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The low-energy properties of a homogeneous one-dimensional electron system are completely specified by
two Tomonaga-Luttinger parameters Kr and vs . In this paper we discuss microscopic estimates of the values
of these parameters in semiconductor quantum wires that exploit their relationship to thermodynamic proper-
ties. Motivated by the recognized similarity between correlations in the ground state of a one-dimensional
electron liquid and correlations in a Wigner crystal, we evaluate these thermodynamic quantities in a self-
consistent Hartree-Fock approximation. According to our calculations, the Hartree-Fock approximation ground
state is a Wigner crystal at all electron densities and has antiferromagnetic order that gradually evolves from
spin-density wave to localized in character as the density is lowered. Our results for Kr are in good agreement
with weak-coupling perturbative estimates Kr

pert at high densities, but deviate strongly at low densities, espe-
cially when the electron-electron interaction is screened at long distances. Kr

pert;n1/2 vanishes at small carrier
density n, whereas we conjecture that Kr→1/2 when n→0, implying that Kr should pass through a minimum
at an intermediate density. Observation of this nonmonotonic dependence could be used to measure the
effective interaction range in a realistic semiconductor quantum wire geometry. In the spin sector we find that
the spin velocity decreases with increasing interaction strength or decreasing n. Strong correlation effects make
it difficult to obtain fully consistent estimates of vs from Hartree-Fock calculations. We conjecture that
vs /vF}n/V0, where V0 is the interaction strength, in the limit n→0.
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I. INTRODUCTION AND OVERVIEW

It has been known for some time that one-dimensional
~1D! metals are different from their higher-dimensional
Fermi-liquid cousins.1,2 It is generally believed that at low
energies and long wavelengths, one-dimensional electron
systems can, under very general circumstances, be described
as Tomonaga-Luttinger ~TL! liquids,3 although it has nearly
always been difficult to provide incontrovertible experimen-
tal evidence. Interest in TL liquids has been heightened in
recent years by new physical realizations, including quantum
Hall edge systems,4,5 carbon nanotubes,6,7 and semiconduc-
tor quantum wires8,9 in particular. Like Fermi-liquid theory,
TL theory can be used to relate low-temperature, low-
frequency, long-wavelength properties to a small number of
parameters in which the microscopic physics of particular
systems is encoded. For example, TL theory predicts that for
continuous one-channel quantum wires, the quantized con-
ductance is renormalized by the factor10 Kr at frequencies
larger than11 vF /L (L is the wire length and vF the Fermi
velocity!. Surprisingly, low-energy orthogonality catastro-
phes lead to spectral functions that follow power laws12,5
specified in terms of the same parameter. In many cases ~up
to logarithmically slowly varying prefactors13,14 associated
with the presence of marginal operators such as backscatter-
ing in the spin sector! nonuniversal power laws specified by
TL theory parameters are also predicted for the behavior of
correlation functions at distances much larger than the spatial
range of interactions. ~The strictly infinite range Coulomb
interaction case requires special considerations.15,16! Micro-
scopic theory still has an important role at low energies,
0163-1829/2002/65~8!/085104~11!/$20.00 65 0851
however, in estimating the values of these parameters. This is
especially important because the distinction between Fermi
liquids and Luttinger liquids on the basis of a set of experi-
mental data over a limited temperature or energy range is
sometimes subtle, and the range of energies over which TL
behavior is expected is often not accurately known. Approxi-
mate values of expected TL parameters can play a role in
determining whether or not an experimental result reflects
TL behavior.9 In addition, as this approximate calculation
shows, the problem of understanding the value of the two
independent TL parameters of a homogeneous one-
dimensional electron system is a challenging many-body
problem that is interesting in its own right.

Four TL parameters characterize the low-energy proper-
ties of interacting spinful electrons moving in one channel.
For the charge (n5r) or spin (n5s) sector, the parameter
Kn fixes the exponents for most of the power laws and vn is
the velocity of the long wavelength excitations. Symmetries
in the charge or in the spin sector reduce the number of
independent parameters in the case of a one-dimensional
electron gas system: spin rotation invariance enforces17 Ks

51 while Galilean invariance implies that18 vr5vF /Kr .
The latter identity does not apply, for example, in lattice
models since it requires continuous translational invariance;
in that case vr and Kr must be determined independently.
This leaves Kr and vs as the only two independent TL pa-
rameters for single-channel semiconductor quantum wires,
since they can be accurately described by a continuum enve-
lope function approximation.

In Fermi liquids a traditional and successful strategy has
separated the phenomenological application of Fermi liquid
©2002 The American Physical Society04-1
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theory from the microscopic evaluation of its parameters. To
date most theoretical TL activity has focused on phenomeno-
logical applications; confident interpretation of experiments
will require reliable microscopic estimates of the theory’s
parameters for the various physical systems of current inter-
est. The evaluation of Fermi-liquid parameters in two- and
three-dimensional metals is one of the classic early topics in
many-electron physics, with considerable recent progress
coming from quantum Monte Carlo calculations.19 Still, use-
ful physical insight and reasonable accuracy have resulted
from less computationally cumbersome approaches. In this
paper we discuss what can and cannot be learned about the
values of TL parameters in semiconductor quantum wires,
and the physics of their dependencies on system geometry
using unrestricted Hartree-Fock estimates of ground state en-
ergies. The Hartree-Fock approximation can yield very reli-
able estimates for the boundary exponents20 describing tun-
neling into the end of quantum wires and, as a microscopic
approach, gives information about quantities not reliably ac-
cessible in the TL formalism, including absolute values for
the prefactors of power laws.

