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Abstract. Interesting qualitative consequences can arise from the quantum mechanical identity 
among strongly correlated particles that c w  spin. This is demonstrated for properties connected 
with the low energy excitations in molecular and electronic systems. Spatial permutations among 
the identical particles are used as the key features. 

The particular behaviour of rotational tunneling molecules or molecular parts under the influence 
of dissipation are discussed together with the consequences arising for conversion transitions. The 
relationship between the thermal shifting of the tunneling line and the conversion rate at low and at 
elevated temperatures is explicated. The valuable information, that can be extracted from the conver- 
sion behaviour after isotopical substitution, is explained in detail. At low temperatures qualitative 
changes are predicted for the conversion rate by deuteration. Weakly hindered rotors show, also ex- 
perimentally, drastic isotopic effects. 

The second part is devoted to finite systems of strongly interacting electrons that appear in semi- 
conductor nano-structures. The lowest excitation energies are strongly influenced by the interaction. 
They can be understood and determined starting from the limit of crystallized electrons by introduc- 
ing localized many particle ‘pocket states’. The energy levels show multiplet structure, in agreement 
with numerical results. The total electron spin, associated with the low energy excitations, is cru- 
cially important for the nonlinear transport properties through quantum dots. It allows for instance 
to explain the appearance of negative differential conductances. 

Keywords: Strong comelations; Tunneling; Spin excitations; Rotational tunneling; Nano-structures. 

1 Introductory remarks 

1.1 Motivation 

The ability to describe interference and to attribute wave nature to particles is com- 
monly considered as the prime feature of quantum mechanics. All tunneling phenom- 
ena are related to this aspect. These effects appear if the actions involved reach the 
order of Plank’s constant h. A second, in principle equally central aspect of quantum 
mechanics is to account in a rigorous way for the ‘identity’ among more than one 
particle. In contrast to the former property this latter aspect cannot be obtained by 
suitably generalizing classical mechanics for instance by allowing a certain parameter 
to take a nonzero value. This second feature of quantum mechanics has been de- 
tected historically later than the quantum numbers for single particles. Pauli postu- 
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lated the requirements to describe collections of same particles [I] in order to explain 
certain spectral multiplicities observed for electronic transitions in atoms. 

The identity among spin carrying particles can lead to interesting physical conse- 
quences. This is shown in the present work for two particular examples. In the sec- 
ond chapter molecules or parts of molecules are investigated in which discrete 
rotations correspond to permutations of identical nuclei so that the Pauli principle im- 
poses constraints upon the orientational wave functions and the nuclear spin. The 
most famous example is the dumbbell-like hydrogen molecule where the low tem- 
perature physics is entirely determined by the existence of two spin species, ‘ortho’ 
and ‘para ’ H2. Examples for other molecules showing qualitatively similar properties 
are the tetrahedrically symmetric methane C b .  or the triangular -CH3 group. Isoto- 
pic substitution of the identical protons by deuterons with approximatively twice the 
mass and spin s = I ,  obeying Bose statistics, opens experimentally extremely conclu- 
sive insights to the physics of ‘rotational tunneling’ phenomena. 

In the third chapter finite electron systems enclosed within very small artificial 
cavities fabricated on the basis of semiconductor hetero-structures are investigated, 
These quantum dots only contain microscopically small numbers 1 5 N 5 100 of elec- 
trons. Contrary to the usual situation in atomic physics the Coulomb interaction 
causes strong correlations since the electron motion is restricted to two dimensions 
and the density is low. This yields not only the by now well known single electron 
(charging) effects in transport measurements due to the relatively large energies asso- 
ciated with changes in the number of electrons enclosed by the cavity but also con- 
siderably modified excitation properties. Both influences directly measurable 
quantities. Structures become visible in linear or nonlinear transport as well as in op- 
tical spectra. Instead of a homogeneous charge density distribution the electron sys- 
tem ‘crystallizes’. This causes quantitative changes in the ground state energies and 
has even qualitative consequences for the excitation spectra compared to what is ex- 
pected from (effectively) independent electrons. In these systems the low energy exci- 
tations can be traced back to rates for identical particles to interchange their 
equilibrium places, similar to the rotational tunneling systems. And, the total spin of 
a many electron wave function is again related to its energy via the Pauli principle. 
The approach presented here opens a unified description of the low energy properties 
in strongly correlated systems of identical nuclei or electrons. 

1.2 Introduction 

1.2.1 Equivalent versus Identical Particles 

Already the Gibbs paradoxon demonstrates that indistinguishable particles cannot 
consistently be described by classical mechanics. On one hand side the entropy of 
two boxes containing N1 and Nz “equal” gas particles is independent of the wall be- 
tween them only if the number of permutations N t + N 2  is somewhat artificially di- 
vided out from the classical number of accessible states. On the other hand, classical 
mechanics allows to index each individual member of an ensemble of either equiva- 
lent or different particles since its trajectory can in principle be followed in phase 
space, the ‘arena’ of accessible classical states, with arbitrary accuracy (the difficul- 
ties which arise in nonlinear dynamics after long times do not weaken this argu- 
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ment). Particles may interchange their coordinates in phase space during the time 
evolution so that the restriction to its ‘irreducible’ part, as postulated in classical 
statistical mechanics, does not seem natural. 

Quantum statistical mechanics solves this unpleasant point satisfactorily. The un- 
certainty principle undermines already the definition of a trajectory attached to a cer- 
tain particle. Quantum particles cannot be identified -by external properties like 
position or momentum. Particles are considered to be “identical” if they cannot be 
distinguished by any internal property (i.e. the discrete eigenvalue of an observable 
which should be a constant of motion). The symmetrization postulate restricts the 
‘arena’ of accessible quantum states, the (product-) Hilbert space of N particles, to 
its symmetrized part’. Individual particles cannot be identified. Under the time evolu- 
tion the system never leaves this part of the arena. This is essentially the postulate 
stated by Pauli [ l ]  to treat identical particles, though the original formulation was 
slightly different. Its quantitative consequences are in agreement with all experimental 
observations. The treatment of particle identity, without any contradictions, is one of 
the central features of quantum mechanics. 

The symmetrization refers to permutations among the indices attached by choice 
to the particles. The symmetry group SN of the permutations of N elements [2] is 
therefore of importance. The only two one-dimensional irreducible representations of 
this group are realized in nature and correspond to Bosons (totally symmetric) and 
Fermions (totally antisymmetric), respectively. All higher dimensional representations 
do not correspond to any particle type. 

The identity or non-identity of particles has quantitative consequences. An exam- 
ple is the potential scattering among equivalent particles. Assume them to be ‘simi- 
lar*, without obvious differences e.g. concerning their masses, the differential 
scattering cross section between two particles 

do = (IA(0)I2 + IA(z  - 0)I’)dR 

in the center of mass system is symmetric around forward scattering 0 = z, A ( 0 )  
being the scattering amplitude. Identity of the particles yields a qualitative enhance- 
ment around 0 = z/2 

do = IA(0) + A ( z  - 0)I2dR 

in comparison with the case of equivalent but not identical particles due to the ‘ex- 
change degeneracy’. 

1.2.2 Rotational tunneling 

The existence of the two species “ortho-” and “para-” hydrogen has already been 
mentioned. Similar systems will be the main subject in Chapter 2. After their discov- 
ery in 1929 [3] the two species were even believed to be chemically different in 
view of their considerable dissimilarity in various quantities like the electrical quad- - 
1 In the present article “Symmetrization” includes, if applicable, “Antisymmetrization” 
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Fig. 1 Illustration of a methyl rotor CH3 in 
an unsymmetric crystalline surrounding. The 
wave function must be invariant with respect 
to 2n/3 rotations that correspond to an even 
permutation of the protons. 

rupol moment, the nuclear magnetic susceptibility and, most seriously, in the ground 
state energy differing by 171 Kelvin. Later, however, the extremely slow “conver- 
sion” of the ortho-species into the para-species has been observed. The rate depends 
on temperature and pressure but no chemical reaction is involved. The enormous sta- 
bility of rotational tunneling systems relies on the classically non existing quantity 
‘spin’ in combination with the Pauli principle. 

The term “rotational tunneling” is more commonly used [4] in the context of mo- 
lecules with larger moments of inertia J than the one of H2 with its extremely short 
bonding length. Our prominent example will be the methylzgroup CH3 with a rota- 
tional constant of B M 7 Kelvin (&* x 85 Kelvin). B = $ establishes the energy 
scale for quantum effects to be important in the isolated rotor if intra-molecular vi- 
brations are high in energy and can be ignored. In the surrounding of a solid each of 
these molecules can be oriented in different ways which are energetically precisely 
equivalent. This is their characteristic property. Transitions between the different 
equilibrium orientations are enabled by quantum mechanical tunneling. The corre- 
sponding discrete rotations permute identical particles (i.e. hydrogen nuclei in the 
aforementioned examples). Therefore the Pauli principle relates the transformation be- 
haviour of the rotational eigenfunctions with the total nuclear spin. 

In the example of H2 the lowest eigenvalue is connected with a spatial wave func- 
tion which is invariant with respect to rotations of the dumbbell by 180”. Identical 
particles, like protons, must carry spin to make this energy physically accessible. The 
total nuclear spin values S = 0 or S = 1 for the para- or the ortho-species explain 
e.g. their different magnetic susceptibilities. A dumbbell molecule composed of iden- 
tical spinless particles (Bosom) cannot show eigenvalues associated with odd parities, 
and accordingly, the ground state of (hypothetical) spinless Fermions would have the 
energy h 2 / J .  Spin carrying particles show richer energy spectra than spinless parti- 
cles. 

This statement can be generalized to the eigenfunction 
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y(x101,. . . ,xjaj,. . . ,xjaj, . . . , XNQN) (1.1) 
of an N-particle Hamiltonian that is assumed to depend only on spatial coordinates. 
Then y remains invariant with respect to a permutation of the particle enumeration 

t,~(xlal, . . . , x j ~ , ,  . . . , xjgi, . . . , XNCTN) (1.2) 

(Bosons) or acquires a sign (-1)' (Fermions) proportional to the parity of the per- 
mutation P. On the other hand, t , ~  must have well defined transformation properties 
also with respect to permutations only among the coordinates {xi} 

~ ( x l a l , .  . . , x j ~ j , .  xiaj , .  - XNON) (1.3) 

or only among the spins {oi} since these operations leave the Hamiltonian equally 
well invariant. Subsequent permutation of the spins in (1.3) finally must yield (1.2). 
Spin makes the not symmetrized, spatial part of the N-particle Hilbert space physi- 
cally accessible. This increases the number of realized eigenvalues of the Hamilto- 
nian (the energies are solely determined from spatial space). 

Other operators acting on the N-particle system that depend only upon spatial co- 
ordinates, like phonon operators, must leave the transformation property (symmetry) 
of each eigenfunction unchanged with respect to the operations (1.3). This is the phy- 
sical origin for the extraordinary thermal stability of the different rotational symmetry 
species. The energy scale on which temperatures influence the tunneling line ob- 
served in inelastic neutron scattering exceeds the energy difference A of the lowest 
rotational states (tunneling energy) by several orders of magnitudes. The A are typi- 
cally in' the peV range while the corresponding lines shift and broaden only above 
temperatures of 20 or 30 Kelvin. This behaviour is completely different from what is 
observed for the tunneling of a single particle, that tunnels between e.g. two crystal- 
lographically equivalent sites by translational motion. In this latter case the quantum 
tunneling is observed to disappear at temperatures above A [5] .  The inelastic peaks 
centered around *A on the energy axis merge with the broadened quasi-elastic peak. 
The dissipative influence of a phonon bath will be discussed in Section 2.1. 

Conversion transitions between the states of different symmetries must involve op- 
erators acting simultaneously on spatial and on spin space [6].  An example is the 
neutron scattering operator which explains the direct observability of rotational tun- 
neling by means of inelastic neutron scattering. Transitions associated with thermali- 
zation of the sample, e.g. between ortho- and para-hydrogen, require to change the 
symmetry of the rotational states. The observed times exceed the inverse tunneling 
frequencies typically by 6-15 orders of magnitudes (for many systems the value is 
not known and the experimental boundaries depend often on the patience of the ex- 
perimentalist). The conversion transition, particularly its dependence on phonons, will 
be discussed in Section 2.2 where also the most important experimental techniques to 
measure these times are described. 

