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The spectral properties of up to four interacting electrons confined within a quasi-one-dimensional
system of finite length are determined by numerical diagonalization including the spin degree of free-
dom. The ground-state energy is investigated as a function of the electron number and of the system
length. The limitations of a description in terms of a capacitance are demonstrated. The energetically
lowest-lying excitations are physically explained as vibrational and tunneling modes. The limits of a di-
lute, Wigner-type arrangement of the electrons, and a dense, more homogeneous charge distribution are

discussed.

INTRODUCTION

Interaction effects play a crucial role in the under-
standing of the electrical transport properties of very
small condensed-matter systems at low temperatures.!
Examples are (1) the Coulomb blockade,”> where charg-
ing energies of single electrons suppress the current
through a dissipatively shunted tunnel junction, (2)
single-electron tunneling oscillations* of the voltage
across such a junction at constant current, and (3) reso-
nancelike oscillations of the conductance of quantum
dots, being periodic in multiples of the elementary charge
inside the dot.>®

An important feature in all conductance measurements
on tunnel junctions and quantum dots is the relative iso-
lation of the sample region from the “external world.” In
the blockade experiments this is achieved by a shunt im-
pedance representing the (phase randomizing) influence
of a coupling to the electromagnetic environment. For
quantum dots, weak coupling is achieved by highly resis-
tive tunnel junctions. Here the time scale for a change of
the electron number is large compared to the other in-
verse energies involved, namely the Fermi energy of the
external wires, the charging energy, and the characteris-
tic energy of the dissipative heat bath. Therefore, the
electron number on the time scale of all relaxation pro-
cesses approximately becomes a good quantum number.
Due to its relative isolation, the quantum properties of
the disconnected dot can be considered as one of the
dominating factors in the single-electron phenomena.
The Coulomb interaction should be taken into account,
because the charging energy is the most relevant energy
scale of the problem. The commonly used overall
description by means of a capacitance C (Refs. 7 and 8) is
not completely obvious”!? and needs to be justified. This
is of particular relevance if the number of charge carriers
is reduced to only about ten in semiconductor sam-
ples.%!!" Then both Coulomb interaction and kinetic
(confinement) energy start to play a role. Clarifying the
interplay between these two energy contributions'? has
been one of the main motivations for our quantitative
study of a model of N <4 interacting electrons in a one-
dimensional (1D) square-well potential. We shall see that
the noncommutativity of the two corresponding energy
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operators has an important influence on the ground-state
energy and on the excitation spectrum. The ground-state
energy in general cannot be obtained by the charging for-
mula Q?/2C where Q is the total charge. The excitation
energies have no similarity to the discrete level structure
pertaining to the confinement. We shall present a quali-
tative picture, which allows one to understand physically
the spectrum in the correlated case.

In the following section we describe our model and the
calculational method. Section III addresses the question
of a capacitance definition in such correlated systems.
One possibility for investigating this question is to com-
pare the quantum-mechanical ground-state energy of N
interacting, confined electrons with the charging energy
of a corresponding capacitor. In contrast to previous
work,'3™1® we have been able to treat up to N =4 elec-
trons with high accuracy.

The excitation spectrum is discussed in Sec. IV for
various electron densities. An inhomogeneous distribu-
tion is established for low charge density with essentially
regularly spaced elementary charges as a consequence of
the dominating Coulomb repulsion in that limit. We
designate this arrangement of electrons as a Wigner mole-
cule, in analogy to the Wigner electron lattice in dilute
infinite systems with Coulomb interaction. Two kinds of
elementary excitations are identified, vibrational and tun-
neling modes, that are characteristic for dilute and inter-
mediate densities, respectively.

According to experimental situations, we conclude that
for the system parameters that characterize inversion-
layer-based quantum dots, the quantum mechanics of the
electron-electron interaction cannot be completely dis-
carded. In particular, it should be possible to observe the
features related to the existence of the low-lying correlat-
ed excitations by suitable sample fabrication.

INTERACTING ELECTRONS
IN A SQUARE-WELL POTENTIAL

For the electron-electron interaction, we use the form
I S
Viix —x')2+A?

which behaves Coulombically at large distances. A is a

Vix,x')x

) (1)
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measure for the width of the electron wave functions in
the transverse direction. In most of our calculations we
take A/L =2X 10" *<<1, where L is the system length.
Then the eigenvalues of the Hamiltonian

2 H,+H,

I3 (2)

a
H=Eyp

depend only weakly on A. Ey=e?/ay is the Hartree en-
ergy, ap =e#i*/me? the Bohr radius, € the relative dielec-
tric constant, and m the electron mass. In most cases we
present eigenvalues of the operator enclosed by round
brackets. The relative importance of the kinetic energy
in the 1D square-well potential

