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Dipolar interaction between the magnetic moments of electrons is studied as a source for electron spin decay
in quantum dots or arrays of quantum dots. This magnetic interaction will govern spin decay, after other
sources, such as the coupling to nuclear spins or spin-orbit coupling, have been eliminated by a suitable sample
design. Electron-electron �Coulomb� interactions, important for magnetic properties, are included. Decompos-
ing the dipolar operator according to the symmetric group of electron permutations allows one to deduce
vanishing decay channels as a function of electron number and spatial symmetries of the quantum dot�s�.
Moreover, we incorporate the possibility of rapid phonon-induced spin-conserving transitions which crucially
affect the temperature dependence of spin decay rates. An interesting result is that a sharp increase of the spin
decay rate occurs already at relatively low temperatures.
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I. INTRODUCTION

One of the proposals to realize qubits for quantum
computing1 uses the electron’s spin in semiconducting solid
state nanostructures.2,3 This approach could benefit from tra-
ditional electronics device experience and allows for
straightforward scalability. Recent efforts have succeeded to
demonstrate controlled preparation and detection of single4

and of pairs5 of electron spins in quantum dots. Aiming for
long running coherent computations, however, solid state
based devices somewhat suffer from relatively short spin de-
coherence and relaxation times as a drawback, for example,
compared to nuclear spin-based qubits.6 Exponential decay
of the upper Zeeman level population has been observed in
GaAs quantum dots4 over times not exceeding 10−3 s. There-
fore, it is important to know �and, if possible, to control� any
kind of mechanism causing spin relaxation in solids, and
particularly in semiconductors. Previous theoretical work has
valued several contributions. They can be subdivided into
two classes regarding the magnetic mechanism to mix spin
states as a source for spin decay: �i� spin-orbit coupling,7–10

also, recently, in its interplay with the electron-electron
interaction,11,12 or �ii� coupling to nuclear spins. The latter
can act through the spin-flip Overhauser effect by hyperfine
interactions.13–16 In principle, both magnetic sources for spin
mixing can be eliminated by a proper device design and by
the choice of the semiconductor material. Nonvanishing
spin-orbit splitting can have several causes in semiconduc-
tors which we briefly address: p-type bands, i.e., usually va-
lence bands, may split by spin-orbit effects, arising near the
nuclei. Secondly, the lack of spatial inversion symmetry pro-
duces spin splitting even of s-type bands, either by the
Dresselhaus mechanism arising in the absence of crystallo-
graphic centrosymmetry as in zinc blende or by wurtzite
structures. The latter particularly refers to all III–V semicon-

ductors with GaAs being the most striking example. Also
devices lacking structural inversion symmetry, e.g., near sur-
faces or in asymmetric quantum wells, producing internal
electric fields show spin splitting due to the Rashba mecha-
nism. Fortunately, this latter spin-orbit source may be sup-
pressed by fine tuning suitable gate voltages.17 The goal to
avoid spin-orbit coupling effects therefore suggests using
spins of conduction band electrons in Si or in Ge in carefully
symmetrically prepared structures. Also the attempt to avoid
coupling to nuclear spins favors the use of Si or Ge: their
natural isotopic mixture contains nuclear spin I=0 to more
than 95% �Si� or more than 92% �Ge�, respectively.18

With this work we consider the effect of dipolar interac-
tions between the magnetic moments of electron spins
which, for fundamental reasons, cannot be removed by de-
sign. While considerably weaker19 than the above quoted
mechanisms, this interaction unavoidably causes spin relax-
ation and, in the absence of other magnetic interactions,
combined with the never vanishing electron-phonon
coupling,20 will set the ultimate limit for long time quantum
computations using electron spins,3 even in optimally de-
signed structures. We study transitions between energy levels
differing in their total spins21 and disregard here effects as-
sociated with transitions between Zeeman levels �which con-
serve the symmetry of many-body electron levels, see below�
at finite magnetizations when an external magnetic field is
applied. After introducing the model in Sec. II we reveal
circumstances of particular spin stability with respect to di-
polar interactions �Sec. III A�, also regarding excited �many
electron� states in Sec. III D, depending on the electron num-
ber and on the symmetry of the single or the ensemble of
quantum dots.

We explicitly include Coulomb interactions11,12 due to
their importance for magnetic properties. For example, they
can cause total ground state spins greater22–25 than S=0 or
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S= 1
2 , as expected for even or odd numbers N of noninteract-

ing electrons. Here, we take the electrons to be confined
inside one quantum dot or in different quantum dots. As a
complementary approach to the noninteracting or weakly in-
teracting regime we focus on strong Coulomb interactions at
low electron densities, where pocket states26–28 offer a reli-
able description of many-body states localized by Coulomb
repulsion, even in single quantum dots.23 Pocket states are
briefly reviewed in Sec. III C for the present purpose to de-
termine matrix elements of the dipolar interaction in Sec.
III D.

Pursuing most of the foregoing theoretical work on elec-
tron spin decay in quantum dots we consider in Sec. IV A
phonons �which themselves cannot change spin states� to
provide the transition energy between discrete dot levels.
Contrary to extended bulk situations, this transition energy is
much bigger than mere magnetic energies which is is one
reason for the relative stability of quantum dot compared to
bulk electron states, in accordance with experimental fact.29

Spin-changing transitions due to the combined action of di-
polar energy and phonons are discussed in Sec. IV B. Gen-
eralizing previous results, we account for rapid spin-
conserving excitations of the electron system induced by
phonons that occur already at relatively low temperatures;
these transitions turn out to govern predominantly the tem-
perature dependence of spin decay times, discussed in Sec.
IV C. Finally, we summarize and value our findings in
Sec. V.