For noninteracting electrons the TL parameter Kr51.
With repulsive interactions its value should decrease and go
to zero in the limit of very strong or long-ranging16 interac-
tions. For the microscopic interaction potential V(x2x8) the
formula

Kr
215A114mV~k50 !/p2n ~1!

is commonly used in the literature ~cf., for example, the first
reference of Ref. 5!. It depends on the carrier density n, the
effective mass m, and the k50 Fourier component of the
interaction

V~k !5E dx V~x !cos kx . ~2!

Relation ~1! can be motivated by lowest-order perturbation
theory, or by the random phase approximation,21 though it
misses the Fock contribution for spinful electrons in one-
dimension. Any naive higher-order perturbative contribution
is divergent; only the infinite subsums that are conveniently
captured using a perturbative renormalization approach are
finite.22 Equation ~1! completely ignores the renormalizing
influence of short-wavelength modes in determining the ac-
tual values of the effective interaction. Higher-order pertur-
bative renormalization group calculations demonstrate how
the interaction parameters are coupled and renormalize as
short-wavelength contributions are integrated out.23 One im-
portant example is backscattering, across the Fermi line, of
opposite-spin fermions, the so-called g1 process, that spoils
the separate conservation of the number of left- and right-
moving particles of a given spin and therewith is not in-
cluded in the TL model. This interaction, which is finite in
leading-order perturbation theory, scales to zero during
renormalization, restoring the TL at low energies.24 Even for
a model of spinless electrons, the parameters will rescale at
low energies, reflecting other irrelevant operators that are
omitted in the TL model such as nonlinear dispersion of the
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kinetic energy in the microscopic Hamiltonian.3 As a conse-
quence Eq. ~1! cannot be used to estimate Kr when interac-
tions are strong.

How interactions influence the spin sector is even less
certain. According to textbook knowledge25 the spin velocity
would not be altered by interaction forces that act only on
spatial coordinates and thus not in the spin sector. Other
work15 includes exchange contributions in the Bose form of
the Hamiltonian in a way violating the SU~2! invariance
property, Ks51. On the other hand, changes in vs /vF are
quite crucial to various physical properties. It influences, for
instance, the magnetic susceptibility, the g factor, and spin
transport properties. The latter are particularly important for
potential one-dimensional spintronic devices.26 In one-
dimensional channels,27 for example, the spin conductance28
and Rashba precession in the presence of spin orbit
coupling29 depend on vs . Most directly vs can be measured
by inelastic Raman scattering in the ‘‘depolarized’’ configu-
ration with perpendicularly polarized incident and outgoing
light.30,31

To date relations between the microscopic electron-
electron interaction and resulting TL parameters have been
established for models of primarily theoretical interest, such
as the Kondo lattice model,32 the Hubbard model,33 and the
t-J model.34 For the latter two models the ground state en-
ergies are known exactly, either analytically in certain limit-
ing cases or by solving the Bethe-ansatz equations numeri-
cally. For these repulsive short-range interaction models Kr

is found to be confined to the range 1/2<Kr<1. In the limit
of either infinite interaction strength or vanishing particle
density it has been argued33 that these models are equivalent
to noninteracting spinless fermions with kF being replaced by
2kF so that Kr→1/2 in either of these limits in order to
recover the correct asymptotic decay of the density-density
correlation function. For the t-J model, TL parameters away
from the supersymmetric point (J/t52) have been obtained
by using ground state energies from exact diagonalization
calculations.35 The Sutherland model for spinless fermions,
where V(x)5l/x2, has proven to be a TL at low energies.36
The asymptotic decay of its one-particle Green’s function
implies that Kr52/(11A112l) with 1>Kr>0 for repul-
sive interactions, l.0. The compressibility of this system is
proportional to Kr

2 and satisfies Eq. ~3! below. For quantum
wires with long but finite-range Coulomb interactions the
values of the TL parameters have been determined previ-
ously by extensive quantum Monte Carlo calculations.37
However, the limits on the number of particles and lattice
points in real space for which these calculations can be car-
ried out in a reasonable time places limits on the range of
particle densities over which accurate Monte Carlo results
can be obtained. In particular the low-density regime where
interactions are strongest is difficult to reach. In this work we
also exploit the thermodynamic relations between the uni-
form static compressibility k and the TL parameter in the
charge sector. For quantum wires we have ~cf. Refs. 3 and
33!
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where the last equality uses Galilean invariance.
Density-density correlation function calculations per-

formed within the TL model have been used15 to show that
long-range interactions V(uxu);uxu2a put the one-
dimensional fermion system ground state into a Wigner crys-
tal when a,1, irrespective of the strength of V. The Cou-
lomb case, a51, is marginal and density-density correlations
decay extremely slowly, slower than any power law at large
distances. This observation suggests that the ground state
energy E0 and therefore any T50 thermodynamic property
should be accurately estimated by the unrestricted Hartree-
Fock approximation, for which the ground state is a Wigner
crystal. At high densities it is known25 that the Hartree-Fock
~HF! approximation reproduces the leading order perturba-
tive renormalization group ~RG! result for Kr . Since it spon-
taneously breaks translational symmetry, the HF approxima-
tion correlation functions have infinite range. The tails of the
correlation functions are therefore given slightly incorrectly.
Much more important for the energy however, is the accurate
estimate of the magnitude of the short-distance correlation
function oscillations, illustrated in Fig. 1. The dominant pe-
riods for charge and spin densities are in agreement with TL
model calculations, which are however, not able to estimate
the amplitude of the oscillations. In the real correlation func-
tion, these oscillations are multiplied by an envelope func-
tion whose decay properties are inaccessible to Hartree-Fock
theory but can be calculated from the TL theory. The accu-
racy of self-consistent Hartree-Fock energy estimates, par-
ticularly at low densities, has previously been established in
other interacting electron systems.38