=3 enclocn’o (3)
no

(e, <n 2, n integer) decreases as compared to the Coulomb
energy

= T t
HI 2 Vn4n3nzn1crt,‘alcn:‘azcnzazcn]a1 4)

with increasing system length L. The matrix elements
V"4"3”2"1 are real and do not depend on the electron spin

o. The total spin S is therefore conserved and all eigen-
values are (2S5 +1)-fold degenerate. The symmetry rela-
tlons are VI! n3n2n1 = Vn4n2n3nl = ann3n2n4: Vn3n4nln2 and

Vaynynyn, =0 if 3,n;is odd. For A/L <<1,

Vienynyn, —STrf dg[In(gA/L)+C1f14(q)f (g

where f}j is the Fourier transform of the product

@r (x)p, (x) of the one-electron eigenfunctions of H,
i j

and C =0.577, the Euler constant.

For the numerical diagonalization, single-particle
states c IO) with 1<n <M were chosen (usually
M =9, ...,17, depending on the calculation). The prop-
erly antisymmetrized, noninteracting N-particle basis

M, including the spin degree of freedom, is of dimen-
sionality R = ( M) 1<y <R. In our calculations, R was
restricted to 1.5X104 even using Lanczos procedures.
To avoid loops over all R? matrix elements of the Hamil-
tonian, we used the following economic procedure to oc-
cupy the matrix. Starting from the (N —2)-particle basis,
the application of two creation operators onto a certain
1/}“" %) generates, say, the N-particle state 3" with prop-
er sign. 111(” corresponds to a certain row v of the Hamil-
tonian matrix. Creatmg from the same ¢'(N 2 a
(different or the same) ¢! identifies a certain column V.
The independent summation over all possible two-particle
excitations and subsequent summation over all (N —2)-
particle states generates eventually all nonvanishing en-
tries [including sums from n,=n, and/or n;=n,, cf. (4)]
of the Hamiltonian matrix.

Typical examples of N-electron energy spectra are
shown in Fig 1. In the presence of interaction, N > 1, the
density of states is much more inhomogeneous as a func-
tion of the energy. The lowest eigenvalues form multi-
plets of extremely small width when L >>Nag. The total
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FIG. 1. Typical spectra of model (2) for various N and

L =9.45ap. For N 22 the low-lying eigenvalues form groups of
(fine-structure) multiplets, the total number of states per multi-
plet being equal to the dimensionality of the spin Hilbert space
2", For clarity, the lowest multiplets are magnified indicating
the total spin of each level. The ground-state energy is subtract-
ed, respectively.

number of states within each of these multiplets, includ-
ing degeneracies, is 2.

GROUND-STATE ENERGIES

Figure 2 shows the dependence of the ground-state en-
ergy per particle E,/N on the particle number N for
different L. The data are multiplied by L in order to
eliminate the trivial L dependence. The charging model
would yield a straight line for the ground-state energy as
a function of the particle number E,(N) when plotted in
the same way. In very small systems E,/N deviates from
a linear (N —1) dependence due to the discreteness of the
spectrum of H,. On the other hand, for systems with
large L the formation of an inhomogeneous charge densi-
ty (Wigner molecule, see below) prevents the ground state
of few electrons energy to obey E,/N<(N—1). A
better approximation is obtained by considering the
Coulomb energy of N point charges at equal distances
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FIG. 2. Ground-state energies per particle Ey/N multiplied
by L/ag vs the particle number N for L =6.61laz(0),
L =16.1az(0), L =94.5ap (A), L =944.8ay (+). (X) denotes
the energy of N fixed-point charges equally spaced at distances
L/(N —1). The quantum-mechanical ground-state energies
(slowly) approach these values as L — .
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re=L/(N—1).

The importance of this charge “crystallization,” which
is a consequence of the charge quantization, for the ca-
pacitance per unit length C/L, can be visualized for
equidistant point charges e in 1D with a charge-density
distribution

N -
plx)=3 8(x —x,), xj=—'l——l—L .
2 N—1

For a total charge Ne the capacity of such an arrange-
ment is defined as )

C(N):=(Ne)?/2U ,
where
U=e’ 2 lx-—1—x~!
L] i J
i#j

is the charging energy. For N =3,

. N
€ ] _e 1
=—(N—1) -=—N(N—1) -,

L ng N_] L ngj
and therefore
-1
N N1
C(N)/L = ———— —
ML= on—1 | 2

In contrast to the classical capacitance of a homogene-
ously charged and long cylinder, this capacitance per unit
length is independent of L but explicitly dependent on the
charge. In particular, for small N the classical concept of
a capacitance obviously in inapplicable. Also in higher
dimensionalities we expect considérable fluctuations of
the capacitance as a function of the charge due to an in-
homogeneous charge density.

