
RAPID COMMUNICATIONS

PHYSICAL REVIEW B 96, 140506(R) (2017)

Proximity-induced superconductivity in Landau-quantized graphene monolayers
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We consider massless Dirac fermions in a graphene monolayer in the ballistic limit, subject to both a
perpendicular magnetic field B and a proximity-induced pairing gap �. When the chemical potential is at
the Dirac point, our exact solution of the Bogoliubov–de Gennes equation yields �-independent relativistic
Landau levels. Since eigenstates depend on �, many observables nevertheless are sensitive to pairing, e.g., the
local density of states or the edge state spectrum. By solving the problem with an additional in-plane electric
field, we also discuss how snake states are influenced by a pairing gap.
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Introduction. It is well known that at energies close to the
neutrality point, the electronic properties of graphene mono-
layers are accurately described in terms of two-dimensional
(2D) massless Dirac fermions [1–7]. Recent advances in fabri-
cation and preparation technology [6,8] allow experimentalists
to routinely reach the ballistic (disorder-free) transport regime.
Our theoretical work reported below is largely motivated by
spectacular recent progress on Josephson transport in ballistic
graphene flakes contacted by conventional superconductors
[9–19], demonstrating in particular that proximity-induced
superconductivity can coexist with rather high (Landau-
quantizing) magnetic fields [12,15,18]. This raises the question
of how a proximity-induced bulk pairing gap will affect
the electronic properties of graphene in an orbital magnetic
field. In contrast to lateral graphene-superconductor interfaces,
where theory is well developed [3,20–22], we therefore
investigate vertical hybrid structures, as shown schematically
in Fig. 1. Superconductivity can be proximity induced in the
graphene sample from a 2D van der Waals superconductor
[23], e.g., using a NbSe2 film supported on a standard
hexagonal boron nitride (h-BN) substrate [8]. NbSe2 is a good
superconductor with a high critical field (Bc2 ≈ 5 T at T =
1 K), remaining superconducting down to a few monolayers,
and exhibiting high-quality interfaces with graphene [13]. For
gating the device, another h-BN monolayer may be inserted,
as indicated in Fig. 1, at the expense of reducing the proximity
gap. The proximitized graphene flake can be probed by a
scanning tunneling microscope (STM), e.g., using a graphite
finger tip for ultrahigh-energy resolution [19].

Before turning to derivations, we briefly summarize our
main results which can be tested by established STM tech-
niques [24], transport experiments, and/or the local manipula-
tion of defect charges in the substrate [25]: (i) By means of an
exact solution of the Bogoliubov–de Gennes (BdG) equation,
we show that at the Dirac point, i.e., for a chemical potential
μ = 0, the energy spectrum of a proximitized graphene layer
in a homogeneous magnetic field B is independent of the
proximity gap �. The BdG spectrum thus reduces to the
familiar relativistic Landau level spectrum [4], in marked
difference to the time-reversal-symmetric case with a strain-
induced pseudomagnetic field where the spectrum depends
on � in a conventional manner [26–28]. (ii) Even though

the energy spectrum is independent of � at the Dirac point,
the corresponding eigenstates are sensitive to the pairing gap.
Clear experimental signatures of proximity-induced supercon-
ductivity in Landau-quantized graphene are predicted for the
energy-resolved local density of states (DOS) as well as for the
edge states present near the sample boundaries. Away from the
Dirac point, also the spectrum itself depends on �. (iii) Chiral
snakelike states are expected in graphene for � = 0 in the
presence of a weak electric field E perpendicular to B [29–31];
see Refs. [32,33] for recent experimental reports. We solve the
corresponding BdG equation for arbitrary � through a Lorentz
transformation of our solution for case (i), and thereby discuss
how snake states are affected by a pairing gap.

