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Abstract
Underwater sounds provide essential information for ma-

rine researchers to study sea mammals. During long-term stud-
ies large amounts of sound signals are being recorded using hy-
drophones. To facilitate the time consuming process of man-
ually evaluating the recorded data, computational systems are
often employed. Recent approaches utilize Convolutional Neu-
ral Networks (CNNs) to analyze spectrograms extracted from
the audio signal. In this paper we explore the potential of rel-
evance analysis to enhance the performance of existing CNN
approaches. For this purpose, we present a fusion system that
utilizes intermediate outputs of three state of the art CNNs,
which are fine tuned to recognize whale sounds in spectro-
grams. Hereby we use Explainable Artificial Intelligence (XAI)
to asses the relevance of each feature within the obtained rep-
resentations. Based on those relevance values, we create novel
masking algorithms to extract significant subsets of respective
representations. These subsets are used to train an ensemble
of classification systems that are serving as input for the final
fusion step. We observe that a classification system can bene-
fit from the inclusion of Relevance-based Feature Masking in
terms of improved performance and reduced input dimension-
ality. The presented work is part of the INTERSPEECH 2019
Computational Paralinguistics Challenge.
Index Terms: Computational Paralinguistics, Deep Neural
Networks, Transfer Learning, Explainable Ai

1. Introduction
The application of passive acoustic methods to observe ma-
rine mammals has been of interest to researches for over three
decades [1]. To this end, underwater microphones called hy-
drophones are often employed to acquire increasingly large
datasets containing sound samples from vocally active ma-
rine species. The resulting audio recordings serve a variety
of purposes, including tasks like species-identification [2, 3],
localization-tracking [4, 5], behaviour-analysis [6, 7] or popu-
lation monitoring [8]. In the past, these tasks were usually per-
formed by small groups of experts through manual analysis of
the audio recordings. However, due to the increasing size of the
collected acoustic databases, this process is becoming more and
more time consuming [3]. Additionally, the manual inspection
can lead to inconsistencies based on the experience and fatigue
of the analysts [8]. In order to facilitate this process, the ap-
plication of automatic classification systems, which are able to
detect specific relevant patterns in the data, has been growing
in popularity [3]. Examples for this include the calculation of
spectrogram correlation values [9, 10], extraction of frequency
contours using edge detection algorithms and computation of
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pixel-based features [11], as well as the application of a prin-
cipal component analysis to derive features from the relative
power of frequency bins in spectrograms [12]. Due to the re-
cent success of Convolutional Neural Networks (CNNs) in the
fields of computer vision and natural language processing, cur-
rent approaches also explore the feasibility of CNN-based mod-
els for bio-acoustic classification tasks such as whale call recog-
nition. Instead of extracting features from the spectrograms,
these approaches directly use them as inputs for the CNNs.
For instance, Smirnov [13] trained a custom CNN with three
convolutional layers to detect whale calls in two second audio
clips and achieved an Area Under under the Receiver Operating
Characteristic Curve (AUC) value of 0.976 on the dataset pro-
vided in the Marinexplore and Cornell University Whale De-
tection Challenge1. Using the same dataset, Ibrahim and col-
leagues [14] proposed a hybrid system which combines a CNN
with a dictionary learning approach, to achieve a detection rate
of 92.37%. Instead of creating new networks, Wang et al. [15]
compared the performance of four established CNN model ar-
chitectures (VGGnet, Inception, Xception and Densenet) on the
open-source WhaleFM dataset2. In their approach they trained
each model to detect the target whale call classes and achieved
accuracies of up to 84.4%. Similarly, Zhang et al. [16] ap-
plied transfer learning methods to fine-tune pretrained models
for whale call classification. In order to capture the character-
istics of whale sounds with varying durations, they used three
windows with different time scales and calculated feature maps
with 1D convolutional layers, which were then combined into
a 3-channel feature representation and fed into both networks.
Using this approach they were able to distinguish two species
of whales in the WhaleFM dataset2 with an accuracy of 99.7%.

In general, CNNs are aiming to overcome the limitations
of handcrafted features by directly learning suitable represen-
tations from raw data. However, the ability to handle raw data
input with high accuracy comes with several challenges to be
considered: First of all, large amounts of annotated data are nec-
essary to train a Convolutional Neural Network from scratch, as
the absence of handcrafted features requires additional abstrac-
tion layers to be automatically learned by the network. This be-
haviour initially hampers their application in niche topics with
relatively small datasets available, but can be overcome by uti-
lizing models that have initially been pretrained on larger data
collections. Consequently we are deploying several pretrained
CNNs for our experiments which we fine-tune to recognize
whale characteristics in spectrograms.

