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1. Introduction

Blood is a highly functional body fluid, it delivers oxygen to the vital
parts, it transports nutrients, vitamins, and metabolites and it also is
a fundamental part of the immune system. Therefore the precise
knowledge of its constituents, its physical, biological, and chemical
properties and its dynamics is of great importance. Especially its
dielectric parameters are of relevance for various medical applications
[1], like cell separation (e.g., cancer cells from normal blood cells [2]),
checking the deterioration of preserved blood [3], and dielectric
coagulometry [4]. In addition, the precise knowledge of the dielectric
properties of blood is prerequisite for fixing limiting values for
electromagnetic pollution (via the conductivity in the specific absorp-
tion rate (SAR)) [5–8].

Early measurements of the electrical properties of blood contrib-
uted significantly to unravel the constitution of red blood cells (RBC).
For example, the results by Höber [9] provided the first indications of a
dispersion (i.e. frequency dependence), caused by the membrane of
RBCs, in the radio frequency (RF) spectrum of the dielectric properties
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of blood. This relaxation process is nowadays identified as being of
Maxwell–Wagner type [10,11] and termed β-relaxation in biophysical
literature [12,13].

Various early works [14–21]were followed bymeasurements at very
high frequencies [22–25]. Some of them revealed an additional
dispersion with a relaxation rate near 18 GHz, which can be assigned
to the reorientationofwatermolecules andwhich isnamedγ-dispersion.
Furthermore, a third relaxation, termed α-relaxation and located in the
low-frequency regime, νb100 kHz was detected in some biological
materials [26,27]. However, interestingly, an α-relaxation seems to
be absent in whole blood [28] and only is found in hemolyzed blood
cells [27]. This was speculated to be due to a higher ion permeability
of the membranes in the latter case, shifting the relaxation spectrum
into the experimental frequency window [27]. The origin of the
α-relaxation is amatter of controversy; most commonly it is assumed
to arise from counterion diffusion effects [13,29]. Finally, a dispersion
with low dipolar strength located in the frequency regime between
the β- and γ-dispersions was identified by Schwan [12]. The origin of
the δ-dispersion and the possible role of boundwater in its generation
are controversially discussed [30–38].

Taking together all these results, it is clear that there are three
main dispersion regions in the dielectric frequency spectrum of blood
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between some Hz and 50 GHz, termed β, γ, and δ [12,13]. This
nomenclature should not be confused with that used in the
investigation of glassy matter like supercooled liquids or polymers.
Within the glass-physics community the terms α-, β-relaxations, etc.
are commonly applied to completely different phenomena than those
considered above (see, e.g., refs.[39] and [40]). In the present work we
follow the biophysical nomenclature.

A lot of additional research has been done until the early 1980s
[1,41–44] and a detailed review was given in 1983 by Schwan [13].
Later on, in the course of the upcoming debates about electromagnetic
pollution, dielectric properties of body tissues and fluids received
renewed interest as they determine the SAR, a measure for the
absorption of electromagnetic fields by biological tissue [8,45–48]. But
also various other important medical questions can be addressed by
dielectric spectroscopy [1–4,49]. In the last two decades, a number of
papers on dielectric spectroscopy on blood and erythrocyte solutions
were published [35,50–57], most of them treating special aspects
only.

On the theoretical side, a number of models for the description of
cell suspensions have been proposed. Most models focus on the β-
relaxation [12,14–17,21,58–64], including the often employed Pauly–
Schwan model [12,58], discussed below. Some of them also account
for the non-spherical shape of cells [14–17,61]. It seems clear that
diluted solutions and whole blood with a hematocrit value of 86%
have to be treated differently. The Bruggeman–Hanai model [20,59]
was specially developed for highly concentrated suspensions. A recent
summary of various models can be found in ref. [61].

Concluding this introduction, it has to be stressed that, after more
than one century of research, many aspects of the dielectric properties
of blood (e.g., the presence and origins of α- and δ-dispersions) are
still unclear. It should be noted that, in addition to the three main
dispersion effects, from a theoretical viewpoint a number of further
relaxation features may show up in blood. For example, it is well
known that RBCs are far from being of spherical shape and in principle
for shelled ellipsoidal particles up to six relaxations can be expected
[61]. Furthermore, the hemoglobin molecules within the RBCs should
show all the typical complex dynamics as found in other proteins.
Based on the available literature data (e.g., [13]), it seems that most, if
not all, of these additional processes do not or only weakly contribute
to the experimentally observed spectra. However, one should care-
fully check for possible deviations from the simple three-relaxation
scenario mentioned above, which may well be ascribed to these
additional processes.

Maybe the best and most cited broadband spectra of blood
covering several dispersion regions are those by Gabriel et al. [46],
taken at 37 °C, which are commonly used for SAR calculations and for
medical purposes. However, even these data are hampered by
considerable scatter and they are composed from data collected by
different groups on different samples. Clearly, high-quality spectra
covering a broad frequency range measured on identical samples are
missing. A systematic investigation of the hematocrit and tempera-
ture dependence is essential to achieve a better understanding of the
different dispersion contributions of blood. The present work provides
the dielectric constant ε′, the loss ε″, and the conductivity σ′ of human
blood in a broad frequency range (1 Hz to 40 GHz), by using a
combination of different techniques of dielectric spectroscopy applied
to identical samples. In addition, the temperature (280 K–330 K) and
hematocrit value (0–86%) dependence is thoroughly investigated.

2. Models and data analysis

Dielectric spectroscopy is sensitive to dynamical processes that
involve the reorientation of dipolar entities or displacement of
charged entities, which can cause a dispersive behavior of the
dielectric constant and loss. However, also non-intrinsic Maxwell–
Wagner effects caused by interfacial polarization in heterogeneous
samples can lead to considerable dispersion [10,11,65]. As mentioned
above, biological matter shows various dispersions in the frequency
regime 1 Hz to 40 GHz, which have different microscopic and
mesoscopic origins and therefore have to be described differently.

2.1. Intrinsic relaxations

Intrinsic processes like, e.g., the cooperative reorientation of
dipolar molecules are often described by the Debye formula [66]:

ε� vð Þ = ε∞ +
Δε

1 + i2πvτ
: ð1Þ

The relaxation strength is given by Δε=εs−ε∞. εs and ε∞ are the
limiting values of the real part of the dielectric constant for
frequencies well below and above the relaxation frequency νrelax=
1/(2πτ), respectively. This frequency is characterized by an inflection
point in the frequency dependence of the dielectric constant and a
peak in the dielectric loss. If taking into account an additional dc-
conductivity contribution, the conductivity shows a steplike increase
close to νrelax. The Debye theory assumes that all entities do relax with
the same relaxation time τ. In reality, a distribution of relaxation times
often leads to a considerable smearing out of the spectral features
[67,68]. Those can be described, e.g., by the Havriliak–Negami
formula, which is an empirical extension of the Debye formula by
the additional parameters α and β [69,70]:

εT νð Þ = ε∞ +
Δε

1 + i2πντð Þ1−α� �β : ð2Þ

Special cases of this formula are the Cole–Cole formula [71] with
0≤αb1 and β=1 and the Cole–Davidson formula [72,73] with α=0
and 0bβ≤1.

In most materials with intrinsic relaxations, the inevitable dc
conductivity σdc arising from ionic or electronic charge transport
cannot be neglected. Usually it leads to a 1/ν divergence in the loss at
frequencies below the loss peak and can be taken into account by
including a further additive term ε″dc=σdc/(ε0ω) in Eq. (2) (ε0 denotes
the permittivity of free space, ω is the circular frequency).