II. MODEL

Specifically, we consider the N-electron system

H0 = �
i=1

N � pi
2

2m* + v�ri�� +
1

2�
i�j

w��ri − r j�� �1�

confined by the potential v�r� which is supposed to describe
a single quantum dot or more complex situations of many
quantum dots, such as for example N quantum dots each
containing a single electron. To be realistic, particularly re-
garding magnetic properties, we include interactions between
electrons w�r�= e2

� r−1, depending on the static dielectric con-
stant � of the host material; Coulomb interactions are always
considerably stronger than dipolar energies. Moderate
screening, not reducing the interaction range to values
smaller than the electron separation, will not affect qualita-
tively our results. In Eq. �1�, pi and ri are d-component mo-
mentum and position vectors, depending on the dimension-
ality d of the quantum dot wave functions �in
heterostructures, d=2�; m* is the band electron mass.

Notice that at strong Coulomb repulsion, which is the
focus of this work, N electrons Wigner crystallized23,30 in a
single quantum dot become in their theoretical treatment at
low energies very similar to the case of N electrons localized
in separate quantum dots. The essential physics of both situ-
ations is captured by an antiferromagnetic Heisenberg lattice
model.26,31 Eigenstates of H0 exhibit well-defined spins S
and can be classified according to the eigenvalues of the

z-component Ŝz and the square Ŝ2 of the total spin operator

Ŝ=�i=1
N Ŝi yielding eigenvalues Sz and S�S+1�, respectively.

With SU�2� symmetry in spin space, Zeeman multiplets −S
�Sz� +S are degenerate. We index eigenstates ��n� and ei-
genvalues En of H0 by n, taken to incorporate the values of S
and Sz. Transitions between ��n� and ��n�� may or may not
change S. The present work focuses on inelastic transitions
that change the total spin values S→S� rather than on tran-
sitions within a Zeeman multiplet. As already mentioned,
many-electron ground states ��n=0� may exhibit total spin
values S0�

1
2 as a result of electron-electron interactions.22–25

III. TRANSITION MATRIX ELEMENTS

In order to satisfy the Pauli principle an N-fermion state
�r1 ,s1 , . . . ,rN ,sN ��n� must belong to the A2	
1N� represen-
tation of the symmetric �permutational� group SN with re-
spect to permutations p�SN of the particle enumeration,
�1, . . . ,N
→ �p�1� , . . . , p�N�
, see Ref. 32. When permuting
only spin coordinates �s1 , . . . ,sN
→ �sp�1� , . . . ,sp�N�
 the state
��n� transforms according to the irreducible representation
�partition� �= 
N /2+S ,N /2−S� of SN for spin-1

2
fermions27,28 at given S= � 0

1/2

 , . . . ,N /2 for � even

odd

N. Corre-

spondingly, when permuting only positions �r1 , . . . ,rN

→ �rp�1� , . . . ,rp�N�
, ��n� transforms according to �̄

= 
2N/2−S ,12S� �with ���̄ containing the A2 representation�.
We notice that total spin-changing transitions require altering
the wave function’s symmetry, which necessitates operators
acting simultaneously in position and in spin space �by con-
trast, transitions within a Zeeman multiplet leave unaltered
the symmetries of wave functions�.

A. Dipolar energy

Here, we investigate the dipolar interaction HD between
electrons. As seen in Eq. �3� below, it contains products of
position and spin operators and, indeed, mixes spin states.
However, it is by far too weak to provide the energy sepa-
rating quantum dot eigenlevels. Focusing on Si, we consider
in Sec. IV acoustical deformation potential phonons33 to sup-
ply the necessary transition energy. Unaided electron-phonon
coupling, though, does not mix spin states and thus leaves
spins unaltered. Eventually, it turns out that dipolar interac-
tion, as a result of its smallness, causes considerably smaller
transition rates at low temperatures than, for instance,
nuclear spin-induced spin mixing.13

The operator of the dipolar energy

HD =
1

2�
i�j

Hij
D �2�

is, as required for identical particles, invariant with respect to
permuting the electron enumeration; however, HD can be de-
composed into parts that are not invariant under permuting

coordinates ri or spins Ŝi separately. Let us first recap the
interaction between a pair of magnetic moments
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Hij
D =

�2

rij
5 
rij

2 Ŝi · Ŝ j − 3�rij · Ŝi��rij · Ŝ j�� , �3�

where �=ge	 /2mc �c is the velocity of light and the g factor
for dot carriers which even in few electron quantum dots is
found to take basically bulk values�.5,34 Its Heisenberg-like
first part is manifestly SU�2�-invariant in spin space and

commutes with Ŝ2. This part neither changes S nor Sz and
just renormalizes the energies slightly. It therefore can be
ignored in view of the smallness of dipolar energies com-
pared to the dot level separations. In Eq. �3� we abbreviate
rijªri−r j and rijª �rij�. The second part of Hij

D can be de-
composed as

1

rij
5 �rij · Ŝi��rij · Ŝ j� = 
Hij

�0� + Hij
�1� + Hij

�2�� , �4�

where the three terms

Hij
�0� =

��ij�2

4
�Ŝ+iŜ−j + Ŝ−iŜ+j� + 
ij

2 ŜziŜzj , �5�

Hij
�1� =


ij

2

�−ij�Ŝ+iŜzj + ŜziŜ+j� + �+ij�Ŝ−iŜzj + ŜziŜ−j�� , �6�

Hij
�2� =

�+ij
2

4
Ŝ−iŜ−j +

�−ij
2

4
Ŝ+iŜ+j , �7�

are responsible to alter symmetries and spins after carrying
out summation over �i� j�. In Eqs. �5�–�7� they change Sz by

0, ±1, and ±2, respectively. Ŝ±ª Ŝx±iŜy denote usual rising
or lowering operators in spin space, �±ijª �xij ±iyij� /rij

5/2 is a
complex �angular momentum generating� coordinate in the
plane perpendicular to the axes of spin quantization, taken as
the z axes, and 
ijªzij /rij

5/2.
The spin-changing part Eqs. �5�–�7� of HD can now fur-

ther be decomposed according to partitions � of the symmet-
ric group SN,

�
i�j

�Hij
�0� + Hij

�1� + Hij
�2�� = H�=
N� + H�=
N−1,1� + H�=
N−2,2�.

