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Abstract. – Low-energy spectra of isotropic quantum dots are calculated in the regime of low
electron densities where Coulomb interaction causes strong correlations. The earlier developed
pocket state method is generalized to allow for continuous rotations. Detailed predictions are
made for dots of shallow confinements and small particle numbers, including the occurrence of
spin blockades in transport.

Much of our present understanding of small quantum dots, with observable discrete level
structure [1,2], concentrates on the regime of relatively high carrier densities where the inter-
action and charging energy is comparable to the kinetic (Fermi) energy in magnitude [3–6].
Similar to real atoms effective single-particle orbitals establish a reasonable approximation
to the electronic states. The spins follow from Hund’s rule [5, 6] which is a perturbative re-
sult though it accords well with experimental findings in small quantum dots at high particle
densities [1].

At lower densities Coulomb interaction is expected to destroy this single-particle picture,
leaving strongly correlated or even crystallized electrons with collective low-energy excita-
tions. While in the homogeneous two-dimensional case rs should exceed rc = 37 to reach
this regime [7] (rs = (πns)−1/2 measures the ratio between Coulomb and kinetic energy and
is regulated by the two-dimensional carrier density ns), disorder is predicted to reduce this
value considerably to rc = 7.5 [8]. An even more pronounced reduction of rc in comparison
with the homogeneous value is found for the transition into the “Wigner regime” in quantum
dots [9, 10]. Careful quantum Monte Carlo (QMC) studies based on the spin sensitivity of
the density-density correlation function yielded rc = 4 for parabolic quantum dots [10]. Ex-
perimentally, this regime has been addressed using capacitance spectroscopy [11] which only
probes ground state energies. Non-linear transport behaviour [1, 2, 12, 13] has not yet been
investigated to detect the interesting correlation effects for the low-energy excitations.

Numerical investigations of the low-density regime, emphasizing the spin states of rotating
three electron Wigner molecules, have been carried out for shallow parabolic dots [14]. Investi-
gations for larger particle numbers have focussed on dots of low symmetry where corners in the
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confining potential or impurities suppress zero modes to delocalize the charges in the Wigner
regime by so that “pocket states” can be introduced [15], which are well suited to describe
localized charges. The “pocket states” served as basis to map the spin-sensitive low-energy
physics to the one of lattice models of the Hubbard form [16] that account for quantum corre-
lations by hopping between nearest places. The applicability of this archetype for correlation
phenomena has been demonstrated, e.g., in quantum dots of polygonal geometry [9].

This mapping to a lattice model cannot be carried out straightforwardly if zero modes cause
charge delocalization which by symmetry actually happens in most experimental quantum
dots. They are fairly well described by an isotropic and in fact parabolic model [3, 17]

H =
N∑

i=1

p2
i

2m∗ + V , (1)

where

V =
m∗

2
ω2

0

N∑
i=1

x2
i +

∑
i<j

e2

κ|xi − xj | . (2)

Here, the effective mass m∗ and the dielectric constant κ are material parameters, and xj (pj)
are electron positions (momenta) in two dimensions. This model does not explicitly involve
spin (as opposed to real atoms spin-orbit coupling is negligible in quantum dots) so that all of
its eigenstates are simultaneously eigenstates to the square of the total spin Ŝ2 to eigenvalues
S(S + 1). The present work extends the pocket state method (PSM) to allow for rotational
symmetry and compares with results obtained by QMC studies [10]. Being based on a recently
developed multilevel blocking algorithm [18] to circumvent the infamous fermion sign problem,
this QMC allows for high accuracy to resolve reliably even the low-energy spin structure at
particle numbers significantly larger than those treatable by diagonalizations.

