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Abstract. The rates for s-euy-species conversion of CD, groups are calculated wing 
a model in which the interaction between the quadrupolar moment of the deuterons with 
electric-field gradient at the site of the nucleus causes symmetry-changing transitions. Just Ihe 
same phonons are cansidered for energy consewation as are used to describe the tempera" 
dependence of inelastic neutron scattering experiments. For Ihe conversion rate, a similar 
umperaNre dependence is found as has already becn obtained for CH?. For temperamres around 
the tunnelling energy, a behaviour is predicted for CD, that is different from the behaviour in 
protonated systems according to all theories !mown to us. 

In comparison with the corresponding protmated speeies embedded in Ihe same surroundings. 
the conversion rate at elevated temperatures mms aut to be larger by orders of magnitude. Only 
the low-temperature conversion rate is suppressed owing to the lack of resonance phonoN at 
the usually smaller tunnelling frequency in CDs. 

The relative inmase of the conversion rate with deuteration due to Raman processes 
is predicted to be independent of temperature but strongly dependent ,OR the height of thc 
orienlational potential in the case of shallow potentials. If the tunnelling energy is smallcr than 
25 peV, the conversion rates increase by a constant faaor of - IO canpared U) the protonzed 
species at a given temperamre. 

1. Introduction 

The rotational dynamics of light molecules like hydrogen Xz or methane C& and molecular 
groups such as methyl groups CX, (X = H.D) has been studied extensively in the past 
[1,21. Their main common feature is that rotation between two equilibrium orientations 
corresponds to a permutation of identical particles. Consequently, the rotational potential 
has to be invariant under these rotations, i.e. the Hamiltonian has to transform according to 
the totally symmetric irreducible representation of the corresponding rotational group. This 
allows the classification of all eigenstates of the Hamiltonian with respect to the irreducible 
representations r of the point group: for XZ, r E (g, U); for CX,, r E (A, Ea, Eb); and for 

For high potential barriers between the equilibrium orientations, the ground-state 
energies of the various r differ only by a small amount. This energy difference is called 
the tunnelling energy. Experimentally, tunnelling energies cover a range of many orders 
of magnitude, starting from nearly free rotation down to the lowest splittings of several 
kilohertz observed by sophisticated nuclear magnetic resonance (NMR) techniques. 

The symmetry arguments for the spatial space part of the wavefunctions also hold in 
the presence of a coupling to other spatial degrees of freedom, in particular coupling to 

CXI, r E (A. T, E). 
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phonons. As a consequence, the symmehy r also remains a good quantum number if 
dissipation is included. 

The complete 
wavefunctions have to be totally symmetric (totally antisymmetric) for deutcronsbosons 
(protons/fermions) with respect to particle enumeration. It turns out that the total 
wavefunctions can be written as a product of a spatial part times a spin pan. if either 
the number of identical particles is two (hydrogen) or only the even permutations are 
considered (these correspond just to the proper rotations of CXs or C& molecules). 
Under this assumption, the spin wavefunctions can be classified with respect to irreducible 
representations of the point group of the rotations because this group is isomorphic to the 
group of (even) permutations. For protonated systems. it turns out that for Hz. CH3 and 
CHA there exists a one-to-one correspondence between the symmetry l- and the total nuclear 
spin I .  In particular, we have 

                          

So far, we did not consider the nuclear spin degree of freedom. 

r i- 
(1) A 2  

E O  

i - I  r i  
Hz g 1 (orfho) CH3 A 312 CH4 

U 0 (meta) E 112 

Therefore, the spin rotational states are frequently called spin species and a symmetry- 
changing process is connected intimately with a change in the total nuclear spin. The 
nomenclature ‘nuclear spin conversion‘ is not misleading in protonated systems. 

In the deuterated cases the quoted oneto-one correspondence between !? and I does 
not exist. Instead, there are spin states of the same symmehy but diferenf nuclear spin 
I .  namely 

r I 
A 0.2.4 

E 0,2 
(2) 

r i  . r ., I .  
cD4 T 1,1,2,3. DZ g 0.2 (ortho) CD3 A 0, 1, 3 

U 1 (meta) E 1.2 

The title of the present paper is chosen to signify that we are interested in transition rates 
between the symmetry species r, characterized by the potential energy, and not in the rate 
for a change of the total nuclear spin quantum number I (which does not necessarily include 
a change in the symmetry quantum number r 13-41). 

Such symmetry-changing transitions necessarily require operators that conrain the 
nuclear spin [5 ] .  However, the energy of the system depends only very weakly on the 
nuclear spin (examples are the dipolar energy and the quadrupolar energy). which is one 
reason for the slowness of symmetry-changing transitions. Usually their rate is much smaller 
than any other relaxation rate in these systems. 

In solid Hz the 
conversion ram have been calculated assuming the dipolar interaction between two Hz 
molecules to bc responsible for the transitions 16-81, Owing to the dependence of this 
interaction upon the intermolecular distance, energy conservation is guaranteed by direct 
coupling to the phonons. Nijman and Berlinsky [9] considered solid CI&. They found 
that the intramolecular dipolar interaction is more effective in causing T cf A conversion 
than the intermolecular dipolar interaction owing to the smaller distance between protons 
of the same molecule compared to the distance between two distinct methane molecules. 
However. the intramolecular dipolar interaction does not couple to the lattice modes directly. 
Therefore, the authors proposed a ‘hybrid’ mechanism in which the inaamolecular dipolar 

