Rashba Precession in Quantum Wires

W. Hiusler!

The length over which electron spins reverse direction due to the Rashba effect when injected
with an initial polarization along the axes of a quantum wire is investigated theoretically. A soft
wall confinement of the wire renormalizes the spin—orbit parameter (and the effective mass)
stronger than hard walls. Electron—electron interactions enhance the Rashba precession while
evidence is found that the coupling between transport channels may suppress it.

Spin transport has regained considerable inter-
est in recent years, partly because of the prospective
for qualitatively novel electronic devices and partly
since fundamentally new mesoscopic quantum coher-
ence phenomena could be investigated in the mag-
netic degree of electronic freedom. A prime example
is the spin transistor proposed by Datta and Das [1].

Here we investigate how Rashba spin precession
[2] is affected by many body effects [3] as expected
to be important in semiconducting devices. We con-
sider electrons moving along a one-dimensional (1D)
quantum “wave guide.” Also the cases of two inter-
acting channels and different transversal confinement
potentials is addressed. Of prime interest will be the
length Ar over which spins initially polarized along
the channel axes reverse spin-direction while moving
along the channel.

In a 2D layer spin splitting is a consequence of
spin-orbit coupling

M

proportional to the Rashba parameter « and thus
to the intrinsic or by means of gates externally ap-
plied electric field in y-direction, perpendicular to the
layer [2]. H* is also proportional to the momentum
of spins (py,p;) in the “active” x — z-plane, o, ; are
Pauli matrices. Precession then occurs on the length
scale |k, — k_|~! of the spin split wavenumbers k. at

H* = a(oxp; — o.px)
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the Fermi energy. If the effective mass approximation
e(k) = k?/2m is applicable, as for many semiconduc-
tors, the Rashba length
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@

does not depend on carrier density or Fermi energy.

With electrons being confined in z-direction, to
zero’th order in H*° this picture carries over to 1D.
Only to higher order, H* will weakly mix different
transport channels of the wave guide, which up to
O(a”) can be accounted for by renormalizing o — a*
in e (k) and, within the effective mass approximation,
by m — m*. In the latter case, the Rashba length mod-
ifies according to (ma)~! — (m*a*)~'. For a quan-
titative estimate of both renormalizations the intra-
subband eigenfunctions

Yins (X, 2) = €% (2)(cos(maz)|s)

+i sin(maz)| —s))

@)

are needed, which are plane waves of momentum
k along the wave guide and, without inter-subband
scattering, slightly modified subband states ¢, (sub-
band index n) in z-direction, spin-polarized s = &+
on the axes at z =0. For a harmonic confinement
(subband energy wy), as relevant for example for
samples defined by gating [4], the perturbative es-
timate yields a* = a(1 — 1) and m* = m(1 + 87%) in
the ground subband. The dimensionless parameter
n = (wma/2)? measures the bare value of the spin—
orbit strength « in (1) by comparing the wave guide



310

widthw = 2/./mwq with the length (ma)~!. For a hard
wall confinement on the other hand (again of width
w), as possibly more relevant for wires fabricated by
the cleaved edge technique [5], the renormalizations
become o* = a(1 — (1/6 — 1/7?)n) and m* = m(1 +
3(4/37)%n?) i.e. they are significantly reduced com-
pared to the soft wall case since 1/6 — 1/72 ~ 0.065
and 3(4/37)%/8 ~ 0.002.

The main idea of the transistor operation [1] is
to vary the strength of the electric field and thereby
w/ma. This is achieved by charging a gate paral-
lel to the layer. Unless carefully compensated by a
second back gate [6], however, the carrier density
in the structure will change at the same time. Ig-
noring interactions, this would be unimportant when
e(k) = K*/2m* but the interaction strength depends,
even quite sensitively, on carrier density through the
rs-parameter. In order to investigate possible conse-
quences for the Rashba precession, we employ the
Tomonaga-Luttinger (TL) model [7] as the most pre-
cise low energy description of 1D metals. Here we
shall not focus on various characteristic power laws
predicted by this model, also regarding spin properties
[8] coming from the charge sector, but rather focus on
the question how interactions influence the length Ag.

As a second striking property the TL-model pre-
dicts charge-spin separation which, interestingly and
contrary to statements in the literature [8,9], is not
spoiled in semiconducting quantum wires unless spin-
orbit coupling is not exceedingly strong n > 1 to devas-
tate the effective mass description. On the other hand,
for nonquadratic dispersion relations, charge-spin
separation is in general destroyed with H*°. An exam-
ple of this are carbon nanotubes where vy = vp £ «
with « originating in this case from the curved surface
[10] so that v # v_ spoils charge-spin separation.

A realistic interaction in 1D

(1 !
V(x)=;<x/x2+w2_x/x2+w2+4R2) @

is specified by the wire width w and a cut-off at large
distance R because of screening by the nearest met-
als, such as the gates that help defining the quantum
channel. Since spin properties involve finite momenta
g of the Fourier-transformed interaction V(gq) (and
contrary to charge properties not the dominant long
wavelength limit V(g — 0)) the interaction range R
plays only a minor réle if (R/w, kg R) > 1. In carbon
nanotubes, for example, interactions will alter the spin
velocity only weakly, in marked contrast to the charge
velocity [11].

