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Abstract. Modern deep reinforcement learning agents are capable of
achieving super-human performance in tasks like playing Atari games,
solely based on visual input. However, due to their use of neural net-
works the trained models are lacking transparency which makes their
inner workings incomprehensible for humans. A promising approach to
gain insights into the opaque reasoning process of neural networks is the
layer-wise relevance propagation (LRP) concept. This visualization tech-
nique creates saliency maps that highlight the areas in the input which
were relevant for the agents’ decision-making process. Since such saliency
maps cover every possible cause for a prediction, they are often accentu-
ating very diverse parts of the input. This makes the results difficult to
understand for people without a machine-learning background. In this
work, we introduce an adjustment to the LRP concept that utilizes only
the most relevant neurons of each convolutional layer and thus generates
more selective saliency maps. We test our approach with a dueling Deep
Q-Network (DQN) agent which we trained on three different Atari games
of varying complexity. Since the dueling DQN approach considerably al-
ters the neural network architecture of the original DQN algorithm, it
requires its own LRP variant which will be presented in this paper.

1 Introduction

Reinforcement learning addresses the problem of optimizing a long-term reward
that an agent receives while interacting with an environment. Deep reinforcement
learning (DRL) describes the combination of those methods with deep neural
networks (DNN) by using a DNN as decision function of the agent.

One of the first successful applications of DRL was the deep Q-Network
(DQN) developed by Mnih et al. [12]. This approach was able to achieve high-
level performance across a set of 49 games for the Atari 2600 console, using
the same hyperparameters and network architecture for all games, while only
receiving the pixels of the game screen and the game score as input.

For a long time, DRL research only focused on optimizing the performance of
DRL agents, but recent years saw an increasing interest in making the decision
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process of DRL agents more explainable [23, 9, 19, 7, 21]. One problem with ex-
plaining the actions of a DRL agent is that the inner workings of the underlying
DNNs are incomprehensible to humans, making it difficult to identify the parts
of the input on which the agent bases its decision. A common approach to tackle
this challenge is the generation of saliency maps that visualize the relevance of
each input pixel for the output of the network [1].

While such saliency map algorithms are already well established and were
even used to improve classification models [15], they are usually developed with
experienced machine learning practitioners in mind. This can make the generated
explanations difficult to interpret for beginners or users who are unrelated to the
field of machine learning. Weitz et al. [22], for example, found that traditional
saliency maps are too fine-granular for humans to easily detect relevant features
for the classification. In a recent meta-study, Miller [11] explored the explanation
process between humans to derive new design paradigms for explainable artificial
intelligence algorithms that can help to make such methods more accessible to
non-expert users. One major finding of this study was that people usually prefer
selected explanations that focus on specific evidence instead of showing every
possible cause of a decision. Based on this insight, we aim to adjust an existing
saliency map approach to be more focused on the parts of the input that are
most relevant for the decision-making process of a system.

We base our approach on layer-wise relevance propagation (LRP): A promis-
ing concept for generating saliency maps, which visualizes how much each pixel
of the input picture contributed to the output based on the activations of each
neuron during the forward pass. In contrast to most other approaches, LRP offers
the benefit of conserving the certainty of the prediction throughout its process,
which provides the user with additional useful information. Furthermore, LRP
concepts do not contain contradictory evidence, because they do not generate
negative relevance values [13]. Our adjustment uses an argmax function to follow
only the most contributing neurons of each convolutional layer, which enables
us to filter out the most relevant information. Therefore we can create selective
and more focused saliency maps while maintaining the advantageous properties
of LRP mentioned above.

Modern DQN variants, like the rainbow algorithm [8], are employing dueling
DQN systems which use two separate estimators to measure the value of the cur-
rent state and the advantage of each action the agent can take in that state. To
test our approach with state-of-the-art dueling DQN algorithms, we introduce a
slightly adapted version of LRP that can handle the dueling DQN architecture
without losing its advantageous properties. Since no other improvement of the
DQN algorithm considerably changes the underlying neural network architec-
ture, this extension allows us to use LRP on any DQN based DRL algorithm
without any further adjustments.

