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Abstract 
We study the ability of three different projection methods to solve high- 
dimensional state space problems: Galerkin, collocation, and least squares 
projection. The curse of dimensionality can be reduced substantially for both 
Least Squares and Galerkin projection methods through the use of monomial 
formulas. Least Squares are shown to require a good initial value in order to 
give an accurate solution. Alternatively, we suggest a new ad hoc collocation 
method for complete polynomials that is fast and easy to implement. 
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1. Introduction 

In this paper, we study projection methods which have become a standard tool 
in the analysis of business cycle models and, in particular, asset prices. These 
models are highly non-linear and cannot be solved with standard linearization 
methods. For example, [1], Section 6.3.4 and [2] use projection methods to 
compute equity premia in general equilibrium models of the business cycle, 
while [1], building on the idea of [3], also apply this method in order to solve 
models with occasionally binding constraints, e.g. in the form of non-negative 
investment.1 More recently, [4] applies projection methods to a heterogeneous-firm 
model where firms face aggregate uncertainty and investments are lumpy. 

A considerable difficulty in these models arises from the “curse of 
dimensionality”. The curse of dimensionality2 most generally describes problems 

 

 

1[3] use perturbation rather than projection methods. 
2The term was originally coined by [5] in the context of dynamic optimization. 
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in the analysis of data that only arise in high-dimensional space. In the present 
context, we examine the phenomenon more narrowly in the consideration of 
numerical analysis (with an application to the solution of a stochastic general 
equilibrium model), in which the computational time rises exponentially with 
the state space dimension and constitutes a binding constraint even with current 
computer technology. 

Three different kinds of this method are considered: Galerkin, Collocation, 
and Least Squares.3 The three methods all try to find a good fit to a policy 
function of the state variable nx∈  that is characterized by a parameter 

mφ ∈ . The policy function may take the form of a polynomial, for example, 
and the iφ  are simply the coefficients of the polynomial. Furthermore, the 
policy function is approximated over the bounded interval  

[ ] [ ] [ ]1 1 2 2, , ,n nD a b a b a b= × × ×  with i ia b−∞ < < < ∞  for all 1, ,i n=  . For 
this policy function, we are able to compute the so-called residual function that 
characterizes our problem. The residual function ( ),R x φ  may take the form of 
a first-order condition or an equilibrium condition and we try to choose ϕ so 
that ( ),R x φ  is close to zero over the domain D. The three different methods 
considered in the following differ with regard to the projection step i.e. how we 
choose the criterion of making ( ),R x φ  close to zero. The least squares method 
solves an optimization problem by minimizing the sum of the squared residuals 
over the domain D, while the collocation method finds the solution ϕ by setting 
the residual ( ),R xφ  to zero at exactly m points ix , 1, ,i m=  . Galerkin 
projection, like collocation projection, solves a non-linear equations problem. 
With this method, the residual is multiplied by the basis of the policy function 
and integrated over the domain D. The values of ϕ are chosen so that the 
integrals for the m basis functions are equal to zero. 

While Galerkin and collocation projection methods have been analyzed and 
applied extensively to the solution of stochastic dynamic general equilibrium 
models, least squares methods have only been given little emphasis in the 
solution of these problems. For example, Galerkin and collocation projection 
methods have been demonstrated to be a very useful tool in the solution of the 
standard stochastic growth model.4 In particular, Chebyshev polynomials have 
been shown to provide very accurate approximation of the policy function in 
many examples.5 On the other hand, the literature has only paid little attention 
to the solution of the stochastic growth model or any other dynamic stochastic 
general equilibrium model with the help of Least Squares projection.6 This 
observation is somehow puzzling as a priori we would assume that it is easier to 
solve a minimization problem than a non-linear equations problem. In the 
former case, we are at least certain to find a solution, even if it may turn out to 
be only a local, but not a global minimum. 

 

 

3For a description of various projection methods, please see [7], Chapter 11. 
4Please see [6] [7] [8] and [9]. 
5See, e.g., [7] or [1]. 
6One of the few exception is [1]. In Chapter 4 of this book the stochastic growth model is solved em-
ploying both least squares and Chebyshev collocation. 
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In the following, we analyze if projection methods can successfully be applied 
to higher-dimensional state space problems that arise naturally in the context of 
heterogeneous-agent economies. In order to solve problems that are characterized 
by a state space of dimension N, we need to reduce the number of coefficients m 
in the approximating policy function. Assume that we approximate the policy 
function by a polynomial function of degree 2. If we use the tensor product, the 
number of coefficients for a 4-dimensional state space is equal to 43 81= . If we 
increase the dimension of the state space to 8, the number of coefficients is 
already equal to 83 6561= . This exponential growth of the number of 
coefficients, of course, becomes a binding constraint on computational time. [10] 
suggest to use complete polynomials instead. In this case, the number of 
coefficients only amounts to 15 and 45 in dimension 4 and 8, respectively. We, 
therefore, rather consider complete polynomials than tensor products. 

