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The transition matrix elements between the correlated N and N11 electron states of a quantum dot are
calculated by numerical diagonalization. They are the central ingredient for the linear and nonlinear transport
properties, which we compute using a rate equation. The experimentally observed variations in the heights of
the linear conductance peaks can be explained. The knowledge of the matrix elements as well as the stationary
populations of the states allows us to assign the features observed in the nonlinear transport spectroscopy to
certain transitions and contains valuable information about the correlated electron states.

By using modern nanostructure fabrication technology a
few electrons can be confined to very small regions in
space.1 In these so-called quantum dots or artificial atoms the
Coulomb interaction between the electrons is very important
for understanding their quantum-mechanical properties.
Weak coupling to external reservoirs via tunnel barriers al-
lows us to observe single-electron transport effects like the
Coulomb blockade oscillations in the linear conductance at
milli-Kelvin temperatures.2–4 In nonlinear transport, features
are observed that are closely related to the excitation spec-
trum of the interacting electrons.5

Transport involves transitions between the many-body
eigenstates of the confined electrons. They are approximated
as products of one-particle states within the charging model
where the Coulomb interaction is modeled phenomenologi-
cally by the capacity of the quantum dot.6 This is not suffi-
cient to explain, e.g., the experimentally observed negative
differential conductances.7 Especially at low electron densi-
ties, correlations between the electrons are crucial. This was
explicitly shown for a quasi-one-dimensional ~1D! box8
where the correlation leads to N pronounced peaks in the
charge-density distribution if the mean electron distance
rs exceeds the effective Bohr radius aB* with aB*
[(me /m)«aB (« is the relative dielectric constant; m is the
effective mass!. In the present paper we use the same model
to investigate the influence of the spatial properties of the
correlated many-electron states on the linear and nonlinear
transport properties of an artificial atom. An investigation in
a similar spirit was recently performed for a harmonic con-
fining potential in two dimensions.9 However, transport
properties were not calculated and only the transition be-
tween N52 and 3 electron states was studied in this work.
We demonstrate here that the current-voltage characteristics
obtained by solving a stationary master equation exhibits
very specific signatures of the electron correlations. They
influence the transition matrix elements and also stationary
occupation probabilities of the states. Some of the ‘‘lines’’

observed in nonlinear transport spectra are even enhanced.
Such a result cannot be obtained by considering only the
transition rates.

We will show that, apart from the restrictions due to spin
selection rules discussed earlier,10,11 transitions are sup-
pressed or enhanced when taking into account the spatial
properties of the wave functions. The heights of the peaks in
the linear conductance become nonequal even without taking
into account the energy dependence of tunneling matrix ele-
ments. In nonlinear transport the excited levels of the quan-
tum dot that can be observed are closely related to the most
prominent allowed transitions and to the highest stationary
occupation probabilities.

As a model for the quantum dot we consider a quasi-1D
square well8,12 of length L59.5aB* and N<4. The corre-
sponding mean electron density is close to the one in experi-
ments on GaAs-AlxGa12xAs heterostructures where the
mean distance between the electrons is about 3aB* ('10
nm!.2,4,5

Including the spin degree of freedom s , the dot Hamil-
tonian reads

HD5(
n ,s

~en2ef !cn ,s
† cn ,s

1 (
n1•••n4

s ,s8

Vn4n3n2n1cn4s
† cn3s8

† cn2s8cn1s . ~1!

The electrostatic potential f depends on the gate and
transport ~bias! voltages that are applied to the system
and shifts the energies of the one-electron levels. Vn4n3n2n1
is the matrix element of the interaction V(x ,x8)5e2/
«A(x2x8)21l2. The cutoff at short distances simulates a
small transversal spread of the wave functions (l!L) and
provides finite Vn4n3n2n1.