There have been several theoretical approaches to this problem. 
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Hamiltonian mixes states of different symmetry and the coupling to the lattice is achieved 
by the distance dependence of the interholecular cctupoleoctupole coupling. Conceming 
the temperature dependence of the conversion rates; the H2 case differs qualitatively from 
the methane case, because in HZ the energy splitting between ortho and para hydrogen is 
larger than the Debye temperature. Thus two phonons are required to conserve energy. The 
calculation of Nijman and Berlisky was  restricted^ b~ the' low-temperature regime, where 
they found a dependence of the 'conversion rates on the occupation number of phonons 
with energy resonant to the T tt A splitting. The idea of the 'hybrid' mechanism was 
recently transferred to the problem of symmetry conversion in CH3 [5,10]. The same rotor 
phonon coupling is used as in theoretical approaches [ 111 'to the temperdme dependence 
of dissipative influences, visible, for example, in neutron scattering spectra. In [5] (referred 
to as I in the following) some parallels between both temperature dependences are drawn. 
The temperature dependence of the conversion rates was calculated in I for the model of 
an isolated CH3 group. where only the intra-methyl dipolar interactions were considered. 
This interaction mixes the A and E states and the rotor phonon coupling guarantees the 
conservation of energy. Intermolecular conhibutions to the dipolar interaction have not 
been considered. 

As one of the few investigations about deuterated rotors, the orrhcpara conversion 
in solid D2  has^ been studied [U]. Here the situation is more complicated than in HI, 
since deuterons possess a quadrupolar moment Q. The interaction of this moment with the 
electric-field gradient at the site of the nuclei. that originates from the charge distributions 
of neighbouring molecules. provides an additional conversion mechanism. The conversion 
rate due to this quadrupolar interaction was found to be of the same order of magnitude'as 
the conversion rate due to dipolar interaction between the D2 molecules. 

In thii paper we consider CD3 groups. Here. the electric-field gradient at the site of a 
given deuteron has its origin almost exclusively in the charge distribution of the chemical 
bond between the deuteron and the carbon atom. (Note that this intramolecular energy 
conhibution is also present and of comparable magnitude in Dz. but it is of even pakty and 
therefore does not mix rotational states of different symmeny.) Intermolecular contributions 
to the electric-field gradient are usually negligibly small [13]. Additionally, the quadrupolar 
interaction is stronger than the dipolar interaction among the deuterons of a C q  group by a 
factor - 100-200. Thus, all dipolar interactions can safely be neglected in a calculation of 
the symmetry-species conversion rates for CD3. The strength of the quadrupolar interaction 
for a CD3 group is of a comparable strength to the dipolar interaction among the protons 
of a CH3 group. The mechanism considered by us is a 'hybrid mechanism in which the 
quadrupolar interaction mixes states of different symmetiy and the rotor phonon interaction 
provides energy conservation. An important difference from ihe CH, problem considered in 
I is given by the fact that the quadrupolar interaction mixes not only A and E states but also 
Ea and Eb states. (For CH3. matrix elements of the dipolar Hamiltonian between E states 
vanish.) Thus, we have to deal with Ea ++Eb conversion in addition IO A *E conversion. 
However, the A e E conversion rate observed in experiments is not influenced by the 
Ea Eb conversion. The calculations will be performed using second-order pehbation 
theory with respect to the rotor phonon interaction Hamiltonian. 

The organization of the paper is as follows. In section 2 we inhoduce the model 
fiamiltonian. Section 3 is devoted to the calculation of the conversion rates, and the 
specific results obtained for a Debye phonon density of states are discussed in section 4. In 
section 5 we compare~the general findings to those of paper I and discuss the similarities 
and differences to earlier theories. 
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2. The model 

In this section we introduce the Hamiltonian that will be used later to calculate the symmetry 
conversion rates of rotational tunnelling CD, groups: 

                          

H = H~ +nP + HI + HQ. (3) 

The Erst three terms on the right-hand side of equation (3) do not involve nuclear spin 
operators and are usually considered in theoretical treatments of the temperature dependence 
of rotational tunnelling [I 1.141: 

H’ = ctg;cos(3+4 + g; sin(3v)Kbx +b:) = ~ g [ m m , , . l m r A ( m ’ r w l @ ~  +b:) (6) 
k tmm’ rp 

where E is the rotational constant ( E  5 324 peV for CD3) and b: and bt ax creation 
and annihilation operators for phonons enumerated by k with energy W .  The form of the 
interaction between the rotor and the phonons is diagonal in the symmetry r. It is usually 
considered to describe the temperature dependence of inelastic neuaon scattering (INS) 
specIra. Both terms - g; and - g; refer to a breathing or a shaking type of coupling to the 
kth phonon mode, respectively. Both types of coupling cause an opposite shifting behaviour 
of the tunnelling line [ 14bl. The linear coupling in the phonon coordinates is experimentally 
well justified since it leads to the usually observed Arrhenius-type temperature dependence 
of the line broadenings in INS experiments. 

The eigenstates of HR will be denoted by l m r ) ,  where m E NO (NO = 
non-negative integers) is the librational quantum number and r indicates the symmctry type 
(r = A, Ea of Eb). As already explained in the inhoduction, we classify the eigenstates of HR with respect to the symmetry group C3, regarding even permutations only. The matrix 
of Ha is not altered by this simplification [4]. The eigenstates form products of a spatial 
i m r )  and a spin lrcp) par?: 

i m w  = imr)  x irsF) (7) 

where M (E fir) denotes all other quantum numbers (i.e. total spin I and its z component 
lZ) wirhin a given symmetry species. r, is the representation conjugate to r, i.e. 

