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Abstract. Photovoltaic (PV) power forecasting is an important task
preceding the scheduling of dispatchable power plants for the day-ahead
market. Commercially available methods rely on conventional meteoro-
logical data and parameters to produce reliable predictions. These costs
increase linearly with a rising number of plants. Recently, publicly avail-
able sources of free meteorological data have become available which
allows for forecasting models based on machine learning, albeit offer-
ing heterogeneous data quality. We investigate a chained neural net-
work model for PV power forecasting that takes into account varying
data quality and follows the business requirement of frequently intro-
ducing new plants. This two-step model allows for easier integration of
new plants in terms of manual efforts and achieves high-quality forecasts
comparable to those of raw forecasting models from meteorological data.

Keywords: Machine learning · Neural networks · Photovoltaic power
forecast

1 Motivation

In the wake of the energy revolution, more and more volatile power plants based
on renewable energy sources such as wind turbines or photovoltaic (PV) plants
enter the market. In Germany, for instance, solar energy accounted for 8.4% of
the total electricity generated in 2018 – five years earlier it was only 5.7% [3].
This increasing ratio affects the stability of the power grid due to the intermittent
generation of PV plants. Cloud movements influence the solar irradiation and
consequently cause fluctuations in the generated power.

In order to guarantee balance in the energy grid, supply and demand must
be approximately equal at all times. While the output generated by dispatchable
plants such as gas turbines can be increased in the event of an energy decay, this
is not possible for PV plants. So, if volatile plants produce too little electricity,
dispatchable power plants have to compensate. In order to be able to estimate
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Fig. 1. Two-stage process by means of chained machine learning models: power outputs
for reference PV plants (shown as blue triangles) are forecasted from raw meteorolog-
ical data (at several locations, depicted as red rectangles) provided by the German
Meteorological Office. The outputs of non-reference PV plants are then predicted from
the output predictions of reference plants. Locations are picked for illustration purposes
only and do not coincide with real plant or station locations. (Color figure online)

in advance when and how much energy will probably have to be compensated,
forecasts are needed especially for volatile plants. The more accurate the power
forecasts are, the less energy will have to be compensated in the short term, lead-
ing to more efficient schedules for the power plants involved [11]. Large energy
operators responsible for a large number of PV systems (such as Stadtwerke
München) have to create such forecasts for each individual plant, typically based
on meteorological data. They can either be obtained commercially or must be
created by the operators themselves based on physical equations or machine
learning techniques. In order to be able to produce acceptable predictions in the
latter case, usually a great amount of historical data is needed for each plant,
which leads to high administrative expenses. If the underlying data consist of
weather information from a local weather service, the costs of high-resolution
weather information for the location of the power plant are usually quite high.
Thus, costs and effort of data acquisition and management can quickly exceed
the profit generated by accurate forecasting.

Consequently, in this paper, we take on the task of producing accurate PV
forecasts under several business constraints for a specific application scenario:

Costs of Forecasts The driving motivation behind our study is to examine if
accurate PV power predictions can be obtained from freely available meteo-
rological data, as opposed to existing baseline predictions.

Heterogeneous Data Quality Apart from being free, the meteorological data
available at relevant locations vary heavily in terms of quality (see Sect. 2).

Data Preparation and Maintenance Efforts New plants should be easily
integrated into the system – optimally at little manual data cleansing costs.
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Instead of trying to improve the state of the art in PV power forecasting in gen-
eral, our goal is to apply machine learning to achieve acceptable power forecasts
in this setting, even if the available meteorological data is limited. For doing
so, we developed three prediction models: the first model introduced in Sect. 3.1
takes meteorological data from the region around a PV plant to forecast its
power. Although this direct prediction model yields the best results in terms of
error reduction, the data preparation effort is significant for every single plant
due to the heterogeneous availability of weather data.

Therefore, we propose a chained model (Sect. 3.3) that includes precise pre-
dictions from weather data using the forecast model for a selected set of reference
plants and learns mappings from the resulting predictions (Sect. 3.2) to every
other remaining plant, as Fig. 1 visualizes. Our approach takes into account the
organizational change processes involved with preparing and training new pre-
diction models and offers a transformation strategy by starting with predictors
for few reference plants to serve as a baseline for learned mappings and gradually
converting them to have their own prediction models.

