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Abstract

We study the ability of three different projection methods to solve high-
dimensional state space problems: Galerkin, collocation, and least squares
projection. The curse of dimensionality can be reduced substantially for both
Least Squares and Galerkin projection methods through the use of monomial
formulas. Least Squares are shown to require a good initial value in order to
give an accurate solution. Alternatively, we suggest a new ad hoc collocation
method for complete polynomials that is fast and easy to implement.
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1. Introduction

In this paper, we study projection methods which have become a standard tool
in the analysis of business cycle models and, in particular, asset prices. These
models are highly non-linear and cannot be solved with standard linearization
methods. For example, [1], Section 6.3.4 and [2] use projection methods to
compute equity premia in general equilibrium models of the business cycle,
while [1], building on the idea of [3], also apply this method in order to solve
models with occasionally binding constraints, e.g. in the form of non-negative
investment.! More recently, [4] applies projection methods to a heterogeneous-firm
model where firms face aggregate uncertainty and investments are lumpy.

A considerable difficulty in these models arises from the “curse of

dimensionality”. The curse of dimensionality” most generally describes problems

![3] use perturbation rather than projection methods.
*The term was originally coined by [5] in the context of dynamic optimization.
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in the analysis of data that only arise in high-dimensional space. In the present
context, we examine the phenomenon more narrowly in the consideration of
numerical analysis (with an application to the solution of a stochastic general
equilibrium model), in which the computational time rises exponentially with
the state space dimension and constitutes a binding constraint even with current
computer technology.

Three different kinds of this method are considered: Galerkin, Collocation,
and Least Squares.” The three methods all try to find a good fit to a policy
function of the state variable xeR" that is characterized by a parameter
¢ eR™. The policy function may take the form of a polynomial, for example,
and the ¢ are simply the coefficients of the polynomial. Furthermore, the
policy function is approximated over the bounded interval
D =[a,b]x[a,b,]x---x[a,,b,] with —o<a <b <o for all i=1---,n. For
this policy function, we are able to compute the so-called residual function that
characterizes our problem. The residual function R(X, ¢) may take the form of
a first-order condition or an equilibrium condition and we try to choose ¢ so
that R(X,¢) is close to zero over the domain D. The three different methods
considered in the following differ with regard to the projection step ie. how we
choose the criterion of making R (X, ¢) close to zero. The least squares method
solves an optimization problem by minimizing the sum of the squared residuals
over the domain D, while the collocation method finds the solution ¢ by setting
the residual R(¢, x) to zero at exactly m points x, i=1.--,m. Galerkin
projection, like collocation projection, solves a non-linear equations problem.
With this method, the residual is multiplied by the basis of the policy function
and integrated over the domain D. The values of ¢ are chosen so that the
integrals for the m basis functions are equal to zero.

While Galerkin and collocation projection methods have been analyzed and
applied extensively to the solution of stochastic dynamic general equilibrium
models, least squares methods have only been given little emphasis in the
solution of these problems. For example, Galerkin and collocation projection
methods have been demonstrated to be a very useful tool in the solution of the
standard stochastic growth model.* In particular, Chebyshev polynomials have
been shown to provide very accurate approximation of the policy function in
many examples.” On the other hand, the literature has only paid little attention
to the solution of the stochastic growth model or any other dynamic stochastic
general equilibrium model with the help of Least Squares projection.® This
observation is somehow puzzling as a priori we would assume that it is easier to
solve a minimization problem than a non-linear equations problem. In the
former case, we are at least certain to find a solution, even if it may turn out to

be only a local, but not a global minimum.

*For a description of various projection methods, please see [7], Chapter 11.

“Please see [6] [7] [8] and [9].

*See, e.g., [7] or [1].

One of the few exception is [1]. In Chapter 4 of this book the stochastic growth model is solved em-
ploying both least squares and Chebyshev collocation.

DOI: 10.4236/jmf.2018.82021

318 Journal of Mathematical Finance


https://doi.org/10.4236/jmf.2018.82021

B. Heer, A. MauRRner

In the following, we analyze if projection methods can successfully be applied
to higher-dimensional state space problems that arise naturally in the context of
heterogeneous-agent economies. In order to solve problems that are characterized
by a state space of dimension M, we need to reduce the number of coefficients m
in the approximating policy function. Assume that we approximate the policy
function by a polynomial function of degree 2. If we use the tensor product, the
number of coefficients for a 4-dimensional state space is equal to 3* =81. If we
increase the dimension of the state space to 8, the number of coefficients is
already equal to 3°=6561. This exponential growth of the number of
coefficients, of course, becomes a binding constraint on computational time. [10]
suggest to use complete polynomials instead. In this case, the number of
coefficients only amounts to 15 and 45 in dimension 4 and 8, respectively. We,
therefore, rather consider complete polynomials than tensor products.

