
Case study: adaptive test automation for testing an
adaptive Hadoop resource manager

Benedikt Eberhardinger, Hella Ponsar, Gerald Siegert, Wolfgang Reif

Angaben zur Veröffentlichung / Publication details:

Eberhardinger, Benedikt, Hella Ponsar, Gerald Siegert, and Wolfgang Reif. 2018. “Case
study: adaptive test automation for testing an adaptive Hadoop resource manager.” In
2018 IEEE International Conference on Software Quality, Reliability and Security Companion
(QRS-C), 16-20 July 2018, Lisbon, Portugal, 513–18. Piscataway, NJ: IEEE.
https://doi.org/10.1109/QRS-C.2018.00092.

Nutzungsbedingungen / Terms of use:

Dieses Dokument wird unter folgenden Bedingungen zur Verfügung gestellt: / This document is made available under these conditions:
Deutsches Urheberrecht
Weitere Informationen finden Sie unter: / For more information see:
https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/

licgercopyright

https://doi.org/10.1109/QRS-C.2018.00092
https://www.uni-augsburg.de/de/organisation/bibliothek/publizieren-zitieren-archivieren/publiz/

Case Study: Adaptive Test Automation for Testing
an Adaptive Hadoop Resource Manager

Benedikt Eberhardinger, Hella Ponsar, Gerald Siegert, and Wolfgang Reif

Institute for Software & Systems Engineering, University of Augsburg, Germany

Email: { eberhardinger, ponsar, reif } @isse.de

gerald.siegert@student.uni-augsburg.de

Abstract—Coping with adaptive software systems is one of the
key challenges testing is currently faced with. In our previous
work, we proposed to enable the test system itself to be adaptive
to the system under test as a solution. The adaptation is built
up on the concepts of a self-aware test automation enabling to
use this information to sequence, instantiate, or update the test
suite to the current situation. In our test framework the modeling
language S# allows to use a run-time model to do so in a model-
based testing approach. In this paper, we demonstrate how our
concepts of adaptive, self-aware test automation are applied to
a real world scenario: testing an adaptive resource manager of
Hadoop. We show the steps necessary to implement the approach
and discuss our experiences in this case study paper.

I. ADAPTIVE TESTS FOR ADAPTIVE SOFTWARE SYSTEMS

Adaptive software systems are characterized by their con-

tinued life cycle after the system’s development and initial

setup [1]. According to Salehie & Tahvildari [1] the life cycle

is continued in order to evaluate the system and respond to

changes at all time. Consequently, it is possible to deal with

an ever-changing environment of the software system. This

flexibility and resilience is needed and exploited in order to

overcome the increasing complexity of nowadays software

systems. Different movements, e.g., the Internet of Things,

Industry 4.0, amongst others, that percolate critical industry

and consequently everyday’s life demand the concepts of

adaptation. Consequently, effort has been put in the devel-

opment and research for engineering these kind of system,

cf. de Lemos et al. [2]. Quality assurance is a crucial part of

the overall software engineering process which is addressed

on different level, as encompassed by the state of the art

survey collection in the recent book [3]. We consider thorough

software testing as a promising way to address the needs

for high quality of adaptive software systems. One particular

challenge that we identified is the need for a powerful test

automation in order to cope with the complex system under

test (SuT). As a matter of course, there are commonly used and

well-tried approaches for test automation like JUnit or NUnit
that implement test automation for single functions or classes,

however, the automation takes a bunch of human invention

for creation, execution, and maintainability. It is even getting

worse when it comes to end-to-end testing that is mostly

carried out by capture-and-replay tools, e.g., with Selenium.