2 Heterogeneity of Data Quality

The communal energy service provider Stadtwerke München operates a virtual
power plant which is a network of several small decentralized energy producers
and consumers [12] to regulate short-term fluctuations in the energy grid. This
coalition can jointly achieve production capacities matching those of ordinary
power plants. In order to maintain the balance of the energy grid under the
influence of many players, every provider has to forecast how much energy will
be generated or consumed. For the so-called day-ahead trading at the energy
market in Germany, these predictions are required daily in 15-minute resolution
for the following day. Since unforeseen changes due to outages of some plants
or changing weather conditions can quickly occur, intraday trading allows to
compensate the deviating energy on the same day [5]. Due to their commercial
relevance, we focus on day-ahead forecasts in this work.

We considered a subset of 120 PV plants of the virtual power plant through-
out Germany, each of them with a maximum power between 100 and 20k kW.
Historical actual power output data was available in a 15-minute resolution from
December 2017 through June 2018. As the virtual power plant continues to grow,
several new PV plants can accrue per month, which also need to be predicted.
Due to the direct dependence of photovoltaic power on weather condition, we
used numerical weather records and forecasts from the German Meteorological
Office DWD1 as a basis for the power forecasts. The hourly forecasts originate
from the weather model cosmo-d2, which is generated for an equidistant grid
of 2.2 km over Germany. By contrast, the historical data is recorded at various
weather stations throughout Germany in different time resolutions. Most impor-
tantly, all of this data is distributed openly and for free which can in turn help
to reduce prediction costs.
1 Deutscher Wetterdienst https://www.dwd.de

https://www.dwd.de
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The most natural way to obtain historical weather data for a PV plant would
be to consider the records from the nearest weather station. Given the historical
data from DWD, we face two problems: first, each station is only recording a
small subset of all possible weather attributes, and second, multiple time gaps
and series of error values occur in the recorded data – for some stations more than
for others. This variation in data availability of the individual stations together
with their uneven distribution over Germany lead to very heterogeneous data
quality for all PV plants. For example, for some plants there could be a high-
quality and close weather station, whereas others may be surrounded by many
distant weather stations that simultaneously suffer from poor data quality or
have recently been installed and therefore lack historical data.

Related Work
Due to their relevance for trading in the energy market, forecasting models for
PV plants have been investigated thoroughly [1,7,11]. These models target sev-
eral forecast horizons, ranging from a few seconds to days or weeks ahead. Sim-
ilarly, they address a variety of spatial horizons, from a single site to regional
forecasts. The authors of [1] provide a thorough survey of the most common
approaches to PV forecasting, including analytical equations to model the irra-
diance of a PV system as the most important predictor for the power output
(see, e.g., [4]) and statistical or machine learning models such as neural net-
works [8] or random forests [9]. In [8], a multilayer perceptron model is trained
to forecast solar irradiance which is then converted into power outputs using
a physical model. By contrast, our forecasting model (see Sect. 3.1) learns the
mapping from irradiance values of multiple weather stations to a power output.
This is due to the fact that we can obtain irradiance forecasts from DWD.

However, given our available (free) data, none of these forecasting models is
directly applicable which is why we opted for a custom machine learning model
that is trained in our specific setting and does not require, e.g., precise tilt angles
and orientations of PV plants as inputs.

3 Forecasting Models

In our proposed approach (see Fig. 1), we build prediction models P1, . . . , Pm

for all m PV plants based on meteorological data from DWD. Since the gener-
ated forecasts are intended for day-ahead trading, they must be created for the
following day in 15-minute resolution using current meteorological predictions.
Consequently, estimating PV power is a regression problem where the input
features �x correspond to a vector of numerical meteorological parameters for a
certain point in time (given as forecasts themselves) and the target quantity y
is the continuous output of a PV plant at this point in time. Although a first
impression might suggest that a joint model could be trained and applied to
forecast the outputs of all PV plants simultaneously, there are several reasons
why we decided to build a prediction model for every single plant instead:

(a) In a joint model, poor data quality of some PV plants could harm prediction
accuracy for all other plants.
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(b) The joint model has to be completely re-built and re-trained when new
plants are added to the virtual power plant. For separate models, by con-
trast, only the added plants require building new forecasting models and the
already existing ones can simply remain. This aspect is very important in
our scenario as new plants are added frequently to the virtual power plant.