For C b ,  there is no one-to-one correspondence. between the symmetry species r and the 
total nuclear spin / of the CD3 group. Instead, there ax eleven A states with / = 0, 1, 3 
and eight Ea and Eb states with / = 1, 2, respectively. The spin states for C q  may be 
found in [4,15]. 

Finally, we consider the quadrupolar Hamiltonian HQ in equation (3). For methyl 
deuterons it is well known [I61 that the electric-field gradient (EFG) tensor is axially 
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symmetric to an excellent approximation. The principal axis of the EFG coincides with 
the C-D bond axis in most cases. The quadrupolar energy of a single deuteron in the 
presence of an EFG of strength eq along the z axis is given by 

(eZqQ/4h)(31$ - 1'). ( 8 4  

HQ is the sum of the quadrupolar interactions of the three deuterons: 

3 

WQ = EH:,. (8b) 

and / represent spin operators acting on 

i=l 

Q is the quadrupolar moment of the deuteron. 
the spin states of the deuteron [13]. Defining the quadrupOlar coupling constant 

CQ = ezq Q/ h (9) 

and using now, contrary to (sa), the rotational axis of the CD3 group as magnetic 
quantization axis, one finds 

HQ = (x/z)cQK;(3 COSz I9 - 1)[3(1,"))' f 3(IJ2))z  + 3(L$3))z - (I"))' - (1")' - 
- ( 3  sin(2Ot) exp(i(o)[(/,")/$') + I:')/:')) 
+ €(/:"/f' + /?/:)) + €*(/J3)/f) + /f)IF))] f HC} 

(10) + {z 3 sin . z  o exp(-zi(o)[(/:1')' + G(If)) '+ E * ( I ~ I  + HC)]. 
Here. = I t )  k il('), Y (/$))+ = /!), ( I ) ) )+ = I!) ,  E = exp(Zni/3) and HC means 
Hermitian conjugate: I9 is the ingle between the non-vanishing component of the EFG and 
the rotational axis. For the tetrahedral angle & one has cos Lpr = 113. Deviations from this 
value of about 5% have been observed by 'H Nm [17]. 

Typical values for CQ are 0.1-0.132 neV [16], whereas the strength of the dipole-dipole 
interaction among the deuterons ( y i / r 3 ,  yo = gyromagnetic ratio) is of the order of 1 peV. 
(Note that the gyromagnetic ratio of deuterons is a factor 6.5 smaller than that of protons.) 
The strength of the quadrupolar interaction compared to that of the dipole-dipole interaction 
allows us to neglect the latter completely in the following discussion. 

In the basis (7) the quadrupolar Hamiltonian reads 

rPrdp' The Q,,, 
In contrast to the dipolar Hamiltonian in the CH3 case, the quadrupolar Hamiltonian 

also has non-vanishing matrix elements between E' and Eh states. Q,,, E'pEbu' [4.18]. In CD3, 
all three symmeuy species are mixed by the quadrupolar interaction. 

are collected in table 1. 

In the following we want to treat HQ perturbationally. If we assume for m # m' 

A, << IEL - E z l  (12) 

with A, := E: - E:, it is sufficient to diagonalize the matrix of HR + HQ within each 
librational multiplet. This assumption can safely be justified since the lowest tunnelling 
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Table 1. Matrix elements C I y  of the quadrupolar Hamiltonian (IO) as they are defined 
in equation (11). All matrix elements are proportional to the quadmpolar merw CQ (dsfimed 
in (9 ) )  and depend upon the angle 0 between the C-D bond and the rolalional axis. The 
symmetrj-changing matrix elements @an$ (e )  and (d)) fufihermore depend upon lhe rotational 
wavefunction Imr) (cf equation (4)). 

P 

-P 

P 

-P 



                                           

Table 1. (continued) 
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E;, 
-+A - A B  &A 

?-I -9 -&E &A &A 

?-2 -%A -AA 
E; I -$A &B -%E 
$0 -&A 58 -%A 
E;-I -&A &B %A 
P f Pmm. := ( f n C ~ ) ( 3 / 2 ) ( 3 c o ~ ~ 1 9- 1)6,,,, 

D E D-, := (;ZCQ)(~&/Z) sin2 19(mE31e2'@lm'Eb! 
A E A-, := (f.irCp)(3&/2) sinnb)(mEale"lm'A! 
B = E,,,& := (+nCp)(3J?/2) sin' B(mE'li-z'vldA) 

energies are smaller than all librational energies by a factor of usually < lQ-3. In deuterated 
systems this factor is even smaller. The unitary 27 x 27 dimensional matrix, which achieves 
the diagonalization 

C C,,,,, := ($rC~)(3&/2)  sin(2U)(mE~le-'~lm'Eb! c=c* 
, . -  D = D* 

S{m,(HR + HQ)(m)(S(m))-' = (Diagon&,) 
formally yields the eigenstates 

1~2) = ~ ( > ~ r F ) * l m r l p l ) .     (13) 
rrP' 

In the following we concentrate on systems in which the tunnelling frequencies A0 are 
large compared to the energy differences of HQ. This is valid for tunnelting frequencies 
A0 > ~OCQ Y 1 neV. The elements S,"AF' of the uni& matrix are given in first order by 

(14) 

are of order unity since Ea and Eb 
s:d.~p' N Q ~ I A ~  << 1 

"PE;, and they are proportional to CQ, whereas the Sm 
states are degenerate. Equation (14) allows us to write 

where q < 1. which has the value of a typical non-vanishing element SFAF', will be taken 
into account only in lowest non-vanishing order (note that p' &,, cf equation (7)). 