How to include the Rashba term in the TL-
model? In previous work [8,9] the Fermi velocities
vy and v_ have simply been put to different values,
which for (k) = k?/2m* does not describe the leading
effect of H*°. Rather both velocities change slightly
but obey v, = v_ and charge-spin separation. In ef-
fective mass systems, H*° acts solely in the spin sector
of the corresponding TL low energy model (of length
L), where the topological term

7T
4L

is most relevant for the following. N, and J, de-
note the usual currents of velocities vny; where
with Coulomb repulsion (v, vy) # ve [7]. In strictly
spin isotropic systems vy = vy. Since we expect this
isotropy to be broken only weakly, both of these ve-
locities should be similar in magnitude and also sim-
ilar to the velocity v, of spin wave propagation. This
latter quantity has been determined recently by exten-
sive quantum Monte-Carlo simulations [12]. With in-
creasing interaction strength, equivalent to a decreas-
ing carrier density, v, /vp was found to decrease, even
below 0.5 when accounting for parameters of existing
quantum wires [5].

Many quantities of interest can be calculated ex-
actly using (5). In particular it can be shown [13] that
spins polarized in x-direction along the wire precess
now over a length that acquires a factor vy/vg com-
pared to the length of Eq. (2). With vy = v, we con-
clude from [12] that this length decreases with increas-
inginteraction strength. A similar conclusion has been
drawn for two-dimensional electrons after treating
the interaction perturbatively [3]. This trend is op-
posite to what is expected for almost linear single-
electron dispersions (such as narrow gap semiconduc-
tors) but agrees with experimental observations [14].

For very large and very small kpw, asymptotic
expressions can be given for v, which result in the
following dependencies for the Rashba length:

(VNNj + vJJ(f) — mra*vpd, (5)

AR ~ [1— fQksw)] if fFQhkew) < %

m*o*

at large kr, f(x) = \/g%x*3/267x’ and

7'[2 ap ZkFW

A ~ =
R 3mrar w In2R/w

ifke < 1/R,

ag 1s the Bohr radius. This latter estimate follows from
the conjecture [15] that the system falls into the uni-
versality class of the Hubbard model at small fillings in
which case the interaction range R becomes relevant.



Now we turn to the case of two occupied channels
in the quantum wire. Then the renormalizations o —
«;j and m — m; due to H*® acquire a channel index j;
for example, in a harmonic confining potential «; of
the upper channel renormalizes by a factor of 3 more
than ;.

Between the channels the same microscopic
(screened Coulomb type) interaction takes place (4)
as within each channel. Up to now no theory is avail-
able to determine spin velocities in multichannel situ-
ations and we would like to sketch a possible solution
(details will be published elsewhere). We assume 1)
sufficiently different carrier densities in both channels
to conserve the TL-phase [16] (otherwise spin gaps
could spoil the Rashba precession), and 2) charge-
spin separation. The Fermi momentum in the upper

channel may be taken as b, =,/ % 2 _ 2mpwy where

wo is the subband spacing and m,,; are the effective
masses of the upper/lower channel after renormaliza-
tion through H®°2.

We expect two spin velocities v,; and v,2, both of
which will be relevant for the Rashba precession, sim-
ilar to the single channel case. They can be obtained
from the microscopic interaction through generalized
susceptibilities

L 9%E,
(VN)l/ T aMaN] ( )
and
L 9E,
(VJ)l] T a]lajj ( )

when suitably generalizing the relation v, = ,/VNV;
observed in one channel. Here, N; and J; are the cur-
rents (5) in channel j.

How can we obtain vx and vy for a given mi-
croscopic interaction? In principle we already know
from the single channel case how notoriously difficult
spin velocities are to evaluate [12]. Leading correc-
tions at not-too-small carrier densities to the ground
state energy Ey/L per length can be obtained per-
turbatively. Fock-exchange terms ~ V(k; & k;) have
to be included adequately for spin properties, which
goes beyond the RPA approximation mostly used for
estimating charge velocities [17] since the V(g = 0)
contribution drops out here.

ZHere 2k;j/m denote the densities in the j’th channel with the ef-
fect density adjustment due to the inter-channel repulsion already
included.

311

The result is

_ V@hk) % v
VN = V1 7[,\ + V_ V(z‘k/;_ . (8)
-V, v ——=+V_

and

w4+ V. =V_

VJ—< v V2+v_>' ©)
Here, v; are the bare Fermi velocities and
Vy= (V(kl — k)t Vik + k»))/2mw. Both limits,
ky — 0 (almost empty upper channel) and &k — k&
(limit of equivalent subbands), indicate instabilities
in vy and v; when V(g = 0) > wv; (long range inter-
actions, note that V(q) decreases with increasing ¢
for any realistic electron—electron interaction). These
are precursors of the Cooper or charge density wave
instabilities [16], that occur in repulsively interacting
two-channel systems near the threshold for opening
the second channel or near equal carrier densities in
both channels, respectively. We also see in (9) that
vy leaves the Galilei mode (1,1) independent of the
interaction. For v; = v; this mode is an eigenmode so
that perturbation theory pretends Galilei invariance
of the spin sector, similar as in the single channel case
[15]. Then perturbative renormalization of the spin
velocities is solely due to v.

Resulting spin velocities are shown in Fig. 1. One
of the velocities, v, 1, is decreasing with decreasing car-
rier density 2k; /7, similar as in the single channel case
[12]. More strikingly, v, first increases and exceeds
the larger of the two Fermi velocities v;. Then accord-
ing to Eq. (2) we have evidence for a suppression of

vo/Vy

0.5 r

03

Fig. 1. Spin velocities in a two channel quantum wire in units of
the larger of the Fermi velocities vy, versus kjw in perturbation
theory.
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the Rashba precession as a result of interchannel cou-
pling by electron—electron interaction.

In conclusion, we have discussed how a hard or
soft confining potential, and the intra-and interchan-
nel interaction affect the Rashba precession along a
quantum wire.
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