At low densities the charge carriers form a finite piece of an electron crystal [14], a Wigner
molecule (WM), that might, classically [19], be arbitrarily oriented. Superposition of all of the
azimuthal degeneracies leads to an isotropic charge density distribution, as required by the
symmetry of (2) [20]. For analytical progress it is tempting to separate out the normal coordi-
nate related with the overall rotation and with total angular momentum quantum numbers `
(in strictly harmonic confinements ` refers to the relative part of the Hamiltonian since the
center-of-mass motion just adds integer multiples of ω0 to all of the eigenvalues and does not
affect the spin of any of the states [21,22]). However, the remaining normal coordinates then
would in general no longer describe identical quantum particles obeying Pauli’s principle and
Fermi (or Bose) statistics but they would correspond to linear combinations of such particles.
Within the PSM it is crucial to know the result of particle permutations in order to assign
eventually the correct total spins S to the eigenstates and eigenenergies [23].

Therefore, we treat all of the possible particle exchanges on equal footing, including discrete
overall rotations of the WM if they correspond to particle permutations. It depends on the
geometry of the WM whether rotations by 2π/p with p > 1 leave the electron places invariant
so that the Pauli principle relates ` with S. Such a relationship is well known, for instance
from the example of solid hydrogen H2, where the even ` are necessarily S = 0 singlet states
while the odd ` are S = 1 triplets (in this example the spins refer to the protons), the reason
being the equivalence of rotations by 180 degrees with the exchange of two identical spin-half
fermions. Other examples are discussed in [24].

The validity of the PSM requires that the spin-sensitive excitation energies ∆, to be calcu-
lated by this method, should be smaller than charge (plasmon) excitations [23]. In the absence
of continuous symmetries this condition is easily fulfilled at small densities due to the almost
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exponential decay of ∆ ∼ exp[−√
rs]. Plasmon energies decrease only according to a power law

∼ r
−3/2
s for Coulomb repulsions. With their faster decay 1/2I = (2πm∗ ∫ ∞

0
dr r3n(r))−1 ∼

r−2
s (depending on the radial charge density distribution n(r), I is the moment of inertia)

the total angular momentum excitations, however, still decay faster than the plasmons so
that eventually the low-energy levels will follow only from electron interchanges among the
places defining the WM [25], including overall rotations by 2π/p, i.e. by processes permuting
identical quantum particles [26].

From classical [19] as well as from quantum [10] Monte Carlo studies it is known that up
to N ≤ 8 Wigner molecules in the parabolic quantum dots are very symmetric: the electrons
form one spatial shell (N ≤ 5) so that p = N , or one electron occupies the center (i.e.
p = N − 1). Here we focus on N ≤ 6. The method can be generalized straightforwardly to
larger N and more complicated geometries of the WM.

The transition amplitudes for all possible particle permutations constitute the entries t
of the pocket state matrix [15]. In the classically forbidden cases t can be estimated within
the WKB approximation as discussed in [16, 23]. The complete potential (2), including the
interaction, goes into this estimate. Often the most important entries involve only two or
three adjacent particles, as in quantum dots of polygonal shapes [9], which then determine the
hopping terms in the equivalent Hubbard model. This is different for the zero modes: there
a much larger number of particles can be involved into a certain permutational transition,
such as a rotation by 2π/p in isotropic quantum dots. Corresponding entries tR to the pocket
state matrix are not of tunneling type and, therefore, not exponentially small. In those cases
tR = −p2/8π2I is fixed by the energy constant 1/2I for rotational excitations (I follows from
n(r)).

This way all of the relevant entries to the pocket state matrix can be estimated. Its
diagonalization yields eventually the complete set of low-energy eigenvalues. Advantage can
be taken from the fact that pocket states constitute a faithful representation of the symmetric
group SN , so that diagonalization can be carried out analytically for small systems, N ≤ 4,
otherwise numerical help is required. Only irreducible representations [N/2+S, N/2−S] are
compatible with Pauli’s principle for spin-half fermions [23,27]. This fixes the spin S for each
eigenvalue.

The entries |t| ∼ e−
√

rs and |tR| ∼ r−2
s vary differently with the strength of the Coulomb

interaction, so that the ratio t/tR is a measure for the interaction strength. We use

y :=
1

1 + t/tR
> 0

ranging from 1/(1+(π2/4)p), since |2t| cannot exceed the Fermi energy in the non-interacting
limit, up to unity at strong interactions, y → 1.