In the limit of high tunnel barriers, transport is determined
by the eigenstates of the isolated dot. From the latter we
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calculate the transition probabilities between N and (N61)
electron states. Each energy eigenstate is simultaneously an
eigenstate of the total spin Ŝ25(ŝ11•••1ŝN)2, which im-
plies a (2S11)-fold degeneracy with respect to Ŝz in the
absence of a magnetic field.

We include n51, . . . ,M one-electron states wn(x)xs

when diagonalizing HD . Here, wn is a spatial one-electron
function and xs a spinor with s5↓ ,↑ . The Hamiltonian
matrix in the basis of Slater determinants is of the rank
of the binomial number r5C2M

N (r,1.53104, for
M510, . . . ,13). The Lanczos method was used when
r.33103.

By its algorithm13 the Lanczos diagonalization provides
only one eigenvector uCS&Lanc for each energy eigenvalue.
The calculation of transition rates is considerably facilitated
when using eigenstates of Ŝz . Usually uCS&Lanc is a linear
combination of all of the 2S11 vectors in the subspace of
Zeeman levels. In order to recover the eigenvectors of Ŝz
we apply projectors P̂SzuC

S&Lanc}uCS ,Sz& corresponding
to a specific Sz . After normalization uCS ,Sz&
[(n51

r bn
S ,Szun& can be expanded into the Slater determinants

un&5cn1s1
†

•••cnNsN
† u0& of the noninteracting electrons. The

coefficients bn
S ,Sz are obtained after diagonalization, projec-

tion, and renormalization. By construction we have
bn
S ,Sz50 if s11•••1sNÞSz . The method would fail in the

unlikely case that uCS&Lanc is accidentally perpendicular
~within the numerical accuracy! to one of the uCS ,Sz&. The
procedure can also be applied to higher-dimensional models.

To study transport properties, we use the tunneling Hamil-
tonian and the usual rate equation approach.10,11 Then the dc
current through the quantum dot,

I[IL/R5~2/1 !e (
i , j~ jÞi !

P iG i , j
L/R~N j2N i!, ~2!

corresponds to the rate of electron passages through the left
or the right barrier. I is computed from the stationary occu-

pation probabilities P j , which are solutions of the equation
( j( jÞi)(G i , jP j2G j ,iP i)50. The transition rates between all
of the many-electron states indexed by j are
G j ,i5G j ,i

L 1G j ,i
R .

Time-dependent perturbation theory yields

G j ,i
L/R5tL/RU(

n ,s
^C jucn ,s

† uC i&U2 f L/R~E !

1tL/RU(
n ,s

^C iucn ,suC j&U2@12 f L/R~2E !# , ~3!

for transition probabilities between the eigenstates uC i& and
uC j& of HD with N j5N i11 in lowest order in the tunneling.
The indices i and j contain, in particular, the electron num-
ber N , the total spin S , and Sz . tL/R are the tunneling rates
through the left/right barrier. The electron has to provide the
energy difference E5E j2E i when entering or leaving the
dot. The Fermi-Dirac distribution functions f L/R(E) describe
the left/right reservoirs with chemical potentials mL/R.

The energy spectrum of the N electrons for the densities
studied consists of multiplets.8,12 The energy differences V
between the latter are considerably larger than the intramul-
tiplet energy differences D . They are important only for large
transport voltages. For a GaAs-AlxGa12xAs heterostructure
of length L59.5aB* with N54, V'6.2 meV, and D'62
meV. For small transport voltages we can restrict ourselves
to transitions between states within the lowest multiplets
~Table I!. The total number of states within the multiplets,
including the Sz degeneracy, is 2N.

In the following we discuss the influence of the correla-
tions between the electrons on the total transition probability,

M j ,i5
1
2

1
2S i11 (

Szi52S i

S i

(
Sz j52S j

S j U(
n ,s

^C jucn ,s
† uC i&U2,

~4!

where the spins Szi and Sz j refer to the states uC i& and
^C ju, respectively. The matrix elements ^C jucn ,s

† uC i& imply
first of all a spin selection rule; namely, that each added or
removed electron can change both the total spin S and the

TABLE I. Sequence of increasing energy eigenvalues Ea
S to-

gether with their total spins S .