If we choose complete polynomials for the approximation of the policy
function, however, we run into problems with the standard collocation method,
where we simply set the residual function equal to zero at a number of points
that is equal to the number of coefficients (and solve a system of non-linear
equations). How should we choose the points, e.g. the 15 points in dimension 4?
One possible solution is the Smolyak’s algorithm presented by [11]. The
Smolyak algorithm is a device how to pick the collocation points optimally.
However, this algorithm suffers from its lack of universal applicability as it only
works for certain combinations of the state space dimension and the degree of
the complete polynomial in the approximating function.

In this paper, we propose three different projection techniques to address this
problem that are also universally applicable. First, we consider the standard
Galerkin projection method in Section 3. Second, we suggest a rather ad hoc
collocation procedure in Section 4 that is found to perform rather well. Finally,
we solve a least squares problem instead, ie. we simply minimize the sum of the
squared residuals. This method is presented in Section 5. The rest of the paper is
organized as follows. In Section 2, the model is presented, and Section 6

concludes.

2. The Model

We study a simple social planner’s problem in a N-country model. Time is
discrete and denoted by ¢ The utility function of the representative agent in
country n is u”(ct” ,|t") where ¢ is consumption and | is labor supply in
this country n at time £ We assume that country #’s production of the single
good equals f"(kt",lt") where k' is the capital stock. The social planner
solves the following problem

max ir”Eo(iﬂ‘u”(ct”,lt”)J (1)
{(c[nyipyl‘n)nﬂ} n=1 t=0

t=0

subject to
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ki, =i +(1-0)k{, n=12N, 2)

where J'is the depreciation rate of capital and i is gross investment in country
nat time , and where 7" is the Negishi weight for country n. The world budget

constraint is given by

N N i N N ¢) i"‘ 2
Y=Yk =Y a{'f”(kt”,lt“)—Ekt” k*—n—a : (3)
n=1 n=1 n=1 n=1 t

The productivity shocks are generated by the law of motion
Ina[”:plnatﬁl+o(et+et”), (4)

where € ~N(0,1) and € ~N(0,1) are iid. normally distributed random
variables. The production function is the standard CES specification (including

the special case of Cobb-Douglas) where
u _ u\YH
f (k)= (@K @) 5)
kall—a' ‘u:O’

which implies that 1/ (1— ,u) is the elasticity of substitution between capital and
labor.

We will examine three kinds of utility functions. The first will be the separable

utility function
1—1 1+1
c’ |7
u(c,l)=—1 —b—r, (6)
1-—  1+-—
v n

where y is the intertemporal elasticity of substitution and 7 is the elasticity of

labor supply. A special case of this will be the inelastic labor supply case:

c’ |
u(c)_—l, =1.0. (7)
1-=
Y
The second utility function we will use is the Cobb-Douglas specification
1
w \ o
(e (L1 )7
uel) =t (8)

1-=
4

where L° is labor time endowment. The third utility function we will use is the

CES specification

(9)

where yis the elasticity of substitution between consumption and leisure.
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2.1. Specification of Negishi Weights and Steady States

Each problem is specified in terms of the Negishi weights z". These are tied
down in general equilibrium models by endowments. However, we will specify
Negishi weights instead of endowments since this allows us to focus on solving
multidimensional dynamic models. If we did want to specify endowments
instead and compute general equilibrium prices, the Negishi method would be
the most natural way to proceed; that is, we would compute allocations (and
the implied prices) conditional on the Negishi weights and then use a
finite-dimensional nonlinear equation solver to find the weights that implied
equilibrium. Therefore, we focus on the dynamic problem for fixed Negishi
weights.

We use a simple rule to pin down the Negishi weights. For each problem, the
Negishi weights are to be chosen so that the steady state consumption in each
country would equal its net output if the productivity shocks were eliminated.
This is a sensible choice since it implies that net foreign asset income is small, a
rough approximation of reality.

We will also assume initially that all countries are the same size. Specifically,
we will assume that the steady state capital stock and labor supply both equal
unity for all countries. The parameter choices made below are intended to

produce that result.

2.2. Common Parameter Values

Some parameters will be fixed at one value for all examples. We must choose a
common S in order for the solution to be stationary. We choose £=0.99 so
that the period of time is about a quarter. We also fix the values for @ and J'since
these reflect standard choices and their variations will not present significant
computational challenges. The adjustment cost parameter ¢ covers an empirically
relevant range. The stochastic parameters will represent high and moderate
persistence, and high and low productivity shocks. Table 1 summarizes our

parameter choice.