If we choose complete polynomials for the approximation of the policy 
function, however, we run into problems with the standard collocation method, 
where we simply set the residual function equal to zero at a number of points 
that is equal to the number of coefficients (and solve a system of non-linear 
equations). How should we choose the points, e.g. the 15 points in dimension 4? 
One possible solution is the Smolyak’s algorithm presented by [11]. The 
Smolyak algorithm is a device how to pick the collocation points optimally. 
However, this algorithm suffers from its lack of universal applicability as it only 
works for certain combinations of the state space dimension and the degree of 
the complete polynomial in the approximating function. 

In this paper, we propose three different projection techniques to address this 
problem that are also universally applicable. First, we consider the standard 
Galerkin projection method in Section 3. Second, we suggest a rather ad hoc 
collocation procedure in Section 4 that is found to perform rather well. Finally, 
we solve a least squares problem instead, i.e. we simply minimize the sum of the 
squared residuals. This method is presented in Section 5. The rest of the paper is 
organized as follows. In Section 2, the model is presented, and Section 6 
concludes. 

2. The Model 

We study a simple social planner’s problem in a N-country model. Time is 
discrete and denoted by t. The utility function of the representative agent in 
country n is ( ),n n n

t tu c l  where n
tc  is consumption and n

tl  is labor supply in 
this country n at time t. We assume that country n’s production of the single 
good equals ( ),n n n

t tf k l  where n
tk  is the capital stock. The social planner 

solves the following problem  

( )
( )

1 0

0
1 0, ,

max ,
Nn n n

t t t n t

N
n t n n n

t t
n tc i l

u c lτ β
∞

= =

∞

  = =
 
 

 
 
 

∑ ∑

               

(1) 

subject to  
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( )1 1 , 1, 2, , ,n n n
t t tk i k n Nδ+ = + − =                  (2) 

where δ is the depreciation rate of capital and n
ti  is gross investment in country 

n at time t, and where nτ  is the Negishi weight for country n. The world budget 
constraint is given by  

( )
2

1 1 1 1
, .

2

nN N N N
n n n n n n n n t
t t t t t t t n

n n n n t

ic i k a f k l k
k

ϕδ δ
= = = =

   + − = − −    
∑ ∑ ∑ ∑

       

(3) 

The productivity shocks are generated by the law of motion  

( )1ln ln ,n n n
t t t ta a e eρ σ−= + +

                   
(4) 

where ( )~ 0,1n
te N  and ( )~ 0,1te N  are i.i.d. normally distributed random 

variables. The production function is the standard CES specification (including 
the special case of Cobb-Douglas) where  

( ) ( )( )1
1

1 , 0, ;
, 0,

k lf k l
k l

µµ µ

α α

α α µµ
µ−

 + − ≠= 
=              

(5) 

which implies that ( )1 1 µ−  is the elasticity of substitution between capital and 
labor. 

We will examine three kinds of utility functions. The first will be the separable 
utility function  

( )
1 11 1

, ,1 11 1

c lu c l b
γ η

γ η

− +

= −
− +

                     

(6) 

where γ is the intertemporal elasticity of substitution and η is the elasticity of 
labor supply. A special case of this will be the inelastic labor supply case:  

( )
11

, 1.0.11

cu c l
γ

γ

−

= ≡
−

                      

(7) 

The second utility function we will use is the Cobb-Douglas specification  

( )
( )( )

111

, 11

ec L l
u c l

ψ γψ

γ

−−
−

=
−

                    

(8) 

where eL  is labor time endowment. The third utility function we will use is the 
CES specification  

( )
( )

1 11 11 11 1

, ,11

ec b L l

u c l

γ χ
χ χ

γ

  
− −  

  − − 
+ −  

 =
−

               

(9) 

where χ is the elasticity of substitution between consumption and leisure. 
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2.1. Specification of Negishi Weights and Steady States 

Each problem is specified in terms of the Negishi weights nτ . These are tied 
down in general equilibrium models by endowments. However, we will specify 
Negishi weights instead of endowments since this allows us to focus on solving 
multidimensional dynamic models. If we did want to specify endowments 
instead and compute general equilibrium prices, the Negishi method would be 
the most natural way to proceed; that is, we would compute allocations (and 
the implied prices) conditional on the Negishi weights and then use a 
finite-dimensional nonlinear equation solver to find the weights that implied 
equilibrium. Therefore, we focus on the dynamic problem for fixed Negishi 
weights. 

We use a simple rule to pin down the Negishi weights. For each problem, the 
Negishi weights are to be chosen so that the steady state consumption in each 
country would equal its net output if the productivity shocks were eliminated. 
This is a sensible choice since it implies that net foreign asset income is small, a 
rough approximation of reality. 

We will also assume initially that all countries are the same size. Specifically, 
we will assume that the steady state capital stock and labor supply both equal 
unity for all countries. The parameter choices made below are intended to 
produce that result. 

2.2. Common Parameter Values 

Some parameters will be fixed at one value for all examples. We must choose a 
common β in order for the solution to be stationary. We choose 0.99β =  so 
that the period of time is about a quarter. We also fix the values for α and δ since 
these reflect standard choices and their variations will not present significant 
computational challenges. The adjustment cost parameter φ covers an empirically 
relevant range. The stochastic parameters will represent high and moderate 
persistence, and high and low productivity shocks. Table 1 summarizes our 
parameter choice. 