A second drawback, that is common to all deep learn-
ing structures, is their inherent complexity and the resulting
opaqueness in decision making. In recent years the need to bet-
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ter understand the decision process of neural networks has be-
come an increasingly pressing problem. As a consequence the
research field of Explainable Artificial Intelligence (XAI) [17]
has reemerged and gained growing attention ever since. Expla-
nation approaches like deep Taylor decomposition aim to iden-
tify the parts of an input which were relevant for the decision of
a model. An example of such an explanation can be seen in Fig-
ure 1. The left image shows the spectrogram of a whale sound
recorded with a hydrophone, while the picture on the right side
visualizes the according deep Taylor decomposition. This visu-
alization clearly shows that the network has learned to localize
the relevant whale patterns even though they are superimposed
by noise. Such XAI algorithms have already proven to be help-
ful for humans to understand the decisions of various machine
learning models [18, 19]. Our goal is to transfer these insights
into the classification system itself and translate this increased
understanding into enhanced recognition accuracy. To this end
we use deep Taylor decomposition to asses the relevance of fea-
tures extracted by several pre-trained CNNs, fine-tuned to rec-
ognize orca sounds in spectrograms. Based on those relevance
values, we create novel masking algorithms to extract signif-
icant subsets of respective representations. These subsets are
used to train an ensemble of classification systems that are serv-
ing as input for a final fusion step.

In the following we test our approach within the IN-
TERSPEECH Computational Paralinguistic Challenge (Com-
ParE) [20]. The goal of this challenge is it to build an automatic
system that detects the presence of orca whales in hydrophone
recordings.

Original
spectrogram

Deep Taylor
decomposi�on

whale sounds
embedded in noise

extracted
whale sounds

Figure 1: Deep Taylor decomposition of an orca whale sample
using an image processing CNN (Inception V3). The left image
shows the original input to the network while the picture on
the right highlights the areas that are relevant for the networks
decision.

2. Methodology
The following section provides an overview of our multi-level
classification process (as illustrated in Figure 2) before describ-
ing the utilized components in detail.

2.1. Architecture

The first step in our classification system is based on spectro-
grams of the audio input data. Here, we use CNNs to learn
suitable representations of any given sample - more specifically,
the output of the last convolutional layer is used as a represen-
tative feature vector for further processing. In order to improve
results with the limited amount of annotated training data avail-
able, we deploy pre-trained state-of-the-art CNNs, which we

fine-tune to our problem. Next, the extracted representations are
used to train fully connected neural networks with one hidden
layer consisting of 256 neurons to detect the target classes (orca
sounds versus noise). Those models are hereinafter referred to
as base-models. At this point we introduce explainable artificial
intelligence into the recognition architecture: XAI methods are
applied to the base-models in order to assess the relevance of
each input feature for classification results. After this interme-
diate analysis step, we train the final classification networks.
Hereby, the calculated relevance values are used to generate
masking layers within the networks, that automatically select
interesting subsets of our initial feature representations. The
process up to this point is depicted in Figure 2 and aims to force
the newly trained networks to focus on specific parts of the input
and therefore to learn differing patterns from the base models.

To take advantage of the different emphases of our models
we fuse our trained models in two ways. First we conduct an
intermediate feature fusion by training additional dense classi-
fication networks with one hidden layer consisting of 256 neu-
rons on the concatenated features of all three feature extraction
networks for each masking algorithm. Furthermore, we cre-
ate a classification system for each combination of our different
models using an average vote, where we base the decision of the
whole system on the average confidence of all involved models.
In this way we can find out which models complement each
other the most.

2.2. Feature Extraction

Based on a broad evaluation of various CNN architectures for
audio event detection carried out by Hershey et al. [21], we
chose the following three convolutional neural network archi-
tectures to extract suitable feature representations for detecting
the presence of orca whales in an audio file.

The VGGish model by Hershey et al. [21] is a variation of
the original VGG image recognition model [22] that is specif-
ically adapted to recognize sound scenes from spectrograms.
The network is pretrained on the audio set data collection [23] -
a large scale dataset which is labeled with respect to 623 differ-
ent audio events. Mel-spectrograms are used as inputs for the
network.

The Inception V3 network [24] is a popular choice for im-
age recognition tasks. Hershey et al. [21] found that this par-
ticular architecture also yields top performance on the task of
audio event detection, with respect to a limited amount of train-
ing time. As input we opted for power spectrograms instead of
the Mel-spectrograms utilized in VGGish, since the mel scale,
which has been designed with the the psychoacoustic percep-
tion of human listeners in mind, highly compresses information
in higher frequency bands.