�8�

This latter representation is particularly useful to deduce
nonzero transition matrix elements between quantum dot
eigenstates of different total spins. No other partitions occur
since Hij

D transforms as a product of two vector operators in
position as well as in spin space 
cf. Eq. �3��, i.e., as a tensor
of rank two. In Eq. �8� H�=
N−1,1� changes the total spin S of
dot by ±1 and H�=
N−2,2� by ±2, where the latter occurs only
for N�4 while the former already for N�3. HD cannot
achieve spin changes by more than ±2. For example, we can
conclude already at this stage that the rate for direct transi-
tions of an excited S=3 quantum dot state into the �assumed�
S=0 singlet ground state will be of the order O
�HD�4� and
therefore will be very small. All properly symmetrized op-
erators H�=
N−1,1� and H�=
N−2,2� for N=3 and N=4 are listed
in Appendix A.

Note, that the property of Hij
�0–2� to change Sz by

0, ±1, ±2, respectively, is unrelated to their respective capa-
bility to change S. In the absence of further symmetries of
the quantum dot shape, all three operators Hij

�0–2� contain
both, H�=
N−1,1� and H�=
N−2,2�. In cases of frozen electron
motion in z direction, as it applies to quantum dots �or arrays
of quantum dots� fabricated on the basis of semiconducting
heterostructures,35 all of the above contributions involving 
ij
vanish. Then H�0� simplifies and H�1� vanishes entirely, so
that Sz can either remain unaltered �through H�0�� or change
by ±2 �through H�2��.

B. Two electrons

Let us first focus on two electrons, i.e., N=2. This is
relevant, for example, for double dots containing one elec-
tron on either side to realize the basic entity of coupled
qubits.3,36 As already mentioned in the previous section, non-
A1 symmetric partitions Eq. �8� of HD occur only for N�3.
Further, HD does not contain the A2 partition for any N.
Therefore, spin conversion transitions from a triplet excited
state into the singlet ground state37 will never be mediated by
HD. In the related physics context of nuclear spin conversion
of H2 molecules38 the stability of orthohydrogen �even over
weeks� is traced back39 to parity symmetry of both, the mol-
ecule and the magnetic dipolar interactions between the two
protons �of actually close proximity which enhances dipolar
forces� to prevent the transition from the odd-parity ortho S
=1 state into the �by 80 Kelvin lower� even-parity para S
=0 ground state. In this case, spins refer to the protons. In the
context of quantum dots we can generalize this finding: Irre-
spective of the shape of the quantum dot confining potential
and of the functional form of the electron-electron interac-
tion w�r1−r2�, the dipolar interaction will not change �triplet
or singlet� spin states as a result of permutational symmetry
and quantum mechanical particle identity of N=2 electrons.
This statement is not restricted to the lowest �golden rule�
order O
�HD�2� but even holds true to any order of HD. As
one neat corollary we conclude that two electrons in square-
shaped quantum dots �in the absence of other magnetic
mechanisms� will stay in their respective spin states. This
supports a corresponding proposal for quantum computations
based on superpositions of states where the two electrons
occupy either of the two equivalent electrostatic energy mini-
mum positions at diagonally opposite corners in a square.40

C. Strong interaction, pocket states

In case of more than two electrons we focus on strong
Coulomb forces at low carrier densities, i.e., at large values
of the electron gas parameter rs�1. Then, the kinetic energy
is small and the electron system lowers its energy by Wigner
localizing30 the charge density near electrostatically favor-
able places. Precursors of Wigner crystallization have been
found already at rs�4 in two-dimensional quantum dots.23 A
similar localization of charge density arises when the exter-
nal confining potential separates the electrons, such as in the
case of N quantum dots, each containing a single electron. In
either case, at strong Coulomb interactions, eigenstates ��n�
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of H0 Eq. �1� are well described by pocket states,26–28 which
exploit the electron localization. They allow to estimate the
spin-dependent low energy spectrum to exponential accuracy
with increasing rs, or with increasing dot separation.

In the Wigner crystal state, electrons vibrate about elec-
trostatic energy minimum positions. Linearizing the �Cou-
lomb and external� forces yields the plasmon spectrum of the
confined N-electron system. Energy level separations 
pl

2

�
0
2+Ars

−3 can be estimated from the dynamical matrix with
a prefactor A depending on N and on the dot layout; 
0 is the
confining frequency of the quantum dot�s�. Due to the elec-
tron spin each plasmon level is 2N-fold degenerate. Quantum
corrections �partly� split this degeneracy into sublevels, with
all exhibiting well-defined total spins S= � 0

1/2

 , . . . ,N /2 for

� even
odd


 N 
of �2S+1�-fold Zeeman degeneracy, by spin-
rotation invariance�, according to Sec. II. The ground state
�in more than one spatial dimension� need not be of minimal
spin S0=0 or S0= 1

2 .22,24,25,27 A given spin S may appear more
than once in such a spin-split plasmon level; examples of
spectra are discussed in Refs. 26–28. The splitting arises due
to permutational electron exchanges by quantum mechanical
tunneling through the electrostatic barrier consisting of the v
term plus the w term in Eq. �1�. In the simplest case there are
N! different, but all energetically precisely equivalent, possi-
bilities to arrange the localized electrons; this defines 1� p
�N! pocket states �p�. The width of each pocket state corre-
sponds to plasmonic zero point oscillations and scales
roughly as 
pl