We test our approach on three Atari 2600 games of varying complexity using
the OpenAi gym and baselines libraries [4, 5]. The Atari game domain is well
suited for testing and introducing new RL algorithms because it offers a wide
array of different tasks in similar environments.
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2 Related work

In this section, we look at successful applications of saliency maps for DNNs
and DRL. Because saliency maps work best on visual input data, those methods
focus on increasing the explainability of CNNs which are most often used on
visual input data.

One of the first methods used to measure the relevance of pixels of visual
input data is to see how much a change in that pixel impacts the prediction of
the CNN. If a pixel is relevant for the decision of the model, then even small
changes of the pixel will greatly impact the output of the model. This local
rate of change with respect to certain inputs of the CNN can be calculated by
using partial derivatives. Simonyan et al. [17] for example use the derivative of
the neural network with respect to an input pixel to determine the relevance of
that input pixel. To get this derivative they use the backpropagtion algorithm
also used during the training of the neural network. The deconvolution [24] and
guided backpropagation [18] approaches are based on the same theory but use
modified versions of the backpropagation algorithm to get relevance values for
the input pixels. Another similar approach is Grad-CAM [16], which uses partial
derivatives of the fully connected part of a CNN with respect to the output
of the last convolutional layer to identify regions inside the input, which were
relevant for the specific prediction of the CNN. Guided backpropagation and
Grad-CAM can be combined by computing the component-wise product of the
attention maps created by the different approaches. The result is called guided
Grad-CAM and creates a fine granular but class specific saliency map [16].

In contrast to those gradient-based saliency maps Bach et al. [3] proposed
a method that directly uses the activations of the neurons during the forward
pass to calculate the relevance of the input pixels. This is computationally ef-
ficient compared to gradient-based methods because they can reuse the values
of the forward pass. Instead of calculating how much a change in an input pixel
would impact the prediction, Bach et al. investigate the contribution of the in-
put pixels to prediction. For this purpose, they do not only describe a single
specific algorithm but introduce a general concept which they call layer-wise
relevance propagation (LRP). This concept has two advantageous properties
which gradient-based saliency maps lack. The first is the conservation property
which says that the sum of all relevance values, generated by LRP, is equal
to the value of the prediction. This ascertains that the relevance values reflect
the certainty of the prediction. The second property is positivity which states
that all relevance values are non-negative. This ascertains that the generated
saliency maps do not contain contradictory evidence [13]. Some gradient-based
approaches achieve positivity by squaring the partial derivatives, but this only
masks the negativity for the viewer.

Another approach that uses the activations of each neuron during the forward
pass was proposed by Mopuri et al. [14]. Instead of measuring the relevance of
each input pixel, they search for the position of all input pixels that contributed
positively to the prediction. While doing so they only track the most contributing
neuron in each convolutional layer. We aim to combine this idea with the LRP
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concept to get a more focused version of LRP which still contains relevance
values.

So far we only covered methods to generate saliency maps for deep neural
networks in general. From this point on we look at implementations of saliency
maps which focused on DRL. Because many DRL algorithms utilize CNNs it
is possible to directly use the methods we just covered on DRL agents. Zahavy
et al. [23] and Wang et al. [20] for example used gradient-based saliency maps
similar to [17] on traditional and Dueling DQN algorithms. Weitkamp et al. [21]
tested Grad-CAM on an Actor-Critic DRL algorithm. LRP has been used to
visualize DRL in [10] but, to our knowledge, it has not been used to visualize
the Dueling DQN architecture yet.

Iyer et al. [9] proposed a completely new visualization algorithm for DRL.
They use template matching to identify objects in each input image and use this
information as additional channels of the input to retrain the DRL agent. Given
an agent trained in this way, they can measure the relevance of an identified
object by comparing the prediction of the input image containing that object
with the prediction for the same input image without this specific object.