3. Galerkin Projection 

In this section, we will first introduce you to the projection method and to the 
Galerkin method in more detail. Specifically, we will describe how we 
implemented the method for the computation of the model in section 2. Second, 
we will present accuracy results for the Galerkin projection. 

 
Table 1. Parameter settings.  

Preferences 0.99β =   

Production 0.36α =   

Capital Accumulation 0.025δ =  { }0.5,2.0,10.0φ =  

Schock Process { }0.8,0.95ρ =  { }0.001,0.01σ =  
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3.1. The Numerical Method 

With the help of projection methods, we want to approximate an unknown 
function :f X Y→ , where X and Y are subsets of n  and m , respectively:  

( ) ( )
0

ˆ , .
p

n
i i

i
f x x x Xφψ

=

= ∈ ⊂∑ 
                 

(10) 

This function is implicitly defined by the functional equation ( ) 0F f = , 
where 1 2:F C C→ . 1C  and 2C  are given spaces of functions, e.g., the set of 
all continuously differentiable functions on [ ],a b . Examples of functional 
equations are the Bellman equation or the Euler equation of the stochastic 
growth model. The functions may also take the form of equilibrium conditions, 
for example, such as supply equals demand. In the model of section 2, the 
functional equations are represented by the first-order conditions with respect to 
current-period consumption and labor supply and the next-period capital stock, 
respectively:  

, , 1, , :n m n m N∀ ≠ =   

( ) ( ), ,
0

n n n m m m
t t t t

n mn m
t t

u c l u c l

c c
τ τ

∂ ∂
= −

∂ ∂                 
(11a) 

1, , :n N∀ =   

( ) ( ) ( ), , ,
0 ,

n n n n n n n n n
t t t t t tn

tn n n
t t t

u c l u c l f k l
a

l c l

∂ ∂ ∂
= −

∂ ∂ ∂            
(11b) 

( ) ( )1 1

1

, ,
0 1

n n n n n nn
t t t tt

tn n n
t t t

u c l u c ln
c k c

ϕ δ β + +

+

∂ ∂  
= + − −  

∂ ∂   


        
(11c) 

( )1 1 1 1
1

1 1 1

, 11 1
2

n n n n n
t tn t t

t n n n
t t t

f k l i ia
k k k

ϕ δ δ+ + + +
+

+ + +

 ∂     
 × + + − + −    

∂              
(11d) 

together with the world budget constraint (3). These equations can be rewritten 
as implicit functions of the state variables tx  that consist of the individual 
capital stocks n

tk  and technology levels n
ta , ( )1 1, , , , ,N N

t t t t tx k k a a=   . In our 
example, we will try to approximate the next-period capital stock 1tk +  and labor 
supply tl  by a function f. 

The residual function is obtained by substituting f̂  into the functional 
equations:  

( ) ( )( ) ( )0
ˆ, : , , : , , .pR x F f xφ φ φ φ φ= =   

For the true solution f, the residual function is equal to zero. In addition, we 
also normalize the residual function to one so that deviation from zero can be 
interpreted as percentage deviations. For example, the residual function that 
represents the first-order condition with respect to current-period consumption 
is formulated as follows:  
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( ) ( )( )

( )

( )1

,

; . , . 1.
,

m m m
t t

m m
t

t t t n n n
t t

n n
t

u c l
cR x k l

u c l
c

τ

τ
+

∂

∂
= −

∂

∂               

(12) 

Suppose there is a set of test functions ( ){ } 0

p
i i

g x
=

 and a weight function 

( )w x . Together with R they define an inner product given by  

( ) ( ) ( ), d .iX
w x R x g x xφ∫  

On a function space, this inner product induces a norm on this space and we 
choose the vector of parameters ϕ such that  

( ) ( ) ( ), d 0, 0,1, , .iX
w x R x g x x i pφ = ∀ =∫ 

            
(13) 

The three different solutions considered in this paper are derived for special 
choices of ig  and w.  
• The Galerkin solution chooses i ig ψ≡  and 1w ≡ .  
• The collocation method uses the Dirac delta function as weight function,  

( )
0 if ,
1 if ,

i

i

x x
w x

x x
≠

=  =
 

and puts 1ig ≡ .  
• The least squares solution puts i ig R φ≡ ∂ ∂  and 1w ≡ .  

We summarize the general procedure that underlies projection methods in the 
following algorithm that is adapted from [7]. 

Algorithm (Projection Method) 
Purpose: Approximate the solution f: X Y→  of a functional equation F(f) = 

0. 
Steps: 
Step 1: Choose a bounded state space nX ⊂   and a family of functions 
( ) :i x X Yψ → , 0,1,i =  .  
Step 2: Choose a degree of approximation p and let  

( ) ( )
0

ˆ , .
p

i i
i

f x xφ φψ
=

=∑  

Step 3: Define the residual function:  

( ) ( )( )ˆ, : , .R x F f xφ φ=  

Step 4: Choose a projection function ig , a weight function w and compute 
the inner product:  

( ) ( ) ( ): , d , 0, , .i iX
G w x R x g x x i nφ= =∫   

Find the value of ϕ that solves 0iG = , or, in the case of least squares 
projection ( i ig R φ= ∂ ∂  and 1w ≡ ), minimize  

( )2, d
X

R x xφ∫  

https://doi.org/10.4236/jmf.2018.82021


B. Heer, A. Maußner 
 

 

DOI: 10.4236/jmf.2018.82021 324 Journal of Mathematical Finance 
 

with respect to ϕ. 
Step 5: Verify the quality of the candidate solution ϕ. If necessary, return to 

step 2 and increase the degree of approximation n or even return to step 1 and 
choose a different family of basis functions.  