For testing autonomous systems using these test automation

tools, that is an uneven struggle: Test automation needs also

to become autonomous and adaptive in order to adapt itself

to the system under test (SuT). Thus, a test automation needs

to be self-aware (i.e., to know the purpose and context of test

cases), to be aware of the SuT, and to use that awareness for

decisions, like what test case to be executed next. For this

purpose, the test automation needs to be able to execute and

maintain itself as well as to adapt to the SuT. In [4], [5] we

introduced an approach for an adaptive test automation suited

for adaptive software systems. The concept builds upon an

executable-modeling paradigm of the S# modeling language

that enables to reflect the current state of the SuT onto the

model derived from the state of the environment and the SuT

that makes it possible that the test cases use the knowledge

to adapt their strategies (controlled by a reasoning engine). A

test therefore has a situational pattern that describes when it

might be executed, i.e., the test knows its purpose.

In order to demonstrate the abilities of the approach we

chose the Hadoop System1 which is equipped with an adaptive

resource manager, responsible for task scheduling and alloca-

tion, as described by Zhang et al. [6], as an application case.

The application is set up in a docker2 environment using a

desktop computing grid. Within this paper, we demonstrate

how our approach of adaptive test automation applies to this

complex real world application. Leading to the following

contribution delivered in this paper:

1) A case study is given for adaptive testing of a distributed,

adaptive real world software systems.

2) An S# test model for an adaptive Hadoop system is

provided for adaptive test automation.

3) An implementation of a test harness for distributed

Hadoop system connecting S#.

4) A run-time of our S# model reflecting a distributed

Hadoop System in our S# environment.

The reminder of the paper is organized as follows: Section II

introduces our adaptive test automation framework, that is

applied to test an adaptive Resource Manager of Hadoop

which is described in section III. In section IV, we show

how the S# test model is build for the case study and in

section V the test driver implementation for the adaptive test

automation of Hadoop is explained. The experiences gained by

the application of our approach to an adaptive Hadoop system

1http://hadoop.apache.org
2https://www.docker.com

513

is summarized in section VI.

II. AN ADAPTIVE TEST AUTOMATION FRAMEWORK IN S#

In our previous work [4], [5], we developed an adaptive

test framework in the S# modeling language. The framework

is based on a run-time model of the SuT and its environment

that enables a self-ware and consequently adaptive test au-

tomation framework. The focus of the framework is to supply

a model-based approach to specify a test suite with information

about its intention in order to allow for adaptation of the

test execution at run-time. In order to enable the decision

making we described a rule-based reasoning approach in [4] as

well as planner based approach in [5]. Both need no further

customization to the case study and can be directly applied

on the executable model of the SuT. The executable model is

key element that needs to be build for the SuT. It builds the

foundation for the oracle that can be defined as well as the

test suite to be integrated.

A. The S# Framework: Executable Models

Our modeling framework, S#, incorporates an inte-

grated, tool-supported approach for modeling and analyzing

component-oriented systems. Its models are executable, al-

lowing them to be simulated, tested, visualized, and debugged

in addition to automatically reason about the model and its

current state. The underlying model of computation is a series

of discrete system steps, where each step takes the same

amount of time, that is important for the simulation abilities of

the models. Structural and behavioral design variants can be

modeled using the modularity and composability concepts of

S#’s modeling language, which is most useful when analyzing

the changing model of the evolving system at run-time.

S# provides a component-oriented domain specific language
embedded into the C# programming language. In other words,

S# models are represented as C# programs; conceptually,

however, these programs are still models. Even those parts

of S# models that do in fact represent software components

are not intended to be used as the actual implementations of

the real software: the models are usually an abstraction of

the real software’s behavior in order to reduce the complexity

of the model. S# inherits all of C#’s language features and

expressiveness. Every .NET library and tool can be used, in-

cluding all state-of-the-art code editing and debugging features

provided by the Visual Studio development environment.

B. Incorporating a Constraint-Based, Automated Oracle

Another gain of the run-time model, despite using it for

reasoning and executing, is the ability to evaluate the current

state of the system by a constraint-based oracle. If the mapping

of the current state of the system to the model is completed,

the constraints, defining the correct behavior, can be evaluated

fully automatically. As we have already shown in previous

work in [7], [8] a constraint-based description of the oracle can

be used very effectively for describing the intended behavior

of self-adaptive, autonomous systems. Thus, the challenge is

here the mapping between model and SuT; whereas, a state

in the model is discrete and within the SuT continuously.