Greydanus et al. [7] also propose a new algorithm, where they selectively blur
regions of the input image and measure how much this changes the output of
the DRL agent. The idea behind this is to introduce uncertainty to the blurred
area and to see how much the DRL agent is influenced by the loss of information
in that area.

The approaches of Iyer et al. and Greydanus et al. both lack the conservation
property of LRP.

3 Saliency Maps

In this section, we revisit the foundations of LRP and show how to use it on the
original DQN. Then we propose an adjustment to this algorithm which generates
more focused saliency maps. In the last subsection, we introduce a way to apply
those LRP algorithms to the Dueling DQN architecture.

3.1 Foundations

LRP does not describe a specific algorithm but a concept which can be applied
to any classifier f that fulfills the following two requirements. First, f has to
be decomposable into several layers of computation where each layer can be
modeled as a vector of real-valued functions. Secondly, the first layer has to be
the input x of the classifier containing, for example, the input pixels of an image
and the last layer has to be the real-valued prediction of the classifier f(x). Any
DRL agent fulfills those requirements if we only consider the output value that
corresponds to the action we want to analyze.

For a given input x, the goal of any method following the LRP concept
is to assign relevance values Rl

j to each computational unit j of each layer of

computation l in such a way that Rl
j measures the local contribution of the unit
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j to the prediction f(x). A method of calculating those relevance values Rl
j is

said to follow the LRP concept if it sets the relevance value of the output unit
to be the prediction f(x) and calculates all other relevance values by defining

Rl
j :=

∑
k∈{j is input for neuron k}

Rl,l+1
j←k , (1)

for messages Rl,l+1
j←k , such that

Rl+1
k =

∑
j∈{j is input for neuron k}

Rl,l+1
j←k . (2)

In this way a LRP variant is determined by choosing messages Rl,l+1
j←k . Through

definition 1 it is then possible to calculate all relevance values Rl
j in a back-

ward pass, starting from the prediction f(x) and going towards the input layer.
Furthermore equation 2 gives rise to∑

k

Rl+1
k =

∑
k

∑
j∈{j is input for neuron k}

Rl,l+1
j←k

=
∑
j

∑
k∈{j is input for neuron k}

Rl,l+1
j←k =

∑
j

Rl
j .

(3)

This ensures that the relevance values of each layer l are a linear decomposition
of the prediction

f(x) = · · · =
dim(l)∑
j=1

Rl
j = · · · =

dim(input)∑
j=1

Rinput
j . (4)

Such a linear decomposition is easier to interpret than the original classifier
because we can think of positive values Rl

j to contribute evidence in favor of the
decision of the classifier and of negative relevance values to contribute evidence
against the decision.

To use LRP on a DQN agent we first have to look at its network architecture.
The DQN f , as introduced by Mnih et al. [12], consists of three convolutional
layers conv1, ..., conv3 followed by two fully connected layers fc1 and fc2. For an
input x we write fci(x) and convi(x) for the output of the layers fci and convi
respectively during the forward pass that calculates f(x). In this notation, the
Q-Values (i. e. the output of the whole DQN) are fc2(x).

Following the LRP notation, we denote the relevance value of the j-th neuron
in the layer l with Rl

j . As seen before we have to define messages Rl,l+1
j←k for any

two consecutive Layers l, l + 1 to determine a LRP variant. For now we assume
that l + 1 is one of the fully connected layers fci. The convolutional case works

analogously and will be covered in more detail in the next chapter. Rl,l+1
j←k should

measure the contribution of the j-th neuron of fci−1 to the k-th neuron of fci,
therefore we have to look at the calculation of fci(x)k. The fully connected layer
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fci uses a weight matrix Wi, a bias vector bi and an activation function σi as
parameters for its output. Let W k

i be the k-th row of Wi and bki the k-th entry
of bi. Then the activation of the k-th neuron in fci(x) is

