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Abstract   We propose a new variant of Bin Packing Problem, where rectangular 

items of different types need to be placed on a two-dimensional surface. This new 

problem type is denoted as two-dimensional Bin Packing with side constraints. Each 

bin may consist of different two-dimensional sides, and items of different types may 

not overlap on different sides of the same bin. By different parameter settings, our 

model may be reduced to either a two- or three-dimensional Bin Packing Problem. 

We propose practical applications of this problem in production and logistics. We 

further introduce lower bounds, and heuristics for upper bounds. We can demon-

strate for a variety of instance classes proposed in literature that the GAP between 

those bounds is rather low. Additionally, we introduce a Column-Generation based 

algorithm that is able to further improve the lower bounds and comes up with good 

solutions. For a total of 400 instances, extended from previous literature, the final 

relative gap was just 6.8%. 

1 Introduction 

In the two dimensional bin packing problem with side constraints (2DBP-SC) we 

are given a set of rectangular items 𝑖 ∈ 𝐼, each defined by its height ℎ𝑖, width 𝑤𝑖  

and type 𝑡𝑖. A bin consists of 𝑆 sides with dimensions 𝐻 and 𝑊, respectively. The 

goal of 2DBP-SC is to assign every item a concrete position such that all items are 

packed without overlapping and using as few bins as possible. Furthermore, items 

are packed orthogonally and the newly introduced side constraint has to be satisfied, 

meaning that no two items of different type may be placed face-to-face on the same 

bin but on different sides. We assume items may not be rotated. This problem is an 

extension of the well-studied two dimensional bin packing problem (2DBP), where 

only one bin side exists (𝑆 = 1). 2DBP-SC is strongly NP-hard, since 2DBP is 

known to be such (Martello & Vigo 1998; Martello et al. 2000). 

The example depicted in Fig. 1 gives an idea of the restrictions implied by the 

side constraint. This small instance contains bins with two sides and two item types. 

The side constraint reduces the available space on different sides of the bin. In con-
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trast to the traditional 2DBP, where items simply occupy bin capacity for their re-

spective shape, in 2DBP-SC items additionally block this capacity on all other sides 

of the bin. Only items of identical type may use this blocked area (indicated by 

hatched area). This means that the concrete capacity consumption of a single item 

depends on the actual packing of the bin. Notice that another item of type A (green) 

with dimensions (𝑤, ℎ) = (4, 6) could be placed in the bottom right corner on the 

rear side of the bin, whereas an identically shaped item of type B cannot be placed 

in this position, because it would overlap with area blocked from the front side for 

type A. 

 

Fig. 1. Example Packing 

The motivation for this problem originates from a real-world application. We 

analyzed a bottleneck resource in a paint shop. Items have to be placed on racks 

with two faces (front and rear). Additionally, two types of items exist. These types 

are not allowed to be placed face-to-face for quality reasons. Due to these re-

strictions the utilization of racks was very low and this production step became a 

limiting factor. 2DBP-LC corresponds directly to this problem. The same problem 

must be solved when packing a multi-temperature compartment truck. These trucks 

consist of flexible departments, dividing them into different temperature zones. The 

cargo has to be packed into shelves, while every item has to be in its respective 

temperature zone. 

2 Lower Bounds 

We introduce already known lower bounds for 2DBP and 3DBP and adapt them to 

our new class of 2DBP-SC. In general, two ideas exist: The geometric bound sums 

up volumes of all items and divides it by the area available in a single bin (Berkley 

& Wang 1987; Martello & Vigo 1998). In contrast, the bound of large items focus-

ses on items fulfilling the conditions 𝑤𝑖 >
𝑊

2
 and ℎ𝑖 >

𝐻

2
. We combine both ideas as 
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in Martello et al. (2000) to bound 𝐿2
𝑆𝐶 . By adapting the bound to 2DBP-SC, we can 

account for item types. This allows us to further improve existing bounds. 

3 Upper Bound 

For the 2DBP several solution heuristics exist: Lodi et al. (2002b) describe well-

known heuristics Next-Fit Decreasing Height, First-Fit Decreasing Height, and 

Best-Fit Decreasing Height. The latter dominates the remaining two regarding so-

lution quality (Lodi et al. 2002a). 

We adapt the Best-Fit Decreasing Height (BFDH) algorithm, first introduced by 

Berkey & Wang (1987). Our algorithm, called Best-Fit Decreasing Height with side 

constraints (BFDH-SC), creates feasible packings but does not guarantee to find an 

optimal one. We first order all items according to (a) type and (b) non-increasing 

height. The first item in the list – the active item – is packed on a level containing 

only items with identical type and sufficient remaining space. According to the best-

fit rule we select that level, where the remaining horizontal space is minimized. If 

no such level exists, a new level is initialized on top of the latest one, if the bin has 

enough remaining height. If not, a new bin is initialized as well. Finally, the active 

item is removed from the list. The algorithm terminates, if the list of items is empty. 