1.2.3 Correlated electrons 

The rotational tunneling excitations can be interpreted as being connected with pro- 
cesses of identical particles exchanging their equilibrium places. The use of localized 
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rotor states (“pocket states” ) provides a conceptually very clear and successful start- 
ing point for a quantitative description of the spectra [7]. In the third chapter this ap- 
proach will be generalized to finite systems of strongly interacting electrons as they 
appear in small semiconducting nano-structures. The many body wave functions have 
the same properties (1.1-1.3) as discussed before for nuclear coordinates and the low 
energy excitations can be related to processes where electrons interchange places in a 
similar way, cf. Section 3.2. The discrete energy levels are again intimately con- 
nected with total spin. The experimental probes are linear and nonlinear transport 
measurements. The set up is sketched in Fig. 2. 

The many-electron levels in quantum dots are observed most successfully by non- 
linear transport. Excitation energies can be observed within the difference p~ - p~ of 
chemical potentials applied across the dot. Meanwhile this kind of experiments have 
been carried out at the Technische Universiteit in Delft, at the MIT in Cambridge, 
Mass., at the MPI in Stuttgart and at the UCBE in Berkeley. Apart from the struc- 
tures which reflect the excitations energies in the current-voltage characteristic re- 
gions of negative diflerentiul conductances have been detected. The latter cannot be 
understood within traditional approaches. The consideration of the electron spin to 
build up the N-electron states in presence of strong interactions provides up to now 
the only explanation for this observation. In analogy to the Coulomb blockade this 
phenomenon has been called “Spin Blockade” [8]. 

More recently these selection rules are investigated more in detail. The transition 
rates [9] appearing in the master equation description of nonlinear transport [lo] are 
influenced b the correlations in the electron states. Matrix elements of the qualitative 
type (C(N+’(C+JW(”)) between an ( N +  1)- and an N-electron eigenstate play a role 
due to the electron passages through either of the barriers. The resulting currents 
have been calculated in [lo, 111. Only the detaiIed knowledge of these overlaps al- 
lows to extract energies and even interesting properties of the N-electron wave func- 
tions from experimental ‘nonlinear transport spectroscopy’. Knowledge of the many 
electron states and energies are the basis for the understanding of excitation- and 
transport behaviours of semiconductor micro-structures. 

The conductance at small applied voltages and low temperatures reveals the 
ground state properties of the electron system. The energies associated with addition 
or removal of single charges to or from the island can exceed the thermal energy if 
the island is sufficiently small. This is the origin of the single electron effects [12, 
131 which have attracted considerable interest since their discovery. Low transmittiv- 
ities $/RT << 1 of the contacts to the electron reservoirs are necessary to suppress 
fluctuations of the number N of conducting electrons inside the island. Then N can 
be considered as a classical variable. The electron number on the island favoured by 
electrostatics is stable against small transport voltages so that the current vanishes. 
This phenomenon has been called “Coulomb blockade” [14]. Suitable choice of the 
island potential via the gate voltage VG allows to establish degeneracy between the 
energies of the charge states N and ( N  + 1) 

E ( N  + 1) = E ( N )  = - (Ne)2  - eVGN 2c 

Then the current is finite. The periodic changes between finite 
port as a function of VG (Coulomb blockade oscillations) have 

(4) 

and vanishing trans- 
meanwhiIe been ob- 
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Fig. 2 Sketch of a transport experiment through a quantum dot. The transport voltage, given as 
the difference between the applied chemical potentials (JLL - pR)/e ,  may be infinitesimally small or 
finite. The tunnel resistances Rr should be large compared to h/e2 to suppress fluctuations of the 
electron number on the dot. The external gate voltage VG allows to regulate the mean number of 
electrons on the island. 

served by numerous experimental groups [15]. Each peak corresponds to a certain N 
in (4). The period is constant if the capacitance C is independent of N .  This assump- 
tion is usually justified within a (simplified) mean field argument which is the basis 
of the “charging model” [12]. In presence of strong correlations this question is dis- 
cussed in Section 3.1.1. 

The Coulomb blockade has been observed in metallic [16-191 as well as in semi- 
conducting islands [20-221. The latter are called “quantum dots” [23]. Apart from 
easier p,ossibilities to manipulate parts of the nano-structure, e.g. the heights of tun- 
neling barriers, by gates quantum dots differ from the metallic counterparts in impor- 
tant physical properties since the Fermi-wave length is comparable to the diameter of 
the dot. This increases the level separation and facilitates the experimental observabil- 
ity of discrete excitation energies. Furthermore, the absolute number of conducting 
electrons is reduced to values N < lo2 which is small compared to N N lo8 found 
in metallic islands. Results calculated for finite systems need not necessarily be extra- 
polated to the macroscopic limit. The importance of the long range Coulomb interac- 
tion is, however, considerably increased on the scale of the Fermi energy due to the 
low electron density. Together with the reduced dimensionality for the electron mo- 
tion to d = 2 in hetero-structures correlations are substantially enhanced compared to 
metals (electrons can avoid one another less easily than in d = 3). Exact energies 
and correlation functions have been compared with results obtained within selfconsis- 
tent H m e e  Fock approximations [24, 251. The mean field approximation turns out 
to be unreliable. Few electron systems in semiconducting hetero-structures have been 
called ‘artificial atoms’ [26] in analogy with the Mendelejev table of real atoms. 
However, unlike to situations in three dimensions or small mean electron distances, 
on the scale of the Bohr radius, effective single electron states (orbitals) cannot be 
defined for quantum dots. To describe ground- or even excitation-energies in the lat- 
ter requires to take the correlations into account. 

Since the work by Wigner [27] it is known that the long range Coulomb interac- 
tion leads to inhomogeneous ‘crystallized’ density-density correlation functions in the 
limit of a very large mean inter-particle distance r, --$ 00. At short distances the inho- 
mogeneity in the ground state shows up even in one dimension [28, 291. The ten- 
dency of the kinetic energy to delocalise the particles decays - r;’ and therefore 
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cannot compensate for the gain in potential energy connected with the crystallization. 
The boundary prevents continuous sliding of the finite crystal as a whole and estab- 
lishes fixed particle positions. At large rs these sites correspond to the minima of the 
electrostatic energy. 

The localized electrons make immediately two types of excitation modes plausible. 
The first are vibrations of the electrons around their equilibrium positions due to the 
Coulomb forces between them. The corresponding phonon-like energies R can easily 
be shown to scale like R - r,3’2 by linearizing the interaction. A particle spin s 
leads to (2s+ l)N-fold degeneracy of each phonon level. Secondly, the electrons 
might exchange their positions by tunneling through the Coulomb barrier. Such inter- 
changes must be included into the quantum mechanical eigen functions in order to 
avoid the enumerability of the electrons according to place numbers. These processes 
cause splittings of the phonon-like energy levels and give rise to the excitations of 
lowest energies. They are closely related to spin. The pocket state description intro- 
duced in Section 3.2 allows to calculate this low energy spectrum. In Section 3.4 the 
pocket state approximation is compared with results obtained by numerical diagonali- 
sations. 

The processes of electrons interchanging places should not be confused with the 
exchange integrals arising in the theory of Ferro-magnetism. The processes consid- 
ered here tend to favour antiferromagnetic coupling between electron spins and there- 
fore rather resemble the ‘superexchange’ discussed in the context of Hubbard models 
[30, 311. The possible mapping of the continuous model for a quantum dot to suita- 
bly chosen spin-charge lattice models, keeping the correct low energy behaviour, is 
the subject of present research [32]. 

Localized many particle pocket states have been applied recently also to the prob- 
lem of the magnetization of small rings threaded by a magnetic flux. It is common 
belief that the unexpectedly large values observed experimentally for the persistent 
equilibrium currents can only be understood by accounting for the electron-electron 
interaction. At least in presence of strong interactions the spin turns out to be an im- 
portant ingredient to the behaviour of the current. A short summary of recent results 
has appeared in [33]. 

2 Rotational tunneling systems 

2.1 Damping 

In classical mechanics ‘dissipation’ can be described on a microscopic level as the con- 
sequence of frequent collisions with light particles [34]. The Langevin equation for the 
Brownian motion of a heavy particle contains random forces and a damping which is 
due to the back-reaction of the surrounding particles on the motion of the particle. It 
is related to the stochastic properties of the collisional forces through the fluctuation- 
dissipation theorem. Random forces without temporal correlations (white noise) lead 
to the friction - qx proportional to the instantaneous velocity of the particle. 

This description of dissipation is based on a stochastic equation of motion for the 
coordinate x( t )  and cannot be quantized canonically. Attempts to formulate quantum 
dissipation, e.g. using explicit time-dependent Hamiltonians [35], describe either no 
true dissipation or violate basic principles of quantum mechanics. The formulation of 
‘friction’ turned out to be a conceptual problem in quantum mechanics [36]. 
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The most convincing pathway is provided by the theory of open quantum systems 
where the Hamiltonian 

H = Hs + Hph + HI (2.1 ) 

includes a large number of external degrees of freedom described by Hph to which 
the system of interest, H,, is coupled through H I .  These theories have been devel- 
oped [37-391 for the example of a harmonic oscillator coupled to an ensemble of re- 
servoir oscillators. The Hamiltonian for the composed system-plus-environment can 
be quantized canonically. The dissipative influence shows up in the dynamics for the 
reduced density matrix describing the system. 

Since the seminal work of Caldeira and Leggett [40] it became clear that the class 
of models (2.1) allows to describe the dissipative influence on typical quantum mo- 
tions like tunneling. For calculational purposes the ‘reservoir’ of environmental de- 
grees of freedom is preferably chosen as an ensemble of harmonic oscillators 
Hph = Ckukbkfbk that are coupled via HI to the system, linearly in the Bose opera- 
tors. The index k reminds of the quasi-momenta of quasi-particle excitations but 
translational invariance is actually not required. The treatment of the environment like 
harmonic oscillators can be motivated (though not rigorously proven) if the external 
coordinates are only weakly influenced by the system. This is the case in the limit of 
large numbers of environmental degrees of freedom if the coupling does not prefer a 
finite subset of the modes. The complete influence of H I  onto the system is con- 
tained in the ‘coupled density of phonon states’ 

J(w) := “&(O - O k )  , 
2 & = I  O k  

where the strength gk of the coupling to the k-th mode must be weak gk rx n - 1 / 2  in 
order to leave the energy for the system finite. The system of interest itself, however, 
can be influenced strongly by HI so that a perturbational approach may be not valid. 
J ( o )  is regarded as continuous for 0 I o I O, up to the highest frequencies O, ap- 
pearing in Hph. For tunneling systems the low frequency part of J(w) is most rele- 
vant. 

The major advantage of the path integral representation of quantum mechanics 
[41, 421 is the possibility to integrate out the linear environment in (2.1) exactly [43]. 
The full quantum mechanical influence of the environment on thermostatic or dy- 
namic quantities of the system can be cast into a functional [44] that depends only 
on the degrees of freedom of the system. The status of this approach in the context 
of quantum dissipative systems is most comprehensively, reviewed in the recent book 
of Weiss [45]. Among the prominent physical systems, where decisive theoretical re- 
sults have been obtained, is the damped tunneling of hydrogen atoms between two 
equivalent crystalline sites in the presence of conduction electrons, the influence of 
the electrical impedance on the macroscopic quantum coherence in SQUIDS, and 
small islands showing Coulomb blockade. The dissipative environment determines 
the low temperature properties of a tunneling coordinate. The first system is most re- 
levant to the present section. 