We compare our results for ground state energies and
compressibilities k with estimates obtained within the har-
monic approximation to the classical Wigner crystal @see
Eqs. ~6! and ~7!# and within perturbation theory.39 The per-
turbative expression ~12! we use ~see below! for the charge
sector TL parameter Kr turns out to be surprisingly accurate
over a wide range of carrier densities including typical ex-
perimental ones. Only below densities corresponding to val-
ues rs.1.3 of the usual rs parameter used to measure the
interaction strength in metals ~see below! do we find smaller
k in the self-consistent HF solution than given by Eqs. ~12!
and ~3!. At even lower densities n&1/R , where R is the long
but finite range discussed below that we use for the electron-

FIG. 1. Charge densities n↑(x) ~solid! and n↓(x) ~dashed! as a
function of position along the wire x in units of the mean electron
spacing for kFd50.15 and R/d55.66. We argue that these charge
densities in the broken symmetry Hartree-Fock states are a good
approximation to typical configurations in the fluctuating one-
dimensional electron liquid that does not have broken translational
symmetry.
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electron interaction, Eq. ~12! predicts that k goes to zero
whereas HF theory yields a finite limiting value after k has
passed through a minimum. This minimum is also repro-
duced by the harmonic approximation. In the latter approxi-
mation, however, k diverges as n→0. We shall give argu-
ments supporting the conjecture that the true Kr stays finite
as n→0 and indeed that Kr→1/2 in this limit.

We also analyze the spin sector and compare different
approaches in the attempt to determine the spin velocity vs .
The simplest estimate is again low-order perturbation theory
for the magnetic susceptibility. Other estimates can be ob-
tained by starting with the assumption that the system is
close to an antiferromagnetic Heisenberg spin chain at low
densities. It turns out that the estimates for vs that follow
from different plausible schemes differ substantially. Further-
more, at smaller particle densities they are not in good agree-
ment with earlier Quantum Monte Carlo ~QMC! estimate.37
Although we are able to conclude that vs is small at low
densities, our results for the spin sector do not substantially
improve on existing Monte Carlo results.

II. MICROSCOPIC INTERACTION

Now we discuss the form of realistic interactions V along
the x direction of a quantum wire. At interparticle separations
ux2x8u larger than the diameter d of the wire V(ux
2x8u*d)5e2/eux2x8u will be of the Coulomb form, irre-
spective of the detailed shape of the transversal potential. If
the material enclosing the wire is insulating with dielectric
constant e8, the Coulomb form still holds at larger distances,
but with dielectric e replaced by40 e8. We assume here equal
dielectric constants e;e8, the case that applies to gated8 as
well as to cleaved edge overgrowth structures.9 Eventually, at
an interparticle separation exceeding the distance R to the
closest metallic structures the interaction will be screened.
This metallic screening can be supplied by carriers in nearby
metallic gates, including those used to define the quantum
wire. Assuming that the screening plane and the quantum
wire are parallel, V(ux2x8u.R);1/ux2x8u3 because of the
formation of dipoles from image charges. The interaction ~4!
below accounts for this cutoff at large particle separations.

At distances uxu&d shorter than the wire width, the pre-
cise transverse form of the electronic wave function influ-
ences V(uxu). For example, in 2D heterostructures all elec-
trons share a common growth direction wave function. If this
is also assumed for the in-plane direction perpendicular to
the wire axes and if this latter wave function is taken as a
harmonic oscillator ground state, we have41 V2D(x)
5(e2/2Aped)ex2/8d2K0(x2/8d2), where K0 denotes a Bessel
function. It is more realistic to include finite thickness in
both confined directions. For example, for 3D wires with
circular cross sections, a model that might be appropriate for
cleaved-edge-overgrowth systems, we have42 V3D(x)
5(e2/A2/ped)ex2/2d2erfc(x/A2d) again using harmonic os-
cillator ground states of widths d/A2, now for both of the
transverse directions. Neither of these forms is smooth at x
50, an artifact of assuming factorized wave functions. At
short distances, corresponding to high energies, the factoriza-
4-3
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tion assumption needs to be refined. It leads to the
unphysically slow decay of the Fourier transforms
V̂2D(k)5(e2/evF)ek2d2/2K0(k2d2/2) and V̂3D(k)5(e2/evF)
3ek2d2/2E1(k2d2/2) as seen in Fig. 2, where E1 is the expo-
nential integral. Also included in Fig. 2 is the more realistic
form,

V̂~k !5
2

aBkF
@K0~kd !2K0~kAd214R2!# , ~4!

which accounts for the image potential term from a remote
screening plane separated by R@d . Its real space form is
displayed in Eq. ~A4!. This interaction remains finite for k
→0 and decreases more quickly for large k and will be used
in the present work. Here and in the following we measure
the interaction in units of the Fermi velocity so that V̂ is
dimensionless in Eq. ~4!. Its strength, in comparison with the
kinetic energy, scales with the dimensionless parameter rs
ª1/(2naB)5p/(4kFaB) depending on density n and the ef-
fective Bohr radius aB . In our calculations we assume aB
52d .

Thus, two parameters

R/d and kFd ~5!

characterize the range and the strength of our model interac-
tion ~4!, respectively. They both can be extracted quite reli-
ably from experiment, R from the sample layout and d from
the energy ;1/md2 of intersubband excitations. Typical dis-
tances to metallic gates and typical wire width, as reported,
e.g., in Refs. 8 and 9, correspond to values for R/d ranging
from 5 to 14. Typical single-wall carbon nanotube systems,
on the other hand, would correspond to much larger R/d
values because of their extremely small diameters. Many of
our calculations are for R/d55.66 or 35.36. Note also that
electron densities should be sufficiently low (kFd,A2
within the parabolic approximation for the transverse con-
finement! to prevent occupation of the second subband.