3. Galerkin Projection

In this section, we will first introduce you to the projection method and to the
Galerkin method in more detail. Specifically, we will describe how we
implemented the method for the computation of the model in section 2. Second,

we will present accuracy results for the Galerkin projection.

Table 1. Parameter settings.

Preferences £ =0.99

Production a=0.36
Capital Accumulation 5 =0.025 ¢={0.5,2.0,10.0}
Schock Process p={0.8,0.95} o ={0.001,0.01}
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3.1. The Numerical Method

With the help of projection methods, we want to approximate an unknown

function f:X —Y ,where Xand Yare subsets of R" and R", respectively:
-~ p
f(x)=> dw (x), xeX cR". (10)
i=0

This function is implicitly defined by the functional equation F(f)=0,
where F:C, - C,. C, and C, are given spaces of functions, e.g., the set of
all continuously differentiable functions on [a,b]. Examples of functional
equations are the Bellman equation or the Euler equation of the stochastic
growth model. The functions may also take the form of equilibrium conditions,
for example, such as supply equals demand. In the model of section 2, the
functional equations are represented by the first-order conditions with respect to
current-period consumption and labor supply and the next-period capital stock,
respectively:

vnzm,n,m=1---,N:

] 6u”(ct",lt”) au”‘(c{“,ltm)

o ac! ~ ac” (112)
vn=1,---,N:
L) e wn
al’ ac! ol
~ aou" (Ctn , |[n) n" au” (Ctn+17 |1n+1)
i R G

) 1+a(nlafn(kt”+1,lt”+1)w AR | PO Y P (11d)
* akt”ﬂ ktrl-l 2 ktrll

together with the world budget constraint (3). These equations can be rewritten
as implicit functions of the state variables X that consist of the individual
capital stocks k' and technology levels &', X = (ktl, oo kMg, alt ) . In our
example, we will try to approximate the next-period capital stock k,,; and labor
supply |, by a function £

The residual function is obtained by substituting f into the functional

equations:
R(¢,x):=F(f(¢,x)), 0:=(do 10y ).

For the true solution £ the residual function is equal to zero. In addition, we
also normalize the residual function to one so that deviation from zero can be
interpreted as percentage deviations. For example, the residual function that
represents the first-order condition with respect to current-period consumption

is formulated as follows:
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au™ (¢ 1")

T
"o

R<Xt;kt+l(')’|t (.))ZW_L (12)
fr ac!

Suppose there is a set of test functions {gi (X)}ip:o and a weight function

W(X) . Together with R they define an inner product given by
[ w(x)R(¢,%)g; (x)dx.

On a function space, this inner product induces a norm on this space and we

choose the vector of parameters ¢ such that
jxw(x)R(¢,x)gi(x)dx:O, vi=0,1,---,p. (13)

The three different solutions considered in this paper are derived for special
choices of g; and w.
o The Galerkin solution chooses g, =y, and w=1.
e The collocation method uses the Dirac delta function as weight function,
0 if x=x,
W(X):{l if x=x:,
and puts g, =1.
¢ The least squares solution puts g; =0R/0¢ and w=1.
We summarize the general procedure that underlies projection methods in the
following algorithm that is adapted from [7].
Algorithm (Projection Method)

Purpose: Approximate the solution £ X —Y of a functional equation F(f) =

Steps:

Step 1: Choose a bounded state space X —R" and a family of functions
vi(x): X Y, i=01,:-.

Step 2: Choose a degree of approximation p and let

(6= 2w (1)
i—0
Step 3: Define the residual function:
R(4.x)=F (T (4.%)).

Step 4: Choose a projection function @;, a weight function wand compute

the inner product:
G, = [ w(x)R(4,x)g, (x)dx, i=0,---,n,

Find the value of ¢ that solves G, =0, or, in the case of least squares
projection (g; =0R/d¢, and w=1), minimize

jx R(¢. x)2 dx
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with respect to ¢.

Step 5: Verify the quality of the candidate solution ¢. If necessary, return to
step 2 and increase the degree of approximation n or even return to step 1 and
choose a different family of basis functions.

In step 1, the boundaries are found with some trial and error. In the following,
we will concentrate on the symmetric case (7, = 7, =1) with N =4 countries
and the benchmark calibration «=0.36, =099, 6=0.025, ¢=05,
p=0.95, and o =0.001. The labor supply is fixed, | =1, and the steady state
capital stock is normalized to one, k =1. Furthermore, we use a Cobb-Douglas
production function (£ =0), and the utility function (6) with y =1.0. For this
benchmark case, we approximated the policy function for the capital stock on
the sets [0.90,1.10] for the individual capital stocks. For the technology level
a, we assumed that it does not deviate from its steady state level 1.0 by more
than six times its unconditional standard deviation, p/ V1-0? . In step 2, we
picked w; from the family of the Chebyshev polynomials. We report the results
for a degree of approximation p=2." In the symmetric case, the residual
function is one-dimensional. We obtain the residual function from the
intertemporal first-order condition (11c) after having inserted the Equation (2)
for the accumulation of the capital stock and the world budget constraint (3).
Again, we normalized the residual function to one by dividing (11c) through the
marginal utility of current-period consumption.