Therefore, we use the step-wise execution model of S#, with

a micro-/macro-step semantic. After execution is finished,

we use the current snapshot of the system by sensing at

that point in time the state. Of course, this first approach

is prone to missing states and combining values of minimal

different points in time to one discrete state. However, by

the following assumptions we are able to use this concept

for our test automation: First, the system is not supposed to

change its state very fast within milliseconds in a way that it

will affect the state of the model, e.g., the number of servers

active will not change more than once from on millisecond

to another. Thus, we are able to benefit from the abstraction

made in the model here. Second, if the system violates a

constraint and a millisecond later it fulfills it again, that is not

a failure at all that we want to reveal. For adaptive systems,

that are able to recover from faulty situations, a temporary

failure is acceptable, if it is able to recover itself within a

reconfiguration. Since this reconfiguration is longer than the

inaccuracy of the measurement, we are fine here too. In the

ongoing work, we will put more effort in this mapping and

trying to verify these assumptions.

III. AN ADAPTIVE RESOURCE MANAGER FOR HADOOP

Hadoop is one of the most popular and wide-used software

platforms for big data processing and for using the MapRe-

duce paradigm to a large number of different applications

and workloads. The gain of its application depends on the

configuration of a bunch of parameters which need to be

tuned for a specific task or workload. The YARN (Yet Another
Resource Negotiator) resource manager is the component of

Hadoop which is responsible for scheduling and controlling

the workload within the cluster. The parameterization of YARN
is decisive for the job performance. The best practice for

setting the parameter is a best-effort configuration that is

based on experience or static profiling, relying on apriori

knowledge about the job. Zhang et al. [6] developed a self-

adaptive component on top of YARN. It is an implementation

of the MAPE architecture (cf. [9]), i.e., a control loop that

measures, analyzes, plans, and executes adaptation of the

parameter setting of YARN. Zhang et al. [6] showed that they

are able to speedup the Hadoop instance up to 40% in a volatile

environment compared to the best effort solution. We use the

implementation of [10] which implements the concepts of [6].

We deployed the implementation in a docker-swarm that uses

two desktop computers equipped with Intel i5-4690 processors

with 4 cores, 16 GB RAM, 512GB SSD and Ubuntu 16.04

LTS as OS. The concrete deployment configuration can be

seen in fig. 1. A prerequisite for testing is to have a set of

testable requirements. For the sake of simplicity, we only used

a subset of the overall requirements that can be extracted

from the Hadoop documentation as well as the additional

requirements of the adaptive extension documented in [6],

[10]. Nevertheless, still the full power of the framework can be

shown by using this subset. Since our test automation [4], [5] is

focused on functional testing only functional requirements of

514

Fig. 1. Docker-swarm based deployment architecture of Hadoop instance
with the adaptive extension by Zhang et al. [6], according to [10].

the YARN application are considered. The following functional

requirements are used in our case study and are implemented

in the automated oracle:

• A task will be completed, if it is not canceled

• No workload is allocated to inactive, defected, or discon-

nected nodes

• Parameters of the configuration are updated by the adap-

tation loop, if a certain rule applies

• Defects or disconnections are recognized

IV. S# TEST MODEL FOR HADOOP TEST AUTOMATION

A first step is to build the model in our modeling language

S#. The model is used for the whole test process, i.e., the input

generation, test execution, test evaluation, and the judgment.

The overall model consists of a static and a dynamic part.

Whereas the static part describes the structure of the SuT

and its related constraints, the dynamic part is responsible

for the adaptive automation of the test suite. As the model

is executable it further incorporates the test driver.

A. Static Test Model

The static test model describes the components of the

SuT, i.e., the YARN component, as a domain model and the

requirements to be tested as a constraint-based oracle. The

model-based testing paradigm pays off in this large scale

industrial case study due to its abstraction abilities making our

approach scalable. For this purpose, the model must be focused

on the test purpose, that is defined by the set of investigated

requirements outlined before.