Figure 1 shows the low-energy spectrum vs. y for N = 3. Our description is designed
for evaluating excitation energies, i.e. the differences between the energies of different spin
states. As expected for weak interactions (y < 0.5), the ground state is unpolarized [22]. A
transition into the spin-polarized ground state S = 3/2, not found in earlier diagonalization
studies, is seen above a certain interaction strength which for Coulomb interactions and GaAs
parameters can be estimated to happen when ω0 < 0.5meV [10]. This result complies with
the QMC studies and can also be seen when carefully examining fig. 1 of the study [14] of
a large quantum dot. We would like to emphasize that this spin polarization is an exact
consequence of correlations and not the result of the mean-field approximation or a magnetic
field. In transport experiments, when contacting quantum dots with electron reservoirs, it
should show up as a “spin blockade” [28], since the ground states of N = 2 and N = 3 in
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Fig. 1 – Low energy levels using pocket states vs. y for N = 3 in units of tR.

Fig. 2 – Low energy levels using pocket states vs. y for N = 5 in units of tR.

sufficiently large quantum dots differ then in spin by more than ∆S = 1/2 (by which entering
or escaping single electrons can change spin) since the N = 2 ground state (with time reversal
symmetry) is always a singlet [29].

For N = 4 (not shown here) we confirm the Hund’s rule result of a S = 1 ground state, as
obtained already in density functional calculations [5,6,20]. New is its persistence up to strong
interactions. The lowest singlet level S = 0 approaches this ground level ∼ exp[−ω

−1/3
0 ] as ω0

decreases. The rotationally first excited state ` = 1 consists only of triplet S = 1 levels while
the spin polarized level S = 2 belongs to the doubly excited rotational state, ` = 2, together
with another singlet S = 0 level.

For N = 5 (fig. 2), on the other hand, the polarized state S = 5/2 joins the unpolarized
ground state S = 1/2 in the lowest rotational level at strong interactions. This low-energy
high spin state makes negative differential conductances in the non-linear transport likely, due
to the spin blockade [28]. Rotationally excited levels consist of S = 1/2 as well as of S = 3/2
spin states.

The sixth electron is predicted [10], also classically [19], to occupy the center of a 5-fold
ring. This complicates the pocket state analysis since new types of pair exchanges appear
(exchange with the central electron) and also the triple exchange t3 (cyclic permutations of
three adjacent electrons, including the central one) turns out as important, in accordance with
WKB estimates [30]. Indeed, the PSM spectra do not compare with the low energy levels
obtained from QMC unless t3 is included with a similar magnitude as the pair exchanges.

This demonstrates how our approach complements most favorably the QMC simulations
for quantum dots which yields abolute values for the many particle energies to high accuracy,
contrary to the method based on pocket states. Very reliable estimates for the t-parameters can
be achieved which otherwise would have to be guessed by less trusty approximative means. On
the other hand, QMC is incomplete for the low energy levels since only the lowest eigenenergies
to given z-component can be simulated.

For N = 6 and confining energies ω0 ≈ 0.13meV (GaAs) we find, with increasing energy,
the spin sequence 1-0-3-2-1-0-2-1-2-1-1-0. The spin S = 1 indicates another interaction-
induced change in the ground state spin since from the non-interacting levels the point of
view N = 6 corresponds to a “noble gas” configuration implying an unpolarized ground state
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spin S = 0 [6]. This result also has to be contrasted with the conjecture S = 2 following from
a static antiferromagnetic WM [16] of pentagonal symmetry. The rotational ground state
` = 0 includes all possible spin states S = 1, 0, 3, 2, with the fully polarized state, S = 3, being
lower in energy than the lowest S = 2 state, in accordance with QMC. This again suggests
the possible occurrence of negative differential conductances for the transition to N = 5.

In conclusion, generalizing the pocket state method, we have developed a description for the
low-density regime in isotropic such as parabolic quantum dots. Low energy levels, including
spin quantum numbers were determined for N ≤ 6. Detailed predictions are made for spin
blockades as they should be detectable in linear and non-linear transport through shallow
quantum dots of confinement energies below ω0 . 0.4meV (GaAs).
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