Step 4 deserves some discussions. In particular, we applied various devices
that are non-standard in the literature in order 1) to make it faster and 2) to keep
it from breaking down. The first adjustment is necessary in the presence of
high-dimensional state spaces, while the second adjustment is found to be useful
in dynamic stochastic equilibrium models in general. 3) A third adjustment was
necessary for the Galerkin and least squares projection due to the numerical
accuracy of the hardware.

1) Consider the projection step 4 where we compute a high-dimensional
integral in the case of both Galerkin and least squares projection.® As one
possible way, one can apply Gaussian formulas to compute this integral, for
example Gauss-Chebyshev integration. However, we find this method to be too
time-consuming in the present application once we have a state space of
dimension 8 or higher (even if we only pick three nodes in each dimension). For
this reason, we rather compute the integral (13) with the help of a monomial
formula as suggested by [7].° In particular, we use the following monomial

formula for the cube which is taken from [12]:

’For a linear approximation ( p=1), the projection methods did not provide accurate solution for
the case with N >6 countries. In particular, the dynamic behavior of the capital stock & became
unstable when we simulated over many periods.

8With collocation, we only compute a finite number of points.

°[9] also applies monomial formula in his study of Galerkin projection methods. His integration
step, however, differs from ours in the choice of the grid points and the integration formula. In addi-
tion, we also provide a new algorithm for the collocation projection that is efficient and fast.

DOI: 10.4236/jmf.2018.82021

324 Journal of Mathematical Finance


https://doi.org/10.4236/jmf.2018.82021

B. Heer, A. MauRRner

.f[_n]n f (x)dx ~ Af (0,---,0)+ an:(f (re')+ f (—re‘))+ DY f(x), (14)

i=1 xeC

where C :{X|V(Xi :il)} and
r:\ﬁ,v — A=80y g_3y pol
5 9 18 9

By using this rule," we reduce the number of computations of f(x) from y"

in the case of the Chebyshev integration with y nodes to 2" +2n+1. For our
problem, we find the Chebyshev integral and the monomial rule to coincide for
the first four digits.

We also applied monomial rules to the computation of the expectation on the
right-hand side of the first-order condition (11c). In order to compute the
residual, we, again use a monomial formula from [12]. If xeR" has a
multivariate standard normal distribution, the expectation E(f (X)) can be

computed by the following:

(27t)7n/2 jRnf (X)efzin:lxide = izn:f (i n/2e, )v (15)

2n T

where € = (O, ---,0,1,0,---, 0) denotes the /-th unit vector. In order to apply this

rule to the general case of a random normal vector zwith mean u and covariance

matrix X, we use the change of variable technique.'' The linear transformation
D

N (z-n)

implies that E( f (Z)) can be expressed as an integral function of x:

X =

2 2 THa-ny=zw)
E(f(z))=(2n)""|5| _[]Rnf(z)ez dz

- n’”/zjmn f (ﬁzwx + y)e’zinzlx‘zdx.

This integral can be approximated by formula (15). Again, we find this
formula to perform rather well compared to standard Gauss-Hermite
integration. For the expectation in the first-order condition of (1lc) in the
symmetric benchmark case, the first four digits of the monomial formula
integral (15) and the Gauss-Hermite integral with 4 nodes coincide.

2) In order to apply our integration routine (14), we, however, need to be
careful. Assume we approximate a one-dimensional function f (X) on [a,b].
As you can see from the formula (14), we also evaluate the function f (X) at
the boundaries x=a and x=Db.” Now consider our problem introduced in
section 2. In order to compute the integral over the squared residuals, we have to
evaluate the residual for a capital stock k& in period ¢ at the boundaries of the

approximation interval [K.;,,K. |- In the likely case that our initial guess is not

In order to apply the monomial formula (17), we need to transform the variables into the canonical
form. This procedure is described in [7] Ch. 7.5.

See, e.g., Theorem 7.5.3 in [7].