III. GROUND STATE ENERGY

According to Eq. ~3! we need to calculate ground state
energies for different particle densities. In this work we em-
ploy the unrestricted Hartree-Fock approximation the details

FIG. 2. Fourier transforms of three different forms of micro-
scopic electron-electron interactions, V̂(k)5V(k)/vF , as described
in the text. Solid line, the form ~4! we use in the present work;
dashed line, the 2D heterostructures model; dash-dotted line, the 3D
cylindrical case intended for cleaved-edge-overgrowth systems.
08510
of which are described in Appendix A. Results of these cal-
culations are included in subsequent figures.

The close proximity to the Wigner crystal ~WC! and the
Bose character of all of the low-energy excitations suggests
comparison with the ground state energy density of the har-
monic crystal in 1D,

E0
WC5E0

classical1
1
2E2kF

kF dk
2p

v~k !. ~6!

Here,

E0
classical5

1
2L (

iÞ j
V~ ui2 j up/2kF! ~7!

is the classical contribution and the zero point energy follows
from the phonon dispersion

v2~k !5
1
m (

j51

`

V9~ jp/2kF!@12cos~ jkp/2kF!# ~8!

of harmonic excitations. The primes denote derivatives with
respect to the argument. Both E0

classical and E0
WC provide rig-

orous lower bounds to the true ground state energy since the
quartic term of the Coulomb interaction is positive when
expanded in a power series and the fermionic antisymmetry
constraint, ignored by Eq. ~6!, increases the true fermionic
energy further. This latter observation remains true also for
spin-carrying electrons since spin cannot provide complete
antisymmetry for symmetric spatial wave functions for more
than two particles.

Figure 3 also includes the lowest-order perturbation
theory estimate

E0
pert5

vFkF
2

3p
1

2vFkF
2

p2 V̂~0 !2
vF

2p2E0
2kF

dk~2kF2k !V̂S k
kF

D ,
~9!

obtained by taking the Hamiltonian’s expectation value in
the noninteracting electron state, to obtain the positive Har-
tree and the negative exchange contribution. The variational
principle ensures that Eq. ~9! is a rigorous upper bound to the
ground state energy. The true ground state energy must lie
between these two bounds.

The energy densities are plotted in dimensionless units,

e0~kF!ª
E0 /L
kF
3/m

, ~10!

which have the value 1/3p without interactions. The HF en-
ergies e0

HF , seen in Fig. 3~a! for R/d55.66 and in Fig. 3~b!
for R/d535.36, approach this value in the weakly interact-
ing high-density limit, kF→` .

For densities above kFd*0.5, corresponding to rs&0.8,
e0
HF agrees quite well with the perturbative estimate ~9!. This

is despite the fact that the self-consistent charge-density
modulation already shows significant amplitude in this re-
gime as seen in Fig. 5 below.

Below kFd&0.3 (rs*1.3), the three approximations start
to spread apart significantly. As kF→0. perturbation theory
4-4
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result diverges, e0
pert;1/kF , while e0

WC;kF
1/2 goes to zero.

The mean field result e0
HF approaches a finite value, a result

which seems plausible since the zero point quantum fluctua-
tion energy exceeds the classical interaction energy of the
Wigner crystal at low densities for interactions decaying
faster than ;1/ux2x8u2 at large particle separations. We
speculate that realistic quantum wires, which never have
strictly infinite-range interactions, always cross over into the
hard sphere gases at sufficiently low densities. For this sys-
tem it is known that the ground state energy approaches e0
→4/3p'0.4244 ~cf. Refs. 3 and 43!, irrespective of the par-
ticle type, fermionic or bosonic, and irrespective of the par-
ticle’s spin. The ‘‘radius’’ of the hard spheres is unimportant
when kF→0. Among the approximations discussed above
e0
HF is the only one that stays finite in this limit, though the

limit it approaches is larger than 4/3p .

IV. TL PARAMETER Kr

Figure 4 shows

1/Kr5S p

2 $kF
2e09~kF!16@kFe08~kF!1e0~kF!#% D 1/2 ~11!

versus kFd for R/d55.66 @Fig. 4~a!# and for R/d535.36
@Fig. 4~b!#. Equation ~11! follows from relation Eq. ~3! to-
gether with Eq. ~10!; the primes again denote derivatives

FIG. 3. Ground state energy densities e0(kF)5(E0 /L)/(kF
3/m)

for ~a! R/d55.66 and ~b! R/d535.36 in the HF method ~solid
line!. The perturbative estimate @Eq. ~9!, long-dashed line# estab-
lishes an upper bound while the harmonic chain estimates, omitting
@Eq. ~7!, dotted line# or including quantum fluctuations @Eq. ~6!,
dashed line# both establish lower bounds to the true ground state
energy.
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with respect to the arguments. Also included in these figures
is the result from expression ~1! and the perturbative estimate

1/Kr
pert5$11@2V̂~k50 !2V̂~k52kF!#/p%1/2, ~12!

which follows from Eqs. ~3! and ~9!. Note that only this
form, with the Fock term included, satisfies the physical re-
quirement that spinless fermions cannot ‘‘feel’’ contact inter-
actions and that therefore Kr equals unity for this model.
Since the factor of 2 in Eq. ~12! is absent in the spinless case,
Eq. ~12! indeed fulfills this Pauli principle requirement, un-
like Eq. ~1!. Figure 4 also includes 1/Kr

cl and 1/Kr
WC , calcu-

lated from the corresponding harmonic crystal energy esti-
mates of Eqs. ~7! and ~6! using Eq. ~3!. The result for Kr

WC

has been obtained first in Ref. 44.
Over a wide range of densities, including the typical ex-

perimental regime, all of these approximations coarsely
agree, though none of them can provide a rigorous bound on
the exact compressibility or Kr . As for the ground state en-
ergies, the approximations start to deviate severely from one
another at smaller densities, corresponding to rs*1.5. Both
HF and harmonic estimates show nonmonotonic behavior of
1/Kr as a function of density, in agreement with recent quan-
tum Monte Carlo37 calculations. If, as we have conjectured,
e0 approaches a constant for kF→0,

Kr~kF→0 !5@3pe0~kF→0 !#21/2. ~13!