1) Domain Test Model: The domain test model focuses on

the test components of the SuT and their relations. Figure 2

shows the graphical representation of the classes that build

the domain test model in S#. In general, the Hadoop system

follows a client-server-architecture which is reflected in our

model: The environment of the SuT is formed by the client,

that is the component which has the most influence on the

SuT. Besides the client, the nodes and their connections to

the YARN controller are also part of the environment, i.e., the

controlled environment. This differentiation is of importance

YarnAppContainer

YarnAppAttempt

Client YarnApp

YarnNodeYarnHost

YarnController

1

1..*

1

111..*

1

1 1..*

1

1..*

1

1..*

Fig. 2. Graphical representation of a simplified version of the domain test
model formed by the classes describing the SuT as well as its environment
in the S# test model. YarnHost represents the basic class for all distributed
components in the cluster. The YarnNode executes a YarnApp allocated
by the YarnController. The YarnController is the adaptive part
of Hadoop. The Client is the environment which is not controlled by the
SuT. The YarnController is responsible for allocating a client’s task
(formulated as YarnApps that have different YarnAppAttempts stored in
the YarnAppContrainer) in the SuT.

/* ... */
AdjustmentNeededConstraints = new List<Func<bool>>
{

() => YarnController.AvgResponseTime >
Model.HighResponseTimeValue ||

YarnController.AvgResponseTime <
Model.LowResponseTimeValue ||

YarnController.TotalServerCosts > Model.MaxBudget *
0.75

};
/* ... */

Listing 1. Partial S# component representing the constraint based oracle.

as the controlled environment is also used by the oracle, since

parts of the functional requirements concern this control task.

The other part of the environment, i.e., the client, is not

controlled by the SuT, it is nevertheless interacting with the

Hadoop system and driving the execution of the SuT, i.e., the

tasks or requests sent by instances of the client class.

2) Oracle Constraint Model: The basic idea and the con-

cept of the constraint based, automated oracle has been

developed and described in depth in [7], [8]. Constraining

invalid configurations within the adaptation loop enables to

respect the characteristics of adaptive software systems, that

demand for degrees of freedom to enable autonomous decision

making. First, it is necessary to transform the requirements to

constraints in order to check whether or not the requirements

are fulfilled, as shown in [11]. A key advantage of defining

these constraints on the domain test model is that it is

possible to abstract from distribution. Thus, the constraint

can be defined given a synchronized system. Indeed, the

synchronization needs to be provided by connecting the model

with the actual system, as described in section V. Listing 1

shows an excerpt of the constraint based oracle used for

the Hadoop case. The shown constraint describes, in parts,

the requirement that parameters of the configuration need to

be updated and cause an adaptation. The constraint checks

three rules that implies an adaptation of the system, i.e., a

response time outside the specified slot and an exceedance of

the budget. The constraints are formulated on the basis of the

YarnController containing the necessary information.

515

B. Dynamic Test Model

The dynamic test model serves mostly as a definition of the

test suite. However, not in the classical manner of representing

sequences of test cases to be executed. This is due to the

characteristics of the SuT the approach is designed for: the

adaptive software systems. Since, a main motivation is to face

adaptive systems with adaptive tests the concept of shifting

decision from design time to run-time needs to be applied to

our test setting as a fundamental concept of adaptation. This

enables for adapting the test execution by the test automation

during test execution, i.e., the run-time of testing as we

consider it. Hence, the test suite is described by two kinds

of models: one for the controlled part of the environment

of the SuT and one for the dependent environment, i.e., the

client. This distinction is also described in the static model.

The first part of the test suite is based on a fault based test

case description, the environment fault injection. The latter

part describes the environment as a probabilistic test model,

able to deliver endless test inputs, the environment profiles.