2Similarly, if we apply Chebyshev integration instead, for y>1, two of the Chebyshev nodes will be
close to the lower and upper boundary limit.
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very close to the true solution, we might choose a next-period capital stock k'

in t+1 that is outside the approximation interval [K K.,

]. We, however,
also need to compute k" in period t+2 in order to compute c,, in (11c)
with the help of the world budget constraint (3). Therefore, we might have to
compute an approximation of the policy function that lies outside the
approximation interval D. Outside D, however, the approximation accuracy
might deteriorate quickly so that our computation might break down because of
a variable overflow or a negative value for . Indeed, we encountered this
problem in almost all our applications. In order to circumvent the problem, we
suggest the following two procedures that we also apply for the other two
projections methods below. a) First choose an interval D for the approximation
of the policy function. Next choose a subset D, © D and compute the sum of
projected residuals (squared residuals) over this smaller interval. In all our
applications, this device worked rather well. Typically, we choose the length of
the edges of D, to be approximately 50% - 70% of the corresponding ones in
the set D.

b) Routines that solve non-linear equations, as the modified Newton-Raphson
method with line search, require a good starting value. In our applications, we
started with the solution from the log-linear model for the computation of the
Chebyshev approximation with a degree p=1. For a degree p>1, we simply
used the solution for the approximation with the degree p-1. Even with this
values, however, the Newton-Rhapson algorithm was trying values for the vector
¢ where it is impossible to evaluate the residual function. For this reason, the
routine that evaluates the residual function must return an error flag that
signalizes the calling program to stop. Otherwise, the program will crash because
of overflows, underflows, or other run-time errors arising from undefined
numerical operations. Yet, standard software usually assumes that it is possible
to evaluate a given non-linear system everywhere and there is no way to tell the
program to do otherwise. Therefore, we wrote our own non-linear equations
solver where the step size in the Newton-Rhapson algorithm is reduced as long
as the evaluation of the residual function returns an error flag.”

3) In the cases of the Galerkin and the least squares projection, we also find a
third device to be very helpful. Typically in the computation of stochastic
dynamic general equilibrium models, we would like to find a solution with
residuals that are small and below 107 or even 107°. Therefore, the value of the
squared residual is of the typical order 107 or even less. If we integrate the
projections of the (squares) residuals over the n-dimensional interval
D =[a,,b]x[a, b,]--x[a,.b,], for example, the result is typically in the range

of the order [],(b—2)10"° or even lower. If the parameters of the problem

are chosen such that the lengths of the intervals b —a, are small, we end up

PThe algorithm is downloadable from our homepage. The link is:

http://www.uni-augsburg.de/vwl/maussner/englisch/chair/maussner/pap/mnr.for

In order to decrease computational time, we also rather used forward than central differences in
order to compute the Jacobian.
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computing an integral value that is close to the accuracy of our numerical
software (we used FORTRAN 95 with double precision data type). Indeed, this is
the case for our state space where the typical integral (13) amounts to less than
107" in the symmetric 4-country benchmark case, for example. We, therefore,
adjusted the scale of our sum of squared residual in (13) and normalized it to
one by dividing the integral by the volume of the interval D,. In this regard, our
procedure is equivalent to the standard OLS approach where the total weight of
all squared residuals is set equal to one.

3.2. Accuracy Check

In order to evaluate the performance of the projection methods, we use two

different tests:

e Accuracy test 1: We compute a sample of 100 points X, at radius rfrom the
deterministic steady state. We compute the absolute value of the residual
R(x) for each point in the sample. The maximum of these values for each
radius rare reported in Table 2."

e Accuracy test 2: We simulate our solution to produce a sequence of values
for the state, {Xt}thl' For t=1,10,20,---,T , we compute the maximum and
the mean of the (absolute) residual.’

Table 2 presents the results for the Galerkin projection. Naturally, the
accuracy declines with increasing radius from the steady state in the accuracy
test 1 (please see the first two columns of the table). Remember that we only
approximated the policy function inside the radius r=0.10. For this region
(which is also the relevant region during the simulation), the maximum
deviation of the residual function deviates amounts to only 0.20%. The good
performance of the algorithm is also reflected in the values of the accuracy test 2.

Even after 100 simulation, the maximum absolute value of the residual did not

Table 2. Galerkin projection.

Accuracy Test 1 Accuracy Test 2
r max, [R(x,) Period ¢ max, |R(x,)| %Zfl\R(xl)\
0.01 0.20E-5 1 0.41E-6 0.41E-6
0.02 0.31E-5 10 0.70E-6 0.42E-6
0.05 0.18E—4 20 0.70E-6 0.27E-6
0.10 0.21E-3 30 0.70E-6 0.22E-6
0.15 0.71E-3 40 0.11E-5 0.32E-6
0.20 0.18E-2 50 0.11E-5 0.45E-6
0.30 0.73E-2 100 0.14E-5 0.45E-6

Notes: The runtime for the modified Newton-Rhapson algorithm with line search on a Pentium III, 846
MHz, amounted to 4 minutes 49 seconds and the program needed 8 iterations over ¢.