−1/2 in Nd-dimensional configuration space �d
being the spatial dimensionality of the quantum dot, often35

d=2 but also d=1 is realized, for example in rods of carbon
nanotubes41�. The energy scale � for spin splittings of plas-
mon levels through quantum mechanical electron exchanges
is tuned by the magnitude of overlap integrals �p��H0�p� be-
tween two different arrangements p and p�. This latter quan-
tity can be estimated semiclassically27,28,31 to read �
��p��H0�p��
pl exp�−�rs� so that � /
pl�1. Numerically
obtained quantum dot spectra23,27,42 indeed nicely follow this
behavior. For example, it exhibits the predicted24 crossover
into a spin polarized S= 3

2 ground state in a spherical two-
dimensional quantum dot containing N=3 electrons at suffi-
ciently low electron density.23,25 As a result, all eigenstates

��n� =
1

Nn
�

p

cnp�p� �9�

belonging to the plasmon ground multiplet can approxi-
mately be expressed through the set ��p�
. The �real� coeffi-
cients cnp, appearing in Eq. �9�, ensue from the irreducible
representation � of the permutational group SN, according to
the wave functions symmetry which at the same time fixes
the total spin S of ��n�; Nn=��pp�cnpcnp��p� � p� ensures nor-
malization, ��n ��n�=1.

D. Dipolar matrix elements

Pocket states allow to conveniently estimate the matrix
elements ��n�HD��n�� of the dipolar energy since, to leading
order, electron positions may be taken as being well local-
ized, �-function such as, for �ij and 
ij in Eqs. �5�–�7� or in

the already symmetrized expressions in Appendix A. This
leads to a finite lattice spin problem. Having constructed
symmetrized spin states, the matrix elements of HD for N
�4 follow straightforwardly from Eq. �8�.

We demonstrate our approach for the particularly sym-
metric cases of N=3 and N=4 electrons occupying equilat-
eral electrostatic equilibrium positions, as in a two-
dimensional spherical quantum dot,23,24 in triangularly or
square-shaped quantum dots,35 or in equilateral triangular or
square arrangements of single electron quantum dots. We
assume frozen motion in z direction, as in heterostructures,
so that terms involving 
ij or 
ij

2 are irrelevant in Eqs. �5�–�7�.
Symmetrized, nontrivial spin states of minimal Sz compo-
nents are presented in Table I.

1. N=3

In this case �i�j�ij
2 =0 and, in Appendix A, we replace

��ij�2 by r2 for N=3 where r is the mean interelectron sepa-
ration. Then, the only nonvanishing term H�2�
2,1� takes the
value

�
i�j

Hij
�2� =

r2

4 �
i�j

ei2�ijŜ−iŜ−j + H.c.

where �ij =0, 2�
3 , −2�

3 is the azimuthal angle of rij.
Thus, HD necessarily changes Sz by ±2 and has nonvan-

ishing matrix elements only between the A and the E states
�S= 3

2 ,Sz= 3
2

↔ �S= 1

2 ,Sz=− 1
2

 and �S= 3

2 ,Sz=− 3
2

↔ �S

= 1
2 ,Sz= + 1

2

 of Table I. Their value emerges as

���A,Sz=±3/2
�HD���Ea,b,Sz=�1/2
� = −
3�3

4

�2

r3 .

In particular, this means that the not-Zeeman-aligned states
of S= 3

2 with Sz= ± 1
2 remain unaffected from dipolar decay.

2. N=4

For a square arrangement of N=4 electrons two distances
occur: r along one edge and �2r across the diagonal. Inspect-
ing all the terms H�0�
3,1� , . . . ,H�2�
2,2� for N=4 in Appendix A
reveals that only contributions 1

16�i�j
�+ij
2 ±�

+ī j̄

2 �

�
Ŝ−iŜ−j ± Ŝ−īŜ− j̄�+H.c. remain nonvanishing; here �ī , j̄� take
the two values out of 1,...,4 that are both different from �i,j�.
Again, Sz has to change by ±2. The term �
�+ij

2 +�
+ī j̄

2 � van-

ishes across the diagonal of the square, while 
�+ij
2 −�

+ī j̄

2 �
=0 along any edge. An evaluation yields the nonzero matrix
elements between symmetrized spin states of Table I, i.e.,

���A,Sz=±2
�HD���Tz,Sz=0
� = −
3

�2 · 32

�2

r3 ,

���A,Sz=±1
�HD���Tz,Sz=�1
� = −
3

64

�2

r3 ,
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���A,Sz=±2
�HD���E1,Sz=0
� = −
3

32

�2

r3 .

All other matrix elements vanish identically. In particular,
states of symmetries Tx, Ty, E2, and A with Sz=0 do not
exhibit dipolar decay.

E. Mixed spin states

Nonvanishing elements of HD slightly mix eigenstates
��n� of H0. Here we are interested in admixtures to spin
states S,

��nS
� = ��nS

� + �
S��S

�
nS�

��nS�
�HD��nS

�

EnS
− EnS�

��nS�
� , �10�

arising from other spins S��S. In Eq. �10� we have disre-
garded the very unlikely case of accidental degeneracy be-
tween eigenlevels of H0 
cf. Eq. �1�� of different spins.43

Eventually, this mixing will cause spin-changing transi-
tions and thus spin relaxation. We disregard dipolar admix-
tures from other states ��nS�

� of the same spin in Eq. �10� as
those occur much more efficiently by phonons; see the sub-
sequent section. To this end, we take ���nS

�
 as exact eigen-
states of H0+HD. From now on we denote by nS the subset of
n values enumerating eigenstates of H0 that belong to the
definite spin S.