3. Symmetry conversion rates 
As in I we calculate the transition rates Rr,p taking the time derivatives of the expectation 
value of projectors Pr into the r-symmetric part of h e  Hilbert space for a r'-symmetic 
thermal equilibrium state 

pp := Pr, exp(-pH)Pp/Tr[Pp exp(+'H)Pp] 
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in second order regarding HI. Contrary to the CH, problem, we now have to deal not only 
with RA-E but also with the msition rates RE-+@. 

For times long compared to all other relaxation times of our system we have to solve 
the following linear rate equations Tor the symmetry species concenmtion Cr := (Pr): 

                          

where 

The rate equations (16) can be written in matrix form: 

$ (ii) = ( &:;; -RA+E* - RE-+@ 

where z := ZE/ZA with 

) (E;.) (18) 
-ZZRA-E. RA+E. RA-E* 

RE,+E~ 
RE.+@ -RA+E~ - RE*+E~ CEb 

zr =ocrCexp(-p~,') CZA= 11, ~ = 8 .  
m 

We have anticipated the fact that the rates Rr,p have to fuUi1 the demiied balance condition 

Rr-p/Rrr+r = Zr/Er'. (1% 

The asition-rate mauix has eigenvalues AI = 0, A2 = -(I + &)RA+ES and L3 = 
-2Rp-a - RA+ES. the first of which corresponds to the stationary solution at thermal 
equilibrium. A2 is connected with A tl E conversion. = -hz and h3 = -1/iE.&b 
with Ea cf Eb conversion. 

l/tm. describes changes in CE := ;(Cp + Cp) due to A ++E transitions, irrespective 
of E being Ea or Eb. Thus, for the description of experiments designed to obtain information 
about the A tf E conversion time, the rates RE*-EO are irrelevant. Therefore we reshict 
ourselves to the calculation of RA-E. and l/zCon. 

R A + E ~  is calculated in timedependent perturbation theory in second order with respect 
to Hi and HQ. For HQ it is assumed that it mixes the symmetry species A and E slightly 
without changing the eigenvalues of Ho (cf I). (Note that this procedure is not applicable 
for the calculation of R p - p .  since E' and Eb states are degenerate.) Accordingly, we use 
as unpcrlurbed Hamiltonian: 

The rotor-phonon interaction reads in  the basis (13): 
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In a calculation similar to that performed in I we find in  O($) for the inelastic uansition 
rate RA,E.: 

Here, B is the inverse temperature, & ( E )  := [exp(BE)- 
ana 

-11-’ the phonon occupation number 

x > o  1: X C O .  
O ( X )  = 

This rate depends on (i) the bare tunnelling energy Ao, (id) the librational energies, which 
for a pure V3 cOs(3rp) orientational potential are related to Ao, (iii) the strength of the rotor- 
phonon coupling, (iv) the type of the rotor-phonon coupling (breathing or shaking) and (v) 
the temperature. 

Wi& the abbreviations 

A, := (mEalei91mA) 

Bm := (mE”le-”’lmA) 

we eventually find for the A ++ E conversion rate: 

This conversion rate, in particular its temperature dependence, has much similarity to 
the one obrained for the CH3 system. For a detailed discussion of its properties we refer 
to I. It depends on the phonon density of states at all possible energy differences between 
unperturbed rotor levels of different symmetry (cf equation (4)). Therefore, at temperatures 
somewhat above the tunnelling energy Ao. a thermally activated behaviour is obtained for the 
temperature dependence. with an activation energy that corresponds to the librational energy 
E l i b  := EL - Eo. The conversion rate at zero temperature is proportional to lg;12, where g; 
is the rotor-phonon coupling strength of breathing type only (equation (6)). Furthermore, 
this rate is proportional to Ai,  if the phonon density of states at low frequencies is o2 
(cf section 4). 

The prominent difference of (24) to the conversion rates obtained for protonated systems 
is the temperature dependence at low temperatures T = A0 when the librationally Bctivated 
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contribution is not important. Then only the term m = mo = 0 conmbutes and the complete 
low-temperature dependence is proportional to the function 

                            

f ( A d  := U + +f exp(-BAdl/U - exp(-BAdl. (25) 

In figure 1 the ratio bznveen the behaviour in CD3 and the usual [I +2n(Ao)] behaviour 
(n is the Bose function) is shown in Arrhenius representation. This [I + 2n(Ao)] factor 
determines the low-temperature conversion rate in all theories for protonated systems known 
to us. The temperature dependence of the CD3 conversion rate is enhanced as compared to 
CH3 for T > 0. For T = Ao, this enhancement factor is N 1.12 

Figure 1. Ratio of the low-temperature conversion rak in CDj and the [ I  + ~ ( A o ) ]  factor 
in Arrhenius represenutioion. This factor is obtained in all theories known to us describing the 
cmversion in protonated systems. The lemperaruredependent function ,f (AD) i s  defined in (28) 
and n(Ao)  := IexpUAo) - I]-’ denotes the Bose function. 