On the other hand for short systems with a more
homogeneous charge distribution, quantum-mechanical
corrections to the ground-state energy also do not allow
the use of the capacitance formula. In Fig. 3, Ey/N is
shown as a function of ;. The deviations from the capac-
itancelike 1/L behavior occurring below r; $50a; cannot
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FIG. 3. Ground-state energy per particle multiplied by L /ag
as a function of the electron distance r,;: =L /(N —1); the corre-
sponding noninteracting ground-state energy is subtracted.
Pronounced deviations from the Coulombic 1/L behavior occur
below r; S 50az. These deviations cannot be attributed to a sim-
ple additive influence of the kinetic part of the Hamiltonian.
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be attributed to a simple additive influence of the kinetic
part of the Hamiltonian. The ground-state energy, of the
noninteracting system has already been subtracted in Fig.
3.

LOW-LYING EXCITATIONS

For L >>Najp the spectrum of the low-lying excitations
can be understood using the picture of a Wigner mole-
cule. The one-particle density shows N approximately
equidistant peaks.!® One type of excitation in such an ar-
rangement is of a phonon kind due to the Coulomb forces
between the charges. Similar to the one-particle density
these excitations are insensitive to the total spin and the
symmetry properties of the wave function.

To estimate the asymptotic behavior of typical phonon
frequencies () as a function of the electron distance r,, we
assume 8 functions or Gaussians for in the charge density
of each peak. The Gaussians can be considered to
emerge from the harmonic-oscillator ground-state wave
functions due to the linearized electrostatic potential for
one certain electron, leaving the other electrons fixed.
The result of this crude estimate is an r; * decrease of ()
with ¥ =2 (8-function density) or ¥y =1 (Gaussian densi-
ty). Figure 4 shows QL /ap as a function of r; for
different N, ( is the distance between the lowest two mul-
tiplets in our spectra. The behavior at large r; is con-
sistent with ¥ ® 1. This indicates that the charge-density
distribution is more localized than a Gaussian. For
r, $100ap the strong deviations from the asymptotic
behavior signal the breakdown of the Wigner molecule.

The multiplets consist of a series of energy levels
which, compared to Q, are extremely close to each other.
Each level is (25 +1)-fold degenerate since all eigenstates
of H are simultaneously eigenstates to §2. For N >3 the
states are, in general, not products of a spatial part and a
spin part.'” The Pauli principle only requires their trans-
formation according to the totally antisymmetric irreduc-
ible representation of the symmetric group Sy.

In the following a qualitative understanding for the
fine-structure spectrum within one multiplet is developed,
starting from the notion of the Wigner molecule. Quanti-
tative results will be published elsewhere.!® The total po-
tential, including the interaction (1), has N! equivalent
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FIG. 4. Energy difference () between the two lowest multi-
plets, multiplied by L /ap vs the mean particle distance r, for
N=2 and N =3. For r,RX100ap the asymptotic power-law
behavior is recovered.
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minima in the configuration space which is an N-
dimensional hypercube L% There are no further
equivalent minima, because Sy is the only symmetry
group of the problem. For sufficiently low electron densi-
ties (the corresponding r, will be quantified by numerical
results below), the probability amplitude of the eigenfunc-
tions is well localized around the vicinity of the potential
minima. The barrier of the Coulomb interaction in the
1D case separates adjacent minima.

Each of the probability amplitude peaks may be taken
as one of the basis functions of a finite dimensional
“pocket-state basis”!® {li)}, with 1 <j <N!. Matrix ele-
ments of the Hamiltonian in this basis (j|H|;j')=H:
mutually connect different permutations of N-electron
states and behave like tunneling integrals. The smallness
of the Hj; is crucially required to approximate the true
interacting eigenfunctions of H by eigenvectors of the
Hamiltonian in this truncated basis. They are given by
certain linear combinations of the {|j)}. Corresponding-
ly, the true energy eigenvalues are approximated by ei-
genvalues of the pocket-state Hamiltonian matrix. Since
the amplitudes of the |j) decrease roughly exponentially
with the distance from its center, the H ;- also have this
property and thus the pocket-state approach improves
with increasing r,. It is important to note that this
description is not based on any single-particle basis set as
a starting point. It becomes increasingly reliable with in-
creasing influence of the interaction. However, the diag-
onalization of the Hamiltonian matrix in this basis can-
not be achieved by Fourier transformation, since Sy is
not abelian.

As a further approximation, we neglect all H; except
those that correspond to nearest neighbors in the
configuration space LY. For sufficiently large r; this is
justified by the exponentially fast decay of the pocket
state far away from its center. Due to the symmetry of
the problem, all of the remaining tunneling integrals
H;;; =1t must be equal and are the only nontrivial entries
in the Hamiltonian matrix. Therefore, the differences be-
tween the eigenvalues scale with the common factor ¢.