(c) Handling single models is scalable because they can be trained and evaluated
in parallel.

3.1 A Power Forecasting Model from Weather Data

As mentioned before, we use publicly accessible weather data from DWD as basis
for the power forecasting models Fi of a single PV plant i. Historical records of
pairs of meteorological data and PV power outputs are used to train the models
such that weather forecasts can afterwards be mapped to power forecasts. In
order to use a weather attribute as a feature for the data set, it needs to occur
both in historical and forecast data. Unfortunately, this is only the case for
four attributes where we discarded the attribute cloud coverage due to its
unavailability in more than 90% of the stations, leaving us with

• solar diffuse irradiation,
• solar global irradiation and
• air temperature two meters above ground

as our remaining available features. Fortunately, irradiation and temperature
tend to be the most important features for PV power prediction [10,14].

The historical weather values used to train our models are measured at fixed
weather stations distributed over Germany in varying time resolutions (e.g. rang-
ing from every minute to yearly), whereas the weather forecasts are collected
from the weather model cosmo-d2 that offers points arranged in a dense, equidis-
tant grid over Germany (called cosmo-d2 grid in the following). However, these
forecast values are only available in an hourly resolution. Since the input data
need to have the same resolution, the historical values are aggregated to hourly
resolution to match the available forecast data. As mentioned before, we still have
to provide power forecasts in 15 -minute resolution even though our weather fea-
tures only have hourly resolution. Therefore, we map the hourly weather input
onto four consecutive quarter-hourly power forecasts for the same hour.

Mapping coarse hourly weather condition onto finer quarter-hourly power
forecasts presents us with a problem: the model cannot decide how the four
output values should develop. For similar weather conditions, we would expect
a positive development of them in the morning while the sun is still rising, but
a negative one in the afternoon due to the sunset. Therefore, we add the hour
value of the data point in a one-hot-encoded way to the features.

Because only few weather stations measure the three relevant weather
attributes and the records contain many gaps or error values, we include the
attributes of the stations in an area around a plant into its feature set. Based
on the measured average speed of clouds from [6], we choose a radius of 90 km
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Table 1. Statistical values describing the minimal, maximal, mean and median number
of weather attributes from DWD data that were used as features for the forecasting
models of the individual PV plants.

Min Max Median Mean

solar diffuse irradiation 0 7 2 2.23

solar global irradiation 0 7 2 2.77

air temperature two meters above ground 8 28 20 19.03

All three features 11 41 21 24.03

around the plant that corresponds to twice the average distance traveled by
clouds per hour. Since an instance can only be used productively if there exist
non-error values for all features, we consider a weather attribute from a station
only if it provides enough data points so that the overall amount of instances is
not reduced too much. With respect to the DWD data, we first sort the stations
around a plant by their distance in ascending order. Afterwards, while iterat-
ing over the ordered stations, we exclude attributes from those with a ratio of
missing or error values exceeding 1% of the current amount of instances.

According to this strategy, the weather-based data sets for all 120 PV sys-
tems have been generated. Table 1 shows that due to the heterogeneity of weather
data, the data sets contain much more temperature attributes than for irradia-
tion. Moreover, some PV plants even suffer from not having any weather station
in their environment measuring irradiation values. Since these features are much
more important for accurate power forecasts than temperature values, the cor-
responding forecasting models are expected to perform poorly.

For PV power forecasts, we have to resort to cosmo-d2 grid points as opposed
to specific weather stations provided in the historical data that were used for
training. Therefore, we replaced the input features of the weather stations with
those of the closest cosmo-d2 grid points during forecasting. Since the grid res-
olution is about 2.2 km, the distance between the forecast points and weather
stations is reasonable.

In an ideal world with lots of resources available for data processing and
storage, the forecasting model is a good choice to get power forecasts for all PV
plants, as our evaluation in Sect. 4 shows. With limited resources, however, a few
problems arise: the historical weather records for each PV system must be both
continuously updated and always processed into a consistent amount of data. In
addition, the available weather stations of the DWD can change, for example, by
adding new stations or removing previously used stations. In the latter case in
particular, the model of the affected PV plant must then be completely re-built
and re-trained due to the omission of the associated feature for this station.
Thus, the entire knowledge of the old model is lost.