In step 1, the boundaries are found with some trial and error. In the following, 
we will concentrate on the symmetric case ( 1i jτ τ= ≡ ) with 4N =  countries 
and the benchmark calibration 0.36α = , 0.99β = , 0.025δ = , 0.5ϕ = , 

0.95ρ = , and 0.001σ = . The labor supply is fixed, 1l ≡ , and the steady state 
capital stock is normalized to one, 1k = . Furthermore, we use a Cobb-Douglas 
production function ( 0µ = ), and the utility function (6) with 1.0γ = . For this 
benchmark case, we approximated the policy function for the capital stock on 
the sets [ ]0.90,1.10  for the individual capital stocks. For the technology level 

i
ta , we assumed that it does not deviate from its steady state level 1.0 by more 

than six times its unconditional standard deviation, 21ρ σ− . In step 2, we 
picked iψ  from the family of the Chebyshev polynomials. We report the results 
for a degree of approximation 2p = .7 In the symmetric case, the residual 
function is one-dimensional. We obtain the residual function from the 
intertemporal first-order condition (11c) after having inserted the Equation (2) 
for the accumulation of the capital stock and the world budget constraint (3). 
Again, we normalized the residual function to one by dividing (11c) through the 
marginal utility of current-period consumption. 

Step 4 deserves some discussions. In particular, we applied various devices 
that are non-standard in the literature in order 1) to make it faster and 2) to keep 
it from breaking down. The first adjustment is necessary in the presence of 
high-dimensional state spaces, while the second adjustment is found to be useful 
in dynamic stochastic equilibrium models in general. 3) A third adjustment was 
necessary for the Galerkin and least squares projection due to the numerical 
accuracy of the hardware. 

1) Consider the projection step 4 where we compute a high-dimensional 
integral in the case of both Galerkin and least squares projection.8 As one 
possible way, one can apply Gaussian formulas to compute this integral, for 
example Gauss-Chebyshev integration. However, we find this method to be too 
time-consuming in the present application once we have a state space of 
dimension 8 or higher (even if we only pick three nodes in each dimension). For 
this reason, we rather compute the integral (13) with the help of a monomial 
formula as suggested by [7].9 In particular, we use the following monomial 
formula for the cube which is taken from [12]:  

 

 

7For a linear approximation ( 1p = ), the projection methods did not provide accurate solution for 
the case with 6N ≥  countries. In particular, the dynamic behavior of the capital stock k became 
unstable when we simulated over many periods. 
8With collocation, we only compute a finite number of points. 
9[9] also applies monomial formula in his study of Galerkin projection methods. His integration 
step, however, differs from ours in the choice of the grid points and the integration formula. In addi-
tion, we also provide a new algorithm for the collocation projection that is efficient and fast. 
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[ ] ( ) ( ) ( ) ( )( ) ( )
1,1

1
d 0, ,0 ,n

n
i i

i x C
f x x Af B f re f re D f x

−
= ∈

≈ + + − +∑ ∑∫ 

   
(14) 

where ( ){ }| 1iC x x= ∀ = ±  and  

2 8 5 5 1, 2 , , , .
5 9 18 9

n nr V A V B V D−
= = = = =  

By using this rule,10 we reduce the number of computations of ( )f x  from ny  
in the case of the Chebyshev integration with y nodes to 2 2 1n n+ + . For our 
problem, we find the Chebyshev integral and the monomial rule to coincide for 
the first four digits. 

We also applied monomial rules to the computation of the expectation on the 
right-hand side of the first-order condition (11c). In order to compute the 
residual, we, again use a monomial formula from [12]. If nx∈  has a 
multivariate standard normal distribution, the expectation ( )( )E f x  can be 
computed by the following:  

( ) ( ) ( )2
12

1

12π e d 2 ,
2

n
ii

n

nn x
iR

i
f x x f n e

n
=− −

=

∑ ±∑∫ 

          
(15) 

where ( )0, ,0,1,0, ,0ie =    denotes the i-th unit vector. In order to apply this 
rule to the general case of a random normal vector z with mean μ and covariance 
matrix Σ , we use the change of variable technique.11 The linear transformation  

( )
1 2

2
x z µ

−Σ
= −  

implies that ( )( )E f z  can be expressed as an integral function of x:  

( )( ) ( ) ( )
( ) ( )

( )

1

2
1

1
1 22 2

2 1 2

2π e d

π 2 e d .

n

n
ii

n

z zn

xn

E f z f z z

f x x

µ µ

µ

−

=

− ′− Σ −−−

−− ∑

= Σ

= Σ +

∫

∫




 

This integral can be approximated by formula (15). Again, we find this 
formula to perform rather well compared to standard Gauss-Hermite 
integration. For the expectation in the first-order condition of (11c) in the 
symmetric benchmark case, the first four digits of the monomial formula 
integral (15) and the Gauss-Hermite integral with 4 nodes coincide. 

