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Abstract. We discuss various aspects of electron-electron and electron-phonon 
interaction in electron transport in submicrometre structures. We show that it is 
only above a certain critical Fermi velocity that the acoustic phonons can 
significantly influence the electron states in a quasi-one-dimensional quantum 
wire. We predict a characteristic temperature dependence of the plateaus in the 
linear conductance as a function of a magnetic field which should be 
experimentally observable. 

When the  mean distance between Coulombically interacting electrons in a 
quantum dot is comparable to or larger than the Bohr radius their excitation 
spectrum shows fine structure which is related to the formation of a localized 
charge distribution, a Wigner molecule. W e  demonstrate that the excitations can 
.be understood in terms of vibrational and tunnelling modes. Nonlinear transport of 
confined interacting electrons coupled to semi-infinite leads yields detailed 
information about the excitation spectrum. We present results including the 
degrees of freedom that were obtained from a master equation approach, and 
demonstrate that the correlations between the electrons lead to negative 
differential resistances that are related to w i n  selection rules. 

1. Introduction 

Interaction processes are of great importance for the 
understanding of the electronic transport properties of 
quantum coherent samples, although the conditions 
under which such a system can be considered as coherent 
depend strongly. on the absence of phase-breaking 
Scattering. Among the many possibilities. electron-phonon 
(e-p) and electron-electron (e-e) interaction are most 
important [l]. In this contribution we discuss three 
aspects which demonstrate some most striking features 
in connection with electron transport in submicrometre 
structures. 

First, we consider the interaction of acoustic phonons 
with the electrons in a quasi-one-dimensional quantum 
wire. We’will demonstrate that it is only above a certain 
critical Fermi velocity that the phonons can influence the 
electron states significantly [2]. As a consequence, we 
predict a characteristic temperature dependence of the 
plateaus in the linear conductance as a function of a 
magnetic field which should he experimentally observable. 

The Coulomb interaction between the electrons in a 
system that contains a quantum dot leads to rather sharp 
and regular resonance-like peaks in the linear conductance 
[3]. When the mean distance between the electrons in 
the dot is comparable to the Bohr radius (of the order 
of 10 nm for AlGaAs based heterostructures) the excitation 
spectrum of the interacting electrons shows fine structure 
which is related to the formation of a localized charge 
distribution, a Wigner molecule [4]. We show that the 

excitation spectrum can be understood in terms of 
vibrational and tunnelling modes [SI. 

Nonlinear transport properties of interacting electrons 
in a quantum dot that is coupled to semi-infinite leads 
yield detailed information about the excitation spectrum. 
Using a master equation we present an investigation 
which includes also the spin degrees of freedom of the 
electrons [6 ,  71. We demonstrate that correlations 
between the electrons lead to novel eRects in the current. 
Negative direrential resistances related to spin selection 
rulesare predicted in accordance with recent experiments 
[S, 91. Furthermore, asymmetric conductance peaks 
occur due to asymmetries in the coupling. 

2. Acoustic phonon scattering in quantum wires 

In very pure samples, e-e and e-p interaction remain the 
only scattering mechanisms of importance at low 
temperatures. We consider herescattering with acoustical 
phonons with speed of sound cs. In quasi-one-dimensional 
(ID) ‘metallic’ electron systems based on semiconductor 
heterostructures the e-p interaction is qualitatively 
different from that in metals since in a quasi-1D subband 
the Fermi velocity can be made arbitrarily small, even 
smaller than the sound velocity, by carefully adjusting a 
magnetic field or a gate voltage. 

We show that momentum and energy conservation 
lead to a crossover between two different e-p scattering 
regimes when the Fermi velocity u6 is tuned from small 
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to higher values and eventually becomes larger than csi 
A similar mechanism has been discussed some time ago 
in the context of the breakdown of the quantum Hall 
effect [lo, 113. In a quantum wire, the linear conductance 
r is determined by the scattering of incoming electrons 
[12] having Fermi velocity tlF. In ballistic transport the 
velocity does not affect the conductance, owing to a 
cancellation of uF with the 1D density of states (DOS) up 
to a factor 27th. leading to a quantization of r in units 
of a2/h. When scattering occurs the value of uF plays a 
crucial role for scattering rates, and therefore for the 
conductance itself. 