4. Debye phonons 

As an explicit example, we specify the coupled phonon density of states. Introducing 
Debye phonons similar to I and assuming the rotor-phonon coupling to be proportional to 
the modulus of the phonon wavevector, leads to 

Here WO denotes the Debye frequency, 

(cf also equations (4)-(6)) and g := gr/(V3wk)1/2 is a dimensionless factor for the 
coupling strength: within this approximation the conversion rate becomes proportional to 
8’. Additionally, the angle 19 for the polar angle between the CD bond with respect to the 
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rotational axis may be fixed by the tetrahedral angle cos lpT = 1/3. Both assumptions lead 
to a conversion rate 

which is very similar to the corresponding expression (9) of I. 
For low temperatures T 5 A0 the conversion rate (27) becomes 

1 / ~ ~ ~ ~  =~ ( 3 n 3 / / 2 ) C ~ ( ~ ~ g g Z / ~ ) A o I M ~  - @oI'(lAol* + 2180 1') f(Ao). 428) 

An important property of (28) is the~l/s,,, - Ai proportionality, which is a consequence 
of Mfo - MA - Ao. This Ai dependence is obtained already in all other theories on 
symmetry conversion rates in rotational tunnelling systems. M&, vanishes for shaking-type 
conhibutions 10 the rotor-phonon coupling, so that the conversion rate at low temperatures 
is a measure for the coupling strength of breathing type. The whole temperame dependence 
is determined by The function f(A& which is defined in (25).  The mechanism of this direct 
process is the absorption or emission of a phonon with energy A,, and the deviation from 
the [ I  +Zn(Ao)] law in the temperature dependence has its origin solely in the different 
multiplicity of the spin states of A and E symmehy in the case of CD'. 

As already stated in the previous section, the crossover kom this direct process to 
a librationally activated or Orbach-type process occm at temperatures somewhat above 
the tunnelling energy Ao, depending on the relative weights of shaking and bmthing 
conhibutions to the rotor-phonon coupling (cf I). The dominant contribution to the 
conversion rate in this temperature range (A0 (< T <( Elib) reads 

where we have ignored the r dependence of Mol. The A i z  proportionality as a direct 
consequence of (24) is of general validity, whereas the E;b proportionalityoriginates from 
the Debye assumption for the phonon density of states. 

To allow comparison with recent experimental evidence [19] of a Raman-type rotor- 
phonon coupling, we give the result for the conversion rate due to those inelastic phonon 
scattering processes [lo]. (Here, a phonon with energy o is absorbed and another one with 
energy A0 + o is emitted, or vice versa.)' A rotor-phonon coupling quadratic in the phonon 
coordinates: 

= COS(3P)'+ &I Sin(3~)l(bt f b:)(bk, + b:) 
kk' 
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is assumed. 

similar to section 3 yields a conversion rate due to this process: 

                          

If we neglect the energy difference A0 between the two phonons involved, a calculation 

where := & , / ( V ~ O ~ O X ~ ) ' / ~ .  This rate depends only on bredthing-type phonon coupling 
and is proportional to T7 for PA0 << 1. The corresponding rate for C H 3  derived by Wiirger 
[IO] reads in our notation: 

2 3 2  
(1/&RC€I> = (2~4'@1/56)(~ / r  (vG+/&)(I M,A, -M& I?/$)I BOI~T'. 

Note that at temperatures T cz A0 the factor exp(-PAo) in (31), which is omitted in [lo]. 
adds a T6 low-temperature contribution. For A0 < 25 peV the conversion rate is insensitive 
to A0 because M i  - M& and AO both show the same exponential dependence on the barrier 
height ZV3 as can be seen from figure 2. On the other hand, the matrix elements A0 and 
BO start to behave qualitatively differently as A0 approaches BcH,: Bo + 0. whereas 
A0 remains non-vanishing in this Limit. This causes a drastic~increase of the Raman- 
type conversion rate with deuteration in relatively weakly hindered systems. The recent 
experimental observation can bc interpreted along these lines [19b]. 

To I 0.2 m y 0 . 5  - a"
U- % 0 

-1 M5 
I 0.1 - 

-1.5 

0 10 20 0.0 

V3/BCH3 
Figure 2. Curve I: IM; - M&I/Ao WRUS V , j B  far a threefold Mathleu Hamiltonian HR (cf 
(4)). MLm, := (mrjms[3p)p)ldr). where I m r )  are the eigenstates of HR to symmetry r =A.  
E', Eh. Curve 11: logio[Ao(CD,)/Ao(CH~)l versus V ~ I B C H , .  

It should be pointed out that in the case of C H 3  there exists another possibility of a 
Raman process via direct coupling of the dipolar interaction to the lattice modes. In CD3, 
the only possible origin for a Raman process stems from quadratic coupling of the rotor to 
the phonons. 

5. Comparison with CH3 

In this section, we compare the conversion rates for CD3 to those for CH3. We. disregard 
differences in the coupling strengths g, and in the Debye frequencies q). The latter is 
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5.2. Orbach process 
Here, just the opposite behaviour~is found: the dominant factor in this case is 

                         

which is much larger than 1. Furthermcire, neither the small factor [M& - Mt0[* nor the 
factor Ai due to the coupled density of low-energy phonons occurs (cf (29)). Because the 
1ibration.A energy ~ l i b ( ~ ~ 3 )  is smaller than Elib(CH3). one has to be aware of the Arrhenius 
factors 

in addition to the prefactors discussed already. This is the reason for the maximum occurring 
in  figure 3(a) around T/Ao N 4. According to (35) C& systems are expected to convert 
much faster than the corresponding CH3 systems in the temperature range where both 
systems convert via the Orbach process. 

I -0 
0 4 a 0 20 40 

T/AO(CH3) %/BcH, 
Figure 3. Logarithm of the ratio U. := ( r z b , / ( z i ) m ,  for the Debye phonon model (26) 
and for breathing and shaking coupling types of equal strcngths. Here. quadrupolar and dipolar 
energies are assumed to be equal: CQ = y z / r 3 .  ( 0 )  Plot of CL versus temperature in units of 
the Unnelling energy Ao(CH3) of the protonated methyl gmup. The parameters chosen are 
Vj = IOBc, and OD = I8Bcn3. (b) Plot af a versus V3/Bm, for OD = 3 5 B c ~ , :  (I) direct 
process, T = 0.5 K: (11) Orbach process, T = 25 K, (ill) Raman process. Curves I and 11 are 
calculated according to (22). which is not valid for V3 5 Sew,. 