1) Environment Profiles: Environment profiles are proba-

bilistic models, Markov models, that describe the interaction

of the environment with the SuT. In case of Hadoop, the

interaction is focused on the client, that is able to submit tasks

and consequently controls the workload. Testing the YARN
controller demands a workload on the Hadoop system in order

to activate it. The basic idea of the environment profiles is to

generate test inputs that represent the most likely conditions. It

is up to the test engineer to design a good environment profile

for the test suite. For forming the environment profile for

the Hadoop case we used the most popular three benchmark

collections that apply to Hadoop as well as information for

empirical studies on the usage of Hadoop available in the

literature [12]–[14]. These benchmarks are used for tweaking

the parameters of YARN, among other things. The three

benchmark collections are Hadoop MapReduce Examples,

Intel’s HiBench3, and Statistical Workload Injector for MapRe-

duce (SWIM)4. These have been clustered to extract the

different possible tasks for Hadoop, resulting in 14 different

types of actions that are grouped in four categories:

1) Generators
• Text files: random text writer (rtw) and TestDFSIO

-write (dfs-w)

• Binary files: randomwriter (rw) and teragen (tgen)

2) Data Processing
• Read: wordcount (wc) and TestDFSIO -read (dfs-r)

• Sort: sort for text data and terasort (tsort) for binary

data

• Validate: testmapredsort (tstsort) and teravali-

date (tval) for any sorting application

3) Calculation
• pi: Quasi-Monte Carlo method for calculating π
• pentomino (pent): solving the pentomino problem

3https://github.com/intel-hadoop/HiBench
4https://github.com/SWIMProjectUCB/SWIM

4) Simple Interaction sleep and fail

After identifying the states, the transition probabilities have

to be defined. In order to figure out these values we analyzed

the benchmark as well as other common applications for

Hadoop and the remarks of Zhang et al. [6] in detail. Further,

we used the empirical analysis from the literature [12]–[14]

to ground our numbers. The result is the transition matrix

shown in table I with the transition probabilities used in

the environment profile. The states shown are the 14 actions

categorized above. Thus, a state change implies stopping

one action (or completing it) and starting the next which is

corresponding with the next state.

2) Environment Fault Injection: The second part of the test

suite is formulated as environment faults. The faults are in-

jected into the controlled environment of the YARN controller,

i.e., the nodes and the connections between nodes, controller,

and client. Any fault can be specified as transient or

persistent, stating whether the environment fault is only

active for one test step or for all remaining. Further, the en-

vironment faults are complemented by an activation criterion.

This criterion enables to specify the intention of the abstract

test case, e.g., only if few servers are active, enabling to

use this information for adaptive test execution. In [5] we

explained how a planner can be used to instantiate the abstract

test cases, i.e., which case should be activated at which step,

and in [4] we presented a rule-based reasoner, whereas the

rules are a part of an apriori specified activation criterion. Both

cases are applied in the Hadoop case in different runs.

Listing 2 shows the possible specification of an environ-

ment fault to be injected in S#. The component shown, in

this simplified version of the Node class defines different

properties of the node as well as functions. The functions are

used to represent the functionality of the component of the

SuT and also for mapping the test model with the actual SuT

for test automation. Since the node is part of environment of

the controller we implemented different test cases in form of

environment faults. There is a transient and a persistent one;

the persistent one is further using the rule based description for

enriching the abstract tests. The first parameter is mapped to a

boolean function used to describe the desired situation where

the test case should be activated. The second parameter is set

to auto in order to signal that the planner should select the

number of nodes at run-time that should be injected with the

fault if the described situation TooFewServers is present.

No annotation, as for the transient fault, implies that the fault

is activated at random.

V. S# TESTDRIVER FOR HADOOP

In order to fully automate the testing within S# it is

necessary to connect the SuT, here the Hadoop system, with

the executable S# model. The connection is established by a

test driver which is integrated in the S# code, written in C#.