Note that the HF compressibility approaches a constant in
the low-density limit. Conjecturing again that at mean par-
ticle separations exceeding the interaction range, kF!p/2R ,
the system crosses over into the hard core Bose gas with
e0→4/3p , Eq. ~13! would yield

FIG. 4. 1/Kr versus kFd for ~a! R/d55.66 and ~b! R/d535.36.
The same approximations are included as in Fig. 3, together with
the commonly used formula ~1!, dash-dotted line.
4-5
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Kr→1/2. ~14!

We note, for example, that the Hubbard model approaches
~14! at small fillings, independent of the interaction strength
U. The same holds true for the Fermi gas with contact
repulsion.3,45 It is an important observation that the limiting
value Kr

HF(kF→0)'0.29 to 0.35 for R/d550, . . . ,8 clearly
exceeds 1/8, which would be the limiting value for the ex-
tended Hubbard model46 that has both on-site and near-
neighbor interactions. On the other hand, as seen in Fig. 4,
the minimum value for Kr at about kFR;1 is considerably
smaller than 1/2, so that, contrary to the Hubbard model, the
limit ~14! would have to be approached from below with
decreasing carrier densities in quantum wires.

Upon inspecting Fig. 4 more closely a regime can be
identified at densities somewhat above the maximum of
1/Kr

HF , where 1/Kr
HF exceeds 1/Kr

pert . As seen in Fig. 5, the
relative increase in stiffness appears along with a significant
4kF-periodic contribution to the charge-density modulation.
Figure 5 shows the two lowest Fourier coefficients

% j[%↑~q5 j2kF!5~21 ! j%↓~q5 j2kF!5%2 j ~15!

for j51,2 in units of the mean density %052kF /p . In view
of Eq. ~15!, which follows from Eq. ~A7! of Appendix A,
4kF-periodic modulations of the charge density %↑(x)
1%↓(x) are given by the j52 contribution in Fig. 5. The
appearance of a substantial j52 Fourier component, at kFd
;0.5, marks the crossover from spin-density wave to Wigner
crystal self-consistent solutions of the HF equations. A simi-
lar conclusion has been drawn from the extremely slow spa-
tial decay of the density-density correlation function in the
presence of long-range interactions15 and from recent quan-
tum Monte Carlo studies.37 With smaller 1/R this regime of
Wigner crystal-like states marked by enhanced stiffness ex-
tends down to smaller densities and becomes more pro-
nounced. The variation of 1/Kr

HF with R is depicted in Fig. 6
for the density kFd50.15. At kFR@1 all of the approximate
estimates are consistent with the logarithmic increase 1/Kr

;AlnR/d suggested by perturbation theory. For kFR@1, the
electrostatic energy is so dominant that the energy and Kr

are relatively insensitive to correlations.

FIG. 5. Amplitudes for the 2kF- and 4kF-periodic components
of the charge-density modulations r1 and r2 versus kFd for R/d
535.36 in units of r052kF /p .
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V. SPIN SECTOR

As mentioned already in the Introduction, it is much more
difficult to estimate how interactions influence the spin sec-
tor, particularly its low-energy TL parameter vs , than it is to
estimate the charge sector parameter. In the model originally
proposed by Luttinger2 with left- and right-going particles
treated as distinguishable, the spin velocity is
unrenormalized,47 vs5vF , because the exchange term van-
ishes, leaving magnetic properties of the system independent
of interactions. For the Hubbard model, on the other hand, it
is known that the spin velocity48 is dependent on interactions
and particle density, n, vanishing like n2 at small density n
for any finite interaction strength. The spin TL parameter is
related to a thermodynamic quantity, the magnetic suscepti-
bility, by49

x[4@p2vF]m
2 e0~m !#215

2Ks

pvs
, ~16!

where m5(n↑2n↓)/n is the magnetization per particle and
e0 is the dimensionless ground state energy density as de-
fined in Eq. ~10!. Relation ~16! actually holds for any inter-
acting electron system in the single-channel TL phase.50,17
Evaluating e0(m) for the microscopic model perturbatively
would give

ṽs /vF512V̂~2kF!/p , ~17!

using Eq. ~16! and Ks51. Alternatively one also could im-
pose a spin current l5(nR↑2nR↓2nL↑1nL↓)/n per particle
@nRs (nLs) is the right- ~left-! moving density of spin s# and
measure the change in ground state energy

x l[4@p2vF] l
2e0~ l !#215

2
pvsKs

. ~18!

Perturbatively this gives an unchanged spin velocity, a result
that simply reflects the fact that lowest-order perturbation
theory cannot describe drag effects51 between the density
fluctuations of opposite spins and thus leaves the system Gal-
ilean invariant in spin sector. Solving Eqs. ~16! and ~18! for
Ks yields Ks.1 as a perturbative result for repulsive inter-
actions that would contradict SU~2! invariance in a TL

FIG. 6. 1/Kr versus R/d for kFd50.15 in the HF method ~solid
line!, perturbation theory @Eq. ~12!, long-dashed line#, and for the
harmonic chain @Eq. ~7!, dashed line and Eq. ~6!, dotted line#.
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model. To enforce the SU~2! symmetry we can combine Eqs.
~16! and ~18! and solve for vs by eliminating Ks . The result,

vs
pert5

2
p

~xx l!
21/25vFA12V̂~2kF!/p , ~19!

indeed agrees clearly better with the QMC data37 than Eq.
~17!. Equation ~19! is included in Figure 8. At V̂(2kF)5p
the perturbative estimate vs

pert vanishes and for smaller kF the
Fock term in Eq. ~19! favors a spin-polarized ground state.
This result contradicts very general arguments that guarantee
a nonmagnetic ground state for any nonsingular pair interac-
tion potential in one dimension.52 The true spin velocity
should stay positive and approach zero only at vanishing
particle density.