Model. We start from the BdG equation, H� = E�,
for proximitized graphene samples, as in Fig. 1. The BdG
Hamiltonian is represented by the matrix [3,20],

H =
(

vF

(
p̂ + e

c
A
) · σ + V �

�∗ −vF

(
p̂ − e

c
A
) · σ − V

)
,

(1)

with canonical momentum p̂ = (p̂x,p̂y) = −ih̄∇ and Fermi
velocity vF ≈ 106 m/s. Pauli matrices σx,y act in sublattice
space, while explicitly written 2 × 2 matrices refer to Nambu
(particle-hole) space throughout. In particular, H in Eq. (1)
acts on Nambu spinors �(r) = (u,v)T containing the spin-up
electronlike (spin-down holelike) wave function u (v) near the
K (K ′) valley, where u and v are spinors in sublattice space
and r = (x,y). A decoupled identical copy of H with opposite
spin is kept implicit [20]. The vector potential A = (0,Bx)
describes a perpendicular homogeneous magnetic field B in
Landau gauge, where we neglect the typically small Zeeman
splitting. The potential term in Eq. (1) also accounts for
the chemical potential μ through the shift V − μ → V , and
the homogeneous spin-singlet pairing amplitude � (taken
real positive below) comes from the proximity effect. Note
that intrinsic superconductivity in graphene [34,35] has not
been found experimentally. Finally, we neglect Coulomb
interactions, which are largely screened off by the proximity-
inducing superconductor. In what follows, we measure lengths
(wave numbers) in units of the magnetic length lB (1/lB), and
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FIG. 1. Sketch of a vertical hybrid structure in a perpendicular
magnetic field B, where the graphene flake is deposited on a
superconducting film (e.g., a few monolayers of NbSe2) supported
by an h-BN substrate. Inserting an h-BN monolayer between the
superconductor and the graphene sample allows one to gate the device
(gates not shown). The graphene layer may be probed by an STM tip,
as indicated. Alternatively, the stack could be closed by a top h-BN
monolayer.

energies in units of the cyclotron scale EB , where

lB =
√

h̄c/eB, EB = h̄vF /lB . (2)

Equation (1) tacitly assumes applied magnetic fields below
the critical field of the proximity-inducing superconductor
and that the Meissner effect is too weak to completely expel
the magnetic field from the proximitized graphene layer. In
principle, renormalized values of B and � entering Eq. (1) can
be obtained from self-consistency equations (cf. Refs. [36,37]).
However, since the coexistence of B and � has already been
observed in graphene [12,15,18] and other 2D electron gases
[38], we here take them as effective parameters and focus on
the physics caused by their interplay.

Chiral representation. It is convenient to reformulate Eq. (1)
using 4 × 4 Dirac matrices in the chiral representation, β =
( 0 −σ0
−σ0 0 ) and αj = (σj 0

0 −σj
), with j = 1,2,3 and identity

σ0 in sublattice space. Anticommuting γ ν matrices are then
given by γ 0 = β and γ j = βαj , where we also define
γ 5 = diag(σ0, − σ0). In Landau gauge, Eq. (1) is equivalently
expressed as

H = α1p̂x + α2(p̂y + xγ 5) + γ 5V − β�. (3)

Formally, Eq. (3) describes 2D Dirac fermions with mass
−� subject to pseudovector and pseudoscalar potentials: The
A and V terms involve γ 5. Given a BdG eigenstate �E =
(uE,vE)T with energy E � 0, a particle-hole transformation
yields a solution with energy −E,

�−E(r) = −γ 2�∗
E(r) =

(−σyv
∗
E(r)

σyu
∗
E(r)

)
. (4)

Therefore it is sufficient to find solutions with E � 0, and
Eq. (4) is a self-conjugation relation for E = 0. For a complete
set (uλ,vλ)T with energies Eλ � 0, the local DOS ρ(E) is
defined in a standard way [39] and can be measured by STM
techniques (see Fig. 1). Furthermore, the charge current density
J = (Jx,Jy)T corresponding to a given eigenstate is

Jλ(r) = −evF (u†
λσuλ + v

†
λσvλ). (5)