To enable testing as described in section IV two functionalities

must be provided by the test driver: (1) controlling the SuT

by enabling the injection of faults (cf. section IV-B2) in the

controlled environment of the SuT and (2) monitoring the SuT

516

dfw rtw tg dfr wc rw so tsr pi pt tms tvl sl fl
dfw 0.600 0.073 0 0.145 0 0 0 0 0.073 0.073 0 0 0.018 0.018
rtw 0.036 0.600 0 0 0.145 0.036 0.109 0 0.036 0 0 0 0.019 0.019
tg 0 0.036 0.600 0 0 0 0 0.255 0 0.073 0 0 0.018 0.018
dfr 0 0.073 0 0.600 0 0.036 0 0 0.145 0.109 0 0 0.018 0.019
wc 0.073 0.109 0 0 0.600 0 0.073 0 0.073 0.036 0 0 0.018 0.018
rw 0 0.073 0.073 0 0 0.600 0 0 0.109 0.109 0 0 0.018 0.018
so 0 0.073 0.036 0 0.073 0.036 0.600 0 0.073 0 0.073 0 0.018 0.018
tsr 0 0 0 0 0 0 0 0.600 0.109 0.073 0 0.182 0.018 0.018
pi 0.145 0.109 0 0 0 0 0 0 0.600 0.109 0 0 0.018 0.019
pt 0.109 0.109 0 0 0 0.073 0 0 0.073 0.600 0 0 0.018 0.018
tms 0 0.145 0 0 0 0.073 0 0 0.036 0.109 0.600 0 0.018 0.019
tvl 0.073 0.109 0 0 0 0 0 0 0.109 0.073 0 0.600 0.018 0.018
sl 0.167 0.167 0.167 0 0 0.167 0 0 0.167 0.167 0 0 0 0
fl 0.167 0.167 0.167 0 0 0.167 0 0 0.167 0.167 0 0 0 0

TABLE I
TRANSITION MATRIX OF THE ENVIRONMENTAL PROFILE WITH THE PROBABILITIES USED IN THE TEST AUTOMATION OF THE HADOOP SYSTEM.

class YarnNode : Component {
YarnController _connectedYarnController; bool _isActive;

public void Activate() { _isServerActive = true; }
public void AddQueries(List<Query> queriesToExecute) {

_executingQueries.AddRange(queriesToExecute);
}
[Transient] class ServerCannotActivate : Fault {

public void Activate() { }
}
[Activation("TooFewServers", selectedServer="auto")]
[Persistent] class CannotExecuteQueries : Fault {

public void AddQueries(List<Query> queriesToExecute) {
}

}
/* ... */

}

Listing 2. Simplified S# component representing a Hadoop Node.

with its controlled environment as well as the clients for the

Hadoop system. Since the SuT and the test system is part of a

distributed cluster, a connection between the test system and

the SuT needs to be established. We use SSH to establish this

connection. Thus, it is possible to use command line scripts

to execute the control commands and to gather information

from the Hadoop system for monitoring. Using command line

scripts enables to use the full power of the interface supplied

by Hadoop for the test driver. In order to keep the test system

architecture unaffected from the concrete test driver implemen-

tation the test driver is encapsulated in a particular interface.

This interface can be also used with an implementation of a

REST-based test driver. The main functionality within the test

driver implementation is to translate and transfer commands

for controlling the SuT and to receive and translate monitoring

information. The counterpart in the Hadoop system which is

needed are the scripts used to supply the relevant functionality

for controlling and monitoring.

A. Controlling the SuT

The SuT is controlled by the test driver on the one hand by

injecting faults into the controlled environment of the SuT, i.e.,

the activation of environment faults, and on the other hand by

sending a workload to the Hadoop system. The later one can be

directly generated at the test system and needs no tunneling

through the SSH connection. The workload is generated by

having function calls to Hadoop for the 14 different classes of

actions (cf. section IV-B1 and table I). The functions make use

of the workloads supplied by standard benchmarks we used for

extracting the states of our environment profile. They are called

from C# and thus directly executed from the test framework.

Fault injection instead needs an SSH connection to the SuT

host(s). We generated command line scripts for executing

faults, making use of the supplied functionality of Docker

which is hosting the SuT. Thus, it is for example possible

to disable a network connection or to disable/shutdown a

particular node of the Hadoop system as a fault activation.

B. Monitoring the SuT

Monitoring is needed in order to update the run-time model

of S# after every step (cf. section II-A). This is the foundation

for enabling the adaptive test automation. The execution order

of the steps is fixed and determined by the test engineer. In our

case, we first updated the state of the model and afterward let

the planner execute the selected test steps after the workload

is sent to the SuT as calculated by the environment profile.