2) In order to apply our integration routine (14), we, however, need to be 
careful. Assume we approximate a one-dimensional function ( )f x  on [ ],a b . 
As you can see from the formula (14), we also evaluate the function ( )f x  at 
the boundaries x a=  and x b= .12 Now consider our problem introduced in 
section 2. In order to compute the integral over the squared residuals, we have to 
evaluate the residual for a capital stock k in period t at the boundaries of the 
approximation interval [ ]min max,k k . In the likely case that our initial guess is not 

 

 

10In order to apply the monomial formula (17), we need to transform the variables into the canonical 
form. This procedure is described in [7] Ch. 7.5. 
11See, e.g., Theorem 7.5.3 in [7]. 
12Similarly, if we apply Chebyshev integration instead, for y>1, two of the Chebyshev nodes will be 
close to the lower and upper boundary limit. 
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very close to the true solution, we might choose a next-period capital stock k′  
in 1t +  that is outside the approximation interval [ ]min max,k k . We, however, 
also need to compute k′′  in period 2t +  in order to compute 1tc +  in (11c) 
with the help of the world budget constraint (3). Therefore, we might have to 
compute an approximation of the policy function that lies outside the 
approximation interval D. Outside D, however, the approximation accuracy 
might deteriorate quickly so that our computation might break down because of 
a variable overflow or a negative value for 1tc + . Indeed, we encountered this 
problem in almost all our applications. In order to circumvent the problem, we 
suggest the following two procedures that we also apply for the other two 
projections methods below. a) First choose an interval D for the approximation 
of the policy function. Next choose a subset 1D D⊂  and compute the sum of 
projected residuals (squared residuals) over this smaller interval. In all our 
applications, this device worked rather well. Typically, we choose the length of 
the edges of 1D  to be approximately 50% - 70% of the corresponding ones in 
the set D. 

b) Routines that solve non-linear equations, as the modified Newton-Raphson 
method with line search, require a good starting value. In our applications, we 
started with the solution from the log-linear model for the computation of the 
Chebyshev approximation with a degree 1p = . For a degree 1p > , we simply 
used the solution for the approximation with the degree 1p − . Even with this 
values, however, the Newton-Rhapson algorithm was trying values for the vector 
ϕ where it is impossible to evaluate the residual function. For this reason, the 
routine that evaluates the residual function must return an error flag that 
signalizes the calling program to stop. Otherwise, the program will crash because 
of overflows, underflows, or other run-time errors arising from undefined 
numerical operations. Yet, standard software usually assumes that it is possible 
to evaluate a given non-linear system everywhere and there is no way to tell the 
program to do otherwise. Therefore, we wrote our own non-linear equations 
solver where the step size in the Newton-Rhapson algorithm is reduced as long 
as the evaluation of the residual function returns an error flag.13 

3) In the cases of the Galerkin and the least squares projection, we also find a 
third device to be very helpful. Typically in the computation of stochastic 
dynamic general equilibrium models, we would like to find a solution with 
residuals that are small and below 10−4 or even 10−5. Therefore, the value of the 
squared residual is of the typical order 10−8 or even less. If we integrate the 
projections of the (squares) residuals over the n-dimensional interval  

[ ] [ ] [ ]1 1 2 2, , ,n nD a b a b a b= × × , for example, the result is typically in the range 

of the order ( ) 6
1 10n

i ii b a −
=

−∏  or even lower. If the parameters of the problem  

are chosen such that the lengths of the intervals i ib a−  are small, we end up 

 

 

13The algorithm is downloadable from our homepage. The link is: 
http://www.uni-augsburg.de/vwl/maussner/englisch/chair/maussner/pap/mnr.for 
In order to decrease computational time, we also rather used forward than central differences in 

order to compute the Jacobian. 

https://doi.org/10.4236/jmf.2018.82021
http://www.uni-augsburg.de/vwl/maussner/englisch/chair/maussner/pap/mnr.for


B. Heer, A. Maußner 
 

 

DOI: 10.4236/jmf.2018.82021 327 Journal of Mathematical Finance 
 

computing an integral value that is close to the accuracy of our numerical 
software (we used FORTRAN 95 with double precision data type). Indeed, this is 
the case for our state space where the typical integral (13) amounts to less than 
10−16 in the symmetric 4-country benchmark case, for example. We, therefore, 
adjusted the scale of our sum of squared residual in (13) and normalized it to 
one by dividing the integral by the volume of the interval 1D . In this regard, our 
procedure is equivalent to the standard OLS approach where the total weight of 
all squared residuals is set equal to one. 

