment profile.
Executing the steps is in the responsibility of the test driver as
described before. For updating the model we need to extract
that information for the system as a snap shot. Indeed, in a
distributed system the generation of a consistent snap shot is
far from obvious. However, as elaborated in [4] small time
difference in states of different system parts do not have great
impact on the overall result. Thus, we gather the information
at every test step (a test step lasts for a maximum of 300ms) by
sampling the information in a fixed order. The resulting time
difference has no impact on the overall results, as explained in
section II-B. The test domain model (cf. fig. 2) is instantiated
as a run-time model. Thus, the information for its attributes
has to be retrieved from the SuT, that is available by on
the one hand the Hadoop system itself (making use of the
graphite extension, cf. fig. 1) and on the other hand the Docker
ecosystem. The data is retrieved by command line functions
and needs to be extracted by a parser afterward. This parser
is written in C# and maps the information into the S# model.

After the test driver is defined once the test engineer is able
to abstract from this technical details and from synchronization
by defining tests to be automated or the constraint based oracle
only on the consolidated model.

VI. EXPERIENCES

The experiences made by applying [4], [5] in the Hadoop
case study is summarized in the following, reflecting the

abilities of our approach on testing adaptive system within
an adaptive test automation.

a) Model-based, adaptive test automation of an adaptive
Hadoop System application: In [4], [5] we explained how
awareness in a model-based test automation is able to give the
test the ability to act adaptive. Work by Zhang et al. [6] showed
that adaptive systems are not limited to artificial research case
studies, they can be applied to a real world application. In
this paper, we showed that our concepts for model-based,
adaptive test automation are also applicable for this particular
real world application: the self-adaptive controller of a Hadoop
application. The central concept of our approach is to use run-
time models; the underlying model-based paradigm enables to
handle complex systems—here a distributed Hadoop system—
by abstraction. Abstraction makes it easy to integrate the
automated oracle, without worrying about distributed aspects,
and further enables to enrich and define the test suite in a
way that it can be used in an adaptive test automation. The
key concept for adaptive test automation is on the one hand
to give the adaptation mechanism the needed freedom to act
autonomously and on the other hand to add the information
about the intention of the test case in order to act in an
intelligent way. The latter one is done by descriptions based
on the model state. Thus, the test model used is an enabler
for adaptive test automation.

b) Implementing test harness for distributed test envi-
ronment needed for an adaptive test automation: Indeed,
the model-based paradigm made things easier by abstraction.
However, test automation still needs somehow to cope with
the complexity of the system when tests are executed and
evaluated. This is done by the test driver we integrated into our
test system. The model defined which kind of information is
needed to be extracted from the SuT and which information or
actions needed to be executed on the SuT. The set of command
line functions we defined under the hood of the test automation
is still not as generic and as reusable as we would like it to
have. It needs to be customized for each and every application
by a test engineer. We showed that and how it is possible to
do so for a complex real world application. In future work,
we focus on the challenge of connecting a complex system to
our test ecosystem in a generic (maybe learning) way.

c) Run-time reflection of a distributed Hadoop System in
our S# environment: Having coped with the aforementioned
challenge it turns out that the task of the test engineer is much
more focused on its actual task: defining and designing test
cases, the automated oracle, and selecting the right degree of
abstraction. The run-time reflection is the enabler for a more
focused task of the test engineer, but further allows to specify
tests with more information: the intention of the test case in
a run-time context. That enables the adaptation of the test
automation at run-time. Making test runs possible, that could
not be specified without this information. This leads to a quite
small test suite defined by the test engineer, that results in a
quite large number of actually executed test cases at run-time.

d) Case study for testing a distributed, adaptive real
world software systems: We showed that the concept shown

518

in [4], [5] have been successfully applied to a distributed,
adaptive real world software system. The model-based concept
made it possible to handle the complex, distributed system.
Nevertheless, the task of technically connecting the SuT with
the test system is still highly customized and challenging. In
total we executed over 300,000 test cases on our Hadoop
instance. But, we failed to reveal any failure during testing, in-
deed, this is showing the stability of a widely-used established
commercial software. Simplistic errors have been injected as
mutants in the system, these have been revealed as failures
during testing. However, we claim that there is a need for more
complex mutants, that are especially tailored to adaptation
mechanisms or in general autonomous systems in order to
evaluate the mutation score in depth of our approach. This
will be part of our future work.