Thus, for a rotor-phonon coupling linear in the phonon coordinates (cf (6)). the ratio 
01 strongly depends on temperature. This is shown in figure 3(a). At temperatures below 
the tunnelling energy of the deuterated compound, Ao(CD3), 01 saturates at a certain low- 
temperature value (for the parameters chosen ‘in figure ?(a), this value is a N 3 x lo-’). 
At slightly elevated temperatures the factor f (Ao(Cq))  (cf (25)) starts to increase. The 
resulting~increase in 01 is only compensated when the temperatwe comes close to Ao(CH3); 
then also (?;:)a, increases proportionally to [l+Zn(Ao(CHs))], wheren is theBose factor. 
The subsequent rise in u(T) around T U 2Ao(CH3) takes place because the deuterated 
compound starts to convert via the librationally activated (Orbach-type) process, before the 
protonated compound (Elib(CD3) c Elib(CH3)) also begins to convert via this mechanism at 
T > 4Ao(CH3). In the high-temperature limit Ao(CH3) <( T <( Elib(CH3). a isdetermined 
by the factor ( 3 3 ,  which is generally large compared to 1 (cf curve I1 in figure 2). 
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expected to decrease slightly when CH3 is substituted by CD3. Fmthermore, we neglect 
any isotope effect on the hindering potential V, COS(3rp). The important modification is 
a reduction of the (quantum) energy unit Bm, = iBa,. This influences the rotational 
wavefunctions and the eigenvalues of HR (cf (4)). 

One common prefactor in all expressions for the relative change in the conversion rates 
(Y := (rc;~)~,/(tc;lj)as with deuteration is the square of the ratio of the quadrupolar and 
the dipolar energy [C~/(y’/r~)]*, which varics between 1 and 2, depending on the system 
considered. 

We discuss the influence of direct. Orbach and Raman processes on the relative 
modification of the conversion rate a. assuming unchanged surroundings of the rotor. This 
in particular means that V3 and the coupled phonon density of states are supposed not to 
alter with deuteration. The three processes differ considerably not only in their temperature 
dependences but also in the dependence on the magnitude of the hindering potential. For 
direct and Orbach-type processes our rates (22) are not valid for nearly free rotors. On the 
other hand. if V3 >, 8 B c ~ ,  the rotor manix elements A, and B, for the lowest relevant 
values of the librational quantum number m are of the order of 1, independent of deuteration. 

5.1. Direct process 

For this process (cf (28) and equation (9) of I, with m = m’ = 0). which is relevant at low 
temperatures, two factors depending weakly on V, appear in (I: 

(IAo(CD3)I2 + 21~o(CD~)I’)/I~o(CH3)IZ (32d 

being roughly equal to 3 for not too Small V3, and 

which can be deduced from figure 2. Already more imponant is the factor 

f(Ao(CD3))   

1+2n(Ao(CH3). (33) 

which for temperatures larger than Ao(CD3) but still smaller than Ao(CH3) is strongly in 
favour of (t;A)m,. The most important factor in the conversion rate due to the direct 
process is, however, given by 

(34) 

owing to the small density of low-energy phonons. This factor can easily surmount all 
the aforementioned factors by orders of magnitude (cf curve II in figure 2). Therefore, the 
direct process is strongly suppressed with deuteration as a direct consequence of the Ai 
proportionality of the conversion rates in this temperature regime. 
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S.3. Raman process 

In the case of quadratic rotor-phonon coupling (30), Raman-type conversion takes place. 
The corresponding C Y R ~ ~ ~ ~  ratios vary slightly with temperature for T 5 A0 owing to the 
exp(-bAo) dependence, but become constant at higher temperatures. 

We now turn to a discussion of the dependences of CY and ( Y R ~  on the height of the 
orientational potential V3. These dependences are visualized in figure 3(b). The curves I 
and I1 belong to linear phonon coupling and to temperatures T = 0.5 K (dominated by 
the direct process) and T = 25 K (Orbach process), respectively. The decrease of I and 
the increase of I1 are kith direct consequences of (34) ind (35), i.e. of the A0 dependence 
of the individual conversion raw.  The increase of with temperature (via linear phonon 
coupling) becomes more pronounced, the smaller the tunnelling energy. 

Curve 111 refers to 'the Raman process. For V3 2 18B~rr, the conversion due to th is  
process is increased by a factor of about 10 upon deuteration, approximately independent of 
V3 (and of the temperature). For lower values of V3. abman increases drastically as V3 3 0. 
The reason for this peculiar isotope effect in nearly free rotating systems,' which convert via 
a Raman  process.^ has already been discussed in connection with equation (31): (t&)m3 
depends only on the rotor mahix element BO, which vanishes as V3 + 0, whereas (z&)m 
additionally depends on Ao, which remains finire. in this limit Furthermore, it should be 
noted that the Raman conversion rate is very sensitive to even slight changes in the Debye 
energy due to the WO6 proportionality (cf (31)). 

6. Discussion 

Let us s m  by discussing the approximations made in the calculation of the symmetry 
conversion rates. 

Our approximation to restrict the diagonalization of HR + HQ to a definite librational 
quantum number m is &lowed if A,,, << I E ~  - E,!J for m f m' (equation (12)). This 
restriction should be justified for most physical systemerecall that CD3 groups are always 
more hindered than CH-J groups in the same surroundings-if the temperatures considered 
are small compared with the barrier height 2V3. 