The quantum wire is modelled in the x-y plane 
by using a parabolic confinement potential V ( y )  =
(l/2)m*wiy2, A magnetic field E is assumed in the z 
direction. In the Landau gauge the eigenstates of the 
unperturbed system are 

1 
(1) 

where q5nk is, the nth harmonic oscillator wavefunction 
displaced by yo = -hjwc/(m*wi) with effective magnetic 
length IB = (h/m*w,)"'. Here, 0, = (eE/rn*c) is the 
cyclotron frequency (m* effective electron mass) and 
mB = (0; + O J ~ ) ~ ' ~ .  The corresponding energy dispersion 
is =E"  + ye(h2/2m*)k2 with ye = (wo/wB)' and c. = 
( n  + 1/2)hw,. The factor ye can become much less than 
unity for strong magnetic fields. 

We consider longitudinal acoustic phonons with 
frequency wQ and linear dispersion relation w, = c,lQI, 
Q,being the 3D phonon wavevector. Optical phonons 
are not included. Their energy is too large to be important 
at the low temperatures considered here. We restrict 
ourselves to the lowest electronic subband n = 0. 

y n k ( x )  = 7 exp(ikx)x(z)4,k(y) 
4 

The interaction Hamiltonian is 

with matrix elements Mk,v(Q) = (klexp(i.Q)ik'), and 
electron-phonon matrix elements V, = D ( h ~ 2 p M ~ S ) 1 ' 1 .  
D denotes the deformation potential constant, pM is the 
mass density and !2 the system volume. 

Momentum conservation for the scattering of an 
electron from I k )  to Ik ' )  requires Qe, = k - k' and 
therefore IQ1 2 IQ.,\ = Ik - k'l. Energy conservation 
yields yB(h/2m*)[ka - k ' 7  = csla 2 cs(k - k'l, from which 
yB(h/2m*)lk + k'l z cs follows. For small momentum 
transfers we have k c k', and we can evaluate the last 
inequality assuming k c k,. It follows that uF 2 cs is the 
condition for such a scattering event to take place. 

We predict that the crossover mentioned above 
should be in principle observable in the two-point 
conductance of a quasi-ballistic quantum wire below 
about 1 K provided that e-p scattering is sufficiently 
significant at low temperatures. By tuning the Fermi 
velocity one can go from a region of exponentially small 
e-p scattering rates to a region with rates -ips which 
should lead to a corresponding decrease of the con- 
ductance plateau if uF > cs. 
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We assume the e-p interaction to be sufficiently weak 
to be treated by perturbation theory. In GaAs/AlGaAs 
this is certainly a good approximation. The electronic 
self-energy can be calculated by standard techniques to 
second order in V,. The imaginary part gives the inelastic 
lifetime of an electron of momentum k and energy E 

x Kn, + f ( E k ' ) ) K E  - E,. + hwo) 
- (a, -+ -w,)I. (3) 

Here, n, denotes the Bose function for phonon frequency 
wa and f the Fermi function with chemical potential p .  
The terms in the square brackets correspond to phonon 
emission (+ hw,) and absorption (-hw,), respectively. 

Although electronic transport properties are described 
by the transport rate that has in general a different 
temperature dependence, the scattering rate r - l  should 
reveal at least qualitatively the influence of e-p scattering 
[I]. If we found an exponentially small scattering rate 
we would conclude that the change of the conductance 
is also negligibly small. On the other hand, in the region 
where r-' T3 we would expect a large influence on 
the conductance, though the quantitative Tdependence 
might not be correct. 

The matrix element Mk,x. implies momentum con- 
servation in the longitudinal (x) direction 

IMk,x*(Q)? = & . ~ + ~ , k & t l  exp(ix~QL)lx40kO12~ (4)
and reflects the fact that in the transverse direction the 
system is not translationally invariant. 

Using the above definitions the scattering rate can be 
calculated. It consists of two contributions 

z - ' ( E , ~ )  = T ; ' ( c ,  k) + r I 1 ( & ,  k) ( 5 )  
where h correspond to scattering to positive and 
negative values of the final momentum k,. 