The third model we used for feature extraction is the Incep-
tionResNet V2 model by Szegedy et al. [25]. This architecture
is a combination of the previously described Inception Network
and the ResNet architecture, which was found to achieve the
best overall performance for sound event detection by Hershey
et al. [21], at the cost of prolonged training duration. Here we
are using the same input as for the Inception model.

2.3. Deep Taylor decomposition

To identify the extracted features that were especially relevant
for our classification models we use an XAI method called deep
Taylor decomposition which was initially introduced by Mon-
tavon et al. [26] to increase the interpretability of a classifier
by highlighting the relevance of each input pixel in a heat map
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Figure 2: Schematics of our classification models. At first a CNN extracts features from the input (A). Then we use XAI methods to
analyze a classifier which is trained on those features (B). Based on this analysis we mask the features (C) and train a new classifier on
the masked features (D).

(see Figure 1). To this end deep Taylor decomposition assigns
a relevance value Ri to each neuron of a neural network by
performing a relevance propagation. This propagation starts at
the output layer, where the relevance of the prediction we want
to analyze is defined as the activation of the respective neuron.
The relevance of this output neuron is then successively propa-
gated backwards to each previous layer. During this relevance
propagation a Taylor approximation is used to determine how
relevant a neuron xl

i in layer l was for a neuron xl+1
j of the sub-

sequent layer l + 1. Hereby, the aim is to model the relevance
of xl+1

j as a function Rl+1
j (xl) which depends on the neurons

xl
i of the previous layer. Assuming such a function is found, for

example through previous relevance propagation steps, one can
decompose it using the Taylor series

Rl+1
j (xl) =

∑
i

∂Rl+1
j

∂xl
i

∣∣
x̃l(x

l
i − x̃l

i) + ε, (1)

with Taylor residual ε and base point x̃l which is chosen de-
pending on xl+1

j . If one assumes that ε is small enough
then the propagated relevance from xl+1

j to xl
i is given by

∂Rl+1
j

∂xl
i

∣∣
x̃l(x

l
i − x̃l

i). Different deep Taylor methods vary in how

they choose the base point x̃l. For this work we use the deep
Taylor implementation of the INNvestigate framework [27].

2.4. Relevance-based Feature Masking

Based on the relevance values generated by the deep Taylor de-
composition we use two different masking algorithms to extract
interesting subsets of the learned representations. The first al-
gorithm calculates the average relevance of each feature over
the whole dataset. Those relevance values are then used to cre-
ate a binary mask that sets all features but the n most relevant
values to zero. By multiplying this mask with the input feature-
vector we are eliminating the influence of all non-relevant fea-
tures, when training a model. Since this is equivalent to a form
of feature selection mechanism, which reduces the amount of
utilized features, we refer to this approach as minimal masking.
For our experiments we fixed n to be 512 which equals the num-
ber of features extracted by VGGish and therefore ensures that
the intermediate feature fusion network trained on features from
all three feature extraction networks is not distorted in favor of
the larger feature sets of ResNetInc and Inception. The second

masking algorithm dynamically generates a new mask for each
sample by nullifying all features that have a higher than aver-
age relevance value. This forces the attention of a newly trained
model to features which the original classification network has
not considered as relevant. Hence we refer to this approach as
negative masking.

2.5. Dataset

We run all our experiments on a collection of hydrophone
recordings from the DeepAL Fieldwork Data, which where pro-
vided within the scope of the INTERSPEECH 2019 Compu-
tational Paralinguistics Orca Activity Sub-Challenge. All data
was recorded with an array of four hydrophones and is avail-
able as either four- or mono-channel wav files. The data is pre-
divided into three different sets for training, development and
testing. Each set consists of small audio clips that are labeled
with respect to the presence of an orca in a given recording. In
all our experiments we use the training set to train our classi-
fiers and the development set for evaluation. To increase the
available amount of training data we split each four-channel-
wav into four mono-channel files. However, for evaluation pur-
poses we rely on the mono-channel files that were already pro-
vided. Overall 19364 samples (~6:30h) of data are used for
training and 3515 (~1:10h) for evaluation. For details please
refer to [20].