The most serious approximation is the perturbational approach with respect to the rotor- 
phonon coupling HI. Second-order perturbation theory is frequently used to describe the 
temperature dependence of rotational tunnelling despite the fact that the coupling saength 
is unknown. 

Next. we neglected the energy shifts due to HQ in equation (20). which are of the order 
of CQ. For V3 2 IOOBm, corresponding to 375 K, this approximation is no longer valid. 
We expect that sophisticated Nh4R methods- applied to CH, [2O]-are able to measure 
tmmn for such small tunnelling frequencies. However, for the temperature dependence of the 
transition rates R A + ~  (equation (22)) the modijication of the eigenenergies is irrelevant. 
An eventually altered low-temperature behaviour will hardly be observable for temperatures 
of the order of Ao, i.e. T - 11.6 fiK. At all higher temperatures mainly librational energy 
differences are of importance, 

We did not take into account the dipolar interaction among the deuterons of the CD3 
   group, since this is about 200 times weaker than the quadrupolar interaction. As an aside 

we want to point out that the long-ranging dipolar energies in CH3 systems are expected to 
be important also between different methyl groups. If they are taken into account in CH3- 
containing systems, a qualitative modification occurs because then (in contrast to the pure 
iflcramolecular dipolar interaction) also E' cf Eh mansitions are allowed. The argument 
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to neglect this intermolecular dipolar interaction was the larger distance of the CH3 group 
from surrounding protons compared to the distance between the methyl protons. On the 
other hand, the significance of the intermolecular dipolar interaction clearly shows up in Ti 
experiments [21]. For conversion only A ++ E transitions are relevant, which remain of 
the same order of magnitude also if the intermolecular dipolar interactions are taken into 
account. We are presently undertaking a study of this mechanism for CH3. 

In the calculation of the conversion rates (22) and (24), we utilized equations (14) and 
(15). Owing to the limitations in the observable tunnelling energy A0 0.1 p?V, neutron 
scattering experiments should be explainable by our equation (24). In the following we 
restrict our discussion to physical situations in which q << 1.  

The temperature dependence of r,, in CD3 is found to be quite similar to that of 
the corresponding more strongly hindered CH3 system. In particular, for temperahues 
Elib > T > Ao the behaviour is librationally activated (cf (29)) as in I and the low- 
temperature conversion rate (28) is proportional to the rotor-phonon coupling strength of 
breathing type. As in I, a fast conversion at lowest temperatures should be accompanied 
by the tendency for a positive shifting of the inelastic tunnelling line with temperature 
and accordingly a pronounced negative shifting of the inelastic tunnelling line should be 
connected with very slow low-temperature conversion rates. 

For low temperatures T < A0 a slightly different law for the temperature dependence 
is obtained than in all other rotational tunnelling systems (Hz [ M I ,  CH3 [5,101 and C% 
[SI) considered so far. 

To our knowledge there exists only one experiment, performed by Buchman et al [221, 
that has measured conversion times of deuterated methane. They measured zcon of CDj as 
a function of temperature for 35 mK 6 T 6 400 mK by NMR susceptibility measurement. 
The authors emphasize that their data do not contradict a [l +Zn(Ao)l law as predicted by 
Nijman and Berlinsky [9] for C&. However, the error bars in [221 are too large to allow 
one to distinguish between a [I fZn(Ao)] low-temperature behaviour and a slightly modified 
law that follows from the different spin multiplicity in CD4 in ‘an i!inalogous manner, as we 
found for CD,. 

In the comparison of conversion rates of CD3 with the corresponding CH3-containing 
system, we have made the following assumptions: first, the hindering potential was supposed 
to remain unchange&with isotopic substitution. In some cases this is known to be wrong 
[15]. However, it has been shown within a molecular-field approximation that a change 
of V3 should occur only if V3 5 SBm, [15]. Secondly, the coupled phonon density of 
states was assumed not to change with deuteration. If the rotors themselves contribute 
significantly to the phonon density of states (via their librational excitations), deuteration 
should be accompanied by a reduction of the phonon frequencies. In experiments like those 
described in [19] and [26], where the methyl rotors are diluted in a surrounding manix, this 
source for change in the phonon coupling is expected to be negligible. Thirdly, we assumed 
that both the coupling mechanism-linear or quadratic in the phonon coordinates-and the 
coupling type-breathing or shaking40 not change with deuteration. 

Using these assumptions, the ratios a:= (Z;~)CD,/(~;~)CH~ are plotted in figures 3(a) 
and ( b )  versus temperature and barrier height, respectively. For a linear phonon coupling 
a reduction of the conversion rate is predicted for low temperatures (direct process), which 
is a consequence of the Ai proportionality of the conversion ram (cf (28) and (34)). 
However. at elevated temperatures, when the Orbach process starts to become significant, 
(Y may rise by several orders of magnitude; recall the A;’ proportionality of the conversion 
rates in this temperature regime (cf (29) and (35)). The maximum in (Y as a function of 
tempera”. is connected with the smaller librational energy in CD3 compared to CH3 (cf 
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(36)). Specifically, for the Raman process o ( R ~ ~ ~  is (nearly) independent of tempemwe 
but this ratio strongly increases as V3 becomes smaller than - 18Bc~I. corresponding to 
tunnelling~energies Ao(CH3) larger than 25 WeV. For stmnger hindered rotors a constant 
value ( Y R ~ ~  N 10 is obtained. The vanishing of (z,&)a, when V3 +.O is prevented in 
realistic situations by the intermolecular dipolar interaction between the methyl protons and 
protons located in the neighbourhood of the CH3 group. 