It is lengthy but straightforward to show that at low 
temperatures kB T - T 3  
as for e-p scattering in metals. For vF < cs only phonon 
absorption is possible and 

r;I(EF) - Texp[-2(1 - upjcs)fl~n*c~]. 
The rate SI' in this region is exponentially small, 
independent of the velocity ratio, so that the total 
scattering rate is essentially due to scatterings that do not 
cross the sample. Their efficiency in reducing the 
conductance r is less than that of backscattering across 
the wire. They nevertheless provide an important 
mechanism for breaking the phase coherence of the 
electrons which also leads to a reduction of r. In addition, 
in a strong magnetic field scattering across the wire is 
strongly suppressed by the exponential smallness of the 
corresponding matrix elements Mk,-km. 

The crossover starts to get smeared out if k B T c  
cF - E* When the Fermi velocity is tuned by a gate voltage 
the temperature below which the effect is predicted to be 
observable at tlF = cs is given by k ,  i" N (1/2)m*c,'. An 
estimate for GaAs with m* = 0.067m, and cs = 5370 m s - l  

cF - E ~ ,  and for vF > c,, r ;  
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Figure 1. Inverse inelastic scattering length I-'  due to intraband e-p scattering 
in the lowest subband of a quantum wire in a magnetic field B. Temperatures 
are from 0.4 K to 1.6 K in steps of 0.2 K (from below), parameters were chosen 
with respect to a recent experiment [I31 as hw, = 0.46 meVand nL = 5 x IOa m-'. 
Inset: Fermi velocity as a function of B. 

yields T = 64 mK which is very low and might prevent 
the effect being observed here. 

The situation is, however, drastically different if the 
Fermi velocity is tuned by a magnetic field [13]. For the 
parabolic confining potential one has eF = etF with 
k,  = (n /2)nL and P~ = y,(hk,/m*), where nL is the linear 
densityoftheelectrons. SinceeF - = (1/2y,)m*u: with 
y s  4 1 depending on the strength of the confining 
potential and the 5 field, relatively large cF - c0 can yield 
quite low Fermi velocities. One can easily reach uF = cs 
for B # 0, although the Fermi energy (which depends on 
the magnetic field) is relatively large. 

Figure 1 shows the inverse scattering length 1 - l  = 
[U,T,(E~)]-~ at different temperatures as a function of 5 
for the lowest subbdnd. The deformation potential D was 
assumed to be 13.5 eV, the mass density pM = 5.3 g 
and the speed ofsound cs = 5370 m s-l. The wavefunction 
perpendicular to the ZDEG plane was assumed to be a 
Gaussian with an effective width of 100 A. The results 
are not too sensitive to the precise value ofthis parameter. 
One, clearly observes the onset of the scattering for 
uF > cs. At lower 5, the inverse scattering length 
decreases because the DOS becomes smallert. 

3. Electron interaction in quantum dots 

The importance of e-e scattering for transport in 
quantum wires is not yet very well established experi- 
mentally, although there are strong theoretical indications 
that the interplay of e-e exchange interaction and 
confinement energy in strong magnetic fields determines 
whether or not the conductance is quantized [14] in terms 
of es/h or 2e2/h. On the other hand, there are strong 

tDirectly at the crossover the curves show a small shoulder. This is 
due to the fact that changing from phonon absorption to phonon 
emission. one passes through a region of zero-phonon DOS. 

indications that Coulomb interactions are crucial for a 
thorough understanding of transport through quantum 
dots. For instance, periodic oscillations of the conductance 
through quantum dots that are weakly coupled to leads 
are well established consequences of the charging energy 
of single electrons entering or leaving the dot at 
sufficiently low temperatures [3]. 

To be specific we considered N 5 4 interacting 
electrons in a quasi-lD square well of the length L 
including the spin degree offreedom [lS]. We calculated 
numerically the exact eigenvalues E ,  and the corre- 
sponding N-electron states i v )  using the basis of Slater 
determinants. The Hilbert space was restricted to the M 
energetically lowest one-electron states. The interaction 
potential a[(x - x ' ) ~  + d2]-1'2 was used, where 1. (c<L)' 
is a parameter which simulates a transverse spread of the 
N-electron wavefunction. The Hamiltonian is 

H = E,a8(asH0 L L  + H,) 
with the kinetic part 

(e, % n', n integer), and the interaction energy 

E ,  = ez/ae is the Hartree energy, a, = eh2/m*e2 the Bohr 
radius and E the relative dielectric constant. The inter- 
action matrix elements V,,,,,,,, are real and do  not 
depend on the spin state. Since the interaction is spin 
independent, the N-electron total spin S is a good 
quantum number. Figure 2 shows typical spectra for 
various N and L = 9.45aB. 