IV. SPIN RELAXATION RATES

Typically, the electron-phonon interaction Hel-ph estab-
lishes thermal equilibrium between electron and lattice res-
ervoirs on short time scales compared to the times on which
spin-changing transitions occur. This is so because the latter
cannot be achieved directly by Hel-ph �cf. Sec. IV A�, so that
equilibrium will be established rapidly only among dot levels
of given total spins. This suggests to divide the total Hilbert
space,

H = �
S
HS,

of coupled electron-phonon states into orthogonal subspaces
HS, labeled according to the electron spin S. Transitions
among subspaces occur only slowly by the action of HD

while thermal equilibrium resides within each of the sub-
spaces after much shorter times �el-ph at the lattice tempera-
ture �kB��−1. Consider a certain electronic spin state S�, as it
may have been prepared, for example, using electronic trans-
port techniques.2,44,45 Then, the rate

RS←S� = � d

dt
�PS�t��S��

t��el-ph
�11�

for its decay into a particular spin S�S� is given as the
temporal increase of the spin S-population �PS�t��S�, assum-
ing an initial �i.e., after intra-HS� equilibration has taken
place� S� thermal equilibrium state,

PS�e
−�HPS�/Tr�PS�e

−�HPS�
 .

Here, PS=�nS
��nS

���nS
� � 1ph projects onto HS, 1ph denotes a

unit operator on the phonon space. Transition rates RS←S�

TABLE I. Symmetrized, nontrivial spin states of minimal Sz

component for N=3 and N=4. Spin states of larger �Sz� are obtained
easily.

N S Sz index

3
3

2

1

2 A
1
�3

��↑↑↓� + �↑↓↑� + �↓↑↑��

3

1

2

1

2
Ea

1
�3

��↑↑↓� + ei2�/3�↑↓↑�

+ e−i2�/3�↓↑↑��

3

1

2

1

2
Eb

1
�3

��↑↑↓� + e−i2�/3�↑↓↑�

+ ei2�/3�↓↑↑��

4 2 0 A

1
�6

��↑↑↓↓� + �↓↑↑↓�

+ �↓↓↑↑� + �↑↓↓↑� + �↑↓↑↓� + �↓↑↓↑��

4 1 0 Tx

1

2
��↑↑↓↓� − i�↓↑↑↓� − �↓↓↑↑�

+ i�↑↓↓↑��

4 1 0 Ty

1

2
��↑↑↓↓� + i�↓↑↑↓� − �↓↓↑↑�

− i�↑↓↓↑��

4 1 0 Tz

1
�2

��↑↓↑↓� − �↓↑↓↑��

4 0 0 E1

1

2
��↑↑↓↓� − �↓↑↑↓� + �↓↓↑↑�

− �↑↓↓↑��

4 0 0 E2

1
�8

��↑↑↓↓� + �↓↑↑↓� + �↓↓↑↑�

+ �↑↓↓↑� − 2�↑↓↑↓� − 2�↓↑↓↑��
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observe the detailed balance condition, ensuring one vanish-
ing �stationary� eigenvalue of the matrix MSS�=RS�←S

−�S�
−1�SS�, which governs the rate dynamics. In the present

context we are primarily interested in the total decay rate of
the initial spin S� population; i.e.,

�S�
−1 = �

S�S�

RS←S�. �12�

In Eq. �11� the time evolution refers to the Hamiltonian H
=H0+HD+Hph+Hel-ph where the electron-phonon interaction
Hel-ph will be discussed next. This approach, in principle,
accounts for rapid thermalizing spin-conserving multiphonon
transitions within subspaces HS.

A. Coupling to phonons

Electron-phonon coupling in semiconductors has been
studied intensively in the 1950s and 1960s. For homopolar
semiconductors, such as Si or Ge, deformation potential
coupling46 has been established. It can be expressed as47

Hel-ph = �
q

gq��q��bq + b−q
+ � , �13�

where we have suppressed the phonon branch index. Consid-
erably below room temperature, pertinent to possible quan-
tum computing, optical phonons don’t contribute so that bq

+

in Eq. �13� is meant to create a longitudinal acoustical pho-
non of momentum q. For excitations of the electronic system
most relevant are phonon wavelengths 2�cs /
pl=50 nm or
2�cs /�=500 nm, assuming35 
pl�3 meV and �
�0.3 meV, respectively; cf. Sec. III C for the definitions of
the energies � and 
pl. At these wavelengths, intravalley
scattering dominates. Its strength,

gq
2 =

E2
2

2�MVcs

�q� , �14�

mainly is regulated by the deformation potential constant E2
for longitudinal coupling which takes values of about47,48

10 eV in Si. Further, gq
2 depends on the mass density �M, the

normalization volume V for the phonon modes, and on the
sound velocity cs. In Eq. �13� the operator

��q� = N �
nS�nS�

�nSnS�
�q���nS�

���nS
� �15�

of the total electron density may excite the correlated elec-
tron system at nonzero q, though at conserved total spin S
�and conserved z-component Sz�. It can be decomposed into
the basis ���n�
, where ��n� and ��n�� have same spin S, i.e.,

�nSnS�
�q� =� dreiqr� dr2 . . . drN�r,r2, . . . ,rN��nS

�

���nS�
�r,r2, . . . ,rN� . �16�

At small q	�q� these coefficients are expanded, �nn��q�
=�nn�+��q��� where, to lowest nonvanishing order, �=1 un-
less the electron charge density distribution of the quantum
dot or of the ensemble of quantum dots is parity symmetric,

in which case �=2. The quantity � either equals the typical
distance between electrons if n and n� belong to the same
plasmon multiplet, or ���m
pl�−1/2 for n and n� from dif-
ferent plasmon multiplets. The magnitude of � can be esti-
mated by inserting Eq. �9� into Eq. �16� and using, for con-
venience, the density distribution �nn��r� in real space. This
reveals that � is proportional to the maximum overlap be-
tween unequal pocket states, i.e., max

p,p�;p�p�

�p � p��, a quantity

which, in turn, is proportional27 to � /
pl.