Different temperature regimes have been found [46-501. At high temperatures the 
scattering function 
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S ( 0 )  = - 1 dt e'"'(x(0) x ( t ) )  , 27z 

which is the temporal Fourier transform of the autocorrelation function [51] for the 
hydrogen position, can be explained already within classical statistical mechanics by 
thermally activated, random jumps over the potential barrier. The rates obey an Ar- 
rhenius law due to the Boltzmann probability distribution for the particle energy [52]. 
The autocorrelation function (x(0) x ( t ) )  decays exponentially in time leading to a 
peak in the scattering function which is centered around o = 0 of Lorentzian shape 
(quasi-elastic peak). At reduced temperatures incoherent quantum tunneling adds to 
the classical particle transfer. Still the process can be described by a (Pauli-) rate 
equation for the occupation probabilities of the sites with its exponentially decaying 
solution. With further decreasing temperatures coherencies start to contribute at times 
even longer than the inverse tunneling rate. Thermal phase-breaking effects are di- 
minished and the wave functions for the two hydrogen positions interfere construc- 
tively. For the case of hydrogen in Nb this first shows up as a broadening of the 
quasi-elastic peak according to the Kondo law - T2K-' for small Kondo parameters 
K (weak coupling) [53]. This type of broadening of the quasi-elastic peak is con- 
nected with the ohmic dissipation J ( o )  - o for w << w, caused by conduction elec- 
trons; it would presumably not appear for damping by acoustical phonons. At tem- 
peratures of the order of A two tunneling peaks centered around co = f A  start to ap- 
pear (see Fig. 3). They reflect coherent oscillations of the hydrogen atoms between 
the two positions. Their intensity obeys detailed balance. The width of these inelastic 
tunneling peaks remains finite even at the lowest temperatures. This is a manifesta- 
tion of the finite dissipative influence of a quantum mechanical environment at zero 
temperatures [40], in qualitative contrast to the classical friction described by a Lan- 
gevin equation. A is the tunneling rate which itself may be renormalized by the pho- 
nons compared to the 'undressed' static value Ao. The experimental verifications, 
also concerning the other physical systems quoted above, have been extremely con- 
vincing [5, 18, 54-56]. 

Unfortunately, a satisfying solution of the rotational tunneling problem by means 
of the path integrals has up to now only been successful in the absence of dissipa- 
tion. In [58] the rotor is treated as a harmonic oscillator which ignores the inherent 
non-linearity of a rotational tunneling system. 

The popular example of a methyl group CH3 can be described by one rotational 
coordinate cp if the rotor is taken as a rigid object and ignoring internal molecular 
modes of high energy [59]. The angles pi of the proton positions in polar coordinates 
define cp = (cpl + p2 + cp3)/3. The orientational Hamiltonian for a single molecule 
then reads 

Its invariance with respect to the unitary transformation cp-cp + 2n/3 follows from 
the identity of the protons and is, as the outstanding property of rotational tunneling 
systems, not affected through a coupling to phonons. The eigenfunctions tyr of 
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neutron energy gain [mev] 
Fig. 3 Inelastic scattering function of hydrogen tunneling between two crystallographically equiva- 
lent sites in m, after [57]. The dissipation in this system is caused by conduction electrons that can- 
not be excited in the superconducting state (upper spectra). At finite magnetic fields superconductiv- 
ity is suppressed and the dissipation broadens the tunneling peak even at low temperatures (left 
spectra). The two temperatures shown (0.2 and 4.3 Kelvin) give only a rough idea about the ther- 
mal broadenings and shifts of the tunneling lines. The elaborate analysis can be found in [5, 541 to- 
gether with other details about this system. 

transform according to the irreducible representations r = A ,  Ea, Eb of the symmetry 
group C3 with respect to (yr(cp + 2n/3, {Q}) = eiK2'I3 v~,(cp, {xk}) rotations, where 

r I K I S(s=  1/2) I S(s=  1) 

and {xk } denote environmental coordinates. The Hamiltonian (2.5) cannot induce 
transitions between states of different symmetries, all matrix elements H r p  vanish 
for r # r'. E - s y m e b c  eigenfunctions of (2.5) can exist in nature only if the (nu- 
clear) spin of the identical particles is nonzero. Substitution of the protons by other 
Fermions or Bosons of finite spin does not alter the set of observable eigenvalues ob- 
tained from (2.4), only the rotational constant B may change. The different total 
spins S,  obtained from the Pauli principle for s = 1/2 or s = 1 particles, are listed in 
(2.6). Spinless identical particles show only the eigenvalues connected with r = A .  
The difference between the ground state (A-symmetric) and the lowest eigenvalue as- 
sociated with an E-symmetric eigenfunction defines the tunneling splitting A at zero 
temperature (cf. Fig. 5,  yEa and V / E b  form a &amerS doublet [60] and are energeti- 
cally degenerated). 

For the isolated rotor (2.4) A can be estimated as a function of the barrier height 
using the instanton method of Coleman [61, 621. One has to take care of the fun- 

damental difference between a quantum mechanical angle coordinate with possible ei- 
genvalues cp E [0,2z[ and a classical angle, appearing in the path integral, that can 
take all real values cp(t) E] - 00, +00[. Classically, the winding number of the rotor 
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Fig. 4 Difference between the exact tunneling energy bXxt associated with the Mathieu potential 
(2.4) of amplitude V / B  and the tunneling energy within instanton approximation Ainst (2.7) on the 
scale of bXxt. In the shown range of parameters the value for A itself varies by 7 orders of magni- 
tudes. 

can be counted by observing the system. This difference shows up in the requirement 
to decompose the paths according to winding numbers [63]. The resulting formula 
[64] to estimate the tunneling splitting of (2.4) 

within ‘dilute instanton-gas approximation’ reproduces extremely well numerically 
obtained values for A, cf. Fig. 4, and agrees with the formula found previously by 
empirical fits [65]. 

The tunneling splitting A can be viewed (rather for pedagogical than for true cal- 
culational purposes, cf. [66]) as the overlap integral between harmonic oscillator 
wave functions centered around adjacent minima of the potential e.g. cp M 0 and 
cp M 2n/3. Higher excited levels of (2.4) are approximatively given as harmonic exci- 
tations (“librations”) in the potential minima with energy 

Rotational tunneling systems are ideal to study the quantum dissipative influence 
caused by the coupling to the crystalline lattice because the tunneling is observable 
e.g. by inelastic neutron scattering [67-69] or by high field NMR [70] up to tempera- 
tures exceeding A by many orders of magnitudes. 

A typical series of spectra are shown in Fig. 6.  Note that the magnitudes of T / A  
differ considerably from those shown in Fig. 3. At low temperatures sharp tunneling 
peaks centered around o = &A are visible on either side of the energy scale. With 
rising temperature their position shifts and they broaden until they merge under the 
broadened quasi-elastic peak. This happens at temperatures which are much higher 
than in translational tunneling systems. 

M d m .  
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Fig. 5 Energy level scheme of (2.4) describinp a CH3 rotor. Typical values for o, = A are few 
PeV while the librational energy E r  - E[ 3 is typically 10 meV. The spatial parts of the wave 
function are of different symmetry (r = A, E", Eb). Totally symmetric states with respect to even 
proton permutations (i.e. 2n/3 rotations) are achieved through the spin space. 

Fig. 6 High resolution inelastic 
neutron scattering spectra from 
Sn(CH,), for temperatures up to 
30 Kelvin, after [71]. 

The scattering function [72] for a one dimensional rotor (2.4) at momentum trans- 
fers small compared to its inverse radius can be written as [64] 

where the full Hamiltonian (2.5) determines the Heisenberg operator cp(t) and the 
thermal quantum average (. . .). A variety of attempts have been made to describe the 
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temperature dependence of S( w )  for a rotational tunneling system theoretically. The 
phenomenological assumption of random transitions between the librational rotor le- 
vels of given symmetry I' (cf. Fig. 5) ,  in the spirit of [73], can explain an exponen- 
tial shifting and broadening of the tunneling line with temperature [74]. Quantitative 
agreement with experiments is, however, often poor. The T4-law for the shift has 
been obtained in perturbation theory first by Huller [66]. Later it has been refined to 
extract also broadenings from complex self energies [64, 75, 761. The numerical 
study of the coupling to one oscillator mode allows to check the regime of validity 
for the perturbation theory - the experimental situations were estimated to be in 
many cases beyond this regime [MI. 

More recent attempts to extend the range of coupling strengths are based on simu- 
lations where stochastic forces act on an intermediate classical particle [77, 781, and 
on substituting the rotor by a harmonic oscillator and a spin [79]. The two possible 
values of the latter simulate the two sets of eigenenergies related to the symmetries A 
or E so that the combined system reproduces the lowest 4 levels of the spectrum 
shown in Fig. 5. This description enables, in principle, to allow for strong rotor-pho- 
non couplings. A art from the T4-law for the shift, interestingly, it predicts a non- 

Another recent approach is based on approximations to the time-dependent reduced 
density matrix for the rotor and allows to separate coherent from incoherent transi- 
tions between its matrix elements due to environmental fluctuations [81]. Even an oh- 
mic dissipation J(w) - w for w << m,, which has been assumed, though not present 
in real systems, does not yield incoherent tunneling transitions. 

Table 1 compares the known temperature dependencies of the scattering function 
for rotational and translational tunneling systems. The CH3 group and the spin-Bose 
system are considered as representatives. In both cases a coupling to acoustical pho- 
nons is considered which in absence of particular crystallographic symmetries is de- 
scribed by 

Arrhenius like T P -behaviour for the thermal broadening of the tunneling line [SO]. 

The comparison should be appreciated with some caution because different types of 
approximations are used. The perturbational results for the rotational tunneling sys- 
tems are valid only at weak damping and low temperatures. The increased effective 
influence of the environment on the rotor with temperature undermines the perturba- 
tional description. The high temperature behaviour, where S(w) consists of a quasi- 
elastic peak that broadens according to - e-2vIT and that can well be explained by 
classical hopping [4], cannot be recovered within perturbation theory - a closed theo- 
ry valid for the entire range of temperatures is still lacking. 

The most general results for the spin-Boson system were obtained within the non- 
interacting bounce approximation (NIBA) where retarding effects owing to the pho- 
non bath, calculated first by Feynman and Vernon [44], were taken into account only 
between adjacent transitions of the spin [48]. For dissipation of the type (2.9) this is 
believed to be reliable for all temperatures and coupling strengths [45, 47, 481. The 
non-perturbative results make the spin-Boson model to the best understood quantum 
dissipative system [45, 48, 83, 841. When the temperatures approach the energies of 
the vibrations of hydrogen atoms within one of the crystallographic potential minima 
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Table 1 Comparison of the thermal developments of S(o) of translational and rotational tunneling 
systems. A low frequency behaviour of the environment J(w)-w3 is assumed. The results for the 
spin-Boson model are obtained within the NIBA [53, 821 while results for the CH3 rotor rely on 
perturbation theory [a, 75, 761. The spin-Boson system does not show a quasi-elastic peak; for a 
double well system an Arrhenius behaviour with an activation energy given by the banier height, si- 
milar to the rotational tunneling system, would be expected. 

~ 

Translational tunneling of Spin- 
Boson model 

Rotational tunneling of CH3 rotor 

Broadening of tunneling line - const+e-A/r -e-n/r 
Width of quasielastic line - ...e-2VIT 

Low temperature shift of tunnel- 
ing line 

-+p  - T 14 for { ~ ~ ~ ~ g }  phonons 

its dynamics can no longer be reduced to a spin and the two-state model becomes in- 
applicable. In this case a continuous double minimum potential has to be used that 
yields immediately the correct high temperature limit in path integral representation 
by either looking at the rate for tunneling escape out of one of the minima [46] or at 
the incoherent tunneling in a double well [85].  

The low temperature broadenings of the tunneling lines in both cases of Table 1 
are of Arrhenius type but with considerably different ‘activation energies’. This re- 
flects the very different mechanisms that cause the two correlation functions (2.3) 
and (2.8) to decay through the damping caused by the environment. Low energy pho- 
nons with ok x A stimulate most effectively transitions between translational tunnel- 
ing states while they cannot induce direct transitions between states of different 
symmetries in rotational tunneling systems. In the latter case the lowest symmetry 
conserving excitations are of energy Rr Ef - E l  where EL denotes eigenvalues 
to (2.4), cf. Fig. 5. Unfortunately only very poor knowledge exists about the rotor- 
phonon coupling J(o) in molecular crystals containing rotational tunneling groups. 
The first serious and very elaborate attempt to extract this information from the mea- 
sured phonon density of states has been carried out only recently [86]. The inter- 
atomic potentials had to be adjusted compared to literature values to explain the ob- 
served temperature dependence of the tunneling line when supposing lowest order 
perturbation theory for broadening and shifting. 