N52 N53 N54

E0
0 , E1

1 E0
1/2 , E1

1/2 , E2
3/2 E0

0 ,E1
1 ,E2

1 ,E3
0 ,E4

1 ,E5
2

TABLE II. Comparison between numerically calculated matrix
elements M j ,i , Eq. ~4!, and corresponding values obtained by ne-
glecting the spatial part of the wave function, C j ,i , Eq. ~5!, for the
nonvanishing transition probabilities uC i(N52)

S &→uC j(N53)
S61/2 &.

^C j(N53)
S61/2 u c† uC i(N52)

S & M j ,i C j ,i

^C0
1/2u c† uC0

0& 0.85
1

^C1
1/2u c† uC0

0& 0.04

^C0
1/2u c† uC1

1& 0.32
1/3

^C1
1/2u c† uC1

1& 0.29

^C2
3/2u c† uC1

1& 0.43 2/3

TABLE III. Same as Table II for transitions
uC i(N53)

S &→uC j(N54)
S61/2 &. Different columns are used for state with

same spins S but different energies ~see Table I!.

^C j(N54)
S u c† uC i(N53)

S & M j ,i C j ,i

^C0
0u c† @ uC0

1/2&;uC1
1/2&] @ 0.37 ; 0.15 #

1/4
^C3

0u c† @ uC0
1/2&;uC1

1/2&] @ 0.01 ; 0.10 #

^C1
1u c† @ uC0

1/2&;uC1
1/2&] @ 0.37 ; 0.11 #

^C2
1u c† @ uC0

1/2&;uC1
1/2&] @ 0.03 ; 0.49 # 3/4

^C4
1u c† @ uC0

1/2&;uC1
1/2&] @ 0.00 ; 0.16 #

^C1
1u c† uC2

3/2& 0.28
^C2

1u c† uC2
3/2& 0.23 3/8

^C4
1u c† uC2

3/2& 0.15

^C5
2u c† uC3

3/2& 0.41 5/8
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magnetic quantum number Sz only by 61/2. In Refs. 10 and
11 these selection rules were included via the Clebsch-
Gordan coefficients. They describe the combination of the
initial spin state (S i ,Szi) with an electron (1/2,61/2) to
form the final state (S j ,Sz j) and yield

C j ,i5
S i11
2S i11 dS j ,S i11/21

S i

2S i11 dS j ,S i21/2 ~5!

after summation over Szi and Sz j . This approach ignores the
spatial degrees of freedom which make the M j ,i considerably
different from the C j ,i .

In Tables II and III the numerically calculated M j ,i and
the corresponding C j ,i are shown for transitions between two
and three and three and four electrons in the dot, respec-
tively. The truncation of the Hilbert space to M<13 leads to
an absolute error of 1023 ~Table II! or 1022 ~Table III!. In a
few cases we checked the improvement achieved by using
M514 single-electron levels.

Some transitions are almost completely suppressed in the
case of the M j ,i compared to the C j ,i . The two reasons can
be seen from

U(
n ,s

^C jucn ,s
† uC i&U25U (

n i ,n j
bn i

bn j (n ,s ^njucn ,s
† uni&U2 .

~6!

Firstly, it may be impossible to create ^n ju by adding one
electron to un i& ~spatial selection rule! for the largest
ubn i

bn j
u. Secondly, the various contributions to the summa-

tion over n i and n j may cancel due to different signs of
bn i

bn j
. This latter cancellation seems to have been neglected,

in Ref. 9. As an example, Table IV shows the four main
contributions for the uC0

1/2& for N53 and uC3
0& for N54,

together with their corresponding electronic configurations
~see Table I for the notation!. They are needed to calculate
M 3,0 in Table III. Of the 16 possible transitions shown in
Table IV, only two ~marked with * and ‡) fulfill the spatial
selection rule. In addition, their contribution to M 3,0 cancel
each other due to opposite signs @M 3,0'(20.3530.29
10.3330.39)250.0006#. This explains the smallness of the
corresponding transition probability. Another example is the
transition between the first excited state for N53 and the
ground state for N52, ^C1

S851/2uc†uC0
S50&, Table II. In this

case, we were able to follow the evolution of the many-
electron states down to zero interaction, ending at Slater de-
terminants un i& and un j&, between which the spatial selection
rule forbids transitions.