B. Transition rates

We are now in the position to calculate the phonon-
mediated transition rate Eq. �11� as a result of spin mixing;
see Eq. �10�. Assuming a not too strong electron-phonon
coupling, use of standard time-dependent perturbation theory
with respect to Hel-ph, as explicated in Appendix B, yields to
leading order the rate RS←S�, cf. Eq. �11�, reading

RS←S� =
2�

ZS�
�

nSnS�

e−�EnS�JnS�nS
��EnS�

− EnS
��
n��EnS�

− EnS
��

+ ��EnS�
− EnS

�� , �17�

where we have defined the �temperature-independent�
coupled density of phonon states for transitions between
spins S and S�, respectively, as

JnS�nS
�
� = �

q
gq

2��
 − �q�cs�

���
nS�

�nSnS�
�q�

��nS�
�HD��nS�

�

EnS�
− EnS�

− �
n

S�
�

�n
S�
� nS�

�q�
��nS

�HD��n
S�
� �

En
S�
� − EnS

�2

. �18�

In Eq. �17� ZS=�nS
e−�EnS denotes the partition function in-

side the subspace HS, n�
�= �e�
−1�−1 the Bose function,
and ��x� the Heaviside step function. Straightforwardly,
higher order terms regarding Hel-ph can also be considered
for RS←S�, although the corresponding explicit expressions
are rather lengthy. In Eq. �10� we have assumed that phonon
states and energy eigenvalues remain unaffected by the weak
dipolar mixing.

At low temperatures, T�� /kB compared to the typical
distance � between dot levels of same or of different total
spins inside the lowest plasmon multiplet, the Bose factor
n������1 is small and only the ground level n0S will be
occupied within each subspace HS. In this temperature re-
gime thermalization into the global ground state n=0S0

of
spin S0 will take place exclusively through the direct process
by emission of a resonant phonon of energy � so that the
coupled density of states Jn0S0S0

��� controls the relaxation

rate RS0←S. Still, a summation over excited levels nS0
� �0 and

n0S� �n0S appears in Eq. �18�, as the lowest terms nS0
� =0 and

n0S� =n0S cancel exactly. In Sec. IV A it has been estimated
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that nondiagonal coefficients �nn��q���� /
pl��r� /cs�� for
low energy and long wavelength transitions; here r denotes
the distance between electrons and �=1 or �=2 in the ab-
sence or presence of parity symmetry. For the electron-
phonon coupling Eq. �14�, this results in a spin-transition rate
at zero temperature through the direct process, reading

RS0←S = 2�Jn0S0S0
��� , �19�

with

Jn0S0S0
��� =

E2
2�4

cs
7�M�2
pl

2 N2na
2�5,

unless this transition is not suppressed entirely for cases dis-
cussed in Sec. III D. In Eq. �19� we have assumed for sim-
plicity that level separations EnS0

� −E0S0
�� and EnS�

−En0S

�� both are of the order49 �. Also, we have inserted the
areal density na=r−2 of electrons, focusing on the measured
quantity in two-dimensional samples.

In Si the rate Eq. �19� appears to be very small at zero
temperature, �10−7 s−1 for three electrons at densities corre-
sponding to rs=1, and considering a quantum dot35 of 
pl
=3 meV and �=0.3 meV. However, this number strongly
varies with parameters, as seen in Eq. �19�. Parity symmetric
quantum dots �where �=2� would suppress this decay rate
even further at small transition energies due to Jn0�����7 in
this case. These values are, of course, considerable smaller
than the decay rates estimated from spin-orbit effects,7–9 if
present.

They are also smaller than the rates estimated from the
hyperfine interaction with nuclei of nonzero spin.13,14,16 Par-
ticularly in Ref. 13 a hybrid mechanism is considered which
is closely related to the one presented here in combining the
electron-phonon coupling with a spin-mixing interaction.
Transitions between total spin S=1 and S=0 of a two-
electron quantum dot are investigated. The low temperature
rate has been estimated13 to �10−2 s−1 s for similar quantum
dot parameters as above, assuming a two-dimensional dot
fabricated on the basis of heterostructures. This rate is pro-
portional to the number Nn of nonvanishing nuclear spins
covered by the electron wave function. In GaAs almost every
nucleus has spin I= 3

2 . It is instructive to determine from this

result13 a critical concentration C̃n of 29Si nuclei in silicon,
the only ones of nonvanishing spin I= 1

2 , beyond which the
here-described dipolar mechanism should prevail over the
spin decay via nuclear spins. For a quantum dot of the same
excitation energy, the electron wave function in natural sili-
con covers only about Nn

Si�103 of the 29Si nuclei while14 in
GaAs Nn

GaAs�105. Two further important differences be-
tween Si and GaAs have to be taken into account. Firstly, the
type of electron-phonon coupling which is piezoelastic in
GaAs while we have deformation potential coupling in Si.
Accidentally, for the here-considered quantum dot param-
eters �and assuming again heterostructures and now laterally
parabolic confining potential� Jnn��
� in Si is only by 0.6
smaller than in GaAs. Secondly, the nuclear spin ISi= 1

2 of
29Si as compared to IGaAs= 3

2 in GaAs which reduces
the coupling by ISi�ISi+1� / IGaAs�IGaAs+1�= 1

5 . This yields

C̃n
Si�2�10−4 nm−3 �note that Cn

Si�2.5�10−3 nm−3 has
been reported50 experimentally�. This value is less stringent
than the isotopic purification required for the quantum
computer,6 based on the nuclear spins of 31P donors, where
Cn should be smaller than N−110−4 nm−3 in Si with N being
the number of qubits.