2.2. Maxwell–Wagner relaxations

The β-dispersion in biological matter is commonly accepted to be
of Maxwell–Wagner type [12,14,44,47,48]. As shown by Maxwell and
Wagner [10,11], strong dispersive effects mimicking those of intrinsic
dipolar relaxations can arise in samples composed of two or more
regions with different electrical properties (e.g., plasma, cytoplasma,
and cell membranes in the case of RBCs). It should be noted that this
dispersion can be completely understood from the heterogeneity of
the investigated samples without invoking any frequency-dependent
microscopic processes within the involved dielectric materials. If
one of the regions in the sample is of interfacial type and relatively
insulating, e.g., an insulating surface layer [65] or the membranes of
biological cells [12,13], very high apparent values of the dielectric
constant are detected at low frequencies. A straightforward approach
for understanding the dielectric behavior of heterogeneous systems
is an equivalent-circuit analysis. Here any interfacial layer can be
modeled by a parallel RC element with the resistance R and capac-
itance C of the interfacial element much higher than the correspond-
ing bulk values [65]. This leads to a relaxation spectrum where the
low-frequency capacitance and conductance are dominated by the
interface. For the calculation of ε′(ν) from the measured capacitance,
usually the overall geometry of the sample is used instead of that
of the thin interfacial layer (i.e., the assumed C0 is much smaller
than that of the layer). Thus, an artificially high dielectric constant
is detected at low frequencies. At high frequencies, the interface
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capacitor becomes shorted and the bulk properties are detected. This
leads to the steplike decrease of ε′(ν) and increase of σ′(ν) with
increasing frequency, typical for relaxational behavior. The increase of
σ′(ν) arises from the fact that the bulk conductance usually is much
higher than the interface conductance (the cell membrane in the case
of RBCs), the latter being shorted by the interface capacitor at high
frequencies.

Instead of an equivalent-circuit analysis [65], for biological matter
it is common practice to treat the β-relaxation analogous to an
intrinsic relaxation process, i.e., to fit it with the Debye equation or
its extensions (Eqs. (1) and (2)). A variety of models have been
developed to connect the obtained fitting parameters with the
intrinsic dielectric properties of the different regions of the samples
(see Section 2.5) and a lot of modeling work of experimental data was
performed [12,14–17,20,57–64,74–79].

2.3. Electrode polarization

Blood exhibits strong ionic conductivity. At low frequencies the
ions arrive at the metallic electrodes and accumulate in thin layers
immediately below the sample surface [80–83]. The frequency, below
which this effect sets in, critically depends on electrode distance and
ionic mobility. In biological matter it is typically located in the kHz–
MHz region. These insulating layers represent large capacitors leading
to an apparent increase of ε′(ν) and decrease of σ′(ν) at low
frequencies, quite similar to the Maxwell–Wagner effects discussed
above. These non-intrinsic contributions can hamper the unequivocal
detection of the parameters of the β-relaxation. Various experimental
techniques have been applied to avoid the influence of electrode
polarization (see, e.g., refs. [28,50,81]). An alternative way is the exact
modeling of these non-intrinsic contributions. The most common
models are a parallel RC circuit or a so-called constant-phase element,
both connected in series to the bulk sample [81–83].

A parallel RC circuit corresponds to an additional impedance

ZT
RC νð Þ = RRC

1 + i2πνRRCCRC
; ð3Þ

which has to be added to the bulk impedance. RRC and CRC are the
resistance and capacitance of the insulating layers, respectively. From
the resulting total impedance, the total capacitance and conductance
(and thus ε′(ν) and σ′(ν)) can be calculated resulting in a behavior
equivalent to a Debye-relaxation (this scenario corresponds to a
conventional Maxwell–Wagner relaxation). Alternatively a “constant
phase element”, which is an empirical impedance function, given
by ZCPE=A(iω)−α (refs. [82,83]), can be used. When defining τRC=
RRCCRC, Eq. (3) formally has the same mathematical structure as
Eq. (1). Thus, in analogy to Eq. (2) a distributed RC-circuit can be
introduced by writing

ZT
RC νð Þ = RRC

1 + i2πντRCð Þ1−α� �β : ð4Þ

Wewant to emphasize, that in contrast to Eq. (3), which leads to a
frequency dependence identical to that of a Debye relaxation, an
equivalent-circuit evaluation using Eq. (4) does not lead to fit curves
identical to those of a Havriliak–Negami relaxation: For the latter case,
the relaxation time τ in Eq. (1) is assumed to be distributed. In the
equivalent-circuit case, the corresponding quantity, determining, e.g.,
the loss peak position, is τ=RbCRC with Rb the bulk resistance [65].
However, the distributed quantity in the equivalent-circuit case is
τRC=RRCCRC, thus leading to different curve shapes.
2.4. Temperature dependence

The fitting of relaxation spectra directly provides the relaxation
times (τ), the width parameters (α and β), the relaxation strengths
(Δε), the dielectric constant for ν→∞ (ε∞), and the dc conductivity
(σdc) (see Section 2.1). For the temperature dependence of τ and σdc,
thermally activated behavior

τ = τ0exp
Eτ
kBT

� �
ð5Þ

and

σdc =
σ0

T
exp − Eσ

kBT

� �
; ð6Þ

can be assumed. σ0 is a prefactor. Eτ and Eσ denote the hindering
barriers for the relaxational process and the diffusion of the charge
carriers (i.e., dissolved ions of the plasma in the present case),
respectively. τ0 is an inverse attempt frequency, often assumed to be
of the order of a typical phonon frequency. Eq. (6), with the extra 1/T
term, is derived by considering the difference of the forward and
backward hopping probabilities of an ion between two sites in a
potential that becomes asymmetric due to the external field [84]. Here
the field drives the ionic motion. In contrast, for dielectric relaxations,
within the framework of the fluctuation–dissipation theorem it is
assumed that the dielectric measurement is sensitive to reorienta-
tional fluctuations, which are present even without field. Thus, τ in
Eq. (5) is proportional to the inverse of the reorientation probability of
a molecule experiencing a hindering barrier, which is just given by the
exponential term.

The temperature dependence of the dielectric strength of dipolar
relaxation mechanisms often can be characterized by the Curie law
[85,86]:

Δε =
C
T
: ð7Þ

Deviations from the Curie law are usually thought to signify
dipole–dipole interactions.

For most dielectric materials, the broadening of the loss peak
diminishes with increasing temperature, i.e., α→0 and β→1 for high
temperatures. This finding can be ascribed to the fast thermal
fluctuations, which cause every relaxing entity “seeing” the same
environment [39], thus leading to an identical relaxation time for each
entity, which implies Debye-like behavior.

2.5. Cell models

Two commonly employed models for the description of the
β-dispersion of cell suspensions and tissuewill be introduced now and
applied to the experimental data in Section 4.3.2. Both models are
claimed to be applicable to high cell concentrations and thus are
especially suited for the samples of the present work. Based on the
Maxwell–Wagner model [10,11], the Pauly and Schwan model takes
into account the membranes of cells [48,58]. Using appropriate
approximations (e.g., a negligiblemembrane conductance) somesimple
relations are derived:

Δεβ =
9prCm

4ε0⋅ 1 + p=2ð Þ2 ð8Þ

and

σdcβ =
1−p

1 + p = 2
⋅σa: ð9Þ
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Eq. (8) allows the calculation of the membrane capacitance per
area unit, Cm, from the relaxation strength of the β-dispersion, Δεβ,
and the volume fraction p and radius r of the suspended particles. Via
Eq. (9), the conductivity of the suspending medium (plasma in the
case of blood), σa, can be determined from the volume fraction and
the measured dc conductivity of the suspension, i.e. the limiting low
frequency conductivity of the β-dispersion, σdcβ. Moreover, resolving
the expression for the β-relaxation time τβ [58],

τβ = rCm
2σa + σi−p σi−σað Þ

σiσa 2 + pð Þ ; ð10Þ

one can approximate the conductivity of the cell interior (cyto-
plasma), σi by

σi =
σarCm 2 + pð Þ

σaτβ 2 + pð Þ− 1−pð ÞrCm
: ð11Þ

An alternative access to σi is provided by the following relation [58]:

σi =
2σ2

a 1−pð Þ−σaσ∞β 2 + pð Þ
σ∞β 1−pð Þ−σa 1 + 2pð Þ : ð12Þ

Here σ∞β denotes the high-frequency plateau of the step in σ′(ν).
Also the dielectric constant of the cytoplasma, εi, can be determined
[58]:

εi =
2ε2a 1−pð Þ−εaε∞β 2 + pð Þ
ε∞β 1−pð Þ−εa 1 + 2pð Þ ð13Þ

ε∞β is the limiting high-frequency dielectric constant of the β-relaxation
(cf. ε∞ in Eq. (1)) and εa is the dielectric constant of the suspending
medium (plasma).