The heuristic has a runtime complexity of Ο(𝑛3). 

4 Solution Algorithm 

We decompose the problem straightforward according to Dantzig-Wolfe and solve 

the resulting set covering formulation with column generation. In particular, we 

form a (Restricted) Master Problem (RMP) and a two dimensional packing problem 

(2DPP), acting as the subproblem.  

We will solve the RMP in every iteration of the column generation procedure to 

obtain the dual variables 𝜋𝑖 associated with every item. We can then use this infor-

mation to find a new feasible packing that can improve the current solution of the 

RMP by solving the subproblem. Thereafter, the next iteration starts over again by 

solving the slightly enlarged RMP. If all sufficient columns are added to the RMP, 

its solution is optimal, i.e. the LP-relaxation of RMP has been solved. From theory 

the bound improves the LP-relaxation of the original problem. 

Initial columns are created by BFDH-SC, 𝐿2
𝑆𝐶  acts as initial lower bound. During 

the course of the algorithm, new lower bounds are available in every iteration 

(Lübbecke & Desrosiers 2005), using optimal solution values of RMP and subprob-

lem 𝐿𝐶𝐺 = ⌈
𝑧𝑅𝑀𝑃

1−𝑧𝑠𝑢𝑏
⌉. 
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Subproblem decomposition 

In our approach the subproblem has to find a feasible packing pattern 𝑝 with nega-

tive reduced costs 𝑐𝑝
𝜋 < 0. If no negative reduced cost column exists, the column 

generation algorithm terminates with the optimal LP solution of RMP. 

To solve this complex subproblem, we follow the approach of Pisinger & Sigurd 

(2007). There, the pricing problem is decomposed into a one dimensional knapsack 

problem (1DKP) and a relaxed 2DPP. 1DKP selects a subset of items 𝐼′ ⊆ 𝐼 prior 

to the packing problem. We then solve the 2DPP with this reduced set, what leads 

to an increase in speed for the latter problem. Notice that this comes at the cost of 

decreasing solution quality, since we cut a quite large region of the solution space. 

If any item, which is part of the optimal packing in this iteration, is not an element 

of 𝐼′, then 2DPP is not able to find this optimal solution, so it will be necessary to 

solve 2DPP for the original set of items 𝐼 in some iterations. 

 

Fig. 2. Iteration scheme of column generation process  

First, we extend a MIP formulation for a traditional 2DPP first published in Pisinger 

& Sigurd (2007) to take item types into account. Decision variables indicate whether 

a pair of items is part of the packing (𝑎𝑖 , 𝑎𝑗 = 1) and if so, the relative position of 

two items (𝑓𝑖𝑗 , 𝑙𝑖𝑗 , 𝑏𝑖𝑗). Two non-overlapping items may ether be in front, behind, 

left, right, above, or below of each other. The side-constraint is implemented as 

(𝐼𝐼𝐼). The problem’s goal is to create a new pattern with minimal reduced costs. 

𝑧2𝐷𝑃𝑃 = min 1 − ∑ 𝜋𝑖𝑎𝑖

𝑖∈𝐼

 (I) 

𝑠. 𝑡.:     

𝑓𝑖𝑗 + 𝑓𝑗𝑖 + 𝑙𝑖𝑗 + 𝑙𝑗𝑖 + 𝑏𝑖𝑗 + 𝑏𝑗𝑖 + (1 − 𝑎𝑖)

+ (1 − 𝑎𝑗) 
≥ 1 

∀ 𝑖, 𝑗 ∈ 𝐼: 
𝑖 < 𝑗 

(II) 

𝑙𝑖𝑗 + 𝑙𝑗𝑖 + 𝑏𝑖𝑗 + 𝑏𝑗𝑖 + (1 − 𝑎𝑖) + (1 − 𝑎𝑗) ≥ 1 
∀ 𝑖, 𝑗 ∈ 𝐼: 
𝑖 < 𝑗 ∧ 𝑡𝑖 ≠ 𝑡𝑗 

(III) 

𝑥𝑖 − 𝑥𝑗 + 𝑊𝑙𝑖𝑗  ≤ 𝑊 − 𝑤𝑖 ∀ 𝑖, 𝑗 ∈ 𝐼 (IV) 