σi(W
k
i · fci−1(x) + bki ), (5)

where · denotes the dot product and fc0 is the flattened output of conv3.
Usually the ReLU function σ(x) = max(0, x) is used as activation function σi

in the DQN architecture. Bach et al. [3] argue that any monotonous increasing
function σ with σ(0) = 0, like the ReLU function, conserves the relevance of the
dot product W k

i ·fci−1(x). Newer LRP variants, like the one used by Montavon et

al. [13], also omit the bias when defining Rl,l+1
j←k . With those two assumptions the

relevance of each neuron of fci−1 to fci(x)k is the same as their contribution to
the dot product W k

i ·fci−1(x) =
∑

j wjk fci−1(x)j . This is a linear decomposition,
so we can use wjk fci−1(x)j to measure the contribution of the j-th neuron of
fci−1.

Since we want to find the parts of the input that contributed evidence in
favor of the decision of the DQN agent, we restrict ourself to the positive parts
of that sum. That is we set

z+jk :=

{
wjk fci−1(x)j if wjk fci−1(x)j > 0

0 if wjk fci−1(x)j ≤ 0
. (6)

With this, we define the messages as Rl,l+1
j←k :=

z+
jk∑
j z+

jk

Rl+1
k . This method is called

z+-rule (without bias) and satisfies the LRP equation 2.

3.2 An argmax approach to LRP

In this subsection, we introduce our adjustment to an LRP variant called z+-
rule which we revisited in the last subsection. Recent work [9, 6] indicates that
DRL agents mainly focus on whole objects, for example cars or balls, within the
visual input. With our approach, we aim to generate saliency maps that reflect
this property by focusing on the most relevant parts of the input instead of giving
too many details. For this purpose, we propose to use an argmax function to
find the most contributing neurons in each convolutional layer.

This idea is inspired by Mopuri et al. [14], who generated visualizations for
neural networks solely based on the positions of neurons that provide evidence
in favor of the prediction. During this process, they follow only the most con-
tributing neurons in each convolutional layer. Our method adds relevance values
to the positions of those neurons and therefore expands the approach of Mopuri
et al. by an additional dimension of information. Since those relevance values
follow the LRP concept, they also possess the advantageous properties of the
LRP concept like conservation of the prediction value.

As we have seen in the foundations section 3.1, a LRP method is defined
by its messages Rl,l+1

j←k which propagate the relevance from a layer l + 1 to the
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preceding layer l. If l + 1 is a fully connected layer fci of the DQN (see section
3.1 for our notation of the DQN architecture), we use the same messages that
are used in the z+-rule. In the case that l and l + 1 are convolutional layers
convi−1 and convi, we propose new messages based on the argmax function. To
define those messages we analyze how the activation of a neuron convi(x)k was
calculated during the forward pass. Let W and A denote the weight kernel and
part of convi−1(x) respectively that were used to calculate convi(x)k during the
forward pass. If we write W and A in appropriate vector form, we get

convi(x)k = σ(
∑
j

wjaj + b), (7)

where σ denotes the activation function of convi and b the bias corresponding to
W . Analogously to the z+-rule we assume that the activation function and the
bias can be neglected when determining the relevance values of the inputs ai.
We propose to use an argmax function to find the most relevant input neurons
by defining the messages in the following way

Rl,l+1
j←k :=

{
Rl+1

k if j = argmax{wjaj}
0 if not.