3. Summary of Results and Discussion
In the following we present the results of our conducted exper-
iments on the task of orca detection with the aforementioned
variations of our Relevance-based Feature Masking (RBFM)
approach. Performance will be reported with respect to the
Area Under under the Receiver Operating Characteristic Curve
(AUC). To compensate for the underrepresentation of orca sam-
ples in the training data, we employ a weighted loss function in
all cases during the training of our models. Table 2 lists the per-
formances of our base-models, which are trained on the learned
feature representations, as well as the feature fusion models,
trained on a concatenated feature vector of those base-models
only. Results are broken down according to the utilized selec-
tion masks. Selecting the most relevant subset of features (mini-
mal masking) to train a new model does not considerably impact
classification performance while greatly reducing the number of
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Table 1: Ranking of the decision level fusion of all possible classifier combinations sorted by their AUC performance on the development
set. The respective contributing classifiers are noted by green checkmarks.

No. Vgg Vgg neg Vgg min Inc Inc neg Inc min Res Res neg Res min FF FF neg FF min AUC
1 3 3 7 7 3 7 3 7 7 7 7 3 .9194
2 3 3 7 7 3 7 7 3 7 7 7 3 .9193
3 3 3 7 3 7 7 3 7 7 7 7 3 .9193
4 3 3 7 3 3 7 3 7 7 7 7 3 .9192
5 3 3 7 3 7 7 7 3 7 7 7 3 .9191

... ...

1504 3 7 7 7 7 7 7 7 7 7 7 7 .9077

... ...

2036 7 7 7 7 7 7 3 7 7 7 7 7 .8852

... ...

2039 7 7 7 3 7 7 7 7 7 7 7 7 .8844

... ...

2043 7 7 7 7 7 7 3 3 7 7 7 7 .8832
2044 7 7 7 7 7 3 7 7 7 7 7 7 .8829
2045 7 3 7 7 7 7 7 7 7 7 7 7 .8798
2046 7 7 7 7 3 7 7 7 7 7 7 7 .8736
2047 7 7 7 7 7 7 7 3 7 7 7 7 .8717

used features. Whenever we are forcing the model to focus on
less relevant parts of a feature set (negative masking), we ob-
serve a small decrease in classification performance. The fact
that the absence of the most relevant features leads to a wors-
ened classification performance substantiates the relevance of
features found by minimal masking. However, we will see that
features found by negative masking contribute useful informa-
tion to the fusion process.

Table 2: AUC performance on the development set for all the
base-models and the trained feature fusion using no-, minimal-,
and negative-masking versions of those base-models only.

Model Masking

None Minimal Negative

Vggish .9077 .9077 .8798

Inception V3 .8844 .8829 .8736

Resnet .8852 .8871 .8717

Feature Fusion .9000 .9007 .8880

Table 1 shows the summarized ranking of all our decision-
level fusion experiments with respect to the inclusion of con-
tributing models. The classification performance ranges from
an AUC of 0.8717 for our weakest decision level fusion model
to 0.9194 for the best performing model.

As expected, the weakest models are the ones that are only
using the negatively masked features for training. Furthermore,
the isolated and non-fused base-models are placed in the lower
third of the scale. The top five models all include models trained
on (1) the full representations extracted by VGGish, (2) the less
relevant parts of those features and (3) the minimal feature fu-
sion of all extracted representations. Either combination of the
extracted features from ResNetInc and Inception, as well as the
less relevant parts of those features are also contributing to the
best performing models. In conclusion, the ranking reveals that
both masking variants are included within the top five systems.
This shows that while our masking approaches are not necessar-

ily improving the performance of a single model, they indeed
add additional value to an overall fusion approach.

Table 3: Comparison of our best decision level classifier, as
reported in Table 1, against the ComParE 2019 baseline.

Model Dev Test

Proposed RBFM Fusion .919 .916

Baseline

OpenSmile .810 .866

OpenXBOW .771 .836

AuDEEP .740 .798

Fusion - .866

4. Conclusion
In this work we have shown the potential of Explainable Ar-
tificial Intelligence approaches to enhance the performance
of neural network classification. We have introduced novel
Relevance-based Feature Masking algorithms that substantially
improved performance over our base-models for the task of de-
tecting whales in an audio signal. To put our results into per-
spective, we compare our best performing approach, as reported
in Table 1, against the baseline of the 2019 ComParE chal-
lenge (Table 3). This year’s baseline [20] comprises three differ-
ent classification systems as well as a fusion of all three systems.
Comparison of results shows that our RBFM Fusion approach
outperforms all baseline approaches on the development- as
well as on the test-set. For future work it might prove beneficial
to investigate the generalization capabilities of our approach for
other classification problems.
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