The Pauly–Schwan model includes correction factors for high
concentrations (e.g., the 1+p/2 factor in Eq. (8)) and is claimed to be
valid for all values of p (see, e.g., ref. [48]). Another model, especially
developed for highly concentrated suspensions, is the one by
Bruggemann [20] and Hanai [59,62,63] taking into account the
polarization of particles in the presence of neighboring ones. The
model leads to the equations

εp =
εa 1−pð Þ−ε∞βk

1−p−k
; k =

εa
ε∞β

!1=3

ð14Þ

and

σp =
σa 1−pð Þ−σdcβk

1−p−k
; k =

σa

σdcβ

!1=3

ð15Þ

for the dielectric properties εp and σp of the particles. It should be
mentioned that this model assumes homogeneous particles (i.e.
without shell) and Eqs. (14) and (15) can be considered providing
average values of the whole cell only.

One should note that the exact solution of the dielectric theory of
suspensions of ellipsoidal particles leads to the prediction of six
separate relaxation processes, namely two per ellipsoid axis, arising
from the Maxwell–Wagner relaxation of the shell and of the particle
interior [61]. For spheroids, i.e. ellipsoids with two equal semi-
diameters, which may be a good approximation of RBCs, still four
relaxations are expected. Usually in the application of the Maxwell–
Wagner model to cell suspensions, including the above treated
models, various reasonable approximations are made (e.g., that the
membrane thickness is much smaller than the cell radius) that lead to
the prediction of a single relaxation only.
3. Materials and methods

To determine the complex dielectric permittivity and conductivity
in a broad frequency range (from 1 Hz to 40 GHz), different mea-
surement techniques were combined [87]. In the frequency range
1 Hz–10 MHz, high precision measurements were performed by
means of a Novocontrol Alpha-A Analyzer. This frequency response
analyzer directly measures the sample voltage and the sample current
by the use of lock-in technique. The ac voltage is applied to a parallel-
plate capacitor made of platinum containing the sample material
(diameter 5 mm, plate distance 0.6 mm). In our earlier measurements
of various materials, platinum was found to minimize contributions
from dissolved ionic impurities arising from the electrode material.
The capacitor is mounted into an N2-gas cryostat (Novocontrol
Quatro) for temperature-dependent measurements. For the measure-
ments in the frequency range 1 MHz–3 GHz a coaxial reflection
method was used employing the Agilent Impedance/Material Ana-
lyzer E4991A. Here the sample, again placed in the same parallel-plate
capacitor, is connected to the end of a specially designed coaxial line,
thereby bridging inner and outer conductors [88]. For additional
measurements between 40 Hz–110 MHz, the autobalance bridge
Agilent 4294A was used. Its measurement range overlaps with that
of the other devices. In all the measurements described above, the
applied ac voltage was 0.1 V. The Agilent “Dielectric Probe Kit” 85070E
using the so called “performance probe” with an E8363B PNA Series
Network Analyzer covered the high frequency range from 100 MHz to
40 GHz. It uses a so-called open-end coaxial reflection technique,
where the end of a coaxial line is immersed into the sample liquid. The
applied ac voltage was 32 mV. Calibration was performed with the
standards Open, Short, andWater. As any contributions from parasitic
elements are excluded by this technique, the obtained absolute values
were used to correct the results obtained with the low-frequency
techniques, discussed above, for contributions from stray capacitance.

Blood samples from a healthy person were taken at the hospital
“Klinikum Augsburg”. All blood samples were taken from the same
person and various vital parameters of the blood samples were
checked. All samples were taken before a meal, at the same time of
the day. We did not find any significant difference in the measurement
results obtained on samples taken at different days. To avoid clotting,
the samples were prepared with EDTA (ethylenediaminetetraacetic
acid). The influence of different coagulation inhibitors on the dielectric
properties were tested and found to be insignificant. Besides the whole
blood, which wasmeasured as taken from the body, four other samples
with different hematocrit values (Hct) were prepared. Hct is given by
the ratio of volume fraction of the corpuscles (erythrocytes, leukocytes,
and thrombocytes) of the blood and the total volume. The whole blood
used in the present work was found to have Hct=0.39. After
centrifugation of the whole blood, the corpuscular parts could be
separated from the plasma by pipetting. By remixing with the plasma
obtained in this way, four additional samples were prepared: plasma
(Hctb5) and blood with Hct=0.23, 0.57, and 0.86. The exact Hct values
were determined by taking hemograms with a Beckman–Coulter
Hematology Analyzer at the hospital. For each measurement run with
the different devices fresh blood samples were used.

One may suspect that sedimentation of RBCs and other cells during
the temperature-dependent measurement runs could influence the
measurements. Covering the whole investigated temperature range
with the different measurement devices did take about 2–3 h only. In
the high-frequency measurements with the “open-end” coaxial
technique, where relatively large amounts of material (about 25 ml)
held in transparent test tubes were used, visible inspection revealed no
indications of sedimentation even aftermuch longer time. Nevertheless
the sample material was thoroughly stirred before each frequency
sweep at the different temperatures. The results didwell match those at
lower frequencies, where small sample amounts of about 0.01 ml
contained in a platinum capacitor were used. With this capacitor, up to
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three separate temperature-dependent measurement runs were
performed, using different devices and partly using different thermal
histories. All the results did match very well. Finally, themeasurements
usually were done by first cooling the sample from room temperature
and subsequently heating it up to the highest temperatures. The results
from the cooling and heating runs, which were done at differently aged
samples, did always agree within experimental resolution.

The integrity of the erythrocytes was retained during most of the
dielectric measurements, which was checked by a comparison of the
room temperature results before and after cooling or heating.
However, as expected this was no longer the case when the samples
were subjected to the highest temperatures investigated, extending
up to 330 K. Therefore these measurements were performed at the
end of each temperature-dependent measurement run.

If not otherwise indicated, the experimental data points shown in
the plots of the present work have errors that are not exceeding the
size of the symbols.
4. Results and discussion

4.1. Broadband spectra

Fig. 1 shows the broadband spectra of the different samples at
body temperature (≈310 K), extending from 1 Hz to 40 GHz. The
dielectric constant of the blood plasma (Fig. 1(a), circles) reveals a
(a)

(b)

(c)

Fig. 1. (a) Dielectric constant, (b) dielectric loss, and (c) real part of the conductivity of
whole blood, blood plasma (Hct=0.39), and blood samples with different hematocrit
values as function of frequency, measured at body temperature (310 K). The lines are fits
assuming a distributed RC equivalent circuit to account for the electrodes and, for samples
withHct≥0.23, two Cole–Cole functions for the β- and γ-relaxations. For the plasma data,
a single Cole–Cole function was used instead.
low-frequency plateau between 1 and 100 Hz, followed by a steplike
decrease towards higher frequencies that passes into another plateau
between about 1 MHz and 10 GHz. The behavior below about 1 MHz
can be ascribed to electrode polarization (see Section 4.2 for a detailed
discussion). At frequencies beyond about 1 GHz a further decrease of
ε′(ν) indicates the beginning γ-dispersion arising from the reorienta-
tional motion of the water molecules (see Section 4.4). ε″(ν) shows a
plateau at low frequencies, followed by a strong decrease above about
300 Hz and the γ-relaxation peak at ca. 20 GHz. Accordingly,
the conductivity σ′(ν) exhibits a strong increase at low frequencies,
followed by a plateau between 1 kHz and 1 GHz. At νN1 GHz another
strong increase at the end of the measured spectrum shows up, again
corresponding to the γ-relaxation.