(8)

This definition satisfies the LRP condition given by equation 2 because the only
non vanishing summand of the sum∑

j∈{j is input for neuron k}

Rl,l+1
j←k (9)

is Rl+1
k .
If we use the same argmax approach to propagate relevance values from

conv1 to the input conv0, then we get very sparse saliency maps where only a
few neurons are highlighted. If we highlight the whole areas of the input conv0
that were used to calculate relevant neurons of conv1, then we lose information
about the relevance values inside those areas. Therefore we draw inspiration
from the guided Grad-CAM approach introduced in [16]. Guided Grad-CAM
uses one throughout relevance analysis for the neurons of the last convolutional
layer to get relevant areas for the specific prediction and another throughout
relevance calculation for the input pixels to get fine granular relevance values
inside those areas. We already did a throughout analysis of the neurons of the
last convolutional layer by using the z+-rule on the fully connected layers. By
following the most relevant neurons through the convolutional layers we keep
track of the input areas that contributed the most to those values. Mimicking the
second throughout analysis of the Guided Grad-CAM approach we propose to
use the z+-rule to propagate relevance values from conv1 to conv0. This generates
fine granular relevance values inside the areas identified by following the most
contributing neurons and ascertains that those relevance values follow the LRP
concept.
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aj ak
wjk

Forward pass.

Rj Rk

Rj =
∑

k

(ajwjk)
+∑

j(ajwjk)
+Rk

Relevance propagation using the z+-
Rule.

Rj Rk

Rj =
∑

j=argmax{ajwjk}
Rk

Relevance propagation using the
argmax approach.

Fig. 1: A visualization of how our argmax approach differs from the z+ Rule.

Figure 1 visualizes the differences between our argmax approach and the z+-
rule. We implemented our proposed algorithm for the OpenAi baselines library
[5] and plan to integrate it in the iNNvestigate framework [2].

3.3 LRP on Dueling Q-Networks

The dueling Q-network is a neural network architecture first introduced by Wang
et al. in [20] as an improvement of the neural network architecture used in the
DQN algorithm [12]. Because it is only changing the architecture of the neural
network, it is independent of the training algorithm. Therefore it can easily be
combined with other improvements of the DQN algorithm. This can be seen in
the rainbow algorithm, the current state of the art deep Q-learning algorithm [8],
which combines many different improvements of the DQN algorithm. We chose
Dueling DQN because the LRP concept only depends on the neural network
architecture. Therefore applying LRP to the Dueling DQN architecture suffices
to apply LRP on all currently used versions of the DQN algorithm.

Instead of using a single fully connected network after the convolutional part
of the DQN, the Dueling DQN architecture uses two fully connected networks
A and S which both use the output of the last convolutional layer as input.
These two fully connected networks share the same architecture apart from their
output layer. For an input state s, the state value network S has only one single
output neuron S(s) which measures the value of the state s. The network A
has an output neuron A(s, a) for each action a which describes the advantage of
choosing the action a in the state s. The Q-Value (the prediction of the whole
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model) for an input state s and an action a is then calculated by

Q(s, a) = S(s) +A(s, a)− 1

N

N∑
i=1

A(s, ai), (10)

where N denotes the number of available actions ai.
One way of using LRP on this architecture would be to use LRP methods on

each of the networks S and A separately, but then we would lose the conservation
property because the relevance values would not add up to Q(s, a). Therefore
we have to define a way to propagate the relevance value of the output Q(s, a)
to S(s) and A(s, a). Because equation 10 is already a linear decomposition,

the main question is how we handle the summand − 1
N

∑N
i=1A(s, ai). For this

we follow the original thought process of Wang et al. in [20], where they treat

(A(s, a) − 1
N

∑N
i=1A(s, ai)) as the modified contribution of A(s, a) to Q(s, a).

Analogously to the z+-rule we only propagate those values if they are positive
since we want to exclusively highlight evidence in favor of the chosen action a .
That is we set

S(s)+ := max(0, S(s)) (11)

A(s, a)+ := max
(
0, A(s, a)− 1

N

N∑
i=1

A(s, ai)
)
. (12)

If we would use these values as LRP messages, then the LRP equation 2 would
not hold if either of S(s) or A(s, a) are negative. Therefore we set the LRP
messages analogously to the z+-rule as:

RS(s)←Q(s,a) :=
S(s)+

S(s)+ +A(s, a)+
Q(s, a) (13)

RA(s,a)←Q(s,a) :=
A(s, a)+

S(s)+ +A(s, a)+
Q(s, a). (14)

If both S(s) and A(s, a) are negative, then there is no evidence in favor of the
prediction. Consequently, it is justified that we do not propagate any relevance
values in this case.