"“This is the style of error used in [6].
"5This style of error was used in [13].
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exceed 0.0014% and the mean was only 0.00045%.'°

The runtime for the modified Newton-Rhapson algorithm with line search on
a Pentium III, 846 MHz, amounted to 4 minutes 49 seconds and the program
needed 8 iterations over ¢. Our algorithm, therefore, is reasonably fast and
accurate considering that we compute a policy function for an 8-dimensional
state space (in the case N = 4, we have four individual capital stocks k' and
four individual productivities a; ). If we increase the number of countries to 6 or
8, we run into the limits for the computational time on our Pentium III, 846
MHz computer. As can be seen from Table 3, the runtime increases quickly to
multiple days. Therefore, for the computer technology at our current disposal,

16 state variables (corresponding to N =8) has been found to be the limit.

4. Collocation Projection

In the collocation projection, we use the Dirac delta function as projection
function with a weight identical to one. Therefore, we only compute the
projection at single points and circumvent the computation of integrals (except
for the computation of the expectation). Of course, this will save a lot of
computer time if the state space is large. Instead, the task is to solve the

non-linear equation system
R(¢1Xj):01 j:Olll”'v P, ¢:(¢11¢21"'1¢p)'

But at which set of points x; should the residual function equal zero? It is
well known from the so called Chebyshev interpolation theorem'” that the
Chebyshev zeros minimize the maximum interpolation error. For this reason,
one should use the Chebyshev nodes of the Chebyshev polynomial of order
p+1 if we approximate the function by a Chebyshev polynomial of order p.
This particular projection method is called Chebyshev collocation.

The procedure is easy to apply in small dimensional space where we can use
the tensor product of the basis functions in order to approximate the policy

functions. Let d denote the dimension of the state space (d =8 for the

Table 3. Computational Time.

N Galerkin Collocation Least Squares
4 4 min 49 sec (8) 0 min 10 sec (5) 11 min 4 sec (40)
6 2 h 53 min 44 sec (6) 3 min 4 sec (5)

8 14 days 16 h 32 min (6) 30 min 47 sec (5)

Notes: The solutions are computed with a Pentium III, 846 MHz. The number in brackets presents the
number of iterations over ¢ in the modified Newton-Rhapson algorithm with line search (Galerkin,
Collocation) and in the Quasi-Newton algorithm (Least Squares).

'“The accuracy decreases with increasing number of the state space dimension. For a higher number
of shocks e, the likelihood for a larger deviation from the steady-state values increases and we
have to pick a wider interval for the approximation of the policy functions. Naturally, the goodness
of fit decreases.

See, e.g., [7], Theorem 6.7.2, p. 221.
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4-country model with N =4). In this case, we simply take the m =(p+1)d
(transformed) Chebyshev nodes (Zlil, 7%, zf,d) , where lel for example
denotes the i -th Chebyshev zero in the first dimension of the state space and
ij,iy,--+, iy =1---,p+1. This procedure, however, is no longer feasible if the
dimension of the state space increases to values of d =6 or above with current
computer technology. For this reason, we have to use complete polynomials as
approximating functions with a lower number of coefficients and a lower
number of points at which we evaluate the residual function and try to set it
equal to zero.

In the following, we suggest a very easy-to implement method for
high-dimensional state spaces. Assume that the number of coefficients is equal
to m. Just pick any m Chebyshev nodes and compute the solution. In very few
cases, we find that this procedure does not converge and the modified
Gauss-Newton algorithms fails. In this case, restart the program for another
random pick of the Chebyshev nodes. The accuracy of this procedure is reported
in Table 4 for the 4-country case.'”® Notice that the accuracy, at least for the
relevant range of the state space, is less than in the case of Galerkin projection.
However, the gain in speed is tremendous, especially if we consider the case for 8
countries with a corresponding number of 16 state variables. While Galerkin
takes several days, our ad hoc collocation algorithm is able to compute a very
accurate solution with a mean deviation of 0.016% within minutes."

In summary, the proposed collocation procedure is less accurate than
Galerkin. However, for the researcher who is time constrained, it may provide a
valuable alternative. In addition, the solution from the Collocation projection
can be used as an initial guess for the Galerkin method. By this procedure, the

number of iterations over ¢ in the Newton Raphson algorithm can be reduced to

Table 4. Collocation projection.