3.2. Accuracy Check 

In order to evaluate the performance of the projection methods, we use two 
different tests: 
• Accuracy test 1: We compute a sample of 100 points ix  at radius r from the 

deterministic steady state. We compute the absolute value of the residual 
( )iR x  for each point in the sample. The maximum of these values for each 

radius r are reported in Table 2.14 
• Accuracy test 2: We simulate our solution to produce a sequence of values 

for the state, { } 1

T
t t

x
=

. For 1,10,20, ,t T=  , we compute the maximum and 
the mean of the (absolute) residual.15 

Table 2 presents the results for the Galerkin projection. Naturally, the 
accuracy declines with increasing radius from the steady state in the accuracy 
test 1 (please see the first two columns of the table). Remember that we only 
approximated the policy function inside the radius 0.10r = . For this region 
(which is also the relevant region during the simulation), the maximum 
deviation of the residual function deviates amounts to only 0.20%. The good 
performance of the algorithm is also reflected in the values of the accuracy test 2. 
Even after 100 simulation, the maximum absolute value of the residual did not  

 
Table 2. Galerkin projection.  

Accuracy Test 1 Accuracy Test 2 

r ( )max i iR x  Period t ( )max t tR x  ( )1

1 t

ti
R x

t =∑  

0.01 0.20E−5 1 0.41E−6 0.41E−6 

0.02 0.31E−5 10 0.70E−6 0.42E−6 

0.05 0.18E−4 20 0.70E−6 0.27E−6 

0.10 0.21E−3 30 0.70E−6 0.22E−6 

0.15 0.71E−3 40 0.11E−5 0.32E−6 

0.20 0.18E−2 50 0.11E−5 0.45E−6 

0.30 0.73E−2 100 0.14E−5 0.45E−6 

Notes: The runtime for the modified Newton-Rhapson algorithm with line search on a Pentium III, 846 
MHz, amounted to 4 minutes 49 seconds and the program needed 8 iterations over ϕ.  

 

 

14This is the style of error used in [6]. 
15This style of error was used in [13]. 
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exceed 0.0014% and the mean was only 0.00045%.16 
The runtime for the modified Newton-Rhapson algorithm with line search on 

a Pentium III, 846 MHz, amounted to 4 minutes 49 seconds and the program 
needed 8 iterations over ϕ. Our algorithm, therefore, is reasonably fast and 
accurate considering that we compute a policy function for an 8-dimensional 
state space (in the case N = 4, we have four individual capital stocks i

tk  and 
four individual productivities i

ta ). If we increase the number of countries to 6 or 
8, we run into the limits for the computational time on our Pentium III, 846 
MHz computer. As can be seen from Table 3, the runtime increases quickly to 
multiple days. Therefore, for the computer technology at our current disposal, 
16 state variables (corresponding to 8N = ) has been found to be the limit. 

4. Collocation Projection 

In the collocation projection, we use the Dirac delta function as projection 
function with a weight identical to one. Therefore, we only compute the 
projection at single points and circumvent the computation of integrals (except 
for the computation of the expectation). Of course, this will save a lot of 
computer time if the state space is large. Instead, the task is to solve the 
non-linear equation system  

( ) ( )1 2, 0, 0,1, , , , , , .j pR x j pφ φ φ φ φ= = =   

But at which set of points jx  should the residual function equal zero? It is 
well known from the so called Chebyshev interpolation theorem17 that the 
Chebyshev zeros minimize the maximum interpolation error. For this reason, 
one should use the Chebyshev nodes of the Chebyshev polynomial of order 

1p +  if we approximate the function by a Chebyshev polynomial of order p. 
This particular projection method is called Chebyshev collocation. 

The procedure is easy to apply in small dimensional space where we can use 
the tensor product of the basis functions in order to approximate the policy 
functions. Let d denote the dimension of the state space ( 8d =  for the  

 
Table 3. Computational Time. 

N Galerkin Collocation Least Squares 

4 4 min 49 sec (8) 0 min 10 sec (5) 11 min 4 sec (40) 

6 2 h 53 min 44 sec (6) 3 min 4 sec (5)  

8 14 days 16 h 32 min (6) 30 min 47 sec (5)  

Notes: The solutions are computed with a Pentium III, 846 MHz. The number in brackets presents the 
number of iterations over ϕ in the modified Newton-Rhapson algorithm with line search (Galerkin, 
Collocation) and in the Quasi-Newton algorithm (Least Squares). 

 

 

16The accuracy decreases with increasing number of the state space dimension. For a higher number 
of shocks i

te , the likelihood for a larger deviation from the steady-state values increases and we 
have to pick a wider interval for the approximation of the policy functions. Naturally, the goodness 
of fit decreases. 
17See, e.g., [7], Theorem 6.7.2, p. 221. 
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4-country model with 4N = ). In this case, we simply take the ( )1 dm p= +  
(transformed) Chebyshev nodes ( )1 2

1 , , , dii i
dz z z , where 1

1
iz  for example 

denotes the 1i -th Chebyshev zero in the first dimension of the state space and 

1 2, , , 1, , 1di i i p= +  . This procedure, however, is no longer feasible if the 
dimension of the state space increases to values of 6d =  or above with current 
computer technology. For this reason, we have to use complete polynomials as 
approximating functions with a lower number of coefficients and a lower 
number of points at which we evaluate the residual function and try to set it 
equal to zero. 