4 Results and Discussion

In order to verify that our argmax approach, described in section 3.2, creates
more selective saliency maps then the r+-rule (see section 3.1), we tested our
approach on three different Atari 2600 games and will present the results of those
experiments in this section. For all games, we trained an agent using the DQN
implementation of the OpenAi baselines framework [5]. Since this implementa-
tion utilizes the Dueling DQN architecture [20], we used the approach described
in 3.3 to apply LRP to this architecture.
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(a) screen (b) z+-rule (c) argmax

Fig. 2: A comparison of action advantage analysis: The left image (a) shows a
screen from the Atari game Enduro with additional descriptions. The red area
was identified as relevant by gradient-based saliency maps in [20]. While the
z+-rule (b) highlights the cars and the edge of the road even though it is not
important in this situation, our argmax approach (c) selects only the relevant
cars.

We keep track of which relevance values correspond to the state value and
the action advantage values and differentiate them by coloring them red and
green respectively. This allows us to compare our saliency maps with the ones
generated by gradient-based methods in [20] for a Duelling DQN agent trained
on the Atari game Enduro. In this simple driving game, the Player controls a car
and has to avoid hitting other cars while overtaking as many of them as possible.
The left image of Figure 2 shows a screen from this game in the preprocessed
form that the agent received. The area that was identified as relevant for the
action advantage value in similar game-states by the gradient-based saliency
maps in [20] is marked in red. To facilitate readability, we added descriptions of
the important game objects and cut off the lower part of the screen which only
contains the score. The middle and right images show saliency maps generated
by the z+-rule and our argmax approach respectively for the game-state shown
in the left image. All three saliency maps identified the area in front of the player
car as the most relevant area. The gradient-based saliency map in [20] focused
strongly on this region but was not fine-grained enough to select individual cars.
The z+-rule, on the other hand, emphasizes all the relevant cars but does not
focus on the area in front of the agent. Instead, it also highlights the general
course of the road which is not particularly important in this situation. Our
argmax approach is the most selective and only highlights the relevant cars
inside the area which was also identified by the gradient-based approach.

The second game we trained our agent on is called Space Invaders. In this
game, the agent controls a cannon, which can move horizontally along the bottom
of the screen, and has to destroy descending waves of aliens. Additionally, the
player needs to evade incoming projectiles fired from the aliens or to take cover
behind three floating obstacles. In contrast to purely reactive games like Enduro,
Space Invaders requires the agent to develop long-term strategies, as it has to
determine an order in which it destroys the aliens in each wave and also has to
decide when to hide behind obstacles. While this does not necessarily imply that
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(a) screen (b) z+-rule (c) argmax

Fig. 3: The first image (a) shows a screen of the Atari game Space Invaders with
additional descriptions. The saliency map created for this game-state by the z+-
rule (b) highlights most of the aliens and all the obstacles while our argmax
approach (c) focuses on the first row of aliens which the agent can actually hit.

(a) screen (b) z+-rule (c) argmax

Fig. 4: The left image (a) shows a screen of Pacman. The player (green circle)
has to collect pellets (blue area) while avoiding ghosts (red circles). The saliency
map created for this game-state by the z+-rule (b) highlights a huge area as
relevant while our argmax approach (c) focuses on the vicinity of the player.