Even in next order of perturbation theory phonons Of frequency O k  x R turn out 
to be most important [64]. The two phonon contributions can, however, explain slight 
differences observed in the activation energies E E  > &* [69] as a density of states ef- 
fect. This is unexpected within one phonon contributions because RE < nA even for 
more general single rotor potentials than in (2.4). Also the residual width of the tun- 
neling line at zero temperature can be estimated within fourth order perturbation the- 
ory. It is proportional to J(16A1) where dA is the renormalization of the tunneling 
frequency due to the dissipation at zero temperature and therefore in agreement with 
all experimental observations, and in contrast to translational tunneling systems 
(Fig. 3), extremely small (cf. (2.9)). 

The low temperature shift of the tunneling line is given as an integral over J ( o )  
Which yields the P dependence in the presence of Debye phonons. Similar to the 
dissipative quantum escape thermal fluctuations enhance the translational tunneling 
rate [45, 481 which corresponds to a positive shift. On the other hand, the majority 
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of rotational tunneling systems show negative shifts with temperature. Within Allen’s 
phenomenological theory, assuming random symmetry conserving transitions between 
rotor states [74] the negative shift is explained by thermal admixtures of the negative 
tunneling frequency in the librationally excited states to the ground state tunneling 
frequency (i.e. by RE < RA). Also the first perturbation theories considering the cou- 
pling to a phonon bath [66, 751 have been simplifying the rotational degree of free- 
dom too far so that the origin for positive contributions to the shift remained hidden. 
The first clear experimental observation of a positive shift at low temperatures [68, 
871 has given credit to the results which had been obtained first from the numerically 
exact coupling to one oscillator mode [ a ] .  The sign of the shift has been related to 
the type of the rotor-phonon coupling. Modes that modulate the phase of the orienta- 
tional potential - gk sin 3p(bk + b,+) of the rotor (shaking modes), cause a decreas- 
ing tunneling splitting with temperature while modes that modulate the amplitude of 
the tunneling barrier - gk cos 39(bk + b,+) (breathing modes) lead to thermal en- 
hancement of the tunneling splitting. Within lowest order perturbation theory only 
the shaking modes cause the exponential line broadening with the activation energy 
of order R as it is frequently observed. Two phonon processes, however, make also 
breathing type phonons to contribute to the line broadening. These two different 
kinds of modes are extremely important to understand the behaviour of conversion 
rates as they are discussed in the subsequent Section. 

2.2 Symmetry species conversion 

It is the characteristic feature of rotational tunneling systems that symmetry changing 
transitions occur extremely slowly compared to the inverse frequencies of environ- 
mental or tunneling modes. Molecular hydrogen has already been mentioned. The 
weakness of the transition operators, see below, is only one reason for this extreme 
stability. In order to take place at low temperatures the conversion transition needs 
low energy fluctuations which are provided only rarely by the surrounding even if 
the coupling to the tunneling system is strong. 

At temperatures of the order of the tunneling splitting A the thermal equilibrium 
of molecular crystals can easily be disturbed by sudden jumps of the lattice tempera- 
ture. It may take hours or weeks until the distribution p r  of rotor symmetries adopts 
to the new thermal equilibrium value (2.10) through conversion. 

Most of the experimental techniques to obtain temperature-dependent conversion 
rates use this feature. The oldest results were oPtained by measuring the nuclear mag- 
netic susceptibility which is proportional to (S2). The three components of the total 
(nuclear) spin operator S = Ci3, are composed of individual spins i i  of the identical 
particles within one rotor. In the cases of the protonated versions ofCH3 or CH4, a 
one-to-one relationship exists betyeen the eigenvalue S ( S +  1) of S2 and the sym- 
metry f (2.6) [4]. The quantity (S2) can also be determined by measuring the trans- 
mittivity of the whole sample for neutrons of wave length’s larger than the radius of 
the rotors as has been found by Huller and Prager [MI. This established a means to 
observe conversion over several weeks (magnetic measurements tend to ‘drift’ after 
long times) even by using rather weak neutron sources [89, 901 as available e.g. at 
the PTB Braunschweig [91]. 

The unique relationship between f and S in protonated systems led to call these 
relaxation processes often ‘nuclear spin conversion’. The title of the present 
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Section 2.2 has been chosen to make clear that it is the symmetry state of the rotor 
r which is the relevant quantum number for energy relaxation processes and not the 
spin. This is particularly important for deuterated rotors, cf. Section 2.2, where no 
unique relationship between spins and symmetries exists [92, 931 (cf. (2.6)). 

Careful observations of the latent heat that a molecular crystal shows at different 
cooling rates allows to extract conversion rates at temperatures even slightly exceed- 
ing A. In a nice recent measurement neutron transmission and specific heat data 
could be combined to extend the temperature range [94]. 

The Pr can be determined most directly (though also most expensively and in 
praxis only for sufficiently slow conversion) from the detailed balance factor by mea- 
suring the intensities of the inelastic lines in S(o). Different types of rotors in the 
sample showing different tunneling splittings can be distinguished  which is a notor- 
iously difficult task for all the above mentioned integral methods. This way the suc- 
cess in preparing purely A-symmetric methane has been demonstrated [95]. 

The more recent NMR technique using field cycling 1961 was the first method not 
being based on the jump in the lattice temperature. A sophisticated sequence of 
pulses allows to distort the distribution p r  and to monitor its recovery. The required 
resonance between A and the nuclear Zeeman energy restricts the applicability to 
A < 0.5 pev. This method is fast compared to all aforementioned techniques so that 
conversion rates could be observed at temperatures T >> A for the first time. An Ar- 
rhenius type behaviour has been found with an activation energy close to the value 
expected for R 

A very interesting technique has been detected [97, 981 and developed [99, 1001 
recently to observe conversion of rotors with large A and without a priori restrictions 
to the temperature by optical hole burning using a laser of extremely narrow band 
width. m e  method is based on the tiny shift in the energy of an electronic excitation 
Of a dye molecule, depending on the symmetry state of the methyl rotor attached to 
it. The ‘‘dynamicar’ range of accessible conversion rates covers 7 orders of magni- 
tudes. Details about this technique can be found in [99]. For the first time the conver- 
sion of the isotopic substitute CD3 could be observed together with its temperature 
dependence using this technique [1001. 

2.2. I Protonated rotors 

The first theories to explain symmetry species conversion were designed for the 
Ortho-para transition in hydrogen [loll.  It is clear that possible candidates for transi- 
tion operators must involve the nuclear spin - otherwise the Hamiltonian would still 
be invariant with respect to the discrete rotations characterizing the rotor type 
(p-p + 2 x / 3  in our favourite example of CH3). The dipolar magnetic interaction 

Suffices to cause symmetry changing transitions. This energy is small due to the 
Smallness of the magnetic moment 7 of protons and decreases with the particle dis- 
tance rv lrijl-3. In the particular case of H2 the magnetic intra-rotor interaction still 
has parity as a symmetry and thus cannot induce conversion. Only ortho-molecules 
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provide the magnetic field gradient that enables conversion transitions in neighbour- 
ing rotors. This inter-rotor interaction mechanism, based on the presence of excited 
rotors, immediately yields an equation of motion for p r ( t )  being quadratic in p r .  

In a general rotational tunneling system &HDD is not invariant with respect to 
the rotational symmetry of (2.5). Examples are C d  and CH4 rotors. Nijman and Ber- 
linsky [ 1021 established the first theory to explain the conversion in solid methane by 
intru-molecular dipolar interaction (inter-molecular contributions decrease N l r ~ l - ~  
and are therefore considerably weaker). This interaction by itself still does not pro- 
vide conversion transitions in isolated rigid rotors where Irul is fixed. Only lattice vi- 
brations provide the energy reservoir and allow eventually conversion through 
“hybrid” processes. The time evolution of p r ( t )  is to a very good approximation de- 
termined by a rate equation, linear in p r .  This yields the exponential approach 
p r ( t )  - eXp(-t/Tcon) towards the equilibrium distribution 

(2.10) 

at temperature T. The trace refers to the full Hilbert space Hof system plus environ- 
ment and Pr projects onto states in Hr with the rotor being r-symmetric 

(2.11) 

The interesting quantity is the conversion time T~~~ and its temperature dependence. 
The theory [ 1021 is only valid at low temperatures T < A where the conversion 

rate T&: is governed by resonant “direct”’ one phonon processes and therefore pro- 
portional to J(A) where J ( o )  is the coupled density of phonon states defined in 
(2.2). The temperature dependence 

l/~t:y*( T) - r4J(A) coth(A/2T) - y4A3( 1 + 2n(A)) (2.12) 

is regulated by the Bose distribution function n ( o )  = - 1)-’. Apart from the 
smallness of the magnetic interaction (its typical energy is still of the order of 
h / ( 1 0 6 s ) )  the major factor reducing the conversion rate at low temperatures is the 
small density of phonon states at low energies which additionally is coupled rela- 
tively weak to the rotor at Iong phonon wave length’s. The extreme slowness of con- 
version transitions in methane at low temperatures could be explained satisfactorily 
by [102]. 

The repeatedly found correlation between fast conversion and the presence of mag- 
netic impurities [91, 951 is obviously caused by the about 3 orders of magnitudes 
larger magnetic moment of the electron compared to protons. In this case the hybrid 
mechanism is not required, the energy can also be provided by the fluctuating dis- 
tance between rotor and impurity though there is no experimental evidence for no-, 
ticeable consequences due to the corresponding change in J ( o ) .  Even dilute 
magnetic impurities cause fast conversion throughout the sample because of the fast 
diffusion of symmetry species. No energy transfer is required when two adjacent 
molecules just exchange their symmetries. This is subject of present research [103]. 

Already at surprisingly low temperatures T 2 A other processes involving phonons i 
of shorter wave lengths compete and determine the behaviour of Tcon(T). Virtual; 
transitions between librationally excited rotor states start to open additional channels 
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'Ol 5-1 

Fig. 7 Conversion rate scan for a CH3 rotor in Arrhenius representation (w, = A). Coupling to 
acoustical phonons is assumed, measured by the strengtb g. Shaking and breathing coupling types 
are indicated by s and b respectively. The right figure shows two cases of Debye energies wi and 
0 6  being larger and smaller than the second librational excitation in the lower and upper curve, re- 
spectively. The dashed lines were obtained when Orbach processes were ignored. 

for conversion [la]. They remind on the "Orbach process" 11051 known from spin 
relaxation (TI-) theory [106, 1071. Perturbation theory with respect to the rotor-pho- 
non coupling leads to the librationally activated Arrhenius type temperature depen- 
dence 

(2.13) 

shown in Fig. 7 which is in agreement with experimental observations [108]. The 
type of phonQn coupling, breathing or shaking, is of crucial importance. The law 
temperature behaviour (2.12) is completely determined by the former while the acti- 
vated behaviour (2.13) to appear already at temperatures T << R requires the pre- 
sence of the latter. 

This interrelation combined with the opposite shifting behaviour of the tunneling 
line with temperature (Section 2.1), caused by the two types of phonon couplings, al- 
lows the predictions summarized in Table 2. They are in agreement with all known 
experimental results (cf. [ 1041). If additional terms in the rotor-phonon coupling are present being quadratic in the 
Phonon operators (bk + bk+)(b@ + b i )  inelastic phonon scattering can occur and 
compete with the processes leading to (2.12) and (2.13) where only single phonons 

Table 2 Re)ationship between thermal developments of different quantities and the coupling to 
Phonons as predicted within perturbation theory. 

Prevailing phonon Shifting of tunnel- Broadening Of tun- <Ar' conversion conversion 
coupling type ing line nelingline time at low T S A  time at high D A  

Shaking 6AdJ pronounced very long short 
breathing SAZO weak shorter longer 

- 
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were created or annihilated due to Hr. These “Raman processes”, again known from 
spin relaxation theory, lead to the characteristic power law dependence N T7 at tem- 
peratures T << R. The conversion rate 

l/~:y(T) N T7 (2.14) 

does not depend on A [lo91 but requires a coupling of breathing type [110]. Thus 
Raman processes lack for somewhat specialized couplings to environmental modes, 
nevertheless in at least two experimental situations, both associated with large A’s, 
such power law dependencies have been observed, one by the neutron transmission 
method [91], the second, over a wide range of temperatures, by the optical hole burn- 
ing technique [98, 100, 1111 .  Precise measurement of conversion rates versus tem- 
peratures allows to extract information about the rotor-phonon coupling which is 
usually difficult to obtain. 