In the following, we suggest a very easy-to implement method for 
high-dimensional state spaces. Assume that the number of coefficients is equal 
to m. Just pick any m Chebyshev nodes and compute the solution. In very few 
cases, we find that this procedure does not converge and the modified 
Gauss-Newton algorithms fails. In this case, restart the program for another 
random pick of the Chebyshev nodes. The accuracy of this procedure is reported 
in Table 4 for the 4-country case.18 Notice that the accuracy, at least for the 
relevant range of the state space, is less than in the case of Galerkin projection. 
However, the gain in speed is tremendous, especially if we consider the case for 8 
countries with a corresponding number of 16 state variables. While Galerkin 
takes several days, our ad hoc collocation algorithm is able to compute a very 
accurate solution with a mean deviation of 0.016% within minutes.19 

In summary, the proposed collocation procedure is less accurate than 
Galerkin. However, for the researcher who is time constrained, it may provide a 
valuable alternative. In addition, the solution from the Collocation projection 
can be used as an initial guess for the Galerkin method. By this procedure, the 
number of iterations over ϕ in the Newton Raphson algorithm can be reduced to  

 
Table 4. Collocation projection. 

Accuracy Test 1 Accuracy Test 2 

r ( )max i iR x  Period t ( )max t tR x  ( )1

1 t

ti
R x

t =∑  

0.01 0.18E−4 1 0.14E−4 0.14E−4 

0.02 0.25E−4 10 0.14E−4 0.14E−4 

0.05 0.35E−4 20 0.14E−4 0.13E−4 

0.10 0.22E−3 30 0.15E−4 0.14E−4 

0.15 0.71E−3 40 0.15E−4 0.14E−4 

0.20 0.16E−2 50 0.15E−4 0.14E−4 

0.30 0.41E−2 100 0.16E−4 0.15E−4 

Notes: The runtime for the modified Newton-Rhapson algorithm with line search on a Pentium III, 846 
MHz, amounted to 10 seconds and the program needed 5 iterations over ϕ. 

 

 

18Table 3 reports the maximum values from 10 runs of the collocation algorithm. 
19We have also found this result to hold in other problems. In [1], Section 6.3.4 for example, we con-
sider an equity-premium model with 3 states. The proposed ad hoc collocation procedure is found 
to perform equally well. 
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one or two and the computational time declines significantly. This savings in 
time comes at almost no costs as the additional programming is very little. 

5. Least Squares 

The least squares method minimizes the (weighted) sum of squared residuals:  

( )
1

2min , d .
D

R x x
γ

φ∫
                      

(16) 

One possible way to implement this method is to simply compute the sum of 
squared residuals over an n-dimensional grid of the state space. As a natural 
choice of the grid points in each dimension of the state space, we pick the 
Chebyshev nodes (Chebyshev integration uses constant weights). As, however, 
the state space dimension increases, we rather use monomial formulas to 
compute the integral (19). For this procedure, our results are discouraging if we 
use the log-linear solution as the initial guess. Typically, the mean residuals in 
our simulation of the economy are of the magnitude 10−1, which, of course, is 
not satisfactory. Acoordingly, as the first important result of our analysis, we 
find that least squares do not work well if the initial solution is not close to the 
true solution. As the nature of the model in Section 2 is rather complex and 
number of parameters for the policy coefficients is rather large, the minimization 
problem (19) displays many local minima.20 

We could only conceive a least squares algorithm with reasonably accurate 
results when we used the solution from our ad hoc collocation procedure as an 
initial guess for ϕ. The performance of the algorithm in this case is summarized 
in Table 5. As you can see, the accuracy is much higher than in the case of 
collocation projection and is comparable to the one with Galerkin projection. 
However, the computational time is much higher than with Galerkin as the  

 
Table 5. Least Squares projection.  

Accuracy Test 1 Accuracy Test 2 

r ( )max i iR x  Period t ( )max t tR x  ( )1

1 t

ti
R x

t =∑  

0.01 0.23E−5 1 0.61E−6 0.61E−6 

0.02 0.38E−5 10 0.74E−6 0.66E−6 

0.05 0.36E−4 20 0.96E−6 0.71E−6 

0.10 0.33E−3 30 0.96E−6 0.65E−6 

0.15 0.71E−3 40 0.96E−6 0.61E−6 

0.20 0.13E−2 50 0.96E−6 0.60E−6 

0.30 0.52E−2 100 0.96E−6 0.58E−6 

Notes: The runtime for the Quasi-Newton algorithm with line search on a Pentium III, 846 MHz, 
amounted to 11 minutes 4 seconds and the program needed 40 iterations over ϕ.  

 

 

20We also applied a genetic search algorithm in order to provide a more sophisticated guess for ϕ. In 
particular, we used a simple and fast genetic search algorithm based on [14] that is described in de-
tail in [1], Chapter 8. However, results did not improve much and computational time became a 
limit for N = 6 already. 
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algorithm needs more iterations over ϕ in the minimization step.  

6. Conclusions 

Modern business cycle analyses are based on complex high-dimensional general 
equilibrium models. Monetary policy, for example, uses New Keynesian models 
such as those presented by [15] or [16] that introduce nominal frictions along 
with habit formation, costs of adjustment in capital accumulation, and variable 
capacity utilization. In these models, the number of state variables increases 
significantly, in particular if frictions in financial markets are added such as in 
[17] [18]. The curse of dimensionality is further aggravated if the model is 
extended to include heterogeneous firms or households as in the business cycle 
model of [2] [19] or [20]. These models, in particular in the presence of binding 
constraints or asymmetric behavior (for example, if households are subject to 
loss aversion), need to be solved with the help of non-linear methods such as 
projection methods, while the numerical accuracy of standard perturbation 
methods may prove to be insufficient. 