Just as the plasma, the dielectric spectra of the other samples also
show a γ-relaxation and an electrode-polarization contribution, the
latter leading to a strong increase of ε′(ν) below about 10–100 kHz
and decrease of σ′(ν) below about 1–10 kHz. However, between
these two features, a further process shows up, the well-known
β-dispersion, located at about 1–100 MHz in ε′(ν). It is caused by the
Maxwell–Wagner relaxation arising from the heterogeneity of the
solute/cell system (see Section 2.2). It is evidenced by a steplike
decrease in the dielectric constant at about 1–100 MHz, an s-shaped
bend in the decrease of the dielectric loss around 1 MHz, and a
steplike increase in the conductivity around 1 MHz. Comparing
the different samples, it becomes evident that the absolute values of
ε′(ν), ε″(ν), and σ′(ν) decrease with increasing hematocrit value
over almost the whole frequency range. A detailed analysis of the
β-dispersion will be provided in Section 4.3. The δ-dispersion,
which is supposed to be located in the frequency range between
the β- and γ-relaxation cannot be detected on this scale and will be
treated in Section 4.5 below.

In the present work the complete broadband spectra are fitted by
combining several relaxational dispersions and the electrode-polarization
contribution. In addition, the dc conductivity has to be included in the
fitting routine, since the bloodplasma contains free ions that contribute to
the conductivity. The lines shown in Fig. 1 are fits with the sum of two
relaxational dispersions described by Eq. (2) (with β=1) and the dc-
conductivity,which are assumed tobe connected in series to the electrode
impedance given by Eq. (4) (with β=1). The fits were simultaneously
performed for real and imaginary parts of the permittivity. A qualitative
inspection of Fig. 1 reveals that an excellent match of the experimental
spectra could be achieved in this way, which also is the case for the other
temperatures investigated. In the following sections, we discuss the
different contributions to the spectra and the resulting relevant fit
parameters in detail. To serve for SAR calculations and medical purposes,
the fit curves for all temperatures and hematocrit values investigated in
the present work are provided in electronic form.

4.2. Electrode polarization and α-dispersion

To examine the contributions from electrode polarization to the
spectra inmore detail, as an example in Fig. 2 the spectra ofwhole blood
at 310 K are shown in the low frequency range, 1 Hz–200 kHz. As
demonstratedby thedash–dottedmagenta line, theobserved relaxation
like feature cannot be satisfactorily fitted by assuming a simple RC
equivalent circuit (Eq. (3)) in series to the bulk sample, which leads to a
symmetric loss peak just like an intrinsic Debye relaxation (see
Section 2.3). The deviations are strongest in ε″ below the peak
frequency, where the measured ε″(ν) obviously varies far too weakly
with frequency to be describable by the strongly increasing fit curve.
Using a Debye relaxation function (Eq. (1)) with an additional
conductivity contribution σ′dc, which leads to a minimum in ε″(ν)
below the peak frequency, also cannot account for the experimental
data (dotted blue line). Replacing the Debye by a Cole–Cole function
(Eq. (2)withβ=1; green line) only leads to amarginal improvement of
the fits. Instead, a distributed RC equivalent circuit as described by



(a)

(b)

(c)

Fig. 2. ε′(ν) (a), ε″(ν) (b), and σ′(ν) (c) of whole blood (Hct=0.39) at 310 K and low
frequencies (circles). The lines arefits usingdifferent functions: RCequivalent circuit (Eq. (3);
dash dotted magenta line), distributed RC equivalent circuit (Eq. (4); red line), Debye
functionwith additional dc-conductivity contribution (dotted blue line), Cole–Cole function,
also with dc contribution (green line), and constant phase element (black dashed line).

(a)

(b)

(c)

Fig. 3. ε′(ν) (a), ε″(ν) (b), and σ′(ν) (c)of whole blood (Hct=0.39) in the low-frequency
regime dominated by electrode effects shown for selected temperatures (symbols). The
lines represent fit curves as in Fig. 1 using a distributed RC equivalent circuit for the
description of the electrode polarization.
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Eq. (4)with β=1but α≠0 (Cole–Cole case) was found to provide very
accurate fits of the measured spectra (solid red line). The same can be
said for the other blood samples with different hematocrit values
investigated in the present work. A constant phase element in series
with the bulk also very well accounts for the experimental data (black
dashed line). However, in our further analysis we decided to use the
distributed RC circuit instead because its parameters seem to havemore
physical signification than those of the constant phase element.

Good fits with this approach can also be achieved for the results
obtained at different temperatures. As an example, Fig. 3 shows the
dielectric quantities of whole blood in the frequency range, dominated
by electrode polarization, for selected temperatures. The lines represent
thefits of the complete broadband spectra (cf. Fig. 1)whereadistributed
RC circuit, Eq. (4), was used for the description of the low-frequency
data. In all cases the agreement of fits and experimental curves are
excellent. The onset of the electrode effects, i.e. the increase of ε′ and the
decrease of σ′ when lowering the frequency, is found to shift to lower
frequencies with decreasing temperature. This can be ascribed to the
reducedmobility of the ionic charge carriers at low temperatures,which
thus arrive at the electrodes for smaller frequencies only. As revealed by
Fig. 1, for increasing hematocrit value the onset of the electrode effects
shifts to lower frequencies, too. This is in accord with the well-known
increase of the viscosity of blood with increasing hematocrit value,
corresponding to a reduction of ion mobility.

The fits reveal a width parameter α close to 0.15 and nearly
independent of temperature and hematocrit value (not shown),
except forHct=0.86, where α≈0.20 is found, slightly increasingwith
temperature. α characterizes the distribution of relaxation times of
the RC equivalent circuit that describes the electrode polarization (see
Section 2.3). The deviations from Debye behavior may be explained,
e.g., by the surface roughness of the electrodes [89–91]. The fits reveal
electrode capacitances CRC of the order of 10 μF. CRC is found to be only
weakly temperature dependent and it shows a tendency to decrease
with increasing hematocrit value. This can be ascribed to the
mentioned reduction of the ionic mobility leading to a less effective
formation of the insulating electrode layers. The fits do not reveal
reliable information on the electrode resistance as no clear low-
frequency plateau in σ′(ν) is seen (cf. Figs. 1 and 3).

From the presented results, it is clear that the electrode
polarization is the dominant effect in the low frequency spectrum of
blood. The equivalent-circuit description in terms of a distributed RC
circuit provides nearly perfect fits of the experimental data. The
typical deviations between fit and measured data are around 10% or
less, which is negligible compared to the many decades the dielectric
quantities vary with frequency. Thus the presence of an additional
contribution from a possible α-relaxation seems unlikely but due to
the mentioned deviations, a weak α-relaxation cannot be fully
excluded. However, it should be noted that in earlier investigations
also no indications for an α-relaxation in blood were found [28].