Executing the steps is in the responsibility of the test driver as

described before. For updating the model we need to extract

that information for the system as a snap shot. Indeed, in a

distributed system the generation of a consistent snap shot is

far from obvious. However, as elaborated in [4] small time

difference in states of different system parts do not have great

impact on the overall result. Thus, we gather the information

at every test step (a test step lasts for a maximum of 300ms) by

sampling the information in a fixed order. The resulting time

difference has no impact on the overall results, as explained in

section II-B. The test domain model (cf. fig. 2) is instantiated

as a run-time model. Thus, the information for its attributes

has to be retrieved from the SuT, that is available by on

the one hand the Hadoop system itself (making use of the

graphite extension, cf. fig. 1) and on the other hand the Docker

ecosystem. The data is retrieved by command line functions

and needs to be extracted by a parser afterward. This parser

is written in C# and maps the information into the S# model.

After the test driver is defined once the test engineer is able

to abstract from this technical details and from synchronization

by defining tests to be automated or the constraint based oracle

only on the consolidated model.

VI. EXPERIENCES

The experiences made by applying [4], [5] in the Hadoop

case study is summarized in the following, reflecting the

517

abilities of our approach on testing adaptive system within

an adaptive test automation.

a) Model-based, adaptive test automation of an adaptive
Hadoop System application: In [4], [5] we explained how

awareness in a model-based test automation is able to give the

test the ability to act adaptive. Work by Zhang et al. [6] showed

that adaptive systems are not limited to artificial research case

studies, they can be applied to a real world application. In

this paper, we showed that our concepts for model-based,

adaptive test automation are also applicable for this particular

real world application: the self-adaptive controller of a Hadoop

application. The central concept of our approach is to use run-

time models; the underlying model-based paradigm enables to

handle complex systems—here a distributed Hadoop system—

by abstraction. Abstraction makes it easy to integrate the

automated oracle, without worrying about distributed aspects,

and further enables to enrich and define the test suite in a

way that it can be used in an adaptive test automation. The

key concept for adaptive test automation is on the one hand

to give the adaptation mechanism the needed freedom to act

autonomously and on the other hand to add the information

about the intention of the test case in order to act in an

intelligent way. The latter one is done by descriptions based

on the model state. Thus, the test model used is an enabler

for adaptive test automation.

b) Implementing test harness for distributed test envi-
ronment needed for an adaptive test automation: Indeed,

the model-based paradigm made things easier by abstraction.

However, test automation still needs somehow to cope with

the complexity of the system when tests are executed and

evaluated. This is done by the test driver we integrated into our

test system. The model defined which kind of information is

needed to be extracted from the SuT and which information or

actions needed to be executed on the SuT. The set of command

line functions we defined under the hood of the test automation

is still not as generic and as reusable as we would like it to

have. It needs to be customized for each and every application

by a test engineer. We showed that and how it is possible to

do so for a complex real world application. In future work,

we focus on the challenge of connecting a complex system to

our test ecosystem in a generic (maybe learning) way.

c) Run-time reflection of a distributed Hadoop System in
our S# environment: Having coped with the aforementioned

challenge it turns out that the task of the test engineer is much

more focused on its actual task: defining and designing test

cases, the automated oracle, and selecting the right degree of

abstraction. The run-time reflection is the enabler for a more

focused task of the test engineer, but further allows to specify

tests with more information: the intention of the test case in

a run-time context. That enables the adaptation of the test

automation at run-time. Making test runs possible, that could

not be specified without this information. This leads to a quite

small test suite defined by the test engineer, that results in a

quite large number of actually executed test cases at run-time.

d) Case study for testing a distributed, adaptive real
world software systems: We showed that the concept shown

in [4], [5] have been successfully applied to a distributed,

adaptive real world software system. The model-based concept

made it possible to handle the complex, distributed system.