the game is harder to learn for an agent, analyzing the trained model might lead
to a better understanding of an optimal strategy to solve this game. Figure 3
shows a comparison of the two different saliency map approaches for a specific
game-state of space invaders. Both the z+-rule, as well as the argmax approach
are showing that the agent mostly considers the aliens positioned on the outline
of the grid as relevant. However the argmax approach does so more clearly by
only highlighting aliens on the outline of the grid. This selection makes sense
since the other enemies cannot be hit by the agent. Our selective argmax-rule
further shows that the agent is not paying attention to the obstacles. Given a
certain performance level of our model, this suggests that they might not be a
necessary component of an optimal strategy for Space Invaders. In this way, our
selective saliency maps enable us not only to find errors in our model but also
to pass on the learned knowledge to human players.
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The last game we used to verify our approach is MsPacman, where the player
has to navigate through a maze and collect pellets while avoiding enemy ghosts.
Because this game contains many important objects and gives the agent a huge
variety of possible strategies, DQN agents struggle in this environment and per-
form worse than the average human player [12]. Transparency methods are espe-
cially desirable in environments like this, where the agent is struggling because
they help us to understand where the agent had difficulties. The saliency map
created by the z+-rule (see figure 4 b) reflects the complexity of MsPacman by
showing that the agent tries to look at nearly all of the objects in the game. This
information might be helpful to optimize the DRL agent, but it also distracts
from the areas which influenced the agents’ decision the most. Figure 4 shows
that the saliency map created by the argmax approach is more focused on the
vicinity of the agent and makes it clearer what the agent is focusing on the most.
Figure 4 further illustrates that a fine-granular saliency map in the vicinity of
the agent is necessary to see that the agent will most likely decide on moving to
the right as his next action.

For the sake of completeness, we want to mention that a similar selective
effect can be obtained by using the z+-rule and implementing some kind of
threshold, for example only showing the highest 1% of all relevance values. How-
ever, this approach comes with its own set of challenges. While a threshold might
be suited for one environment it might be too high or low for other environments,
presenting too much or too less information (see for example Figure 5). Our pro-

(a) Space Invaders (b) Pacman

Fig. 5: Only showing the top 42 relevance values created by the z+-rule produces
a saliency map (a) which is similar to the one created by our argmax-approach
for Space Invaders in Figure 3(c). Using the same threshold for Pacman (b)
we lose some relevant information since, in contrast to 4(c), the position of the
player is no longer highlighted.

posed approach is independent of the environment which eliminates the need to
empirically determine a specific threshold for each new problem. Furthermore,
the conservation property of LRP is lost by simply removing relevance values.
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Therefore the generated saliency maps are not proportional to the prediction
which makes it harder to compare different saliency maps.

In total, our experiments have shown that our approach can be used on
three games, each of which presents a different challenge, and that it generates
informative saliency maps that are more selective than the ones generated by
the z+-rule.

5 Conclusion

In this paper, we presented two adjustments to the LRP concept which enable
compatibility with state of the art deep reinforcement learning approaches and
increase the selectivity of the generated saliency maps while maintaining all
desired properties of the original algorithm. For one, we have shown a way to use
LRP on the Dueling DQN architecture, which makes it possible to use LRP on all
current versions of the DQN algorithm. Secondly, we introduced an adjustment
to an existing LRP variant, which generates saliency maps that focus more on
the important objects inside the input image.

We tested our approach on three different Atari 2600 games and verified that
the saliency maps generated by our system are more selective than the ones cre-
ated by existing LRP methods, while still including the information expected
from visual explanations. Since this selectiveness is an important property of
inter-human explanations we argue that our approach might prove beneficial,
when it comes to explain the actions of a trained agent to people without a
machine-learning background. Understanding an agents reasoning process is es-
pecially interesting since DQN agents are already outperforming human players
in many Atari games. In the game Space Invaders, for example, the analysis
of our selective saliency maps helped us to formulate the hypothesis that the
obstacles, which protect the agent from enemy projectiles, are not relevant for
an optimal strategy. In the future, we would like to further investigate the po-
tential of our approach to impart the learned knowledge, which leads to such
achievements, to a human user.
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