The effect on nonlinear transport properties is demon-
strated in Fig. 1. It shows gray-scale plots of the differential
conductance versus the gate voltage VG and the transport
voltage. In Fig. 1 ~left! the G j ,i

L/R were assumed to be propor-
tional to C j ,i ~Ref. 10! while the calculated M j ,i @Eq. ~3!#
were used in Fig. 1 ~right!. Gray areas correspond to regions
of zero differential conductance. Black and white lines are

FIG. 1. Differential conductance versus trans-
port and gate voltages ~in units of e/aB*) in linear
gray scale ~dark: positive; bright: negative!. The
electron number inside the diamond-shaped Cou-
lomb blockade region is N53. Left: transition
probabilities proportional to C j ,i . Right: transi-
tion probabilities proportional to M j ,i . The ar-
rows are explained in the text.

FIG. 2. Current versus gate voltage for small transport voltage
(V,D) using Eq. ~3!. Temperature is 10 mK. The first peak corre-
sponds to oscillations between N51 and 2 electrons.

TABLE IV. The four largest expansion coefficients b
n
$N ,E i

S ,Sz% of
uC0

1/2& and uC3
0& needed to calculate the entry 0.01 in Table III. The

basis states un& are illustrated for N53, 4 according to the occupa-
tions of single-electron levels. Only two transitions between these
states are possible by creating or annihilating one electron, marked
with * or with ‡.

53 R1715SIGNATURES OF ELECTRON CORRELATIONS IN THE . . .



related to positive and negative differential conductances, re-
spectively ~spin blockade10,11!. They reflect excited many-
electron states that become available for transport when gate
and/or bias voltages are increased. On average, the number
of lines is reduced in Fig. 1 ~right! as compared to Fig. 1
~left! ~e.g., black arrows!. This reflects the suppression of
transition matrix elements by the spatial selection rule dis-
cussed above. In some regions, however, the differential con-
ductance is even enhanced ~cf. white arrows in Fig. 1!. This
is caused by considerable upheavals in the stationary occu-
pation probabilities P j obtained from the rate equation when
the full matrix elements are considered in ~3!.

The conductance peaks at low transport voltages shows
different peak heights, as presented in Fig. 2. This is directly
related to the spatial properties of the many-body states.
Other works14,15 explain this feature, also observed
experimentally,3,5 within the framework of noninteracting
electrons pictured by semiclassical chaotic motions. The
question of how far this picture can be generalized to the
correlated electron situation deserves further research. Simi-
lar results in the presence of magnetic fields were shown in
Ref. 16.

In summary, we have studied the electron transport
through a quantum dot taking fully into account the corre-
lated eigenstates of the interacting electrons inside the dot.
The spatial selection rule is shown to explain the suppression
of certain transitions between N and (N61) electron states
that would be allowed when taking into account only the
spin selection rules. Despite the obtained tendency towards
reduced transition probabilities M j ,i , some of the peaks in
the differential conductance are even enhanced as a result of
considerable changes in the stationary occupation probabili-
ties. Furthermore, the correlations between the electrons in-
duced by the Coulomb interaction lead to characteristic
variations in the heights of the linear conductance peaks. Our
results show that nonlinear transport spectroscopy provides,
in principle, valuable information about the correlated dot
states. To extract this information, and the corresponding
physics, however, very careful theoretical modeling is re-
quired.
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