2.2.2 Deuterated rotors 

The chemical [90, 1 121 or isotopical [ 100, 1 1 1, I 131 substitution of certain atoms can 
provide extremely useful information about molecular crystals. The crystallographic 
structure changes only slightly and it may be possible to relate phonon spectra or 
J(w)  [ 113-1 151 before and after the substitution to one another. Particularly interest- 
ing is to replace the hydro ens within the rotors by deuterons. This reduces the rota- 

tional potentials measured in units of the corresponding quantum energies. The tun- 
neling energy A, depending exponentially on V / B  (2.7), is considerably reduced. 
Also SZ decreases by roughly a factor of l / f i  owing to the ratio of masses. Both 
scaling behaviours are in good agreement with experiments [ 1151. 

Predictions about the change in conversion properties require to know the spin 
states of the rotors which are more complicated for deuterons, being spin s = 1 parti- 
cles, than for protons. For CD3 the spin states can be found in [103, 1131. The next 
question addresses the transition operator involving the nuclear spins. It turns out that 
the electric quadrupolar interaction in CD3 is about 200 times stronger than the mag- 
netic dipolar interaction between adjacent deuterons [ 1 161 (the quadrupol moment of 
protons is zero). The electric field gradient of strength eq along the C-D bonding, 
taken as z-direction, yields a quadrupolar energy of the i-th deuteron with quadrupol 
moment Q 

tional constant B(D) = B(” v /2 and doubles therefore the heights V / B ( D )  of orienta- 

To get the transition operator Ci HP one has to rotate the quantization axis’ of the 
three nuclear spins i i  parallel to the axis of the rotor. The resulting expression can be 
found in [110] together with its matrix elements in the basis of the spin states of 

If T >> A the temperature dependence of T::: is again governed by the Orbach 
process and the conversion times tcon and t:!: are found to be very much alike when 
the potential parameters are rescaled accordingly to account for the difference in the 
hydrogen masses. The products of all collected prefactors turn out to be very similar. 

CD3. 

(D) 
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This is approximatively also true for Raman type processes if the rotor is strongly 
hindered V >> B (cf, (2.4)). On the other hand valuable information about otherwise 
unknown quantities can be extracted from the careful measurement of Tcon( T )  before 
and after isotopical substitution if the rotors are almost free V<,5B. In the first ex- 
periment two isotopical methyl derivates, embedded in one and the same environ- 
ment, have been compared [IOO]. Though the tunneling splitting has not been 
measured directly (which would be very difficult due to the extremely low concentra- 
tion of rotors used in the hole burning technique) the changes in the electronic excita- 
tion energies of the dye molecule for different rotor symmetries and different masses 
allowed to conjecture the methyl groups to be almost freely rotating. Both conversion 
times T,!;A( T )  and T::;( T )  show Raman behaviour at low temperatures which sug- 
gests the presence of pronounced quadratic contributions to the rotor-phonon cou- 
pling. The conversion of the deuterated species was found to be by almost 2 orders 
of magnitudes more rapid than the protonated version. If the conversion would be de- 
termined by the direct process just the contrary would be expected due to the propor- 
tionality A3 of the latter (2.12). The increase of conversion rates with deuteration 
can be explained when taking into account that the matrix elements of quadrupolar 
and the dipolar operators differ even qualitatively in the limit of almost free rotors 
1100, 1 lo]. A quantitative overall picture could be developed explaining all observa- 
tions. Contrary to previous speculations it could be verified that electronic excitation 
of the dye molecule increases the orientational barrier for the rotors which can be ex- 
plained naturally by an increasing size of the dye molecule. 

At low temperatures TSA a qualitatively new behaviour is predicted for T ~ ~ , , ( T )  
[l  lo] compared to all other theories that appeared yet for symmetry species conver- 
sion. The temperature dependence is no longer solely determined from the Bose dis- 
tribution (2.12) but obeys 

(D 1

1 + (16/11)exp(-A/T) 
1 - exp(-A/T) 1/em -fW = (2.15) 

In Fig. 8 the ratiof(A)/(l + 2n(A)) is shown. A similar deviation from the usual be- 
haviour (1  + 2n(A)) is expected to appear in the conversion of CD4 at low tem- 
peratures. m e  experimental proof of both predictions is still lacking. 

Fig. 8 
in strongly hindered (A << B)  CD3 as compared to the 
behaviour expected for a CH3 rotor of same tunneling 
energy A in Anhenius representation. The tempera- 
ture-dependent function f'(A) is defined in (2.15) and 
O(A) = (eAIT - I ) - '  is the Bose function. 

Relative enhancement of the conversion rate 
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In the experiments [ 100, 11 11 also methyl rotors composed of intra-molecular iso- 

topic mixtures, like CDH2, were investigated. The transitions between the low energy 
states have found to be unobservable fast. This demonstrates beautifully that sur- 
rounding fluctuations can now distinguish between the hydrogens and the transitions 
between the low energy states need no spin-dependent operator. The dynamics of 
these rotors is not determined by the fundamental identity of particles and they are 
no rotational tunneling systems in the strict sense. 

3 Correlated few electron systems 

In this part the consequences of particle identity will be investigated for finite sys- 
tems of strongly correlated electrons. As we shall see this is an important aspect for 
semiconducting nanostructures, like quantum dots. The single electron effects asso- 
ciated with the charging energy in small conducting structures have been mentioned 
already in the Introduction. Apart from their fundamental importance for “submeso- 
scopic” devices also possible applications to electronics along the ongoing miniaturi- 
zation create a high degree of interest in this kind of physics. Contrary to the opera- 
tion of traditional devices, based on the translational invariance of semiconducting 
crystals and their band structure the quality of “single electronics”, does even im- 
prove with reduced length scales at least from the fundamental physics viewpoint 
[12, 131. However, many body effects may cause serious complications for the under- 
standing of these systems. 

Single electron phenomena and the Coulomb blockade were first observed in small 
metallic islands [16, 171 where the number of carriers is still in the order of 
N - lo8. The Coulomb interaction can be taken into account in the spirit of a mean 
field approximation within the so called ‘charging model’ [ 1 17-1 201 as 

nl PI m 2 ~ 2  

with U x 6. The c ; ~  create occupation of single electron eigenstates n of the Hamil- 
tonian En, E,,C;~C,, which describes non-interacting Fermions confined by the exter- 
nal potential. The characteristic feature of the interaction (3.1) is to leave the eigen- 
states unchanged and to add only an N-dependent additive constant to the energies. 
The excitation energies are taken as the differences between the single particle ener- 
gies E,. The electron number remains the only dynamical variable of the system [18, 

Small semiconducting structures, however, showing single electron effects in trans- 
port measurements [20, 21, 124-1261 or by far-infrared spectroscopy [23, 1271 con- 
tain considerably smaller numbers of conducting electrons N 5 100. Even single 
electrons N = 1 have been realized and observed [23, 127-1311 in quantum dots. 
Semiconducting hetero-structures differ crucially from metallic systems in density 
and dimensionality (d = 2) of the electrons. Therefore correlations and the energies 
for discrete excitations A are considerably enhanced. At temperatures T < A these 
excitations can be observed by “nonlinear transport spectroscopy” [ 132-1 371. The ty- 
pical setup has been shown schematically in Fig. 2. Still, if the thermal broadening 
of the peaks in the differential conductance drops below the life-time broadening re- 
lated with the finite bamer transmittance, charge fluctuations [ 122, I231 and effects 

56, 121-1231. 
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arising in higher order in the transmittances (resonant tunneling) [144, 1451 and the 
Kondo effect [ 138-1 431 introduce further highly non-trivial complications to the 
transport theory. These effects will not be considered in the following. 

As already mentioned in the Introduction, long-range interactions 

cause the charge density distribution 

of the ground state to ‘crystallize’. Here, Y: ( x )  creates an electron at position x 
with spin 0. For sufficiently large mean electron distances rs >> UB on the length 
scale of the Bohr-radius uB = (me2/h2&) the system minimizes the interaction 

and E are the effective electron mass and the dielectric ratio of the semiconductor). 
This crystallization has first been predicted by Wigner [27, 146-1491 and has been 
observed for electrons on surfaces of helium [150]. It shows up in the slow decay 
and the 4kF oscillations of the density-density correlation function 

(N &- I for Coulomb forces) on cost of the delocalising kinetic energy - rS2 (m 

In reduced dimensionalities g(x) is not truly long range [151-153] (d = 2)’ in d = 1 
[I541 even not at zero temperature, but it decays slower than any power. In electron 
systems interacting by short range forces (Fermi liquids in d > 1 [ 1551, Luttinger li- 
quids in d = 1 [156]) or by w ( x )  N l/x2 (Calogero-Sutherland model [157] in 
d = 1) g(x) decays always algebraically. 

In the finite system and in the absence of a continuous symmetry the charges oc- 
cupy distinguished places inside the dot. This has been presumed for transport calcu- 
lations through quantum dots [ I S ] .  The Peak sh-~cture of (e(x)), see also Fig. 9, 
motivates the approximation based on localized, correlated pocket state basis func- 
tions (cf. Section 3.2). 

The N-electron quantum dot is described by 

H = C(d 2m + + WfXl . . 2%) 
i= 1 

‘he xi  and p i  are position and momentum of the i-th electron in d dimensions 
(mostly d = 1,2). Neither confinement nor interaction w ( x )  depend on spin. 
Therefore, the total spin operator S = xi=! Si commutes with H and the energy ei- 
genfunctions are simultaneously eigenfunctions to S2 with eigenvalues S ( S  + 1 ), S 

the quantum number for the total spin. 
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How the Coulomb interaction w( 1x1) N e2/clxl influences the many particle excita- 
tion spectra has been studied in detail for a harmonic potential vfx) - w g 2  in d = 2 
for spinless electrons [159], and for spin carrying electrons [26, 1601 ( N  = 2) and 
[161] ( N  = 3). Larger electron numbers could be considered by Monte Car10 meth- 
ods [162]. The case of a rectangle in two dimensions with hard walls has been stud- 
ied [ I 6 4 1  for two electrons. The excitation spectra change qualitatively when 00 is 
reduced or the size of the rectangle increased. Antisymmetrized single particle prod- 
uct states 

ignore correlations and do not suffice to reproduce these spectra [24, 251. The one- 
particle states qn obey 

so that the electrons occupying the states n’ # n are incorporated in (effective and 
selfconsistently obtained) mean fields v;) + v!) for ‘Hartree’ and ‘Exchange’ contri- 
butions 

n’fn 

This optimal mean field (Hartree-Fock) approximation favours spin polarized ground 
states at low densities [165, 1661 which already contradicts to the fact that the 
ground state of two interacting electrons can strictly shown to be a singlet S = 0 in 
any dimensions [ 1671. 

The charge density distributions of ground states shown in Fig. 9 belong to the 
square well potential in d = 1 

v ( x )  = VOO(lXl - L / 2 ) ,  vo >> n2N2/rnL2 

of size L. The cutoff length’s at small and at large distances, L and a-’, simulate a 
(small) transversal spread of the wave functions and the influence of screening, re- 
spectively. The numerical diagonalizations for N < 4 electrons have been performed 
in the basis of eigenstates of the corresponding Hamiltonian in the absence of interac- 
tions. For most of the results the lowest 1 5 n 5 M = 13 single electron states were 
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included. The occu ation number representation, including spin, yields Hamiltonian 

to a high percentage zeros, only entries are non-vanishing with rows and columns 
differing at most in two occupation numbers. The sparsity of the matrix and our in- 
terest in only the lowest eigenstates makes use of LanCzOs procedures advantageous. 
particular symmetries of the matrix elements are discussed in [168] and the calcula- 
tional details can be found in [28, 168-I701. 

matrices of rank ( tR  ), being equal to 14950 in the largest case. The matrices contain 

3.1 Numerical results 

3. I .  I Ground state properties 

Figure 10 shows the dependence of the ground state energy per particle &IN on the 
Particle number N for different L. The data are multiplied by L to eliminate the triv- 
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ial L-dependence. The charging model (3.1) would yield a straight line in this plot. 
At high densities Eo/N deviates from a linear N-dependence due to the kinetic en- 
ergy contribution. But also at low densities r;’ the ground state of few electrons fails 
to obey Eo/N c( ( N  - 1) owing to the formation of an inhomogeneous charge den- 
sity distribution (Wigner molecule). The Coulomb energy of N point charges at equal 
distances rs = L / ( N  - 1) provides a better approximation (crosses in Fig. 10). 