ACKNOWLEDGMENT

This research is sponsored by the research project Testing
self-organizing, adaptive Systems (TeSOS) of the German
Research Foundation.

REFERENCES
[1] M. Salehie and L. Tahvildari, “Self-adaptive Software: Landscape and
Research Challenges,” ACM Trans. Auton. Adapt. Syst., vol. 4, no. 2,
pp. 14:1-14:42, 20009.
R. de Lemos et al., “Software Engineering for Self-Adaptive Systems: A
Second Research Roadmap,” in Software Engineering for Self-Adaptive
Systems II. Springer, 2013, pp. 1-32.
R. de Lemos, D. Garlan, C. Ghezzi, and H. Giese, Eds., Software
Engineering for Self-Adaptive Systems Ill. Assurances, ser. LNCS, vol.
9640. Springer, 2017.
B. Eberhardinger, A. Habermaier, and W. Reif, “Toward Adaptive, Self-
Aware Test Automation,” in [2th Int. Wsh. Automation of Software
Testing, (AST2017). 1EEE Comp. Soc. 2017, pp. 34-37.
B. Eberhardinger, H. Seebach, A. Reichstaller, A. Knapp, and W. Reif,
“Adaptive Tests for Adaptive Systems: The Need for New Concepts in
Testing for Future Software Systems,” Softwaretechnik-Trends, vol. 38,
no. 1, 2018.
B. Zhang, F. Ktikava, R. Rouvoy, and L. Seinturier, “Self-Balancing Job
Parallelism and Throughput in Hadoop,” in Distributed Applications and
Interoperable Systems, ser. LNCS, vol. 9687. Springer, 2016, pp. 129—
143.
B. Eberhardinger, G. Anders, H. Seebach, F. Siefert, A. Knapp, and
W. Reif, “An Approach for Isolated Testing of Self-Organization
Algorithms,” in Software Engineering for Self-Adaptive Systems III.
Assurances, ser. LNCS, R. de Lemos, D. Garlan, C. Ghezzi, and
H. Giese, Eds., vol. 9640. Springer, 2017.
B. Eberhardinger, A. Habermaier, H. Seebach, and W. Reif, “Back-
to-Back Testing of Self-organization Mechanisms,” in 28th Int. Conf.
Testing Software and Systems (ICTSS 2016), 2016, pp. 18-35.
A. Computing et al., “An architectural blueprint for autonomic comput-
ing,” IBM White Paper, vol. 31, pp. 1-6, 2006.
Spirals-Team. (2018, Mar.) Github: Spirals-team hadoop. [Online].
Available: https://github.com/Spirals- Team/hadoop-benchmark
B. Eberhardinger, J. Steghofer, F. Nafz, and W. Reif, “Model-driven Syn-
thesis of Monitoring Infrastructure for Reliable Adaptive Multi-Agent
Systems,” in 24th Int. Symposium on Software Reliability Engineering,
(ISSRE 2013), 2013, pp. 21-30.
Y. Chen, S. Alspaugh, and R. Katz, “Interactive Analytical Processing in
Big Data Systems: A Cross-industry Study of MapReduce Workloads,”
Proc. VLDB Endow., vol. 5, no. 12, pp. 1802-1813, 2012.
K. Ren, Y. Kwon, M. Balazinska, and B. Howe, “Hadoop’s Adolescence:
An Analysis of Hadoop Usage in Scientific Workloads,” Proc. VLDB
Endow., vol. 6, no. 10, pp. 853-864, 2013.
J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” Commun. ACM, vol. 51, no. 1, pp. 107-113, 2008.

191

[10]

[11]

[12]

[13]

[14]