Besides our strategy of selecting feasible weather stations for a PV plant,
there is a number of other strategies to create a joint data set from the given
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historical records of the weather stations. Due to the heterogeneity of the avail-
able data, it may be possible that for different PV systems different merging
strategies lead to the best data sets. Comparing multiple strategies for all plants
to find the best one would in turn require a lot of computational or manual
data preprocessing effort. The heterogeneity of the data poses another problem:
As can be seen in Table 1, some considered PV plants do not have any nearby
weather stations that measure irradiation attributes in sufficient quality. Unfor-
tunately, these attributes are crucial for PV prediction. An intuitive solution
would be to gradually increase the radius around the stations until an accept-
able number of weather stations measuring irradiation values were found which
in turn would cause increasing computational effort.

3.2 A Mapping Model Learning from Reference Power Forecasts

Instead of computing power forecasts using the weather-based forecasting model
Fi for all m PV plants (including the aforementioned data preparation and clean-
ing efforts), we will build models Fr1 , . . . , Frk only for a small selection of plants,
the so-called reference plants {r1, . . . , rk} ⊂ {1, . . . , m}, and map the resulting
forecasts to the remaining m − k plants via mapping models M1, . . . , Mm−k.
Precisely, a PV prediction model Pi of plant i is obtained as follows:

Pi =

{
Fi if i is reference plant, i.e., i ∈ {r1, . . . , rk}
Mi(Fr1 , . . . , Frk) if i is non-reference plant

This approach is based on the principle of regionality, as nearby plants are
expected to be usually exposed to similar weather conditions and consequently
show similar power curves. The power forecasts of the reference plants are
mapped to those for the remaining non-reference plants. Various factors, such as
the orientation of the system with respect to both the cardinal direction and the
angle of the solar panels, their location along the latitude or the topology of the
environment, for example tall shading buildings, affect the output power of a PV
plant. Since this information is individual, in some cases not available, and in
general difficult to express analytically, we also use machine learning techniques
for the mapping model. To avoid having to manually pick a subset of reference
plants for each PV plant, the forecasts of all of them are used as input for the
models. A resulting advantage is that the location of the target plant does not
have to be known in order to obtain forecasts.

The mapping model takes the forecast values of all reference plants for a
certain quarter-hourly point in time to produce the power forecast of a regarded
plant for the same point. For training, historical actual power outputs of the
plant as well as the corresponding forecasts of the reference plants are required
in 15-minute resolution. The reference plants should be selected from all over
Germany and all together provide as gapless forecast values as possible for the
considered period. This approach offers the advantage that all models have the
same input, only the output has to be exchanged for each plant individually.
Even if a new plant is added to the virtual power plant, there is no effort for
generating new input for it.
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3.3 A Chained Forecasting Model

To obtain reliable power predictions for a large and increasing number of PV
plants based on the available data, we combine the two methods presented so
far. This means that for every non-reference PV plant, the two models are com-
posed: for the reference plants, the forecasting models Fr1 , . . . , Frk predict power
values based on weather data; the mapping model Mi then takes all these power
forecasts and estimates the output of a non-reference plant i, as shown in Fig. 1.

The curse of dimensionality is the most important reason why we decided
to compose the models sequentially instead of combining them into one: In the
latter case, the feature set would consist of all weather attributes of all weather
stations associated with reference plants. Then, too few training instances could
be available to train this model due to the time gaps and error values in the
historical records. By splitting the model into two successive models, in contrast,
significantly fewer features are used in both steps, which we expect to improve
training for both and, consequently, to lead to better predictions.

Using this stepwise approach, a small loss of accuracy is tolerable in favor of a
significantly lower manual data preparation effort. The models depend on much
less historical weather data from DWD, since we only need them for the small
portion of reference plants. Our strategy is to pick those few reference plants
carefully by evaluating available raw weather data in terms of proximity and data
quality. This expenditure is well spent since once we have high-quality forecasting
models for the reference plants, we can easily train additional mapping models
for the remaining plants using the same inputs (forecasts of reference PV plants)
but only different power targets.