In Fig. 5 the energy difference A between the two
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FIG. 5. Logarithm of the energy difference A between the
ground state and the first excited state within the lowest multi-
plet vs the system length for N=2, M =11 (0O), N=3, M =13
(0), and N=4, M =10 (/). From the slope we estimate
Ly=~1.5ap.
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lowest numerically obtained eigenvalues is plotted versus
the system length L. The assumption of an asymptotical-
ly exponential decay of the pocket states suggests that
Axexp(—L/L,) with L, =~1.5ag from Fig. 5. This es-
tablishes a length scale beyond which the spectrum of
noninteracting electrons is changed into one showing the
multiplet structure that is characteristic for the influence
of the Coulomb interaction. The tunneling energies A de-
pend on A, because the height of the barriers between the
potential minima are proportional to A ! [cf. (1)].

CONCLUSION

We have calculated numerically the energy spectra of
up to N =4 electrons confined in a quasi-one-dimensional
square-well potential of finite length. The discussion in
terms of the pocket-state basis suggests that our
classification of the energy eigenvalues should remain val-
id also in 2D or 3D systems, if the width of the system
does not exceed the width of one pocket-state wave func-
tion. For N =2 we can reproduce the fine structure in
the lowest multiplet calculated by Bryant!3 with its se-
quence S =0,1,0 of total spins and with equal level dis-
tances for sufficiently large size of a rectangular two-
dimensional quantum dot, which is ten times longer than
it is wide.

We have demonstrated that the ground-state energies
E,(N) deviate from the N? behavior assumed in the
charging model because of the formation of a Wigner-
molecule-like structure at sufficiently low electron densi-
ties (quantization of the charge) and the quantum-
mechanical influence of the kinetic energy (noncommuta-
tivity of H, and H;). Only in sufficiently large systems
and at sufficiently high electron densities can a capaci-
tancelike behavior be obtained.

We have obtained three different regimes for the elec-
tron densities to characterize the excitation spectra. The
Wigner molecule is found to be fully established for den-
sities 1/r, below 10 %a; ! (Fig. 4; see also Ref. 16). Nev-
ertheless, the description of the interacting spectrum in
terms of the pocket-state picture does already hold at
much larger electron densities. Only for L SL,~1.5ap,
the confinement energy starts to dominate the Coulomb
energy and the spectrum approaches the noninteracting
limit (Fig. 5). Neither the ground-state energy nor the
level spectrum is given by a sum of kinetic and potential
energy eigenvalues separately.

Experiments are frequently performed on
Al ,Ga,;_, As/GaAs-based heterostructures which rather
correspond to a 2D situation. It is not obvious how far
our 1D classification for the length and energy scales of
few Coulombically interacting electrons can be applied to
that case. If we assume that at least the qualitative as-
pects of our classification into different regimes for the
electron density can be used, the intermediate regime
should apply in most circumstances. Given the geometry
and the electron numbers in typical quantum dots’ (area
of the dot ~ 10° nm?, number of electrons ~ 10 effective
mass ~0.07m, dielectric constant =~ 10), a mean distance
of r,=~3ap can be estimated. For this relatively high
electron density and number, the ground-state energy,
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which is in first approximation the relevant quantity that
enters a dc-transport experiment, can roughly be estimat-
ed by using the charging model. However, the excitation
energies are qualitatively different from the ones expected
within the noninteracting picture. They are importantly
characterized by the fine-structure-level spectrum and the
total spin. In experimental situations as they have been
realized recently by Meurer, Heitmann, and Ploog11 with
only a few electrons per quantum dot, the charging model
cannot even be expected to yield correct results for the
ground-state energy.

It should be possible to observe the excitation spec-
trum obtained in this paper in optical measurements®®!!
(if the potential is not strictly harmonic!®) and in non-
linear transport measurements'? at low temperatures. At
least for quasi-1D geometries, where the spatial width of
the dot region is of comparable size or smaller than the
width of the pocket-state wave function, we predict a
close relationship between the energies of low-lying exci-
tations and the number of electrons in the dot. Only a
finite number of tunneling-type excitations should exist
for fixed electron numbers. The energy scale for a 100-
nm-long 1D structure on Al ,Ga,;_,As/GaAs basis can
be estimated from Fig. 1 to be A=0.1-0.5 meV for
N=2,...,4. However, this value still depends on the
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effective width of the structure.

For the nonlinear transport measurements two re-
marks should be made: (i) the excitation spectra of N and
(N +1) electron states are completely different—even
the typical splittings may differ by almost an order of
magnitude. They are not equidistant and independent of
N; (ii) the total spin of the electrons inside the dot region
can be changed only by +1 when an electron is added or
removed at the finite conductance situation. This reduces
the number of transport channels available. For exam-
ple, the conductance channel connected with the energy
difference EY32) —ENG? [py(N =2) in the nomencla-
ture of Ref. 12, S is the total spin] should not appear.
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