The influence of charge “crystallization” on the capacitance per unit length C / L  
can be demonstrated for equidistant point charges e in 1D 

The capacitance, defined as 

C ( N )  := (Ne)2/2U 

where 

e 2 / E  = - ( N  e2 - 1 )  N - ’  c- j = -“(N e2 - 1) ZTN 1  
yi.1 EL / = I  N - J  EL i=2 J 

U = Y .  IJ IXj - ; 
!#I 

is the charging energy, does depend on the total charge Ne 

which is in contrast to the classical capacitance of a homogeneously charged and 
long cylinder. The classical relationship between voltages and charges becomes inap- 
plicable already due to the granular nature of the charges. This argument applies also 
to higher dimensions. Considerable fluctuations of small capacitances with the charge 
are expected at low densities [171]. 

If, on the other hand, the kinetic energy contributjon becomes comparable to the 
charging energy in very small dots [ 1271 (2 < (A) C: Euler constant) the 
ground state energy again cannot be approximated well by the capacitance formula. This 
situation seems not yet reached in the present nanostructures used in transport experi- 
ments [20, 22, 1241. There rs = 3 as can be estimated from the dot area and the electron 
number which makes the charging model reliable to guess the ground srate energy being 
relevant for linear transport experiments. However, the excitation energies are consider- 
able-different from the ones expected within the non-interacting picture as will be ex- 
plained below. They are importantly characterized by the spin. 

The exact charge density distributions, shown in Fig. 9, confirm this view. Similar 
results have also been obtained in the presence of a strong magnetic field [172]. 
Three regimes of electron densities can be distinguished. For rs 50.1 U B  the spectrum 
is dominated by the kinetic energy and the Coulomb interaction is only a weak per- 
turbation in (3.4) so that (e(x)) is basically determined by the lowest occupied single 
particle states. This causes the minimum at x = 0 (Fig. 9). At rs ~ U B ,  ( ~ ( x ) )  changes 

1 



                                                                                 427 

0 10 

EH aB 
E o L  1 0 

Fig. 10 Ground state energies per particle Eo/N 
multiplied by L/UB versus the particle number N 

(A), L = 944.8 uB (+). ( x )  denote the energy of 
N fixed point charges equally spaced at distances 
L / ( N  - I ) .  The quantum mechanical ground state 
energies approach these values as L -+ 00. 

for L = 6.61 UB (0). L = 16.1 U B  (O), L = 94.5aB 

qualitatively and N peaks start to emerge. The “critical” length is of the same order 
as found in [168] for the crossover from an almost non-interacting energy spectrum 
into the spectrum composed of level-multiplets. When rs increases further, say 
rs 2 100 uB, (e(x)) vanishes almost completely between the maxima indicating a fully 
established Wigner molecule. In this limit the ground state energy can be approxi- 
mated reasonably well by that of a chain of static elementary charges at equal dis- 
tances rs (3.6). 

In order to investigate the influence of the long range part of the Coulomb interac- 
tion, an exponential cutoff V ( x ,  2) a e - a l x - x ‘ l / ~ ~  at distances cr-’ has been 
introduced in the 1D system (3.5). In the inset of Fig. 9 a (e(x)) is shown for differ- 
ent cr # 0. Despite of the considerably reduced range of the interaction pronounced 
maxima are obtained. However, compared to Q = 0 the distribution rather resembles 
a charge density wave [147] than a Wigner molecule. The long range part of the 
Coulomb interaction is essential to yield long range density-density correlations 
[154]. Screened interactions a-* < rs finally make mean field approximation for the 
ground state energy within the charging model reliable, even at low densities. 

3.1.2 Excitations 

In the ‘crystallized’ limit rs >> UB vibrations of the localized electrons around their 
equilibrium positions determine the phonon-like (cf. [152, 1531) low energy excita- 
tions. The system resembles a (finite) harmonic chain. Restricting the forces to near- 
est neighbours, the highest and the lowest phonon frequencies can be estimated for 
N > 3 b y  

1 
2 N - 2  0 .  -n- Rmax min - (3 .7)  

where EH := e*/taB equals twice a Rydberg. Figure 11 shows the numerically ob- 
tained R multiplied by the system length’s L versus r, for N = 2 , 3 .  The behaviour 
is well described by the power law dependence nr, - rs 

-112 (3.7)  at rs k 100 U B .  
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Also fo                                                                       
nent changed from 3 / 2  to 2 [28]. This is explained by the almost free motion of the 
electrons if ar, >> 1 within an interval of the length Y,. 

The phonon-like excitations do not depend on the spin of the particles. Fermions 
and Bosons show the same spectrum at lowest densities. For spin half particles the 
states are 2N-fold degenerate. Pronounced deviations from the asymptotic behavior at 
elevated densities signalize the breakdown of the Wigner molecule. The spin degener- 
acy is partly lifted and each vibrational level reveals a fine structure shown schemati- 
cally in Fig. 12. The latter exhibits the systems' smallest excitation energies A in this 
regime of intermediate electron densities. The individual eigenstates differ in their to- 
tal spins S = { . . . , N / 2  for N = {::} though a given spin S may appear 
more than once in the multiplet. Group theory allows to connect the behaviour of the 
eigenfunctions under coordinate transformations with a certain spin S ,  see Section 
3.3. For N 2 3 the states are in general not products of a spatial and a spin part [59]. 

2- 
RL 

EH aB * 

1. 

Fig. 11 
est multiplets of energy levels, multiplied by L/UB 
versus the mean particle distance r,  for N = 2 and 

Energy difference R between the two low- 

f~ 2 100 a B  100 a B  > T,  > a B  

Fig. 12 Scheme of the energy levels of a few strongly interacting electrons. The phonon-like exci- 
tation energies R of the Wigner crystal at large ra (r ,  2 100 a ~ )  do not depend on spin. The levels 
are 2N-fold degenerate (left). With decreasing r, they split (right) because of tunneling between 
equivalent electron configurations. In the absence of spatial symmetries each sublevel can be labeled 
only by the total electron spin S .  
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-10. 
Fig. 13 Logarithm of the energy differ- 
ence A between the ground state and the 
first excited state within the lowest multi- 
Plet versus the system length for N = 2, -15. 
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The fine structure splittings will be determined quantitatively in Section 3.4 using 
the pocket state method. The low energy excitations will be related to processes of 
electrons interchanging their places in the Wigner molecule-like configuration by tun- 
neling throu h the Coulomb barrier. These energies scale roughly exponentially 
A - e x p ( - j G )  with the mean electron separation rs (see Fig. 13). Sufficiently 
low electron densities r;' << r;' enable the condition A << R which is required for 
the pocket state method to be valid. The scale rc separates the regimes of weak and 
strong interactions, the latter being characterized by the existence of level-multiplets. 
The fine structure reflects quantum corrections to the Wigner crystallized limit [ 1731. 
At further increased densities descriptions like the Luttinger liquid (d = 1 )  or the 
Hartree-Fock approximation (d > 1) can be used. 

The one-dimensional case (3.5) is in SO far special compared to higher dimensions 
as no truly long-range interaction (a = 0) is necessary to provide A << R in finite 
systems at low densities. The barriers between the equilibrium electron positions are 
not destroyed, although their thickness (of order a-1) is reduced compared to the 
Coulombic limit [28]. The low energy excitations can still be described as quantum 
corrections to crystallized electrons, just slightly larger rs are needed. In higher di- 
mensions an interaction m r;Y with y < 2 is essential to keep the electrons apart from 
one another and to maintain A << 0. 

3.2 Pocket states 

In the absence of explicit spin dependencies the eigenenergies of Hamiltonians like 
(3.4) depend only on spatial space properties. The corresponding eigenfunctions are 
solutions of a differential equation under appropriate boundary conditions. For conve- 
nience we will ignore in the following the identity and the spin of the particles and 
consider only spatial space. This increases the Hilbert space by the not necessarily 
(anti-) symmetric functions. The corresponding extra eigenvalues, however, do not 
appear in the physical system and in Section 3.3 the true Fermionic or Bosonic ei- 
genvalues will be recovered by considering then the spin. For the moment the Hamil- 
h i a n  (3.4) is conceived as describing one particle in a space of N . d dimensions. 
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In d = 1 ( 3 3 ,  the configuration space for this particle is given as a (hyper-) cube 
L N .  The repulsive interaction W creates potential baniers (at least of height e 2 / 1 )  
that separate N !  minima of the total potential xi v(xr) + W .  Due to particle identity, 
the minima are precisely equivalent and their locations are related to each other by 
permutations of coordinates. In the 2D case additional symmetries may create a mul- 
tiple of N !  of minimas. This latter case will be discussed in Section 3.5. In configura- 
tion space the minima are located on a hyper-ring (i.e. a (N--2)-dimensional 
manifold) perpendicular to the main diagonal of the cube LN so that the center of the 
ring coincides with the center of the cube. Every minimum is surrounded by N - 1  
nearest neighbouring minima at equal distances. 

A very suitable approximation for the low energy properties is best explained for 
the example of a symmetric double well potential V ( x )  = V ( - x )  in one dimension, 
as it is sketched in Fig. 14. The Hilbert space is restricted to the two “pocket” states 
IL) and IR), each being peaked around one minimum of V .  Both states are related to 
one another by mirror symmetry (xlL) = (-xlR) 2 0. Within this approximation the 
ground state is given as the symmetric, the first excited state as the antisymmetric 
Iinear combination of both basis functions. The energy difference A between the 
associated eigenvalues is proportional to the off-diagonal entry (LIHIR). It equals 
the frequency for tunneling between the left and the right state. This approximation 
is good for sufficiently high barrier between both potential minima to provide 

A < R  (3.8) 

where R is the energy of higher excitations in the double well. The corresponding 
higher excited states have nodes near the potential minima and cannot be approxi- 
mated within the two state basis {IL), ( R ) } .  

The exponential decay of (xlL)  and ( x J R )  in the classically forbidden region 
causes the overlap (LIHIR) = A/2 to decrease exponentially with increasing distance 
r between the minima. Furthermore, A - exp(-l-’/2) with increasing height A-’ of 
the barrier. Due to the only algebraic decay of R with r for all non-pathological inter- 
actions, (3.8) is fulfilled at sufficiently large r and the truncation of the Hilbert space 
to span { IL), IR)} is justified at low energies. 

The problem of Section 3.2 can be treated in a similar spirit. The pocket state ap- 
proximation (PSA) is not limited to one-dimensional or translationally invariant po- 
tentials as it has been demonstrated for rotational tunneling systems [4, 71. It consists 
in truncating the Hilbert space to span { Ip)} of 1 5 p 5 N !  states, the amplitude 
( X I ,  . . . , X N I P )  of each being strongly peaked around one certain potential minimum 
and small elsewhere. The elements of the Hamiltonian matrix H 

describe correlated tunneling between two different arrangements p and p’ of the N 
particles. The basis states {p )  are not given as single particle products and account 
for correlations. The ground state has the same symmetry as the Hamiltonian and is 
given by the linear combination 
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Fig. 14 Double minimum potential, schemati- 
cally. If (LIHIR) << R the Hilbert space can be 
restricted to span {IL),  IR)} to describe the low- 

- r -  est excitation. 

The inhomogeneous charge density distribution 

S d x 2 . .  .dxN I(x,x2.. . , x~Ip)(p’lx,x2 ..., X N ) ,  (3.10) 
p(X) = ( N  - l)! p,@ 

obtained in [28], reflects the separation of different probability amplitudes 
( X I , .  . . , x N ~ )  and ( X I , .  . . , X N I P ’ ) .  