That the extraction of spin velocities from HF calculations
is less reliable than the extraction of charge TL parameters is
already clear because of the incorrectly broken spin-
rotational invariance in the HF ground state. In the HF spin-
density wave state we evaluate the spin susceptibility by po-
larizing spins along the quantization axes. We can consider
only cases with rational ratios of the spin-up and spin-down
carrier densities. Because the periods of the spin-up and spin-
down density waves differ in these solutions, it is more con-
venient to use a real space basis, discretizing space c(x
5x i)→c(i) as described in Appendix B. Self consistent so-
lutions are shown in Fig. 7. At finite magnetization this struc-
ture contains now ‘‘defects,’’ reflecting the loss of the
4kF-periodic component in the charge-density modulations.53
At least N544 electrons have been considered on M5401
grid points, the smaller particle densities are based on N
584 and M5801 to avoid lattice artifacts to a high accu-
racy. These sizes are clearly beyond what currently can be
treated with numerical many-body approaches, such as quan-
tum Monte Carlo, but pose no problem here. Spin velocities
obtained from E0

HF(m)/L by virtue of Eq. ~16! are included
in Fig. 8. Below kFd50.2 it is very difficult to extract posi-
tive spin velocities. We see that self-consistency pushes the
point of vanishing spin velocity and the ~erroneous! transi-
tion into a ferromagnetic ground state down to smaller den-
sities compared to the perturbative estimate in Eq. ~19!, but
the transition still occurs.

FIG. 7. Charge densities n↑(x) ~solid line! and n↓(x) ~dashed
line! along the wire x in units of the mean electron spacing, as in
Fig. 1 but for finite magnetization m51/6 per spin.
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An alternative attempt to estimate the spin velocity starts
from the argument that the electron spin sector would evolve
at low particle densities towards that of an antiferromagnetic
Heisenberg spin chain, as suggested by the staggered spin
density profile found in the mean field solution, Fig. 1. This
argument is also suggested by the pronounced antiferromag-
netic correlations found in the TL liquid spin sector, particu-
larly for long-range interactions15 and in finite pieces of one-
dimensional wires.54 Antiferromagnetic spin chains are
known to represent microscopic models, such as the Hubbard
model, at low energies and have been intensively investi-
gated, for instance, by employing manifestly SU~2! spin ro-
tation invariant non-Abelian bosonization.14,55

In the antiferromagnetic Heisenberg chain, spin excita-
tions ~magnons! move at velocity

vs5p2J/4kF ,

where J is the nearest-neighbor coupling constant. One pos-
sibility to guess the magnitude of J is to compare the HF
estimates for the ground state energy e0

HF of unpolarized
electrons with the ground state energy e0

pol of fully spin-
polarized electrons. For the antiferromagnetic Heisenberg
chain this energy difference, J(11ln 2) per spin,56 is known
exactly. Equating the energy differences gives

J5
p

11ln 2
vFkF

2 ~e0
pol2e0

HF! ~20!

from which

vs
J /vF5p3~e0

pol2e0
HF!/8~11ln 2 ! ~21!

follows. Equation ~21! is included in Fig. 8. The transition
into the spin-polarized ground state occurs at kFd50.19 (rs
52.07) for R/d55.66. Equation ~20! can be checked for
consistency in the noninteracting limit, kF→` , where vs

→vF . Magnons would move at velocity vF if J
54vFkF /p250.41vFkF . On the other hand, (e0

pol2e0
HF)

→1/p in this limit so that Eq. ~20! yields J50.30vFkF . In
view of the fact that the weak-interaction limit is poorly de-
scribed by the antiferromagnetic spin chain this picture
seems amazingly consistent.

Recently, Calmels and Gold have calculated magnetic
susceptibilities of quantum wires,57 though for a different

FIG. 8. Estimates of spin velocities vs /vF , based on the self-
consistent Hartree-Fock solution ~HF!, on perturbation theory ~pert!
@cf. Eq. ~19!#, and on the comparison with the antiferromagnetic
Heisenberg model ~J! @cf. Eq. ~21!#.
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microscopic interaction, using standard heuristic approxima-
tions from electron gas theory.58 By virtue of Eq. ~16! these
data allow us to extract spin velocities vs

CG , which turn out to
be slightly larger than our vs

HF values. Note that the pertur-
bative estimate shown in Fig. 2 of Ref. 57 uses Eq. ~17!
while in Fig. 8 Eq. ~19! is included. Compared with Eq. ~19!
the data vs

CG do not exceed vs
pert, similarly as the HF data.