In what follows, we assume V = V (x) such that Eq. (3)
enjoys translation invariance along the y direction. BdG
solutions are given by �k(r) = eikyψk(x), where ψk(x) is an
eigenstate to Hk obtained from H in Eq. (3) with p̂y → k. We
now perform a partial (involving only the momentum in the y

direction) Bogoliubov transformation ψk(x) = Mkφk(x), with
the unitary 4 × 4 matrix

Mk = ak,+ − ak,−γ 2 =
(

ak,+ −σyak,−
σyak,− ak,+

)
,

ak,± =
√

Xk ± k

2Xk

, Xk =
√

k2 + �2. (6)

The BdG equation, H̃kφk(x) = Eφk(x) with H̃k = M−1
k HkMk ,

then involves the transformed Hamiltonian

H̃k = α1p̂x + α2(Xk + xγ 5) + k + γ 2�

Xk

γ 5V (x). (7)

For B = 0 and constant V , one has plane waves with
k = (kx,k) and energy Ek,± =

√
(±h̄vF |k| + V )2 + �2 [20],

where the DOS for E � 0 and V � 0 is given by

ρ(E) = 1

π (h̄vF )2
×

⎧⎪⎨
⎪⎩

0, E < �,
EV −(E2−�2)√

E2−�2 , � < E <
√

V 2 + �2,

E − V, E >
√

V 2 + �2.

(8)
Note that at the Dirac point, i.e., for V = 0, the usual BCS
square-root singularity is replaced by a finite jump at E = �,
with ρ(E) ∼ E for E > �.

Exact solution at the Dirac point. For V = 0, we next ob-
serve that H̃k in Eq. (7) coincides with the original Hamiltonian
in Eq. (3) for � = 0 and p̂y → Xk . As a consequence, the en-
tire spectrum coincides with the (k,�)-independent relativistic
Landau energies, Ek,n,s = En = √

2nEB with n = 0,1,2, . . .

[4]. On top of the k degeneracy, we have an additional
double degeneracy with s = ± (see below). Eigenstates follow
by the above Mk transformation from relativistic Landau
states. The latter are given by the Nambu spinors φk,n,+(x) =
[Fn(x + Xk),0]T and φk,n,−(x) = [0,σyFn(x − Xk)]T , where

sublattice spinors Fn(x) = ( 1√
2
)
1−δn,0 [sgn(n)ϕ|n|−1,iϕ|n|]T are

expressed in terms of normalized oscillator eigenfunctions
[40]. Note that the usual center-of-mass coordinate k is
replaced by Xk (−Xk) for the electron (hole) spinor component
[cf. Eq. (7)]. Using Eq. (6), eigenstates follow as

�k,n,s=±(r) = eiky

(±ak,±Fn(x ± Xk)
ak,∓σyFn(x ± Xk)

)
. (9)

In contrast to the spectrum, these states depend on � and thus
most observables will be sensitive to pairing. For given �k,n,s ,
Eq. (4) yields a mirror state �−k,−n,±(r) = ±γ 2�∗

k,n,±(r) with
E = −En. For n = 0, this relation connects +k and −k states,
and one can construct two (s = ±) 1D zero-energy Majorana
fields.

Density of states at the Dirac point. By using the states
in Eq. (9) and restoring units, we obtain an exact integral

140506-2



RAPID COMMUNICATIONS

PROXIMITY-INDUCED SUPERCONDUCTIVITY IN . . . PHYSICAL REVIEW B 96, 140506(R) (2017)

FIG. 2. Bar plots of the DOS weights Gn vs Landau energy En

for different �/EB [see Eqs. (10) and (11)].

representation for the DOS [41],

ρ(E) = e−(�/EB )2

πl2
B

δ(E) + |E|
π (h̄vF )2

∫ +∞−i0+

−∞−i0+

dλ

2πi

×ei(E2λ−�2 tan λ)/E2
B cot λ, (10)

which is singular and applies in the distribution sense. For
B → 0, the asymptotic approximation of Eq. (10) reproduces
Eq. (8) with V = 0. The bar plots in Fig. 2 show the
dimensionless DOS weights