For electron densities that are not too large a 
tendency towards Wigner crystallization is found (figure 
3) [4]. In this regime, the excitation spectrum consists of 
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Figure 4. Energy difference between the two lowest 
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Figure 3. Charge density e ( x )  for N = 3 (a) and N = 4 (b)  
for different L (O.la, 5 L 5 1417aB, FA = 13). The 
normalization is s u c h  that I dx g ( x )  = N. When L 2 la, 
N peaks begin to emerge. For L 2 100a, the peaks are 
well separated. 

well separated multiplets, each containing 2N almost 
degenerate states [ 5 ] .  The energetic differences between 
adjacent multiplets decrease according to a power law 
with electron density (figure 4). They correspond to 
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Figure 5. Logarithm of the energy difference A between 
the ground state and the first excited state within the 
lowest multiplet versus the system length for N = 2, 
M = 11 (U), N =3 ,  M = 13 (0) and N = 4 ,  M =  10 ( A ) .  
The slope defines a critical mean electron distance of 
1.5a,, which separates the non-interacting electron 
spectrum from the spectrum that is characteristic for the 
I D  interacting electron system. 

vibrational excitations. At elevated electron densities the 
multiplets start to split exponentially (figure 5) revealing 
internal fine structure. Both types of excitation energies 
vary with diameter L of the sample, different from the 
L-' behaviour of non-interacting electrons. The wave- 
functions of individual levels within a given multiplet 
differ in symmetry and S. The internal structure of the 
level multiplets, which form the low-energy excitations 
of the correlated electron system, can be understood in 
terms of tunnelling between various arrangements of the 
separated electrons [16] (cf figure 3). A formulation in 
terms of localized, correlated many-electron wave- 
functions, in contrast to the molecular field approximation, 
allows us to determine the fine structure spectrum 
analytically for N < 4 (table I )  and enormously simplifies 
calculations for larger N .  Generalization to 2D situations 



                                             

Table 1. Spin and energies of 
low-lying excitations of the 
correlated electron model at 
sufficiently large electron distances 
r, = f / ( n  - 1) 4 aB. The tunnelling 
integrals t ,  decrease exponentially 
with 1.. 

2 0 
2 , 1 
3 112 
3 1/2 
3 312 
4 b 
4 1 
4 1 
4 0 
4 1 
4 2 

0 
2t2 
0 

is possible and the agreement with numerical calculations 
is convincing. The different S of excited states should in 
'principle be detectable by ESR and play a crucial role for 
nonlinear transport (section 4); the state with maximal 
spin S = N / 2  is never the ground state. It can be shown 
that the ratios between the fine structure excitation 
energies are 'universally' independent of (not too high) 
electron densities and of the detailed form of the e--e- 
repulsion. 

At bias voltages larger than the differences between 
discrete excitation energies within the dot, a characteristic 
splitting of the conductance peaks is observed [S, 91. We 
will demonstrate unambiguously below that this is related 
to transport involving the excited states of N correlated 
electrons and that the shape of the peaks depends on the 
coupling between'the quantum dot and the leads. 

4. Coulomb and spin blockade effects 

We consider the double-barrier Hamiltonian 

H = U, + H, + HD + H: + H: (9) 
= C I , . ~ ~ ' ' c ~ , . h . ~ c j ~ ~ . X . a  describes' free electrons where 

in the leftjright lead and 

HD = (6, - e&k, ' , ,cm.,  
m.3 

the interacting electrons within the dot. The voltage Vo 
is the potential change in the dot due to an externally 
applied voltage and serves to change the electron density 
in the well. 