C. Temperature dependence

Through the marked increase of Jn0�
��
4+2� as a func-
tion of transition energy 
, relaxation can take advantage
from spin-conserving thermal excursions to plasmonic ex-
cited levels and accomplish the spin transition at an elevated
energy. In NMR theory this possibility is called the “Orbach
process”51 and shows up in a steeply increasing relaxation
rate with temperature. Our formulation, Eq. �17�, of the tran-
sition rate explicitly incorporates such thermal excursions.
They turn out to influence considerably the temperature de-
pendence of RS0←S which only at low temperatures follows
the Bose behavior �Jn0���n��� of direct transitions. Already
at temperatures not much exceeding � the severely stronger
increase �Jn0�
pl�exp�−
pl /kBT�, following from Eq. �17�,
can easily enhance the transition rate by three orders of mag-
nitudes, depending on system parameters. A similarly pro-
nounced increase of �nuclear� spin relaxation rates has been
discussed in detail52 in the context of quantum rotating mol-
ecules: substantial increases in spin-changing transition rates
by more than six orders of magnitudes are depicted in Fig.
3�b� of Ref. 52. Again, the stronger increasing density of
coupled phonon states in quantum dots of parity symmetry
should lead to even more pronounced temperature sensitivity.

V. RESUME

We have investigated dipolar interactions between the
magnetic moments of electrons confined to one or to several
quantum dots and studied the rate of inelastic total spin-
changing transitions. As compared to the coupling to nuclear
spins13–16,53 and to spin-orbit induced decay,8–12 dipolar spin
decay turns out as much weaker. However, either of the ear-
lier studied mechanisms can, at least in principle, be elimi-
nated by a suitable sample design. It is therefore possible that
the dipolar interactions between electronic spin moments, to-
gether with the coupling to lattice modes,20 as discussed in
the present work, will ultimately limit long-time quantum
computations, even when devices become optimally de-
signed. Experimentally, the dipolar mechanism should show
up most directly by observing at low temperatures the depen-
dence on the electron density; cf. Eq. �19�.

Upon generalizing previous approaches we incorporate
here electron-electron interactions11,12 in the quantum dot�s�
which, additionally, are important for magnetic
features.22–25,31 For example, ground state spins may exceed
the values S0=0 or S0= 1

2 expected for noninteracting elec-
trons. We focus on the limit of strong interactions, where
electronic many-body wave functions can be described as
“pocket states”26–28 and where the spectrum exhibits spin-
split plasmon multiplets. The dipolar interaction is decom-
posed according to the symmetric group and nonvanishing
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matrix elements are determined in their dependence on spa-
tial parts of the collective electron wave functions. As we
have shown, particular spatial symmetries of the quantum
dot�s� can reduce the number of nonzero elements.

One important result is the stability of N=2 electron
spins. Irrespective of the dimensionality, the shape of the
quantum dot�s�, or of the electron-electron interaction
strength, the decay of triplet states into the singlet ground
state is always suppressed. Any dipolar decay channel will
require participation of further electrons. This is important,
for example, for two coupled qubits, the basic �gate� element
for quantum information processing.

Also at larger electron numbers, nonground state spins
can be stable with respect to dipolar interactions. We have
discussed the case of N=3 electrons on an equilateral tri-
angle. Here, Sz= ± 1

2 states of the S= 3
2 submanifold prove

robust against decay into any S= 1
2 state. Only spin-polarized

Sz= ± 3
2 states decay into the S= 1

2 submanifold. Further,
N=4 electrons on a square-shaped quantum dot exhibit ro-
bust S=1 states of Tx and Ty symmetry, and S=0 states of E2
symmetry.

Owing to the smallness of magnetic and, in particular,
dipolar energies, compared to dot level separations, the en-
ergy accompanied with an actual spin transition has to be
provided by the reservoir of lattice vibrations. As in previous
approaches7–10,13 we have considered the coupling to acous-
tic phonons. Parity symmetric dots are weaker coupled to
phonons, which further suppresses spin decay in this case.
Additionally, we have accounted for rapid thermal excur-
sions of the system within electron-phonon subspaces of
given �many-electron� dot spins. This enables one to deduce
the dependence of spin relaxation over a wider range of tem-
peratures as compared to the resonant direct process. As a
result we found a very striking increase of the spin decay
rate. This rate grows with temperature considerably steeper
than the naively expected proportionality to the Bose func-
tion describing direct processes: It occurs already at tempera-
tures that barely exceed the energy difference between the
lowest levels of different spins, but is still considerably
smaller than the energy for plasmon excitations. Although
we find amazingly stable spin configurations at low tempera-
tures, this marked temperature sensitivity restricts the opera-
tion temperatures of quantum computing dots �unless quan-
tum computation can be confined to the stable spin
configurations� to values that are not exceeding much the
lowest level separations.

Because the same phonon energy reservoir is considered
in previous work7–10,13,14 for spin decay, a similar scenario
regarding the dot symmetries and the spin-conserving pho-
non induced excursions should apply also to magnetic
mechanisms of the spin-orbit or of the hyperfine type. We
expect therefore a similarly striking temperature sensitivity
as obtained here for these mechanisms as well.
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APPENDIX A: SYMMETRIZED OPERATORS INDUCING
SPIN-CHANGING TRANSITIONS FOR N=3

AND N=4 ELECTRONS

The following explicit form of dipolar operators Eq. �8�
contain nonvanishing elements for N=3,