Gn = πl2
B

∫ En+0+

En−0+
dEρ(E), En =

√
2nEB , (11)

characterizing the δ(|E| − En) peaks in the DOS and hence
also the degeneracy per unit area of the energy levels En.
For � → 0, Eq. (10) yields the standard Landau comb
with Gn = 1. Figure 2 illustrates the crossover between the
analytically accessible limits �/EB → 0 and �/EB → ∞,
where low-energy states with |E| < � become gradually
depleted as �/EB increases. The DOS in Fig. 2 also exhibits
oscillatory features in the energy dependence.

Edge states. Next, we consider a semi-infinite graphene
sheet (x < 0) with V = 0. The boundary is modeled by
imposing armchair conditions [3,4] along the line x = 0.
Solutions to the BdG equation are then given in terms of
parabolic cylinder functions Dp(z) [42]. The spectrum is
obtained by numerically solving det[W (E)] = 0, where the
matrix W follows with ε = E/

√
2, a± = ak,± [cf. Eq. (6)],

and D̃(±)
p = Dp[±

√
2(k2 + �2)] in the form [41]

⎛
⎜⎜⎜⎜⎜⎝

−a+εD̃
(−)
ε2−1 a+D̃

(−)
ε2 a−εD̃

(+)
ε2−1 a−D̃

(+)
ε2

a+D̃
(−)
ε2 −a+εD̃

(−)
ε2−1 −a−D̃

(+)
ε2 −a−εD̃

(+)
ε2−1

a−D̃
(−)
ε2 −a−εD̃

(−)
ε2−1 a+D̃

(+)
ε2 a+εD̃

(+)
ε2−1

a−εD̃
(−)
ε2−1 −a−D̃

(−)
ε2 a+εD̃

(+)
ε2−1 a+D̃

(+)
ε2

⎞
⎟⎟⎟⎟⎟⎠.

(12)
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FIG. 3. Edge states for a semi-infinite (x < 0) graphene sheet
with V = 0 and armchair conditions at x = 0. Main panel: Dis-
persion relation for � = 0.5EB (solid black) and for � = 0 (red
dotted curves). Inset: Current density Jy(x) (in units of −evF ) vs
position x/lB for the two degenerate eigenstates (solid and dashed
curves for s = + and s = −, respectively) with klB = 0.705. Blue
(green) curves are for �/EB = 0.5 (� = 0) with Ek,n,s/EB 
 0.2683
(
0.3520) [cf. the blue circle (green diamond) in the main panel].

The spectrum is shown in Fig. 3. For � = 0, we recover
earlier results [43–45] reporting chiral edge states. For � > 0,
electron- and hole-type edge states become mixed and the
edge state dispersion exhibits gaps near k = 0. Turning to the
current density (5), the current flows along the y direction only,
Jx = 0. The respective profile Jy(x) is illustrated for the two
degenerate states with k = 0.705 and lowest energy in the inset
of Fig. 3. Since the current density has a pronounced peak near
x = 0 and a specific sign, we have unidirectional edge states
also for � > 0. However, the overall current becomes smaller
with increasing � (cf. Fig. 3).

Going away from the Dirac point. Let us briefly address
the case V �= 0, where numerical diagonalization of the BdG
equation using Landau states as a basis shows that a (chemical)
potential shift causes dispersion (see Fig. 4). Notably, most
features in Fig. 4 can be understood by expanding around
the V = 0 solution (9) using the term ∼V in Eq. (7) as a
small perturbation. Writing Ek,n,s = En + δEk,n,s , first-order
degenerate perturbation theory yields the correction

δEk,n,± = ±|V |
Xk

√
k2 + �2S2

k,n, (13)

where the overlap between Landau states Fn centered at
+Xk and −Xk is encoded by Sk,n. Explicitly, we find Sk,0 =
e−X2

k and Sk,n>0 = 1
2e−X2

k [Ln−1(2X2
k ) + Ln(2X2

k )] with the
Laguerre polynomials Ln [42]. For |k| � �, Eq. (13) yields a
uniform shift ±|V | of all Landau energies, while for k = 0, the
correction simplifies to ±|V S0,n|, where S0,n oscillates when
changing n.