The barriers are represented by the tunnelling 
Hamiltonians 

H$r = C (T$m,oc~r ,h .ccm,c  + HC) (1 1) 
h.m.0 

where i"L/;m,o are the transmission probability amplitudes 
which we assume to be independent of m and a We 
assume that the phase coherence between the eigenstates 
of H is destroyed within a time r,, on the average, which 
is much larger than the time an electron needs to travel 
from one barrier to the other. Thus, the motion of the 
electrons inside the dot is sufficiently coherent to 
guarantee the existence of quasi-discrete levelst. We 
assume also that the leads are in thermal equilibrium 
described by the Fermi-Dirac distributions AI!(&) =
{exp[P(& - P ] ! ~ ) ]  + ]}- I ,  The chemical potential in the 
leftjright lead is pllr and j = l/k, Tthe inverse temperature. 
We assume the tunnelling rates through the. barriers 
tlir = (27i/h) xk ~T,$m,r~z&~~' - E )  to be independent of 
energy E. If they are small compared with the phase- 
breaking rate 7;''. the time evolution of the occupation 
probabilities of the many-electron states in the dot can 
be calculated using a master equation [18-201. We take 
into account the populations Pi of all possible Fock states 
li) of HD. Transitions between the latter occur when an 
electron tunnels through a barrier. Our method, which 
is based on the exact many-electron states of the dot 
including spin, allows us to determine the stationary 
non-equilibrium state without being restricted to the 
conventional charging model. 

Each of the states li) is associated with a certain 
electron number nj, an energy eigenvalue Ei  and the total 
spin Si. For sufficiently small HT, the transition rates 
between li) and I j )  with Nj = N, + 1 are rj!;- and re?', 
depending on whether an electron is leaving or entering 
through the leftjright barrier respectively. Here, r'j!>- = 
yj,jzllr(l - & ( E ) ) ,  r!!?' = yi,jil"f,!,(E) and the electron 
provides the energy E = Ei - E,. As an additional, and 
very important, selection rule we take into account that 
each added or removed electron can change the total 
spin Si of the N, electrons in the dot only by i 1/2. The 
consideration of the vector-coupling Clebsch-Gordan 
coefficients yields the spin-dependent factors 

in the transition rates. 

occupation probabilities pi is 
The master equation for the time evolution of the 

where l-L,j are the elements of the matrix of the transition 
rates, r = rl,+ + rr.+ + P- + F-. From the station- 
ary solution { E } ,  which is obtained by putting dP;/dr = 0 
in (13) the DC current, the number of electrons that pass 
the left/right barrier per unit of time, is determined 

? I t  is well known that strong dissipation can suppress tunnelling 
[17]. This choice for the phase-breaking rater,' guarantees that the 
renormalization of the tunnelling rates through the barriers is negligible. 
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Figure 6. Current-voltage characteristics (p ,  = 0) and t h e  
splitting of t h e  fourth conductance peak at p1 = 0.3EH and 
p, = 0 (inset) of a dot of length L = 15a, described by the 
correlated electron model for /? = 200/EH. Tunnelling 
integrals are f2 = O.03EH, f, = 0.07EH and t4 = 0.09EH, 
numerically determined ground state energies 
€,(I) = 0.023EH, E0(2) = 0.30EH, 4 3 )  = O.97EH, 
4 4 )  = 2.15EH. Broken, dotted and full curves correspond 
to t'lt' = 1, 2 and 0.5 respectively. The current is plotted in 
uni t s  of the total transmission rate f =  t't'/(t' + t r ) .  

Current-voltage characteristics and conductivity 
peaks calculated by using the excitation energies given 
in table 1 are shown in figure 6 for temperatures lower 
than the excitation energies. We observe fine structure 
in the Coulomb staircase consistent with recent experi- 
ments 18, 91, and earlier theoretical predictions using a 
different approach [IS, 191. Within our model, the 
Coulomb steps are not of equal length as in the 
phenomenological charging model used previously [ 181. 
This deviation from the classical behaviour is related to 
the inhomogeneity of the quantum mechanical charge 
density of the ground state [4, 151. The heights of the 
fine structure steps are more random due to the non- 
regular sequence of total spins (cf table 1) and the spin 
selection rules. In certain cases, fine structure steps in the 
I-V characteristic may even be completely suppressed. 

Strikingly, regions of negative diRerential conductance 
occur (figures 6 and 7). They are related to the 
reduced probability for the states with maximal spin, 
S = N/2, to decay into states with lower electron number. 
In contrast to transitions that involve S < N/2 they are 
only possible if S is reduced. The corresponding Clebsch- 
Gordan coefficients are smaller than those for transitions 
with increasing S (cf equation (12)) which leads to an 
additional reduction of the current as compared with the 
situation where S < N/2. When the voltage is raised to 
such a value that an S = N / 2  state becomes involved in 
the transport, this state attracts considerable stationary 
population at the expense of the better conducting 
S < N/2 states, as can be seen in figure 8.t Both effects 

tThe populations shown here do not sum up lo unity because of the 
occupation of other states. 
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Figure 7. Grey scale plot of t h e  differential conductance 
as  a function of t h e  gate voltage and the transport voltage. 
Negative differential conductances are indicated by light 
regions. 