We analyzed three projection methods and their ability to solve dynamic 
stochastic general equilibrium models that are characterized by a high 
dimension of the state space. Galerkin projection is shown to work remarkably 
well, accurately, and fast, if we use monomial integration formulas. Computational 
time only becomes a binding constraint for a state space dimension exceeding 
15 - 20, depending on the current computer technology. We also suggested an 
alternative, rather ad hoc Chebyshev collocation method for incomplete 
polynomials which is found to work surprisingly well for the present problem 
and that is also found to be much faster than Galerkin. Even though this method 
is less accurate than Galerkin, it may help to economize on computational time 
as it provides a very good initial value so that the number of iteration steps in the 
Newton-Rhapson algorithm of the Galerkin method can be reduced substantially, 
typically to one or two iterations. Finally, we studied the least squares projection 
method. Our results are most discouraging. Without a very good initial value, 
least squares is unable to find an accurate solution. It takes a considerable effort 
to find a good starting value and, even then, the method is much slower than 
Galerkin projection. We, therefore, cannot recommend the use of least squares 
for the solution of dynamic stochastic general equilibrium models. More 
promising, instead, is our new collocation algorithm that picks the collocation 
nodes randomly. 
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Appendix 

In this appendix we provide the results for the 6-country and 8-country model in 
the symmetric case. 

 
Table S1. Galerkin projection, 6 countries. 

Accuracy Test 1 Accuracy Test 2 

r ( )max i iR x  Period t ( )max t tR x  ( )1

1 t

ti
R x

t =∑  

0.01 0.32E−5 1 0.15E−6 0.15E−6 

0.02 0.58E−5 10 0.38E−6 0.22E−6 

0.05 0.15E−4 20 0.13E−5 0.37E−6 

0.10 0.15E−3 30 0.20E−5 0.67E−6 

0.15 0.82E−3 40 0.20E−5 0.77E−6 

0.20 0.17E−2 50 0.20E−5 0.69E−6 

0.30 0.18E−2 100 0.20E−5 0.70E−6 

Notes: The runtime for the modified Newton-Rhapson algorithm with line search on a Pentium III, 846 
MHz, amounted to 2 hours 53 minutes 44 seconds and the program needed 6 iterations over ϕ. 

 
Table S2. Collocation projection, 6 countries. 

Accuracy Test 1 Accuracy Test 2 

r ( )max i iR x  Period t ( )max t tR x  ( )1

1 t

ti
R x

t =∑  

0.01 0.26E−4 1 0.22E−4 0.22E−4 

0.02 0.30E−4 10 0.23E−4 0.20E−4 

0.05 0.29E−4 20 0.23E−4 0.21E−4 

0.10 0.19E−3 30 0.23E−4 0.22E−4 

0.15 0.69E−3 40 0.23E−4 0.22E−4 

0.20 0.11E−2 50 0.23E−4 0.22E−4 

0.30 0.15E−2 100 0.23E−4 0.20E−4 

Notes: The runtime for the modified Newton-Rhapson algorithm with line search on a Pentium III, 846 
MHz, amounted to 3 minutes 4 seconds and the program needed 5 iterations over ϕ. 

 
Table S3. Galerkin projection, 8 countries. 

Accuracy Test 1 Accuracy Test 2 

r ( )max i iR x  Period t ( )max t tR x  ( )1

1 t

ti
R x

t =∑  

0.01 0.48E−4 1 0.39E−5 0.39E−5 

0.02 0.10E−3 10 0.27E−4 0.13E−4 

0.05 0.19E−2 20 0.40E−4 0.16E−4 

0.10 0.36E−2 30 0.40E−4 0.14E−4 

0.15 0.14E−1 40 0.40E−4 0.15E−4 

0.20 0.37E−1 50 0.40E−4 0.16E−4 

0.30 0.14E−0 100 0.53E−4 0.19E−4 

Notes: The runtime for the modified Newton-Rhapson algorithm with line search on a Pentium III, 846 
MHz, amounted to 14 days 16 hours 32 minutes and the program needed 6 iterations over ϕ. 
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Table S4. Collocation projection, 8 countries. 

Accuracy Test 1 Accuracy Test 2 

r ( )max i iR x  Period t ( )max t tR x  ( )1

1 t

ti
R x

t =∑  

0.01 0.17E−3 1 0.15E−3 0.15E−3 

0.02 0.24E−3 10 0.15E−3 0.13E−3 

0.05 0.70E−2 20 0.15E−3 0.13E−3 

0.10 0.49E−1 30 0.15E−3 0.12E−3 

0.15 0.17E−0 40 0.15E−3 0.12E−3 

0.20 0.22E−0 50 0.15E−3 0.11E−3 

0.30 0.55E−0 100 0.15E−3 0.11E−3 

Notes: The runtime for the modified Newton-Rhapson algorithm with line search on a Pentium III, 846 
MHz, amounted to 30 minutes 47 seconds and the program needed 5 iterations over ϕ. 
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