4.3. β-dispersion

4.3.1. Phenomenological evaluation
Fig. 4 shows the spectra of whole blood in the frequency range of

the β-dispersion (10 kHz to 200 MHz) at different temperatures.
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Except for the plasma, not containing any RBCs that would cause a
β-process, all samples show a similar relaxational behavior and
temperature dependence in this frequency regime (see Fig. 1). Just as
for intrinsic relaxations, the permittivity curves in the β-dispersion
regime shift to higher frequencies with increasing temperature. The
lines in Fig. 4 again represent the fits of the complete broadband
spectra (cf. Fig. 1) using a Cole–Cole function (Eq. (2)withβ=1) for the
β-relaxation. As discussed in detail in Section 2.2, the β-relaxation is
generated by the heterogeneity of the sample material, which is
composed of plasma and RBCs. ε′(ν) exhibits the typical steplike
decrease with increasing frequency (Fig. 4(a)). Its additional increase
towards the lowest frequencies observed in Fig. 4(a) corresponds to the
onset of the electrode-polarization effects (cf. Fig. 3), well taken into
account in the fits by the distributed RC equivalent circuit (see
Section 4.2). In ε″(ν) a loss peak is expected but only its high-frequency
flank can be seen (Fig. 4(b)). Its low-frequency part is superimposed
by the strong ionic dc conductivity, which leads to a contribution
ε″dc=σdc/(ε0ω). Thus, instead of a loss peak, only a slight shoulder at
about 3 MHz is revealed.

The dc conductivity also leads to the low-frequency plateau in σ′(ν)
(Fig. 4(c)) while the shoulders observed around 3 MHz arise from the
relaxation. Via the relationσ′=ε0ε″ω, the nearly Debye-like behavior of
theβ-relaxation (implying ε″(ν)∼ν−1 on the high frequency side of the
peaks) leads to the nearly frequency independent σ′(ν) at νN10MHz.
The low- and high-frequency plateaus of σ′ are labeled as σdcβ and σ∞β,
respectively. The steplike increase of σ′(ν) from σdcβ to σ∞β can be
qualitatively understood assuming a shorting of the cell membrane
capacitances at high frequencies. Thus, at high frequencies the RBCs no
longer obstruct the current path and an enhanced conductivity is
(a)

(b)

(c)

Fig. 4. ε′(ν) (a), ε″(ν) (b), and σ′(ν) (c) of whole blood (Hct=0.39) in the β-dispersion
region for selected temperatures. The lines represent fit curves as in Fig. 1 using the
Cole–Cole function for the description of the β-relaxation.
detected. Therefore σ∞β can be regarded as good approximation of the
intrinsic conductivity of the plasma, denoted as σa in Section 2.5 (in fact
it is a mixture of plasma and cytoplasma conductivity, which we here
assume to be of not too differentmagnitude). This is nicely corroborated
by the approximate agreement of this plateau value with the
conductivity of the pure plasma as seen in Fig. 1(c) for all Hct values
(the small deviations for higher Hct values are due to the larger volume
fraction of cytoplasma having somewhat lower conductivity; see
Section 4.3.2). The absolute values of both conductivity plateaus
revealed in Fig. 4(c) increase with increasing temperature, mirroring
the thermally activated ionic charge transport in the plasma.

As mentioned above, the best fitting results of the β-relaxation
were achieved by using a Cole–Cole function. Only for the highest
hematocrit values, significant deviations of fits and experimental data
were observed, which will be treated in Section 4.5. The temperature
dependence of the width parameter αβ, the relaxation strength Δεβ,
and the relaxation time τβ obtained from the fits are shown in Fig. 5.
The present fitting of the complete broadband spectra, including the
contributions from electrode polarization and the γ-relaxation,
minimizes the influence of any additional processes on the obtained
fit parameters.

The width parameter α (Fig. 5(a)), which for intrinsic relaxations
usually is assumed to arise from a distribution of relaxation times
[67,68], is almost temperature independent. As α assumes rather
small values between 0.07 and 0.11, the β process shows nearly
Debye-like behavior. The width parameter increases with increasing
RBC content, i.e., the deviations from the Debye case become stronger.
According to the Pauly–Schwan model (see Section 2.5, Eq. (10)) the
relaxation time τβ depends on the conductivity outside (σa) and
inside of the cell (σi) and on the membrane capacitance (Cm). It is
unlikely that the cell parameters σi or Cm should be influenced by the
hematocrit value and thus a distribution of the outer plasma
conductivity seems the most likely cause of the non-Debye behavior.
But also an alternative explanation seems possible: α≠0 implies a
shallower high-frequency flank of the β-peak. This flank is essentially
determined by the intrinsic plasma conductivity and corresponds to
the high-frequency plateaus seen in Fig. 4(c). Thus α≠0 implies an
increase of σ′(ν) with frequency, which is typical for hopping
conductivity as commonly found for ionic charge transport [92–95].
Finally, it has to be mentioned that additional relaxations arising from
the other cell types in blood could also influence the observed β-
relaxation. As RBCs are by far the dominating cell species (e.g., volume
fraction about 45% vs. ∼1% of white blood cells), these contributions
can be expected to be small. Nevertheless, it cannot be excluded that
they may contribute to the observed deviations from Debye behavior.

As revealed by Fig. 5(b), the relaxation strength of the β-relaxation
is nearly temperature independent. Thus, according to Eq. (8), the
membrane capacity also can be assumed to be temperature
independent. The strong drop of Δεβ at TN320 K, observed for all
samples except for Hct=0.86, is most likely due to the hemolysis of
the RBCs at high temperatures. This assumption is supported by the
fact that no such deviations can be found for the γ-relaxation (see
Section 4.4), which is independent of the RBCs. However, it is not
clear why the sample with the highest RBC content (black triangles in
Fig. 5(b)) remains unaffected. Possibly, cell–cell interactions prevent
hemolysis at high Hct.

Fig. 5(b) also reveals a decrease of the relaxation strength with
increasing content of erythrocytes. This is a rather surprising result
and cannot be explained within the proposed theories. Especially, it
contradicts the increase of Δεβ with p predicted by Eq. (8). In
literature, suspensions of erythrocytes and other cells using non-
plasma solvents, like phosphate buffered saline, quite generally show
a continuous increase of Δεβ with Hct [50,57,96–98]. However, blood
samples (i.e. with the suspending medium being plasma) can show
more complex behavior, especially for higherHct values [56,99] and as
shown in ref. [54], substitution of plasma by some other solute can
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strongly influence Δεβ. In the framework of a simple equivalent-
circuit picture, Δεβ is determined by a complex superposition of the
membrane capacitances of all RBCs. Increasing the number of RBCs
could lead to an increase or decrease of Δεβ depending on whether
parallel or series connections of the cell capacitances (relative to the
field direction) are prevailing. The latter seems to be the case in our
blood samples. The reason is unclear but cell aggregation as, e.g.,
rouleaux formation may play a role here [54,99–101].

According to Eq. (10), the β-relaxation time should depend on σi,
σa, and Cm. It was shown above that the membrane capacitance is
nearly temperature independent. Thus, the conductivities should
dominate the temperature dependence of τβ. Indeed the Arrhenius
representation of Fig. 5(c) reveals that τβ(T) is in accord with the
expected thermally activated behavior, typical for ionic conductivity.
The hindering barriers Eτ, calculated from the slopes in Fig. 5(c) (cf.
Eq. (5)), seem to slightly increase with growing Hct and barriers
varying between 0.11 and 0.15 eVwere obtained. However, due to the
rather small temperature region that could be covered in these
biological samples (compared, e.g., to supercooled liquids [39,40]),
the significance of these values should not be overemphasized. In
addition, Fig. 5(c) reveals a decrease of the relaxation times with
increasing hematocrit value. In principle, such a behavior seems to be
consistent with Eq. (10) but the observed variation by about a factor
(a)

(b)

(c)

Fig. 5. Temperature dependence of width parameter (a), relaxation strength (b), and
relaxation time (c) as obtained from fits assuming a Cole–Cole-function for the
description of the β-relaxation (cf Fig. 4). The lines in the Arrhenius plot of τβ (c) are
linear fits corresponding to thermally activated behavior, Eq. (5).
of three is stronger than expected. However, one should be aware that
the relaxation time is directly proportional to Cm (Eq. (10)) while Cm
itself is proportional to Δεβ (Eq. (8)). Thus it is clear that the observed
rather strong Hct-dependent variation of τβ is directly connected to
that of Δεβ revealed by Fig. 5(b).