Nevertheless, the task of technically connecting the SuT with

the test system is still highly customized and challenging. In

total we executed over 300, 000 test cases on our Hadoop

instance. But, we failed to reveal any failure during testing, in-

deed, this is showing the stability of a widely-used established

commercial software. Simplistic errors have been injected as

mutants in the system, these have been revealed as failures

during testing. However, we claim that there is a need for more

complex mutants, that are especially tailored to adaptation

mechanisms or in general autonomous systems in order to

evaluate the mutation score in depth of our approach. This

will be part of our future work.

ACKNOWLEDGMENT

This research is sponsored by the research project Testing
self-organizing, adaptive Systems (TeSOS) of the German
Research Foundation.

REFERENCES

[1] M. Salehie and L. Tahvildari, “Self-adaptive Software: Landscape and
Research Challenges,” ACM Trans. Auton. Adapt. Syst., vol. 4, no. 2,
pp. 14:1–14:42, 2009.

[2] R. de Lemos et al., “Software Engineering for Self-Adaptive Systems: A
Second Research Roadmap,” in Software Engineering for Self-Adaptive
Systems II. Springer, 2013, pp. 1–32.

[3] R. de Lemos, D. Garlan, C. Ghezzi, and H. Giese, Eds., Software
Engineering for Self-Adaptive Systems III. Assurances, ser. LNCS, vol.
9640. Springer, 2017.

[4] B. Eberhardinger, A. Habermaier, and W. Reif, “Toward Adaptive, Self-
Aware Test Automation,” in 12th Int. Wsh. Automation of Software
Testing, (AST2017). IEEE Comp. Soc. 2017, pp. 34–37.

[5] B. Eberhardinger, H. Seebach, A. Reichstaller, A. Knapp, and W. Reif,
“Adaptive Tests for Adaptive Systems: The Need for New Concepts in
Testing for Future Software Systems,” Softwaretechnik-Trends, vol. 38,
no. 1, 2018.

[6] B. Zhang, F. Křikava, R. Rouvoy, and L. Seinturier, “Self-Balancing Job
Parallelism and Throughput in Hadoop,” in Distributed Applications and
Interoperable Systems, ser. LNCS, vol. 9687. Springer, 2016, pp. 129–
143.

[7] B. Eberhardinger, G. Anders, H. Seebach, F. Siefert, A. Knapp, and
W. Reif, “An Approach for Isolated Testing of Self-Organization
Algorithms,” in Software Engineering for Self-Adaptive Systems III.
Assurances, ser. LNCS, R. de Lemos, D. Garlan, C. Ghezzi, and
H. Giese, Eds., vol. 9640. Springer, 2017.

[8] B. Eberhardinger, A. Habermaier, H. Seebach, and W. Reif, “Back-
to-Back Testing of Self-organization Mechanisms,” in 28th Int. Conf.
Testing Software and Systems (ICTSS 2016), 2016, pp. 18–35.

[9] A. Computing et al., “An architectural blueprint for autonomic comput-
ing,” IBM White Paper, vol. 31, pp. 1–6, 2006.

[10] Spirals-Team. (2018, Mar.) Github: Spirals-team hadoop. [Online].
Available: https://github.com/Spirals-Team/hadoop-benchmark

[11] B. Eberhardinger, J. Steghöfer, F. Nafz, and W. Reif, “Model-driven Syn-
thesis of Monitoring Infrastructure for Reliable Adaptive Multi-Agent
Systems,” in 24th Int. Symposium on Software Reliability Engineering,
(ISSRE 2013), 2013, pp. 21–30.

[12] Y. Chen, S. Alspaugh, and R. Katz, “Interactive Analytical Processing in
Big Data Systems: A Cross-industry Study of MapReduce Workloads,”
Proc. VLDB Endow., vol. 5, no. 12, pp. 1802–1813, 2012.

[13] K. Ren, Y. Kwon, M. Balazinska, and B. Howe, “Hadoop’s Adolescence:
An Analysis of Hadoop Usage in Scientific Workloads,” Proc. VLDB
Endow., vol. 6, no. 10, pp. 853–864, 2013.

[14] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

518