This, however, contradicts the behavior obtained using
QMC, where vs

QMC clearly exceeds vs
pert . We conclude that

HF and other approximations of the mean field type can
provide only a qualitative guideline to vs . All of these at-
tempts, however, agree in predicting spin velocities that de-
pend on the interaction and decrease with increasing interac-
tion strength. This result calls attention to the frequent
assumptions in the literature that interactions not explicitly
depending on spin would leave vs unchanged.25 This result
should show up in current experiments, such as those de-
scribed in Ref. 9, where typical values for kFd'0.3 are in
the regime investigated here. As already pointed out in the
Introduction, this parameter should influence measurable
quantities, such as the spin-splitting enhancement factor, Ra-
man scattering in depolarized configuration,31 spin transport
properties,28 and Rashba precession.29

Let us now discuss the low-density limit using our con-
jecture that quantum wires become equivalent to the on-site
Hubbard model ~HM! in the limit of small particle densities.
Hubbard model ~lattice constant a) parameters, t
5vF/2kFa2 and U5V̂(k50)vF /a , can be related to micro-
scopic parameters by equating the effective mass and the
Coulomb barrier for a two-electron exchange. V̂(k) is de-
fined in Eq. ~2!. To leading order in t/U the spin velocity of
the Hubbard model vs

HM is48

vs
HM ——→

U→` 2pat2

U S 12
sin 4kFa
4kFa

D ,
so that

vs
HM

vF
54p/3V̂~k50 ! ~22!

for small kFa , where the lattice constant is irrelevant. Note
that V̂;vF

21 and thus vs
HM}kF

2 . This result agrees with the
strong interaction limit of the continuum version, the elec-
tron gas with repulsive contact interactions.45 Restoring
quantum wire parameters, Eq. ~22! translates into

vs

vF
——→

kF→0 2p

3
kFaB

ln~2R/d !
~23!

for R/d@1. The available QMC data are consistent with Eq.
~23!, though, as in the charge sector, they are not conclusive
enough to really confirm the low-density equivalence.

VI. SUMMARY AND DISCUSSION

Many nontrivial theoretical predictions for low-energy
measurable properties based on the TL model exist in the
literature. Much in the spirit of the Landau theory of Fermi
08510
liquids, all these predictions depend only on few phenom-
enological parameters. In the case of quantum wires with
only one subband occupied there is only one parameter per
degree of freedom, Kr for the charge sector and vs for the
spin sector. In the absence of interactions these parameters
assume the values Kr51 and vs5vF . In this work we have
investigated how the microscopic pair potential V(x2x8)
changes Kr and vs . We have considered a realistic, trac-
table, and sufficiently general form for V(x2x8), Eq. ~A4!,
that depends on the diameter d of the quantum wire, which is
measurable through the subband energy, and the distance to
the nearest metallic gates R, as given by the sample layout.
Our approach is to relate the two TL parameters to thermo-
dynamic quantities that we estimate on the basis of self-
consistent, unrestricted Hartree-Fock ~HF! approximations
for the ground state energy.

In the charge sector this strategy is found to yield reason-
ably accurate results. At densities corresponding to rs&1.3
we confirm applicability of the perturbative formula ~12! for
Kr . This regime includes most of the experiments based on
semiconducting heterostructures.8,31 At somewhat smaller
densities Eq. ~12! even overestimates Kr . In this regime we
find enhanced stiffness compared to perturbation theory, sig-
naling the close proximity of a Wigner-crystal state. For this
reason quantitative corrections to Eq. ~12! may arise when
R@d , for example, in carbon nanotubes. In quantum wires
fabricated on the basis of semiconducting heterostructures
with gates, the perturbative formula may be used even down
to densities 2kF /p'1/R . The proximity to the Wigner-
crystal state competes with the finite interaction range in
these systems. Irrelevant or marginal operators in the micro-
scopic Hamiltonian, such as nonlinear single-particle disper-
sion or backward scattering in the spin sector, turn out to be
unexpectedly inefficient to renormalize the TL parameters in
the charge sector up to moderate interaction strengths. With
decreasing density the values for Kr clearly fall short of 1/8,
which is the minimum assumed by the extended Hubbard
model including repulsions on neighboring lattice sites and
often is considered to emulate models of finite interaction
range.

At smaller densities, however, the perturbative estimate
Kr

pert is not reliable. In particular, it does not reproduce the
nonmonotonic behavior of Kr found in the HF approxima-
tion with a minimum as a function of density. Eventually, as
kF→0 we conjecture that quantum wires approach the uni-
versality class of the Hubbard model with only on-site repul-
sion and that Kr→1/2 in that limit, though, unlike the Hub-
bard model, this limiting value should be approached from
below as the particle density is lowered.

The nonmonotonic dependence of Kr on density predicted
here should show up in any of the power laws5 revealed by
pseudogaps in the density of states n . Examples include the
current for tunneling into the end @n(v);v (1/Kr21)/2# or
into the middle @n(v);v (Kr11/Kr22)/4# of a single-mode
wire ~assuming Ks51) and the current I(V);V1/Kr flowing
through a single tunnel barrier along the wire at small volt-
ages V. Experimental observation of this nonmonotonic de-
pendence of the exponent would give direct experimental
access to the microscopic range of the electron-electron in-
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teraction; the position and the height of the maximum in Kr
21

both depend on R.
Our approach is less successful in estimating the spin sec-

tor TL parameter vs , at least when it differs considerably
from vF . We have discussed perturbation theory and tried to
obtain meaningful estimates for vs from the HF spin-
density-wave states. The similarity to the antiferromagnetic
Heisenberg spin chain, evident from correlation function
considerations, suggests that exchange coupling strengths,
and therefore spin velocities, can be estimated by comparing
the ground state energies of unpolarized and fully spin-
polarized electrons. None of these variants lead to results of
the same quantitative reliability as those obtained from Kr

HF .
Conjecturing again a crossover into the universality class of
the Hubbard model in the limit of kF→0 yields the predic-
tion of a linear dependence of the relative spin velocity
vs /vF}kF /V0 on the particle density. V0 is the zeroth Fou-
rier component of the interaction V(x2x8).

It is important to know the spin velocities for attempts to
realize ‘‘spintronic’’ devices where spins rather than charges
are transported,26 using, for example, the Rashba spin pre-
cession mechanism59 through quasi-one-dimensional
constrictions.27 Here, in agreement with QMC estimates,37
we have collected strong evidence that spin-density excita-
tions move at speeds considerably slower than the Fermi
velocity, already in present day devices,9 where kFd'0.3.
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APPENDIX A: HARTREE-FOCK THEORY

To formulate the mean field theory we introduce single-
particle wave functions c solving the Schrödinger equation

H 2
vF

2kF
]x
21(

s8
Vs8
H

~x !J cks~x !2E
0

L
dx8Vs

E~x ,x8!cks~x8!