To compare the results on the β-relaxation parameters presented
above with earlier publications only partly is possible, because (to the
best knowledge of the authors) no such systematic (temperature and
hematocrit dependent) and broadband research on human blood has
been done before. Moreover, the available literature values deviate
quite strongly from each other. For various erythrocyte suspensions,
the reported values of the relaxation time τβ are, for example, 254 ns
(Hct=0.07, room temperature) [50], 29 ns (Hct=0.30, T=298 K)
[102], or 230 ns (Hct=0.47, T=310 K) [52,103]. In blood the fol-
lowing values were found: τβ=133 ns (sheep blood, T=310 K) [46],
τβ=89−65 ns (human blood,T=288−308 K, Hct=0.43) [25], and
τβ=53.1 ns (bovine blood, room temperature, Hct=0.50) [13]. The
values in the present work vary between 35.9 ns (Hct=0.86,
T=330 K) and 274.1 ns (Hct=0.23, T=280 K). The literature results
for the relaxation strength also show rather strong variation. In
ref. [52], literature values between 1100 and 5000 were reported.
Fricke found, dependent on Hct, εs≈Δε=900−4000 for dog, rabbit,
and sheep blood [96]. For human blood, Pfützner published values
between approximately 2000 and 6000 (Hct=0.10−0.90) [99]. In
the present work we have obtained Δε≈3300−13800 (for
Hct=0.86, T=330 K and Hct=0.23, T=320 K, respectively). Even
less data are available for the width parameter αβ, because often other
fitting functions were used. But mostly they are around 0.1
[46,52,104], similar to the values in the present work.

4.3.2. Application of cell models
As mentioned in Section 2.5, by using appropriate models it should

be possible to determine intrinsic cell parameters as the membrane
capacitance or the conductivity of the cytoplasma from the parameters
of the β-relaxation. Using the fitting parameter Δεβ and Eq. (8), the
membrane capacitance Cm can be calculated. As discussed in the
previous section, the experimentally determined dielectric strength
decreases with increasing Hct, in contrast to the increase predicted
by Eq. (8). The use of Eq. (8) therefore would imply a strongly Hct-
dependentmembrane capacitance (see Table 1 for the results at 310 K).
This can hardly be interpreted in a physical way. Literature values vary
between 0.17 μF/cm2 [102] and 3 μF/cm2 [54]. However, most authors
assume a membrane capacity of about 1 μF/cm2 [52,96,97,105,106],
whereas some report Hct-dependent membrane capacities [51,56].
Possible reasons for the unexpected behavior ofΔεβ(Hct) and thus of Cm
(Hct) were discussed in the previous section. It seems that Eq. (8) is not
able to account for the observations in “real” blood samples, in contrast
to suspensions of erythrocytes in common solvents.

Using Eq. (9) should allow for the calculation of the conductivity of
the suspending medium σa from the dc conductivity σdcβ of the blood
samples. σa also can be directly determined from the dc conductivity
of the plasma, measured in the present work (1.7×10−2Ω−1cm−1 at
310 K). The calculated values are provided in Table 1. While being
nearly Hct-independent as expected, they differ from the directly
Table 1
Membrane capacitance Cm, plasma conductivity σa, conductivity of the cell interior σi,
and dielectric constant of the cell interior εi at 310 K as determined from Eqs. (8), (9),
(12), and (13) respectively.

Hct Cm
μF
cm2

� �
σa

10−2

Ωcm

 !
σi

10−2

Ωcm

 !
εi

0.23 11 (±3) 0.79 (±0.15) 0.75 (±0.08) 36.9 (±3.0)
0.39 4.9 (±1.4) 0.63 (±0.15) 0.50 (±0.08) 41.5 (±2.5)
0.57 3.5 (±1.1) 0.74 (±0.15) 0.78 (±0.09) 42.0 (±2.5)
0.86 1.2 (±0.4) 0.78 (±0.15) 0.83 (±0.11) 44.7 (±2.0)
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measured value by a factor of about two. Again cell aggregation
causing a lowering of the experimentally observed σdcβ may explain
this finding.

Via Eq. (11), the conductivity of the cell interior σi can be calculated
from σa, Cm, and the measured β-relaxation times. However, as Cm
determined from Eq. (8) shows an unphysical Hct dependence
(Table 1), also an unreasonable Hct dependence of σa would result.
An alternative determination of σi is provided by Eq. (12). Using the
experimentally determined σa and σ∞β at 310 K we arrive at the values
for σi listed in Table 1. Literature results are distributed around
0.6×10−2(±0.1)Ω−1cm−1[41,42,54,56,57,98,105–107]. Deviating re-
sults were reported by Cook [24,25] (ca. 1.0×10−2Ω−1cm−1) and
Asami [108] (ca. 0.32×10−2Ω−1cm−1). Our values for σi are by about
a factor 2–3 smaller than the measured conductivity of the plasma,
σa≈1.7×10−2Ω−1cm−1. It seems reasonable that the conductivity of
the cytoplasma should be lowered by the presence of the large
hemoglobin molecules and their bound water shells within the RBCs
(about 37% volume fraction [41]), if compared to the conductivity of the
outer plasma (see following discussion of Fig. 6 for a quantitative
treatment). Indeed such behavior was found previously [42,54,56]. The
reported ratios between about 1.5 and 2.7 are consistent with our
findings. Obviously, Eq. (12) is able to provide reasonable estimates for
σi. It is based on the determination of σ∞β, which is read off at high
frequencies, where the cell membranes are shorted and thus cell
aggregation has no effect on the results.

In Fig. 6(a) the temperature dependence of σi is shown in the
Arrhenius type of presentation (log(σiT) vs 1000/T) commonly used
for ionic conductivity (cf. Eq. (6)). For comparison, also the dc
conductivity determined from fits of the spectra of pure blood plasma
(cf. Fig. 1) is included. In the determination of σi(T) via Eq. (12), for σa

the plasma dc conductivity was used and σ∞β was calculated from the
fit parameters of the β-relaxation shown in Fig. 5. As the β-relaxation
shows slight deviations from Debye behavior, σ′(ν) exhibits a
(a)

(b)

Fig. 6. Temperature dependent conductivity (Arrhenius plot) (a) and dielectric
constant (b) of the cell interior calculated from Eqs. (12) and (13), respectively. For
comparison, in (a) also data for pure plasma are provided. The solid line in (a) indicates
approximately linear behavior implying thermally activated charge transport (Eq. (6)).
The dashed line shows an approximate description of the blood data (except for
Hct=0.39) using the same energy barrier as for the plasma.
slight increase in the region of its high-frequency plateau (see, e.g.,
Fig. 4(c)). As an estimate of σ∞β, we used the value of σ′(ν) at a
frequency 1.5 decades above the peak frequency. Except for whole
blood, the temperature dependence of σi is nearly independent of
Hct and seems to follow thermally activated behavior (dashed line in
Fig. 6(a)). The deviations at the two highest temperatures are directly
related to similar problems in the β-relaxation parameters (Fig. 5). As
discussed in Section 4.3, thismay arise from anonset of hemolysis of the
RBCs. Interestingly, the energy barrier of 0.17 eV, deduced from the
slope of the linear fit curve of the plasma data (solid line) is in good
accord with the results on the blood samples (dashed line). Neverthe-
less, the absolute values of the conductivity of the cytoplasma are about
a factor of 2–3 lower than those of the plasma. As mentioned in the
previous paragraph, this can be explained by the presence of the
hemoglobin molecules within the cell. For a quantitative estimate one
can useMaxwell'smixture equation for the effective conductivityσeff of
a suspension of particles with volume concentration p[10]:

σeff−σs

σeff + 2σs
= p

σp−σs

σp + 2σs
: ð16Þ

Here σs and σp are the conductivities of the solute and the particle,
respectively. If we regard the hemoglobin molecules as insulating
particles (i.e., σp=0) suspended in plasma with the same conductiv-
ity as the extracellular plasma, we arrive at the following ratio of
solute conductivity (σs=σa) and effective conductivity (σeff=σi)
[41]:

σa

σi
=

1 + p = 2
1−p

: ð17Þ

Using p=0.37 [41], a ratio of about two is obtained, which is in
quite reasonable agreement with the findings of Fig. 6(a). The energy
barrier of 0.17 eV for charge transport within the intra- and
extracellular plasma is of the same order of magnitude as the one
deduced from τβ(T) (0.11–0.15 eV, see previous section). This seems
reasonable as the temperature dependence of τβ should be mainly
governed by the conductivity of inner and outer plasma (Eq. (10)). In
any case one should bear in mind that the absolute values of the
energy barriers have rather high uncertainty due to the restricted
temperature range.

The dielectric constant of the cell interior εi was calculated using
Eq. (13). The results for 310 K are listed in Table 1 and the tem-
perature dependence is shown in Fig. 6(b). One should be aware
that εi is the dielectric constant at frequencies below the onset of the
γ-relaxation. As expected, the obtained values are smaller than the
dielectric constant of the suspending medium (εa≈73–67 for T=
290–310 K, respectively), deduced from the fits of the spectra of pure
plasma (see Fig. 1 for 310 K). This difference is reasonable because the
main contribution to the ε′ of the plasma arises from the highly
dipolar water molecules (εs of water ≈74 at 310 K [109]) and the
additional constituents of the cytoplasma (mainly hemoglobin)
should lower its permittivity. In literature, εi values ranging around
40–70 were reported [41,106–108]. The calculation of εi by Eq. (13)
should provide the same results for each hematocrit value. However,
as revealed by Table 1 and Fig. 6(b), the calculated εi increases by
about 20% with increasing Hct, pointing out the limits of the model.
Similar behavior was also reported in ref. [107]. The decrease of εi
with increasing temperature revealed by Fig. 6(b) is consistent with
Curie behavior (Eq. (7)) expected for the dielectric strength (and thus
approximately also for the static dielectric constant) of dipolar
materials. Here one should be aware that εi represents the static
dielectric constant of a γ-like relaxation of the cell interior that will
take place at higher frequencies and in fact this relaxation contributes
to the actually observed γ-relaxation of blood (see Section 4.4). The
uncertainty of the data in Fig. 6(b) is too large to allow for a
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Fig. 7. ε′(ν) (a), ε″(ν) (b), and σ′(ν) (c) of whole blood (Hct=0.39) in the γ-dispersion
region for selected temperatures. The lines represent fit curves as in Fig. 1 using the
Cole–Cole function for the description of the γ-relaxation.
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quantitative evaluation in terms of Eq. (7). Overall, Eq. (13) seems to
lead to reasonable values of the dielectric constant of the cytoplasma.
It is based on the determination of the plasma dielectric constant
(experimentally determined) and ε∞β, which is not influenced by
possible cell aggregation effects.

An alternative determination of the dielectric properties of the RBCs
is provided by theHanai–Bruggemannmodel, Eqs. (14) and (15), which
was especially proposed for highly concentrated suspensions. From
Eq. (15) the cell conductivity was calculated, leading, however, to
negative values. Using Eq. (14), the dielectric constant εp of the cell is
found to vary between 34 (Hct=0.57) and 42 (Hct=0.39) at room
temperature. Those values are slightly smaller than the ones calculated
from the Pauly–Schwan theory. This is a reasonable result since the
Hanai–Bruggemannmodel does not account for the shelled structure of
the cells and thus the obtained values represent the average of cell
membrane and interior. The dielectric constant of themembrane can be
expected to bemuch lower than that of the cytoplasma(in contrast to its
capacitance, which is high due to its small thickness), which leads to the
reduced values of the total dielectric constant.

4.4. γ-dispersion

The dielectric spectra of bulk water exhibit a strong relaxation
feature near 18 GHz (at room temperature) [110], which is also
observed in electrolytic solutions [111]. It is commonly ascribed to
the reorientational dynamics of the dipolar water molecules (but
also alternative scenarios are discussed; see, e.g., ref. [112]) and denoted
as α-relaxation within the nomenclature of dipolar liquids and glass
formers. The same relaxational process also arises from the free water
molecules in blood samples. Fig. 7 shows real and imaginary part of the
permittivity (a, b) and the real part of the conductivity (c) of whole
blood in the frequency range 1 to 40 GHz at different temperatures. The
lines represent fits of the broadband spectra as shown in Fig. 1, using a
Cole–Cole function for the γ-relaxation. In ε′(ν) (Fig. 7(a)), the onset of
the typical relaxation steps is seenbut their high frequencyplateaus, ε∞γ,
are located beyond the investigated frequency range. Thus, exact values
for ε∞γ could not be determined and in the fitting procedure a lower
limit of 2.5 was used leading to values between 2.5 and 6. The low-
frequency plateau εsγ of the γ-dispersion decreases with increasing
temperature. The relaxation steps and loss peaks (Fig. 7(b)) show a
strong temperature-dependent frequency shift due to the slowingdown
of the molecular dynamics with decreasing temperature. We find
the Cole–Cole formula (Eq. (2)with β=1) to provide the best fits of the
γ-relaxation. Fig. 7(c) shows the conductivity spectra with the
corresponding rise and the onset of the high frequency plateau. The
low-frequency plateau of σ′(ν) corresponds to the combined con-
ductivity of plasma and cytoplasma as discussed in Section 4.3.2.
The γ-dispersion shows similar behavior for the other investigated
samples.

The fitting parameters of the γ-relaxation, αγ, Δεγ, and τγ, are
provided in Fig. 8. The width parameter (a) shows a tendency to
increase with increasing Hct. This seems reasonable as a higher number
of RBCs should lead to stronger disorder in the system and therefore the
distribution of relaxation times should broaden. The observed decline of
αγwith increasing temperature, corresponding to an approach of Debye
behavior, is a commonphenomenon in dipolar liquids [39,113]. It can be
explained by the growing thermal fluctuations of the environment of
the water dipoles. At very high temperatures, each dipole “sees” the
time average of the quickly fluctuating environment, which is the same
for every dipole, leading to Debye behavior [39].

The hematocrit dependence of the relaxation strength (Fig. 8(b))
shows the expected tendency: increasing Hct values cause a decrease
of the volume fraction of plasma and thus of water in the sample,
causing the reduction of the γ-relaxation strength. The temperature
dependence of Δεγ can be well parameterized by a Curie-law, Eq. (7),
(solid lines) with some deviations for Hct=0.23 only. The obtained
Curie constant, C, increases smoothly from 13,400 to 19,800 with
decreasing Hct. The dashed line in Fig. 8(b) corresponds to Δε(T) of
pure water, calculated from the I.U.P.A.C. (International Union of Pure
and Applied Chemistry) standard values for the static permittivity εs
of bulk water [109] (see also [114]) via Δε=εs−ε∞ assuming ε∞=4
[115,116]. The relaxation strength of water matches the general trend
revealed by the other curves in Fig. 8(b). However, obviously it shows
a somewhat stronger temperature dependence. This may indicate
weaker interactions between the water molecules in blood than in
pure water, which can be rationalized by the presence of the other
constituents of blood (e.g., proteins or salt ions).