A large and. nearly temperature-independent increase of the conversion rates with 
deuteration has been observed by oprical hole burning experiments on dilute dimethyl- 
s-teuazine molecules in an n-octane matrix [19b]. The experimentally obtained factor 
aeXp N 60 can be explained by supposing a low orientational barrier of V3 = 2 . 5 5 B a .  This 
value also explains nicely the observed change in the side hole splitting with deuteration 
[19b]. 

Further experiments on systems containing C!& groups are desirable. It should be 
possible to observe the modified lowltemperature behaviour in (i) neutron transmission 
experiments [23] (the enhancement factor ( ( I ' ) T / ( I ' ) T = ~  - 1) for the temperalure- 
dependent part of the total scattering cross section for CD3 equals 15/11 instead of 5/3 as in 
the case of CH3), (ii) INS experiments [%I. (iii) specific-heatexperiments [25] and eventually 
(iv) optical hole burning experiments [19,26]. The experimental data already obtained by 
the lauer method can be explained by our theory. One system of recommendation would 
be y-picoline, which even deuterated shows a tunnelling energy of Ag N 100 peV [27]. 

Acknowledgments 

We would l i e  to thank one of the referees for drawing our attention to the inapplicability of 
equation (22) for the transition rates between~Ea and Eb states. We acknowledge valuable 
discussions with J Friedrich and also thank him for' communicating experinienral results 
prior to publication. WH acknowledges support through BMFT Contract No 03Hu2Erl and 
through DFG Contract No AF' 47 1-1. 

References 

Silvera I F 1980 Rev. Mod. Phys. 52 393 
Press W 1981 Single Panicle Rorarinns in Molec~lor Crysfah (Berlin: Springer) 
van der PuUcn D and Trappenien N J 1985 Physica 129A 302 
Diezemann G. Sil lese H and van der h e n  D 1991 Z. Phys. B 83 245 
Hiusler W 1990 Z. Phys, B 81 265 
Motizuki K and Nagamiya T 1956 J.  Phys. Soc. Japan 11 93 
Bedinsky A I and Hardy W N 1973 Phys. Rev. B 8 5013 
van Kranendonck I 1983 Theory ofrhe Properlies ofSolid Hz. HD a d  Dz (New York: Plenum) 
Nijman A I and Bedinsky A J 1980 Con. 1. Phys. 58 1049 
Wiirger A 1990 Z. Phys. B 81 273 
(a) Hiiller A 1980 Z. Phys. B 36 215 
(b) Hewson A C 1982 J.  Phys. C: SolidSInte Phys. 15 3841,3855 
Motizuki K 1957 1. Phys. Soc. Japan U 163: 1962 J .  Phys. Soc. Japan 17 1 I92 
Spiess H W 1978 NMR: Basic Principles and Progrm; vol 15. ed P Diehl. E Ruck and R Kosfeld (Berlin: 

(a) Wiirger A 1989 Z. Phys. B 7b 65 
(b) Hausler W 1990 PTB-Berichr-PG-3 Braunschweig 
Heidemam A, Friedrich H, Giinrher E and HZusler W 1989 2. Phys. 5 76 335 
Bames R G 1974 Advances in Nuclear Quadrupole ResoMnce voI I (London: Hoyden) 

Springer) 



6138                           

1171 (a) B6mer K, Diezemann G. R6ssler E and Vieth H M 1991 Chem. Phys. Lea. 181 563 
(b) Bemhard T and Haeberlen U 1993 Chem. Phys. Lett. to be published 

[IS] The diagonal elements of HDD marrir given in I51 are wrong: they must read (314, -314. -314,314. 

1191 (a) Grad1 G. Orth K and Friedrich J 1992 Europhys. k t t .  19 459 
@) Onh K. Schellenberg P and Friedrich J 1993 3. Chem. Phys. at press 
Or& K. Friedrich J and Hausler W 1993 1. Chem. Phys. at press 

1201 Vandenmaele G, Bueckenhoudt A and van Gerven L 1990 1. Magn. Reson. 119 522 
(211 Milller-Warmuth W. Schiiler R. Prager M and Kollmar A 1979 3. Magn. Reson. 34 83 
I221 Budunan S, Veuerling W T, Candela D and Pound R V 1982 Phys. Rev. B 26 4826 
1231 Lushington K J and Morrison J A 1977 Can. J. Phys. 55 1580 

Friedrich H. Guckelsberger K. Scberm R and Hiiller A 1981 1. Phys. C: SolidSkm Phys. 14 L147 
Scherm R. Guckelsberger K and Friedrich H 1983 Nernronenrtreuwg zllr Untersuchung konderrrierrer 

Guckclsberger K, Friedrich H and Schem R 1992 Z. Phys. B 91 209 
[?A] Grieger S. Friedrich H. Asmussen B. Cuckelsberger K, Nettling D. Press W and Schem R 1992 2. Phys. 

1251 Inaba A. Chihara H. Morrison J A, Blank ~~ H. Heidcmm A and Tomkism~ J 1990 1. PhyJ. Soc. Japan 59 

(261 (a) H a m m  C, Ioyenn M, Trammsdorff H P. Vial I and yon Borczyskowsl;i C 1992 1. Chem. Phys. 96 

@) von Borczyskowski C. OppenlZnder A. Tmmmsdorff H P and Vial J-C 1990 Phys. Rev. Len. 65 3277 
Fillaux F and Carlile C J 1989 Chem. Phys. Len. 162 188 

0.0.0.0) 

Mnterie (Benedikrbeuren: Verbundtreffcn) 

B 87 203 

522 

6335 

[271 