5«kscks~x ! ~A1!

with the Hartree

Vs8
H

~x !5
L
2pE0

L
dx8V~x2x8!E

2kF

kF
dkucks8~x8!u2 ~A2!

and the nonlocal exchange

Vs
E~x ,x8!5

L
2p

V~x2x8!E
2kF

kF
dkcks* ~x8!cks~x ! ~A3!
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potentials, which itself depend on c and thus have to be
obtained self-consistently; s5↑ ,↓ are spin quantum num-
bers. Occupation of only the lowest subband is assumed to-
gether with periodic boundary conditions for the wire of
length L. Parabolic dispersion for the kinetic energy in Eq.
~A1! is described by a band mass m5kF /vF . The kinetic
energy is not linearized.

For some of our calculations, particularly those focussing
on properties of the spin sector, Sec. V, we solved the HF
equations ~A1! directly in real space, using

V~ uxu!5
e2

e S 1
Ax21d2 2

1
Ax21d214R2D ~A4!

in Eqs. ~A2! and ~A3! and a lattice grid of at least 401 points.
Any of the results for the charge sector can be obtained ei-
ther using a real space basis or also, slightly more efficiently,
a k-space basis, introduced now. Expanding

cks~x !5e ikx(
j

u j ,k ,se ij2kFx ~A5!

into Bloch waves, and similarly the periodic potentials ~A2!
and ~A3!, yields HF equations for the coefficients u j ,k ,s :

05F12 S 2 j2
k
kF

D 22
«ks

kFvF
Gu j ,k ,s1

L
2kFp

(
j8 j9

u j9,k ,sE
2kF

kF
dk8

3H V̂„2~ j2 j9!…(
s8

u2 j1 j81 j9,k8,s8
* u j8,k8,s8

2V̂S 2~ j2 j8!2
k
kF

1
k8

kF
D u2 j1 j81 j9,k8,s

* u j8,k8,sJ . ~A6!

For each s561 and k52kF , . . . ,kF inside the Brillouin
zone this is an eigenvalue equation for matrices indexed by
the band indices j, which, however, inside the curly bracket
depends on the solution of Eq. ~A6!. Within the ‘‘unre-
stricted’’ HF scheme we allow for charge- and spin-density-
wave solutions breaking the symmetry of continuous trans-
lations and thereby lower the ground state energy. Solutions
are found to show 4kF-periodic oscillations of the charge
density %(x)5%↑(x)1%↓(x), where

%↑~x ![E
2kF

kF
dkuck↑~x !u25%↓S x1

2p

4kF
D . ~A7!

We solved Eq. ~A6! iteratively, starting with a sinusoidal spin
density wave u j ,k ,s

(0) 5d j ,0 /A21sd u j u,1/2. The final solution al-
ways obeys u j ,k ,↑5(21) ju j ,k ,↓ , which in view of Eq. ~A7!
yields 2kF-periodic modulations of the spin density %↑(x)
2%↓(x). A typical density modulation at stronger interaction
is shown in Fig. 1.

The single-particle energies «ks , obtained with Eq. ~A6!,
determine the ground state energy
4-9
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E0

L 5(
s
E

2kF

kF dk
2p

«ks2
1
2 (

ss8
E

2kF

kF dk
2pE0

L
dxVs8

H
~x !ucks~x !u2

1(
s
E

2kF

kF dk
2pE dxE

0

L
dx8Vs

E~x ,x8!cks* ~x !cks~x8!.

~A8!

Half of the interaction has to be subtracted to repair for its
double counting in Eq. ~A6!. Differentiating E0 /L twice
with respect to kF yields our estimate for Kr , according to
Eq. ~3!.

Most of the results are obtained for 82 k points in the
Brillouin zone ~in some cases for very small densities we
increased this number to 234!. The Milne rule, being accu-
rate to seventh order in the spacing between k points, is used
for the k integrations. We included j523, . . . ,3 bands,
though in most cases j522, . . . ,2 would have sufficed due
to the rapid decay of the Coulomb interaction in k-space.
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APPENDIX B: HARTREE-FOCK THEORY FOR
SUSCEPTIBILITIES

In spin space we use a lattice representation c(x5x i)
→c(i) of the Hamiltonian. The M3M matrices H i j , repre-
senting Eq. ~A1!, contain contributions from the kinetic en-
ergy H ii52(M /pN)2vFkF and H ii6152(M /pN)2vFkF ,
the ~local! Hartree term H ii5(k jsṼ(ui2 j uL/M )ucks( j)u2,
and the ~nonlocal! Fock term H i j52(kṼ(ui
2 j uL/M )cks(i)cks( j), the latter acting only on spin-s wave
functions. Here, Ṽ(x)[( l52`

` V(x1lL) accounts for peri-
odic boundary conditions @V(x) is defined in Eq. ~A4!# and
the real and normalized eigenvectors cks( j) of H i j are in-
dexed by their spin s561 and momentum 2kFs<k<kFs
5(11sm)kF with k being an integer multiple of 2p/L and
m the magnetization per particle. The Hartree-Fock approxi-
mation to the ground state energy E0 then is obtained as in
Eq. ~A8!.
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54W. Häusler, Adv. Solid State Phys. 34, 171 ~1994!; Ann. Phys.

~Leipzig! 5, 401 ~1996!; Z. Phys. B: Condens. Matter 99, 551
~1996!; J.H. Jefferson and W. Häusler, Phys. Rev. B 54, 4936
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