H�0�
2,1� = �
i�j

Hij
�0� −

1

6��1

4�
i�j

��ij�2���
i�j

�Ŝ+iŜ−j + Ŝ−iŜ+j��
+ ��

i�j


ij
2���

i�j

ŜziŜzj�� ,

H�1�
2,1� = �
i�j

Hij
�1� −

1

12���i�j


ij�−ij���
i�j

�Ŝ+iŜzj + ŜziŜ+j��
+ ��

i�j


ij�+ij���
i�j

�Ŝ−iŜzj + ŜziŜ−j��� ,

H�2�
2,1� = �
i�j

Hij
�2� −

1

24���i�j

�+ij
2 ���

i�j

Ŝ−iŜ−j� + ��
i�j

�−ij
2 �

���
i�j

Ŝ+iŜ+j�� ,

and for N=4,

H�0�
3,1� =
1

4�
i�j
�� ��ij�2 − ��ī j̄�2

4
�
�Ŝ+iŜ−j + Ŝ−iŜ+j�

− �Ŝ+īŜ− j̄ + Ŝ−īŜ+ j̄�� + 

ij
2 − 


ī j̄

2 �
ŜziŜzj − ŜzīŜz j̄�� ,

H�1�
3,1� =
1

8�
i�j

�

ij�−ij − 
ī j̄�−ī j̄�
�Ŝ+iŜzj + ŜziŜ+j�

− �Ŝ+īŜz j̄ + ŜzīŜ+ j̄�� + 

ij�+ij − 
ī j̄�+ī j̄�

�
�Ŝ−iŜzj + ŜziŜ−j� − �Ŝ−īŜz j̄ + ŜzīŜ− j̄��
 ,

H�2�
3,1� =
1

16�
i�j

�
�+ij
2 − �

+ī j̄

2 �
Ŝ−iŜ−j − Ŝ−īŜ− j̄� + 
�−ij
2 − �

−ī j̄

2 �

�
Ŝ+iŜ+j − Ŝ+īŜ+ j̄�
 ,

H�0�
2,2� =
1

4�
i�j
�� ��ij�2 + ��ī j̄�2

4
�
�Ŝ+iŜ−j + Ŝ−iŜ+j�

+ �Ŝ+īŜ− j̄ + Ŝ−īŜ+ j̄�� + 

ij
2 + 


ī j̄

2 �
ŜziŜzj + ŜzīŜz j̄��
−

1

12��1

4�
i�j

��ij�2���
i�j

�Ŝ+iŜ−j + Ŝ−iŜ+j��
+ ��

i�j


ij
2���

i�j

ŜziŜzj�� ,

W. HÄUSLER AND P. HÄNGGI PHYSICAL REVIEW B 73, 125329 �2006�

125329-8



H�1�
2,2� =
1

8�
i�j

�

ij�−ij + 
ī j̄�−ī j̄�
�Ŝ+iŜzj + ŜziŜ+j� + �Ŝ+īŜz j̄

+ ŜzīŜ+ j̄�� + 

ij�+ij + 
ī j̄�+ī j̄�
�Ŝ−iŜzj + ŜziŜ−j�

+ �Ŝ−īŜz j̄ + ŜzīŜ− j̄��
 −
1

24���i�j


ij�−ij���
i�j

�Ŝ+iŜzj

+ ŜziŜ+j�� + ��
i�j


ij�+ij���
i�j

�Ŝ−iŜzj + ŜziŜ−j��� ,

H�2�
2,2� =
1

16�
i�j

�
�+ij
2 + �

+ī j̄

2 �
Ŝ−iŜ−j + Ŝ−īŜ− j̄� + 
�−ij
2 + �

−ī j̄

2 �

�
Ŝ+iŜ+j + Ŝ+īŜ+ j̄�
 −
1

48���i�j

�+ij
2 ���

i�j

Ŝ−iŜ−j�
+ ��

i�j

�−ij
2 ���

i�j

Ŝ+iŜ+j�� .

In the above expression, �ī , j̄� take the two values out of
1,¼,4 that are both different from �i , j�.

APPENDIX B: DERIVATION OF EQ. (17)

In a perturbative expansion with respect to Hel-ph of either
of the two time evolution operators appearing in Eq. �11� we
write

e−iHt = e−iH̃0t�1ph − i�
0

t

dt�eiH̃0t�Hel-phe−iH̃0t� − �
0

t

dt�

��
0

t�
dt�eiH̃0t�Hel-phe−iH̃0�t�−t��Hel-phe−iH̃0t� + . . . � .

�B1�

Here, H̃0=H0+HD+Hph with H0 defined in Eq. �1� and the
eigenstates of H0+HD taken according to Eq. �10�. To second
�i.e., lowest nonvanishing� order in Hel-ph only two of the

second terms in the square bracket of �B1� contribute to Eq.
�11�, yielding with �13�,

RS←S� =
1

ZS�
�
q

gq
2 �

nSnS�

e−�EnS�
d

dt
�

0

t

dt��
0

t

dt�i��nS�
�ei�H0+HD�t�

���q�e−i�H0+HD�t���nS
��− i���nS

�ei�H0+HD�t�

���q�e−i�H0+HD�t���nS�
�
n̄qeics�q��t�−t��

+ �n̄q + 1�e−ics�q��t�−t��� .

Here, the Bose factors n̄q= �e�cs�q�−1�−1 result after thermal
averaging over phonon modes. Inserting now eigenstates ��n�
of �H0+HD� for the ��n�, according to �10�, and carrying out
the long-time limit t→�, yields for the decay rate

RS←S� =
2�

ZS�
�
q

gq
2 �

nSnS�

e−�EnS�

��i���nS�
� − �

nS�

��nS�
�HD��nS�

�

EnS�
− EnS�

��nS�
����q�

����nS
� − �

nS�

��nS�
�HD��nS

�

EnS
− EnS�

��nS�
���

��− i���nS
� − �

nS�

��nS
�HD��nS�

�

EnS
− EnS�

��nS�
����q�

����nS�
� − �

nS�

��nS�
�HD��nS�

�

EnS�
− EnS�

��nS�
���

�
n̄q��EnS�
− EnS

+ cs�q�� + �n̄q + 1�

���EnS�
− EnS

− cs�q��� ,

which is readily brought into the form �17� with �18�, after
employing �15� and using the orthogonality of spin states.
Further calculational details can be found in Ref. 52.
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