4 Evaluation

For our evaluation, we investigate whether our proposed models based on freely
available weather data reach the quality of the commercial baseline predictions
and whether the chained model achieves acceptable results compared to the pure
forecasting models – at lower development costs.

We noted that the provided actual power values of some PV plants contained
days with no power output at all. Since PV plants generate a small amount of
energy even on winter days, this is obviously incorrect data and was consequently
excluded from the data set. These zero power days could be caused by main-
tenance, defects or snow on the solar panels and would significantly skew the
results. After this preprocessing step, the remaining data for each plant was split
into a training set with about 70% of the instances, a validation and a test set
with 15%, respectively. For a better visualization on the validation and test sets,
all instances of a whole day were assigned to precisely one of the three sets.

Instead of optimizing hyperparameters individually for each of the 120 PV
plants considered in this paper, we opted for a uniform hyperparameter setting
across all plants. By doing so, we assume that the underlying functions to be
learned are similar for all PV systems and therefore it is enough to tune the
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capacity of a model only once for all of them. Therefore, a small subset of eleven
plants was randomly selected such that they are distributed all over Germany
with different maximal output, in the following referred to as PV 1 to PV 11.
We used the root mean squared error (RMSE) as error metric, adhering to
conventions about PV forecasting evaluations in the literature [1].

As a preliminary experiment in terms of model adequacy, we evaluated the
three machine learning techniques random forest, Gaussian process and feed-
forward neural network for the mapping model using given baseline forecasts
for 13 reference plants. Random forests have already been successfully applied
to PV forecasting in literature [14] and can represent a large number of func-
tions without having to severely limit the inductive bias as they make no prior
assumptions regarding smoothness or other properties of the function. This is
an important aspect for our scenario, as the form and the complexity of the
mapping between the reference predictions and the performance values of the
remaining plants is not known in advance.

Gaussian processes were chosen because of their probabilistic nature, which
allows us to obtain predictions and simultaneously quantify their uncertainty.
Moreover, once the covariance (or kernel) function has been selected, many
hyperparameters of the model are set automatically during training so that they
do not need to be chosen manually [13]. Like random forests, they can describe
many different functions, which can nevertheless be restricted if necessary by
the kernel function. Finally, neural networks have proven to be a universal tool
in practice since they are very adaptive and can fit a wide variety of functions.
They have also been successfully used for PV forecasting multiple times [1].

In our implementation, we used the python library GPy2 for Gaussian
processes, scikit-learn3 for random forests and Keras4 with the TensorFlow5

backend for neural networks. With random forests, the tuned hyperparameters
included the number of estimators, the minimum samples per leaf and the
maximal number of features per split. After model selection, i.e. grid search-
ing for appropriate values of these hyperparameters, the number of estimators
was set to the default value 10, the maximal number of features to 4 and the
minimum samples per leaf was set to 1.

For Gaussian processes, we applied the procedure for automatic kernel selec-
tion described in [2]: At first, the best standard kernel of the framework is chosen.
Afterwards, it is combined stepwise through addition or multiplication with other
standard kernels until no further improvement of the resulting Gaussian process
can be achieved. The best results were achieved using an additive combination
of a linear and an exponential kernel for all input dimensions together after
200 optimization steps. For the neural networks, different architectures with one
or two hidden layers were compared. The activation functions for these layers
were taken from the standard functions of the framework, whereas the identity

2 GPy https://sheffieldml.github.io/GPy/
3 scikit-learn https://scikit-learn.org/
4 Keras https://keras.io/
5 TensorFlow https://www.tensorflow.org/

https://sheffieldml.github.io/GPy/
https://scikit-learn.org/
https://keras.io/
https://www.tensorflow.org/
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Fig. 2. Comparison of validation errors (RMSE) of all tested methods for the mapping
model and the basline model.

function was selected for the output layer since we consider a multivariate regres-
sion problem. Models with one hidden layer containing ten neurons and the
activation function softplus achieved the best results.

Figure 2 shows the error values achieved by the different models. All three
techniques perform at approximately the same level for each plant, with the
neural network performing best for most PV plants.