Accuracy Test 1 Accuracy Test 2
r max, [R(x,)| Period ¢ max, [R(x,)| %Z::l R(%)
0.01 0.18E—4 1 0.14E-4 0.14E-4
0.02 0.25E-4 10 0.14E-4 0.14E-4
0.05 0.35E-4 20 0.14E-4 0.13E-4
0.10 0.22E-3 30 0.15E-4 0.14E-4
0.15 0.71E-3 40 0.15E-4 0.14E-4
0.20 0.16E-2 50 0.15E-4 0.14E-4
0.30 0.41E-2 100 0.16E—4 0.15E-4

Notes: The runtime for the modified Newton-Rhapson algorithm with line search on a Pentium III, 846
MHz, amounted to 10 seconds and the program needed 5 iterations over ¢.

8Table 3 reports the maximum values from 10 runs of the collocation algorithm.

“We have also found this result to hold in other problems. In [1], Section 6.3.4 for example, we con-
sider an equity-premium model with 3 states. The proposed ad hoc collocation procedure is found
to perform equally well.
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one or two and the computational time declines significantly. This savings in

time comes at almost no costs as the additional programming is very little.

5. Least Squares

The least squares method minimizes the (weighted) sum of squared residuals:
. 2
mymj'DlR(qﬁ,x) dx. (16)

One possible way to implement this method is to simply compute the sum of
squared residuals over an n-dimensional grid of the state space. As a natural
choice of the grid points in each dimension of the state space, we pick the
Chebyshev nodes (Chebyshev integration uses constant weights). As, however,
the state space dimension increases, we rather use monomial formulas to
compute the integral (19). For this procedure, our results are discouraging if we
use the log-linear solution as the initial guess. Typically, the mean residuals in
our simulation of the economy are of the magnitude 107", which, of course, is
not satisfactory. Acoordingly, as the first important result of our analysis, we
find that least squares do not work well if the initial solution is not close to the
true solution. As the nature of the model in Section 2 is rather complex and
number of parameters for the policy coefficients is rather large, the minimization
problem (19) displays many local minima.”

We could only conceive a least squares algorithm with reasonably accurate
results when we used the solution from our ad hoc collocation procedure as an
initial guess for ¢. The performance of the algorithm in this case is summarized
in Table 5. As you can see, the accuracy is much higher than in the case of
collocation projection and is comparable to the one with Galerkin projection.

However, the computational time is much higher than with Galerkin as the

Table 5. Least Squares projection.

Accuracy Test 1 Accuracy Test 2
r max, [R(x,) Period ¢ max, [R(x,)| Y [R(x)
0.01 0.23E-5 1 0.61E-6 0.61E-6
0.02 0.38E-5 10 0.74E-6 0.66E-6
0.05 0.36E-4 20 0.96E-6 0.71E-6
0.10 0.33E-3 30 0.96E-6 0.65E-6
0.15 0.71E-3 40 0.96E-6 0.61E-6
0.20 0.13E-2 50 0.96E-6 0.60E-6
0.30 0.52E-2 100 0.96E-6 0.58E-6

Notes: The runtime for the Quasi-Newton algorithm with line search on a Pentium III, 846 MHz,
amounted to 11 minutes 4 seconds and the program needed 40 iterations over ¢.

2We also applied a genetic search algorithm in order to provide a more sophisticated guess for ¢. In
particular, we used a simple and fast genetic search algorithm based on [14] that is described in de-
tail in [1], Chapter 8. However, results did not improve much and computational time became a
limit for N= 6 already.
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algorithm needs more iterations over ¢ in the minimization step.

6. Conclusions

Modern business cycle analyses are based on complex high-dimensional general
equilibrium models. Monetary policy, for example, uses New Keynesian models
such as those presented by [15] or [16] that introduce nominal frictions along
with habit formation, costs of adjustment in capital accumulation, and variable
capacity utilization. In these models, the number of state variables increases
significantly, in particular if frictions in financial markets are added such as in
[17] [18]. The curse of dimensionality is further aggravated if the model is
extended to include heterogeneous firms or households as in the business cycle
model of [2] [19] or [20]. These models, in particular in the presence of binding
constraints or asymmetric behavior (for example, if households are subject to
loss aversion), need to be solved with the help of non-linear methods such as
projection methods, while the numerical accuracy of standard perturbation
methods may prove to be insufficient.