Within reasonable (WKB) approximations one Can show [I741 that the whole low- 
est level-multiplet is determined by just one parameter which is the off-diagonal H,,@ 
With largest modulus. All energy differences are proportional to this parameter so that 
the ratios between the excitation energies do not depend on the precise form of the 
electron-electron interaction potential W .  

The lowest of the vibrational excitations which equals the separation between the 
lowest two level-multiplets is related to the collective motion of all particles in phase 
(acoustic mode). It decreases N 1/(N - 1) With increasing if rs remains constant. 
This restricts the pocket state description to Systems Of finite Sizes. In the thermody- 
namic limit the acoustic mode evolves into the zero energy Goldstone mode so that 
(3.8) is violated and the low energy spectrum is no longer determined by well sepa- 
rated multiplets. 

3.3 Symmetries 

Appropriate use of symmetries facilitates understanding and computation of eigen- 
states and transition rates [175, 1761. Since the Hamiltonian commutes with the ele- 
ments of a symmetry group, its eigenfunctions transform according to the irreducible 
representations (IR) f of this group. The Hilbert space ‘Fl of wave functions can be 
decomposed into orthogonal subspaces ‘Flr 

(3.1 1) 
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plied to single particle states, as they are obtained e.g. within molecular field approxi- 
mation for instance in calculations of band structures or molecular orbitals. Here 
(3.11) is applied to the pocket state basis to select the appropriate eigenvalues from 
the spectrum obtained in Section 3.2 that are in accordance with the Pauli principle 
for identical, spin carrying Fermions or Bosons. 

The indistinguishability of like particles requires that any eigenfunction of (3.4) 

belongs to the one-dimensional (anti)symmetric IR of the group of permutations SN 
[177] regarding the enumeration of the N particles. These permutations affect posi- 
tion X j  and spin r ~ ,  of each particle simultaneously. 

Apart from this unalienable symmetry the Hamiltonian (3.4) is additionally invar- 
iant under separate permutations of the {.ti,  . . . , f ~ }  and {& , . . . , 6 ~ }  operators if 
spin-orbit coupling is absent. Therefore I+Y can further be classified according to the 
1R’s Tx and r, of the group of permutations among the spatial and the spin degrees, 
respectively, cf. (1.2) and (1.3). Both permutation groups are isomorphous to S N .  

One can show that for spin 1/2-particles r, and r, are related to each other, 
r, = r,, for Bosons and F, = r,, for Fermions. denotes the to r adjoined IR of 
SN [2]. Furthermore, r, and f, both are uniquely fixed by the total spin 

S = { . . . , N/2 the N spins are coupled to [ 1741. 

3.4 Results for 1D quantum dots 

For low electron numbers the individual blocks of the Hamiltonian matrix in the 
symmetrized basis according to (3.11) can be diagonalized analytically, in ID up to 
N 5 4. The results are given in Table 3 in units of the largest overlap matrix element 
maxp+f!HpfI G t ~ .  Fine structure spectra for N = 5 and N = 6, shown in Fig. 15, 
are obtained by numerical diagonalization of blocks of sizes 25 X 25 and 8 1 x 8 1 ,&e- 
spectively. The diagonalization of the full Hamiltonian in the basis of non-interacting 
electrons, as carried out in [ 1681, was possible only for N I 4 to include a sufficient 
number of single particle levels and obtain accurate fine structures. The rank of the 
matrices were in the order of lo4 x lo4. These data are included in Fig. 15. Not only 
the sequence of spin values is described correctly within PSA but also the quantita- 
tive ratios between the level separations. 

Lieb and Mattis [ 1671 have proven the ascending order 

E(S)  > E(s’) if S > S’ (3.12) 

of the lowest energy eigenvalues E( S )  to given spins s far a one-dimensional electron 
system. No further restrictions for the interaction ~ ( x )  between the electrons are re- 
quired but boundedness and independence of spin. Consequently the ground state is 
either of S = 0 or of S = 1 /2. All fine structure spectra shown in Fig. 15 obey (3.12). 

It can further be shown that the state with polarized spins S = N / 2  is of highest 
energy within the lowest multiplet [ 1741. This property resembles a Heisenberg chain 
of anti-ferromagnetically coupled spins and is an indication for the relationship be- 
tween quantum dot electrons and the Hubbard model, here at half filling, in the ab- 
sence of any underlying potential lattice [32]. The S = N/2 state plays a distin- 
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Table 3 Analytical values for the fine structure spectrum EiN)  of model (3.5) within PSA for 
NS4. S refers to the total spin of N Fermions with s=1/2. The excitation energies E,"'--EEi, in 
units of t,,,, refer to the eigenvalue EAZje of the symmetric linear combination of pocket states (3.9) 
corresponding to the s=O Bosonic ground state. 
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Fig. 15 Fine structure multiplets 
for N = 3, .  . . , 6  as obtained within 
PSA (pock). Numerical results 
bum)  (dashed) have been obtained 
[I681 for systems of length 

L =  1 3 . 2 u B , N = 4 .  Theenergy 
scale t N  has been adjusted to nor- 
malize the overall width of the mu]- 
tiplets. No numerical results are 
available for N = 5,6. 
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3.5 Results for 2D quantum dots 

Also finite systems of higher dimensionalities show well separated peaks in the one 
Particle distribution at low densities if continuous symmetries are absent. Then the 
lowest spin involving excitations can again be described using pocket states. The 
Spectrum shows vibrational levels which are split due to tunneling between different 
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electron arrangements, similar to the 1D case. The important difference to 1D are the 
reduced heights of the potential barriers separating the configurations so that the elec- 
trons can interchange their positions more easily by surrounding each other. Some of 
the corresponding paths involve just slight changes of electron distances, so that the 
tails of the long range Coulomb interaction creates only shallow barriers between the 
locations of the potential minima. The PSA would fail if w ( x )  was only short range. 
Furthermore, the PSA requires electron distances rc larger than in 1D to provide suf- 
ficiently small kinetic energies. Then, however, the scaling behaviours 
A N e x p ( - m )  of the spin sensitive and SZ - r;Y of the vibrational excitations 
are still different, and A << SZ will be established at sufficiently large rs.  

The two-dimensional case applies to most experimental situations. Numerical re- 
sults for excitation spectra of Coulombically interacting electrons in rectangular, hard 
wall quantum dots [179] at low electron densities are available only for N = 2 [164]. 
Figures 1 and 2 of [ 1641 confirm the expected grouping of the levels with increasing 
system size L into vibrational multiplets with internal structure. A considerably larger 
value for r, compared to I .7 aB can be estimated from these Figures. 

The striking similarities between vibrational and fine structure excitations of two 
electrons in a 2D hard wall rectangle of length L and width L/10 (Fig. 1 in [164]) 
and the corresponding spectrum for a 1D square wall box (Fig. 1 in [168]) becomes 
understandable in view of the large width u of the pocket state wave function com- 
pared to the width of the rectangle. In the narrow system [ 1641 u would be estimated 
in terms of Airy functions by linearizing the interaction e 2 / & ( x  - r , )  for x << rs 

to be larger u 2 L/  10 than the width of the rectangle as long as rs = L < 3 x lo4 aB. 
Then transversal excitation energies N n2( 1 O/L)2 still exceed longitudinal vibrational 
or fine structure excitations. The system is quasi one-dimensional and its spectrum 
can be approximated by putting 1 / L  = 0.1 in (3.5). Systems of larger sizes have not 
been considered in [ 1641 where differences might appear. 

To understand the spectrum for two electrons in a hard wall square, Fig. 2 of 
[164], within PSA the method described in Section 3.2 has to be generalized. The 
substitutional single particle (Section 3.2) moves now in the configuration space L2N. 
The number of potential minima may be a multiple v of N !  if there exist v energeti- 
cally equivalent classical electron configurations for the repulsively interacting elec- 
trons. This is the case e.g. for N = 2 where v = 2. 

The 4 pocket states for two electrons in a square are illustrated in Fig. 16a). The 
dominant overlap integrals between them are of the type (llH12) = (llH13). Due to 
the longer tunneling path overlap integrals like (1 IH14), which corresponds to the ex- 
change of the positions of two like particles, are much smaller. Neglecting the latter 
and classifying the obtained eigenstates according to their transformation properties 
with respect to permutations among the particle enumeration leads to a fine struc- 
ture spectrum as shown in Fig. 16 b). The multiplet contains in total v . 2N states (in- 
cluding Zeeman degeneracies). The ground state is a symmetric linear combination 
of the 4 pocket states and its one particle density (3.10) shows 4 peaks of equal 
weights in the 4 comers, each containing a charge e/2. Removal of the square sym- 
metry (cf. Section 4) would cause the two degenerate S = I states to split. 
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cated. Dl2 a) b) 

Fig. 16 a) The 4 equivalent ar- 
rangements of minimal repulsion be- 
tween N = 2 electrons on a square 
that form the 4 pocket states in L4. 
b) The resulting fine structure spec- 
trum consists of 3 levels at equal 
distances and total spins S as indi- 

Three classical electrons are again preferably located in the corners of the square 
in v = 4 possible ways so that tunneling into the empty place is the dominant quan- 
tum process. R e  fine structure multiplet is determined by 4 . 3! = 24 pocket states. 
Considering only the dominant overlap integral yields the spectrum shown in Fig. 
17. n e r e  are in total 4 . 2 3  = 32 states in the multiplet. 

Four and five electrons in a square have only v = 1 classical ground state config- 
uration. me number of pocket states is 4! and 5 ! ,  respectively. For N = 5 the domi- 
nant tunneling process is the exchange of the central electron with an electron 
Situated at one of the corners. The corresponding path is of shortest length and in- 
volves only 2 electron masses. For N = 4 it is not SO obvious which of the two pos- 
sible paths for transitions between different arrangements of the electrons, one being 
located at each comer, yields the larger tunneling integral: i) the rotation of all four 
electron positions simultaneously by 90" (ring exchange). ii) the exchange of just 
two adjacent electrons leaving the remaining two unaffected. In one case the mass 
and in the other case the height of the potential barrier is larger. Within WKB ap- 
proximation a slight dominance of process ii) is found 11741. Neglecting all other 
Processes leads to a fine structure spectrum for four electrons as it is shown in Fig. 
17. However, the difference between the two paths is not very pronounced so that en- 
tries due to the ring exchange into the Hamiltonian matrix can modify the N = 4 fine 
structure if y, = ,!, is not very large. 

A prominent property of the correlated eigenstates obtained in 2D are values of 
ground state spins, which, in contrast to ID, are not the lowest possible ones. The 
three electron ground state is spin polarized and the five electron ground state has 
spin s = 312. The Lieb and Mattis Theorem cannot be generalized to higher dimen- 
sionalities if N > 2. The values for the ground state spins influence crucially both 
the linear and the nonlinear transport behaviour of 2D quantum dots [ 1801. 

Cases with larger electron numbers can, in principle, be treated analogously, pro- 
vided A << is satisfied. With increasing N this requires a decreasing electron den- 
sity because: 
1. the vibrational energies SZ N 27ce/(N - decrease with increasing size 

of the system due to acoustic modes 
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Fig. 17 Mukidets for a) I - S=1/2.1/2.1/2 m=6 ... 
N = 3, b) N = 4, C) N = 5 
electrons in a 2D square as 
obtained using the PSA ( S  

( 2 - d ) t  - s=112.1/2 m-4 

m=4 0 - 5-311 m=4 0 - s s - 0  m-1 0 - S = 3 / 1  

total spin, m degeneracy of 
c) the levels). 

2. the barriers between equivalent electron arrangements decrease so that A increases 

The first point depends only on the electron density while the second point makes the 
pocket state approximation less reliable for instance in three-dimensional situations. 

(cf. [28]). 

3.6 Nonlinear transport 

The at present most complete experimental access to the properties of the many body 
states in quantum dots are linear and nonlinear transport measurements. Apart from 
the Coulomb blockade effect which is also known from metallic islands, where the 
current vanishes for small transport voltages if the extermally applied chemical poten- 
tials p(l~ = p~ are not equal to the difference E r ’  - E r - ”  between ground state en- 
ergies of adjacent electron numbers, new features appear for strongly correlated situa- 
tions in quantum dots which are related to the electron spin. 