𝑦𝑖 − 𝑦𝑗 + 𝐻𝑏𝑖𝑗  ≤ 𝐻 − ℎ𝑖  ∀ 𝑖, 𝑗 ∈ 𝐼 (V) 
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𝑠𝑖 − 𝑠𝑗 + 𝑆𝑓𝑖𝑗  ≤ 𝑆 − 1 ∀ 𝑖, 𝑗 ∈ 𝐼 (VI) 

𝑥𝑖 ≤ 𝑊 − 𝑤𝑖 ∀ 𝑖 ∈ 𝐼 (VII) 

𝑦𝑖  ≤ 𝐻 − ℎ𝑖  ∀ 𝑖 ∈ 𝐼 (VIII) 

𝑠𝑖  ≤ 𝐷 − 1 ∀ 𝑖 ∈ 𝐼 (IX) 

𝑥𝑖 , 𝑦𝑖 , 𝑠𝑖 ≥ 0 ∀ 𝑖 ∈ 𝐼 (X) 

𝑙𝑖𝑗 , 𝑏𝑖𝑗 , 𝑓𝑖𝑗 𝑏𝑖𝑛𝑎𝑟𝑦 ∀ 𝑖, 𝑗 ∈ 𝐼 (XI) 

𝑎𝑖 𝑏𝑖𝑛𝑎𝑟𝑦 ∀ 𝑖 ∈ 𝐼 (XII) 

Second, we additionally introduce a packing heuristic inspired by an algorithm by 

Martello et al. (2000) to speed up the process of creating a new column. This greedy 

algorithm starts with an empty bin and aligns items along edges of already placed 

items until no more items fit into the bin. It takes the side constraint explicitly into 

account but does not guarantee to find the minimum reduced-cost packing, though 

it is much faster than solving the subproblem to optimality with the above formula-

tion. 

The algorithm works as follows. Items are initially sorted by non-increasing rel-

ative value, so 
𝜋𝑖

𝑤𝑖ℎ𝑖
. The first item is then placed on the bottom left corner of the 

front side. Now, items are placed iteratively by selecting the best valid position. 

These positions are generated based on the current packing and the shape of the 

current item. Valid positions in the sense of this heuristic are all corner points of 

already placed items. These points are copied to every side of the bin, no matter on 

which side the actual item is positioned. The points are reduced to those, which 

allow placing the current item without violating any constraint. We consider the 

point maximizing the distance between item and borders of the bin the best point. 

Any other selection-rule can be used as well, but trying to place items of same type 

behind of each other as soon as possible leads to good results. 

We use this heuristic in every subiteration and only if it fails to find a promising 

packing, will we relax the knapsack constraint and apply an exact algorithm for 

2DPP-SC. This combination of the two approaches proved to be very efficient. But 

the exact method is still computationally expensive, due to the geometrical structure 

of the problem. 

5 Experimental Results 

For a numerical study, we use test instances described in Martello & Vigo (1998). 

Originally, items were member of one of four groups (‘wide’, ‘tall’, ‘large’, small’), 

defining a range for width and height of the individual item. Groups were extended 

with subclasses (‘A’, ‘B’) determining types of items. The first subclass assigns 

types independently of an item’s dimensions. In instances of subclass ‘B’, item 

types are predetermined by dimensions. 

We defined bins to be of size 𝑊 = 10, 𝐻 = 10 with sides 𝑆 = 2 and different item 

types |Τ| = 2. For this setup, the algorithm was able to solve 179 of 400 instances 

to proven IP optimality, although its goal is to solve the LP-relaxation only. Initial 
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lower bounds were improved in 89 cases, and initial solutions in 77 cases, so a sig-

nificant number of instances – especially but not only small ones – could be solved 

to optimality by BFDH-SC. The absolute gap could be reduced to 0.78 (initially 

1.2) bins, which corresponds to a relative gap of 6.8% over all instances. Results 

prove, the used algorithm is able to generate many columns in short time. Its biggest 

weakness is to meet the termination criterion, so to prove that no new negative re-

duced-cost column exists.  

6 Conclusion 

This thesis is the first work to introduce a new class of bin packing problems side 

constraint. One of its main contributions is to formally describe this new problem 

class. We proved such problems to be NP-hard and that the usage of a compact 

MIP-formulation is practically unsolvable. We applied several lower bounds of re-

lated bin packing problems and showed in a computational study that these bounds 

are quite tight. Additionally, we developed a new best-fit algorithm for our new 

problem to obtain fast and good solutions heuristically. 

The development of a column generation procedure and extensive computational 

experiments on a set of extended, standard benchmark instances is another main 

contribution of this thesis. First, we decomposed the problem according to Danzig-

Wolfe. Due to the enormous complexity, we further decomposed the subproblem 

process and introduced an additional knapsack problem, as well as a heuristic pack-

ing algorithm. 
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