We analyzed three projection methods and their ability to solve dynamic
stochastic general equilibrium models that are characterized by a high
dimension of the state space. Galerkin projection is shown to work remarkably
well, accurately, and fast, if we use monomial integration formulas. Computational
time only becomes a binding constraint for a state space dimension exceeding
15 - 20, depending on the current computer technology. We also suggested an
alternative, rather ad hoc Chebyshev collocation method for incomplete
polynomials which is found to work surprisingly well for the present problem
and that is also found to be much faster than Galerkin. Even though this method
is less accurate than Galerkin, it may help to economize on computational time
as it provides a very good initial value so that the number of iteration steps in the
Newton-Rhapson algorithm of the Galerkin method can be reduced substantially,
typically to one or two iterations. Finally, we studied the least squares projection
method. Our results are most discouraging. Without a very good initial value,
least squares is unable to find an accurate solution. It takes a considerable effort
to find a good starting value and, even then, the method is much slower than
Galerkin projection. We, therefore, cannot recommend the use of least squares
for the solution of dynamic stochastic general equilibrium models. More
promising, instead, is our new collocation algorithm that picks the collocation

nodes randomly.
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Appendix

In this appendix we provide the results for the 6-country and 8-country model in

the symmetric case.

Table S1. Galerkin projection, 6 countries.

Accuracy Test 1 Accuracy Test 2
r max, [R(x,) Period ¢ max, [R(x,)| Y [R(x)
0.01 0.32E-5 1 0.15E-6 0.15E-6
0.02 0.58E-5 10 0.38E-6 0.22E-6
0.05 0.15E-4 20 0.13E-5 0.37E-6
0.10 0.15E-3 30 0.20E-5 0.67E-6
0.15 0.82E-3 40 0.20E-5 0.77E-6
0.20 0.17E-2 50 0.20E-5 0.69E-6
0.30 0.18E-2 100 0.20E-5 0.70E-6

Notes: The runtime for the modified Newton-Rhapson algorithm with line search on a Pentium III, 846
MHz, amounted to 2 hours 53 minutes 44 seconds and the program needed 6 iterations over ¢.

Table S2. Collocation projection, 6 countries.

Accuracy Test 1 Accuracy Test 2
r max R (% )| Period ¢ max, [R(x,)| 2 JR(x)
0.01 0.26E—4 1 0.22E-4 0.22E-4
0.02 0.30E-4 10 0.23E-4 0.20E-4
0.05 0.29E-4 20 0.23E-4 0.21E-4
0.10 0.19E-3 30 0.23E-4 0.22E-4
0.15 0.69E-3 40 0.23E-4 0.22E-4
0.20 0.11E-2 50 0.23E-4 0.22E-4
0.30 0.15E-2 100 0.23E-4 0.20E—4

Notes: The runtime for the modified Newton-Rhapson algorithm with line search on a Pentium III, 846
MHz, amounted to 3 minutes 4 seconds and the program needed 5 iterations over ¢.

Table S3. Galerkin projection, 8 countries.

Accuracy Test 1 Accuracy Test 2
r max, [R(x,)| Period ¢ max, [R(x,)| %Z: JR(%))
0.01 0.48E-4 1 0.39E-5 0.39E-5
0.02 0.10E-3 10 0.27E-4 0.13E-4
0.05 0.19E-2 20 0.40E-4 0.16E-4
0.10 0.36E-2 30 0.40E-4 0.14E—4
0.15 0.14E-1 40 0.40E-4 0.15E—4
0.20 0.37E-1 50 0.40E—4 0.16E—4
0.30 0.14E-0 100 0.53E-4 0.19E-4

Notes: The runtime for the modified Newton-Rhapson algorithm with line search on a Pentium III, 846
MHz, amounted to 14 days 16 hours 32 minutes and the program needed 6 iterations over ¢.
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Table S4. Collocation projection, 8 countries.

Accuracy Test 1 Accuracy Test 2
r max, |R(x,)| Period ¢ max, [R(x,)| %Z;\R(x,)\
0.01 0.17E-3 1 0.15E-3 0.15E-3
0.02 0.24E-3 10 0.15E-3 0.13E-3
0.05 0.70E-2 20 0.15E-3 0.13E-3
0.10 0.49E-1 30 0.15E-3 0.12E-3
0.15 0.17E-0 40 0.15E-3 0.12E-3
0.20 0.22E-0 50 0.15E-3 0.11E-3
0.30 0.55E—-0 100 0.15E-3 0.11E-3

Notes: The runtime for the modified Newton-Rhapson algorithm with line search on a Pentium III, 846
MHz, amounted to 30 minutes 47 seconds and the program needed 5 iterations over ¢.

DOI: 10.4236/jmf.2018.82021 334 Journal of Mathematical Finance


https://doi.org/10.4236/jmf.2018.82021

	Projection Methods and the Curse of Dimensionality
	Abstract
	Keywords
	1. Introduction
	2. The Model
	2.1. Specification of Negishi Weights and Steady States
	2.2. Common Parameter Values

	3. Galerkin Projection
	3.1. The Numerical Method
	3.2. Accuracy Check

	4. Collocation Projection
	5. Least Squares
	6. Conclusions
	References
	Appendix