Finite transport-voltages V = ( p ~  - pR)/f? involve additionaly transitions between 
states of excited energies EI;” and EiN-’) .  The current jumps step-wise with chan- 
ging voltages at zero temperature. These features make the spectrum E(N)  of the dot 
indirectly visible. Increasing transport-voltage, however, may decrease the current! 

The occurrence of negative differential conductances has been investigated in de- 
tail experimentally [132, 1361. Theoretically [8, 180-1831 they were traced back to 
spin selection rules (‘spin blockade’). An entering or escaping electron is able to 
change the total spin of the correlated dot electrons only by &1/2. 

The decreasing current can be explained already within a rate equation approach for 
the transport which is valid only if interferences between subsequent electron passages 
can be neglected [ 1441, e.g. at temperatures larger than the rate for electron passages, 
T > r. Too transmissive barriers or extremely weak incoherencies of the many electron 
wave functions inside the dot require to take into account the time evolution of the full 
density matrix [ 1841 in order to recover the Kondo features [ 138-1 431 or resonant tun- 
neling [144, 145, 186, 1871. The stationary, nonlinear current 

(3.13) 
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PL 
PR 

Fig. 18 Quantum dot connected to electron reservoirs by small transmittances IL and t R .  The dot 
potential can adjusted by Vc. When quantum fluctuations of the electron number inside the is- 
land can be ignored, the transport vanishes if the difference between the ground state energies 
E p )  - ~r-') (solid lines) lies not between the external chemical potentials. At finite transport vol- 
tages V = (pL - pR)/e and at low temperatures the differences E/" - E"-') (dashed) between 
discrete excitation energies of the quantum dot can be observed. The level differences move up and 
down with V G .  

is determined by the rate for electron passages through either of the two barriers 
YL/R, changing the dot electron number by AN = f l ,  and by the stationary nonequi- 
librium populations Pi which obey 

(3.14) 

The index i refers to the many electron dot levels (in Fock space) [8, 181, 1831 
which includes (i) the electron number N ,  and at given N (ii) the total spin S ,  (iii) 
its (Zeeman-) z-component and (iv) the energy. 

The ru = rb + r: denote the rate for transitions from state j to state i, either due 
to the entrance or the escape of one single electron (simultaneous two-electron pas- 
sages are suppressed for weak dot-lead coupling). They are proportional to the trans- 
mittances IL/R of the barriers. For simplicity the fL/R are assumed not to depend on 
energy. Electron passages through either of the barriers are stochastically indepen- 
dent. The fu also guarantee energy conservation and depend on the Fermi distribu- 
tions for the occupied lead states (which depend on temperature and transport 
voltage). The gate-voltage VG allows to shift the eigenenergies of the dot by 
-eNi V, relative to the applied chemical potentials. 

A similar rate equation approach has been used in [117, 1181 within the charging 
model (3.1) where single electron states are populated or depleted while current 
flows. If the correlations among the quantum dot electrons are taken into account, ac- 
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cording to (3.2), it is crucial to keep the conservation of the total spin as a separate 
requirement for the transitions from j to i since the single electron states are mixed. 
In [8] has been assumed that the Clebsh-Gordan spin coupling coefficients determine 
the magnitude of 

2sj+l for Si = Sj + I“ rii A- 
2Sj+l I for 1 (3.15) 

( 0 otherwise 

where the dot spin changes from Sj to Si. In the presence of a magnetic field the 
spin states split into ( 2 s  + 1) Zeeman-levels and transitions are allowed only be- 
tween adjacent z-components [181]. 

The selection rules (3.15) can cause the spin blockade. Two types of mechanisms 
are explained in [8, 1831 and in [180, 1881, respectively. The one is based on the 
high stability of the spin-polarized state because the electron escape transitions 

( N , S = N / 2 ) - ( N -  l , S ’ = ( N - 1 ) / 2 )  , 

which, in contrast to all other possible transitions, cannot increase the final spin but 
must reduce S’ = S - 1/2. At sufficiently high applied voltages when energy allows 
occupation of the spin-polarized state its population is easy but its depopulation has a 
reduced probability. The high stationary population makes the other, better conducting 
states less populated which eventually causes the current drop. The overall behaviour of 
the differential conductance versus gate-voltage VG and versus transport-voltage V is 
shown in Fig. 19 as a grey-scale plot. Along the V = 0 axis the linear conductance 
peaks [20] can be seen with Coulomb blockade regions in between. The lines parallel 
to the Coulomb blockade areas at finite V reflect the excitation spectrum of the quantum 
dot [181, 1891. The regions of negative differential conductances show up as bright 
lines. Very similar figures describe experiments [136, 1901. Figure 19 was obtained 
using the dot levels from Fig. 15 and solving (3.13) numerically. 

The second mechanism for the occurrence of spin blockades requires at least two- 
dimensional quantum dots. It is based on high spin values of low energy states. Ex- 
amples are the ground states for N = 3 or N = 5 electrons in a square-shaped hard 
wall confinement in two dimensions which have S = 3/2 (see Fig. 17). This influ- 
ences even the linear transport behaviour since direct transitions to the ground states 
of the adjacent electron numbers N = 2,4 are for spin reasons forbidden. The corre- 
sponding peak in the linear conductance should be “missing” at zero temperatures. 
Only finite temperature or transport-voltage may cause the conductance peak to re- 
cover if excited states with appropriate spin values become involved into transport. 
The corresponding observation in [I911 can be explained along these lines [180]. 
“Slim” quantum dots should not exhibit missing linear conductance peaks. 

The nonlinear transport has been investigated by solving numerically for the 
current, according to (3.14) and (3.13), for situations of high spin states close to the 
ground state energy. This can create negative differential conductances already at low 
transport voltages near the linear conductance peaks. Corresponding features were 
found experimentally in [136]. Also several aspects of the nonlinear transport 
properties in the presence of a magnetic field applied in the direction of the current, 
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Q) F 
Q) u 
d 

Fig. 19 Differential conductance versus 
gate- VG and transport-voltage V. The 
zero-value inside the diamond-shaped 
Coulomb blockade regions corresponds 
to grey. Dark and bright parts indicate 
positive and negative differential conduc- 
tances, respectively. For unequal cou- 
plings between dot and the leads 
1~ = t1 /2 bright regions are preferably 
found on one side of the transport volt- 
age axis IS], in agreement with experi- 
ment [ 134). 

0 Transport-Voltage 

causing only a Zeeman splitting of the dot levels, can be explained within thexate 
equation description provided the spin selection rules (3.15) are taken into account 
[181]. 

4 Summary and conclusions 

Interesting physical consequences of the identity among strongly correlated, spin- 
carrying particles have been outlined. The low energy behaviour has been discussed 
in detail for two physical situations: rotational tunneling of molecules in solids and 
nonlinear transport properties of quantum dots. Both examples demonstrate strikingly 
how spin influences physical properties qualitatively. 

In rotational tunneling molecules the identity of the protons or deuterons leads to 
very characteristic dissipative features. The tunneling line, observable e.g. by inelastic 
neutron scattering, is stable up to temperatures exceeding by far the tunneling ener- 
gies. TWO different types of environmental lattice vibrations can be distinguished ex- 
Penmentally by the negative or positive shifting behaviour of the tunneling line. The 
Same dissipative ‘phonon bath’ influences decisively the temperature dependence of 
the extremely slow conversion transitions which provide thermal equilibration of the 
sample. The low temperature behaviour is completely determined by the coupling to 
‘breathing’ type phonons which modulate the amplitude of the rotational potential. At 
temperatures somewhat above the tunneling energy librationally activated ‘Orbach’ 
Processes start to dominate the conversion rate. They are determined by ‘shaking’ 
type phonons which modulate the phase of the rotational potential and lead to an Ar- 
rhenius type temperature dependence. Strong evidence exists that these different types 
of phonon couplings, investigated here for the triangular CH3 rotors, play a similar 
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role in other rotational tunneling systems like C& rotors. The consequences, sum- 
marized in Table 2, are in excellent agreement with experimental observations. 

It has been demonstrated that isotopical substitution is a powerful probe for the 
microscopic surroundings of the rotors. Although the magnetic mechanisms for the 
conversion in deuterated and protonated systems differ considerably the dependence 
on temperatures T large compared to the tunneling energy A is found to be very si- 
milar and is determined by essentially the same dissipative environment. Then the 
major difference in the spin functions remains invisible. Phonons resonant with the 
respective librational transition energies are relevant, leading to the Arrhenius behav- 
iour which is found in the experiments. Only for T 5 A or for almost freely rotating 
systems qualitative isotopical differences are predicted. The tunneling splitting in di- 
methyl-s-tetrazine, which has not been observed directly, could be extracted from the 
by two orders of magnitudes faster conversion in the deuterated species. 

Also the low energy states and the transport properties of finite electron systems 
are qualitatively determined by spin. Contrary to weakly interacting situations the ex- 
citation spectra show multiplet structure, if the inter-particle repulsion decays slower 
than - with the distance between the particles. This has been traced back to 
particle identity. The pocket state description, based on localized many particle states, 
enables a quantitative understanding of these spectra and yields the total spins of the 
individual levels by group theoretical means [193]. The results have been compared 
with exact numerical calculations. The spin explains the particularly striking negative 
differential conductances via selection rules. Two mechanisms for spin blockades in- 
volving high spin states at low energies have been mentioned. 

The pocket state method can be applied to other strongly correlated few particle 
systems: 
i) Orientationally coupled rotors have been considered [I941 in order to extract in- 

formation about the splitting behaviour of the tunneling line in the limit of strong 
coupling, that is inaccessible to the mean field approximation [195]. 

ii) The persistent current circulating in a ring of strongly interacting electrons in the 
presence of an Aharonov-Bohm flux turns out to be qualitatively influenced by 
the electron spin [33]. 

iii) Strong evidence appeared [32] that the pocket state approximation can serve as 
basis for a lattice description of initially continuous systems of strongly interact- 
ing electrons at low densities. This would allow to take advantage from rich ex- 
perience to describe the low energy excitations in Hubbard models. Furthermore, 
theoretical studies about the very exciting problem of the interplay between inter- 
action and disorder [ 1961 could possibly be facilitated. 

Several questions demand for further research. A closed theory to describe the dissi- 
pation in rotational tunneling systems, valid over the full range of temperatures and 
coupling strength’s, is still lacking. The theory for symmetry species conversion 
needs to be completed by including the nuclear symmetry diffusion process which it-   
self does not change the net amount of members of each symmetry species but 
which is essential for the macroscopic conversion of the whole sample in the pres- 
ence of a low concentration of paramagnetic centers [103]. Corresponding experi- 
ments are proposed [ 1971. 

The experimental observation of total electron spins of ground and excited states 
in quantum dots of different electron numbers and shapes would be highly interest- 
ing, e.g. by sophisticated ESR-experiments [ 1981. The excitation energies in ‘slim’ 
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quantum dots should show ratios that are independent of the details of the e- - e-- 
interaction and of low electron densities r;' << a i l .  Only the electron number should 
be relevant. In two-dimensional quantum dots it would be interesting to 'detect' the 
equilibrium position of electrons indirectly by comparing their excitation spectrum to 
a corresponding pocket state calculation. 

One can speculate that many of the results obtained for the dissipation and the 
symmetry species conversion in rotational tunneling system can be generalized ac- 
cordingly to interacting electron systems. More than two slopes in the peak positions 
of the differential conductance versus an in-plane magnetic field would indicate spin 
changing transitions on time scales comparable with the mean time between electron 
passages through the contacts to a quantum dot. Inhomogeneous magnetic fields (im- 
posed to the dot e.g. by trapped flux lines in a nearby piece of super-conductor) 
would act as strong paramagnetic impurity and should for instance show up in the 
suppression of negative differential conductances. 

The author and the manuscript profited from the beneficial remarks of Alfred Huller and the valu- 
able advice of Bemhard Kramer which are gratefully acknowledged together with the joy about en- 
lightening discussions with Gregor Diezemann, Kristian Jauregui, John Jefferson and Dietmar 
Weinmann. 
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