Figure 8. The most prominent feature in figure 6 for t' > t' 
is magnified (dotted curve, in units of er), and t h e  
corresponding populations of the most relevant dot states 
a: N = 2, S = 0. b: N = 2, S = 1, c: N = 3, S = 1/2 (ground 
state), d: N = 3, S = 1/2 (first excited state), e: N = 3. 
S = 312 versus bias voltage V.  Decreasing current is 
accompanied by an increase of t h e  population of t h e  spin 
polarized N = 3. S = 312 state at the expense of the other 
populations. 

together can then add up to a decreasing current. The 
decrease in the I-V curve becomes less pronounced if 
f' i t', because then the dot is mostly empty and the 
(N - 1) + N transitions determine the current. On the 
other hand if t' > t' the spin blockade becomes more 
pronounced, because the N + (N - 1) transitions limit 
the current in this case. Both features can be observed 
in figure 6 and also the experimental data of [S, 91 are 
clearly consistent with an interpretation that the potential 
barriers are slightly different. Negative differential 
conductances can in principle be used to construct a 
mesoscopic oscillator. 



                                             

For low V, the conductance shows peaks when V, is 
vaned, which can be described within thermal equilibrium 
in the limit of linear response [21]. Only the (correlated 
N-electron) ground states are involved at zero tem- 
perature. For finite bias voltages. e V =  pl - fir, larger 
than the level spacing, a varying number of levels 
contribute to the current when I& is changed. The 
conductance peaks split and show structure as is observed 
experimentally and explained qualitatively in [8, 221 
within the charging model. Asymmetric coupling to the 
leads changes the shape of the peaks considerably, as can 
be seen in figure 6. We propose to explain the ‘inclination’ 
of the conductance peaks observed in the experiment 
[8, 91 by asymmetric barriers and predict that this 
inclination will be reversed if the sign of the bias voltage 
is changed. Such asymmetric conductance properties can 
be used to construct mesoscopic rectifiers. Similar effects 
were inferred earlier from the high-frequency properties 
of mesoscopic systems containing asymmetric disorder 
[?3]. 

5. Conclusions 

In summary, we predict a reduction of the conductance 
plateaus for quantum wires due to an onset of acoustical 
phonon scattering at low temperatures for us > cs weU 
below the onset of a new conductance plateau. The 
underlying physics can be understood using energy and 
momentum conservation. It should be observable in a 
characteristic decrease of the conductance at Fermi 
energy and/or magnetic fields that correspond to vF > cs 
when the temperature is increased. This is in contrast to 
the temperature-dependent smearing of disorder-induced 
antiresonancesat theonset ofanew plateau, which would 
lead to an increase of the conductance with increasing 
temperature. 

Furthermore, it is shown that correlations in semi- 
conducting quantum dots qualitatively influence the 
spectrum and its variation with dot diameter. The lowest 
excitation energies involve spin and can be understood 
through the inhomogeneous charge density distribution. 
Their ratios are not sensitive to the form of the e--e- 
repulsion. 

The Coulomb and spin effects lead to conventional 
Coulomb blockade and a novel spin blockade effect in 
nonlinear transport through a double barrier. Most 
strikingly, regions of negative differential conductance 
occur because for each electron number the state of 
maximum spin can only contribute to transport by 
reducing the total spin. As a consequence, the transition 
probability into states with lower electron number is 
reduced. Spin blockade is not restricted to the quasi-1D 
model considered here but should also occur in 2D 
systems used in the experiments as long as the density 
of the electrons is sufficiently small. 

All of the theoretically predicted features described 
above are qualitatively consistent with experiment [8,9] .  
Further experiments, in particular using ‘slim quantum 

dots’, are, however, necessary to clarify the quantitative 
aspects. 

‘Preliminary’ results taking into account a magnetic 
field in the direction of the transport show that the 
negative differential conductance is inRuenced and 
suppressed at high fields. To clarify these questions and 
to be able to make quantitative comparison with existing 
experiments data, generalization of the above correlated 
electron model to 2D is necessary. 
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