Compared to the mapping model, Gaussian processes are not equally suitable
for our forecasting model due to the higher dimensionality of the weather data.
The computational complexity of Gaussian processes depends cubically on the
dimension [13] which makes this technique hard to apply in high-dimensional set-
tings. Moreover, we also refrained from using random forests for our forecasting
model since we expected the neural network to capture the feature interactions
between the continuous weather attributes more easily. Hence, the experiments
for the forecasting model were only performed with neural networks.

We used the same reference plants as in the preliminary experiments for
the mapping model. Thus, no optimized selection of the reference plants has
yet taken place. For each model, the number of features is different due to the
heterogeneity of weather stations discussed in Sect. 3.1. For architecture tuning,
we chose the number of hidden neurons as a multiple of the number of inputs.
This makes the different models much more similar to each other than using
a fixed number of neurons because the ratio of neurons in input and hidden
layer stays the same. When tuning the forecasting models of the eleven selected
power plants, three layers with the same number of neurons in the input as in
the hidden layer and activation function softplus in the hidden layer turned
out to be the most successful architecture.

Finally, for the chained model, we reused the techniques of the two basic
models we identified as performing best. Whereas the weather-based forecasting
models of the first part are completely adopted, the subsequent mapping mod-
els are re-tuned with the resulting reference forecasts since in the preliminary
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Table 2. Evaluation of the direct forecasting model and the two-stage chained model
on a shared test set in comparison with the baseline model of Stadtwerke München.
Plants marked with an asterisk (∗) are used as reference plants and therefore only
predicted by the forecasting model. Absolute values are given as RMSE in kilowatts,
relative values are error improvements compared to the basline model.

PV plants Chained
model

Improvement Forecasting
model

Improvement Baseline
model

PV 1∗ 144.6 16.2% 172.6

PV 2 37.0 41.2% 22.5 64.3% 62.9

PV 3∗ 82.0 9.2% 90.3

PV 4 181.8 8.0% 102.6 48.1% 197.6

PV 5 108.7 5.2% 98.2 14.5% 114.8

PV 6 54.5 10.6% 54.9 9.9% 61.0

PV 7 189.3 −3.6% 146.4 19.9% 182.8

PV 8 83.8 8.2% 71.1 22.2% 91.3

PV 9 96.8 −0.2% 83.6 13.6% 96.7

PV 10 199.9 44.9% 222.8 38.6% 362.8

PV 11 110.3 14.5% 106.7 17.3% 129.0

Average 117.2 10.8% 104.9 20.2% 131.4

Sum 1288.7 10.8% 1153.4 20.2% 1445.7

Reference plants∗

Average 144.0 20.2% 180.5

Sum 1872.6 20.2% 2346.0

All 120 plants

Average 112.0 20.0% 108.3 22.6% 139.9

Sum 13098.4 20.0% 12674.5 22.6% 16373.5

experiment they were trained on external forecast data. The resulting mapping
model tuned on the selected eleven plants contains seven neurons in the hidden
layer, once again applying the activation function softplus.

As Table 2 visualizes, both the direct forecasting and the chained model were
able to achieve better results than the baseline predictions obtained commercially
by Stadtwerke München. Using the forecasting model for predicting outputs of
reference plants, the RMSE could be improved by 20.2%. Mapping these fore-
casts to the outputs of the remaining PV plants, this improvement could almost
be retained. Regarding all 120 PV plants, the direct weather-based forecasting
model performs better than the chained model – however, this comes at the price
of a much higher manual workload, as we discussed in Sect. 3.
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5 Conclusion and Future Work

We propose a chained model for PV power forecasting that takes into account the
organizational change process of preparing and training new prediction models
and follows requirements of business processes like easy adaption for accruing
new plants. Since our models are based on meteorological data that is suffering
from spatially varying data quality, we show how to deal with this heterogeneity.
The evaluation shows that the chained model achieves better results than the
baseline and even performs comparable to the direct forecasting model which
requires significantly higher data preparation effort for every single plant.

In future work, one could use so-called clear sky models to interpolate
hourly weather forecasts to quarter-hourly ones (like in [14]) for the forecasting
model instead of mapping hourly weather forecasts to four consecutive quarter-
hourly power forecasts. Moreover, transfer learning could help leverage knowl-
edge extracted from plants with high data quality to improve models based on
lower data quality. Finally, weather forecasts with short temporal horizon may
serve as acceptable historical records since weather forecasts tend to be at good
quality for this horizon.
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