Crossed electric and magnetic fields. We finally also include
an in-plane electric field E by putting V = eEx. With the
dimensionless parameter ε = (c/vF )E/B, we consider the
regime |ε| < 1. The corresponding � = 0 problem has been
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FIG. 4. Dispersion relation for an infinite graphene sheet with
potential V = 0.2EB for � = 0.5EB (main panel) and � = 2EB

(inset). Since E−k,n = Ek,n, only k � 0 is shown. Solid black
and dashed blue curves refer to numerical diagonalization and
perturbative results [Eq. (13)], respectively.

solved analytically by a Lorentz boost into the reference frame
with vanishing electric field (E ′ = 0) [29]. Remarkably, such
a strategy also admits an exact solution for � �= 0: First,
we write down the spinor transformation law, ψ = Sψ ′ with
S = cosh(η/2) − sinh(η/2)γ 0γ 2, where the Lorentz angle
η = tanh−1 ε defines the frame with E ′ = 0. Next, using the
parameter ζ ≡ (1 − ε2)1/4, we rescale (i) the x coordinate
x ′ = ζx, (ii) the wave number k′ = (k + εE)/ζ 3, (iii) energy
E′ = (E + εk)/ζ 3, and (iv) the proximity gap �′ = �/ζ .
With these rescalings and X′

k = √
k′2 + �′2 [cf. Eq. (6)], the

BdG equation in the new frame coincides with the V = 0
problem solved above. Transforming the solution, Eq. (9),
back to the laboratory frame and restoring units, we obtain the
�-independent spectrum

Ek,n,s = −h̄εvF k + sgn(n)
√

2|n|ζ 3EB , (14)

where n runs over all integers and k is restricted to those values
with Ek,n,s � 0. Each level is twofold degenerate (s = ±), and
the corresponding eigenstates are

�k,n,±(r) = eikyζ 3/2

[
cosh(η/2)

(±ak′,±Fn(x ′ ± X′
k)

ak′,∓σyFn(x ′ ± X′
k)

)

+ sinh(η/2)

(∓ak′,±σyFn(x ′ ± X′
k)

ak′,∓Fn(x ′ ± X′
k)

)]
. (15)

States with negative energy follow from Eq. (4), and for ε = 0,
Eq. (15) reduces to Eq. (9).

In the normal (� = 0) case, so-called snake states exist
near the interface between the V > 0 and V < 0 regions
[30–33], which are semiclassically described by snakelike
orbits propagating along the interface (here the y direction)
with velocity cE/B = εvF . In the superconducting case (� >

0), the spectrum in Eq. (14) suggests that unidirectional
snake states remain well defined and propagate with the same
snake velocity as for � = 0. In particular, for n = 0, these
states are localized near the line x = 0. Computing the total
charge current carried by a given state along the y direction,
I = ∫

dxJy(x), Eqs. (5) and (15) yield the analytical result
I (�)/I (0) = 1/

√
1 + (�′/k′)2. Similar to the above edge

state case, we thus find that the magnitude of the current
becomes gradually suppressed with increasing �.

Conclusions. We have studied the electronic properties of
graphene monolayers in an orbital magnetic field when also
proximity-induced pairing correlations are present. Remark-
ably, at the Dirac point, the energy spectrum is independent of
�, but observables may still show pronounced pairing effects
since eigenstates depend on �. We hope that our work will
stimulate experimental and further theoretical work on the
coexistence of magnetism and superconductivity in graphene.
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