Fig. 8(c) shows the temperature dependence of the relaxation
times τγ in an Arrhenius plot. The observed linear increase is in accord
with thermally activated behavior, Eq. (5). As an example, a linear fit
of the data atHct=0.39 is shown (solid line). From its slope an energy
barrier of 0.19 eV is obtained. There seems to be a slight increase of
energy barriers with growing Hct value (from 0.18 to 0.20 eV).
However, this variation is too small to be considered significant,
especially when taking into account the rather small temperature
range that could be investigated in the present experiments due to the
restricted robustness of blood to stronger temperature variations. The
present results agree reasonably with those reported by Cook [24]
who found values for τγ of whole blood varying between 11.9 and
7.0 ps at three temperatures between 298 and 308 K. Gabriel et al.
[46] reported 8.4 ps at 310 K, about 30% higher than our result of
6.5 ps. The dashed line in Fig. 8(c) represents τ(T) of pure water as
measured by Kaatze [110]. Obviously the γ-relaxations in the
investigated blood samples exhibit nearly identical dynamics as the
main relaxation of pure water. Water shows some small deviations
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Fig. 8. Temperature dependence of width parameter (a), relaxation strength (b), and
relaxation time (c) as obtained from fits assuming a Cole–Cole function for the
description of the γ-relaxation (cf Fig. 7). The dashed line in (b) shows literature data
for pure water (using the I.U.P.A.C. standard data for εs(T)) [109]. The solid lines in
(b) are fits with a Curie-law, Eq. (7). The line in the Arrhenius plot of τγ (c) is a linear fit
of the curve for Hct=0.39 (whole blood) corresponding to thermally activated
behavior, Eq. (5). The dashed line shows the curve for pure water [110].

(a)

(b)

Fig. 9. (a) Comparison of ε′(ν) of the blood samples with the lowest (Hct=0.23)
and highest hematocrit value (Hct=0.86) in the frequency range of the β- and δ-
dispersions. The lines represent fit curves as in Figs. 1 and 4 using the Cole–Cole
function for the description of the β-relaxation. (b) ε′(ν) for Hct=0.86 (triangles: same
data as in (a), crosses: measurement with a different experimental setup). The solid line
in (b) shows an alternative fit with two Cole–Cole functions for the β-relaxation. The
two separate relaxation steps are indicated by the dashed lines. The inset shows a
magnified view of the high-frequency region.
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from Arrhenius behavior, which seem to be absent in blood but these
differences are of limited significance. However, one may speculate
that the non-Arrhenius behavior of water arises from increasing
cooperativity of the molecular motions at low temperatures as often
invoked to explain corresponding findings in glass forming liquids
[117,118]. In blood, its other constituents can be expected to lead to a
reduction of the direct interactions between the water molecules and
thus to less cooperativity. In addition, there are speculations of a first-
order phase transition in supercooled water [119], which may lead to
critical power-law behavior even in the normal liquid state, thus also
explaining the deviation from Arrhenius behavior in Fig. 8(c). Both
scenarios are consistent with the different temperature dependence
of Δε(T) of water and blood discussed in the previous paragraph.

4.5. Further dispersions

In Section 4.3 it was shown that fits using the Cole–Cole function
provide a reasonable description of the β-relaxation region. However,
there are some minor deviations of fits and experimental data
especially for the higher hematocrit values. This is demonstrated in
Fig. 9(a) where dielectric-constant data for the blood samples with
the highest and lowest hematocrit values are shown. In contrast to the
23% sample, the fit of the spectrum of the highly concentrated sample
clearly is of inferior quality. Similar deviations were previously also
observed in Cole–Cole fits of data on disk-shaped rabbit-erythrocyte
suspensions [57]. A close inspection of the spectrum at Hct=0.86
(Fig. 9(b)) seems to indicate that it may be composed of two separate
relaxation steps. However, one could suspect an experimental artifact
because in the β-dispersion region the spectrum is composed of
results from two different experimental methods with the transition
close to 10 MHz (see Section 3). To exclude this, in Fig. 9(b) additional
data extending from 100 kHz to 50 MHz obtained with a different
apparatus (autobalance bridge Agilent 4294A) are shown, which
exactly reproduce the two other data sets. Thus, a fit using the sum of
two separate relaxation contributions was performed (solid line in
Fig. 9(b)). It provides an excellent description of the spectrum
revealing relaxation times of 16 ns and 146 ns. A very similar fit using
two Cole–Cole functions was shown by Asami and Yamaguchi [74] to
provide a good description of data on human erythrocyte suspensions.

In blood there are various possibilities for additional relaxational
processes, in addition to those considered for the explanation of the
α-, β-, and γ-relaxation: (i) the reorientation of protein-bound water
molecules, (ii) the hemoglobin β-relaxation (i.e., the tumbling motion
of the protein molecules), (iii) the motion of polar protein subgroups,
(iv) the Maxwell–Wagner relaxation of the cell interior, or (v) the
additional Maxwell–Wagner relaxations due to the non-spherical
cell shape, to name just the most likely ones. Most of them can be
simply excluded based on the very large amplitude of Δεs≈1000 of
the additional relaxation suggested by the fit shown in Fig. 9(b):
(i) Bound water cannot have a larger Δε than free water. (ii) The
hemoglobin β-relaxation in aqueous solution was found to have a Δε
of the order of 100 [12,13,33]. It seems unreasonable that it should be
higher in the hemoglobin/cytoplasma solution of the cell interior.
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(iii) Polar protein subgroups can be expected to have smaller relaxa-
tion strength that the main tumbling relaxation. (iv) In principle, the
capacitance of the cell interior should also be shorted at high
frequencies and, indeed, the Maxwell–Wagner model of shelled
particles predicts a corresponding relaxation [61]. However, for any
reasonable choice of parameters this capacitance is too small to lead to
any considerable contribution to ε′ and this additional relaxation
usually is considered negligible [12,13,33]. Thus, the non-spherical
shape of the RBCs seems to be the most likely cause of the additional
relaxation observed in Fig. 9(b). Already in ref. [12] deviations from
simple relaxation behavior of erythrocyte suspensions were ascribed
to the non-spherical form of RBCs and also Asami and Yamaguchi [74]
explained their results in this way. As mentioned in Section 2.5, the
Maxwell–Wagner model for suspensions of spheroid particles pre-
dicts up to four relaxations [61] (two of them arise from the cell
interior and can be neglected). However, the found relaxation-time
ratio of the order of 10 is too high to be explainable by this model, at
least if assuming a reasonable ratio of the two semi-diameters of the
spheroids [61,120]. The spectra on rabbit erythrocytes, mentioned
above, also could not be described by the Maxwell–Wagner model for
spheroid particles [57]. However, one should be aware that RBCs only
roughly can be approximated by spheroids and most likely their
biconcave shape plays a role in the found discrepancies.

An additional δ-dispersion between β- and γ-relaxations is often
invoked to explain a slow continuous decrease of ε′(T), observed in
the region from several 10 MHz to about 3 GHz in various biological
materials, including protein solutions [12,30,33,121,122] and blood
[12]. It has been ascribed to various mechanisms as the dynamics of
protein-bound water molecules or polar subgroups of proteins.
Indeed such a dispersion is also found in our present results on blood
and becomesmost pronounced for thehighhematocrit values (see inset
of Fig. 9 for an example). However, it can be completely describedby the
broadband fits promoted in the previous sections (line in inset),
especially if including a second relaxation in the β-relaxation region as
shown in Fig. 9(b). Thus in our blood samples the apparent dispersion in
this region arises from the superposition of β- and γ-relaxations and
we find no evidence for a δ-relaxation. However, the presence of a small
δ-relaxation is not completely excluded by this finding.

5. Summary and conclusions

In the present work, we have provided dielectric spectra of human
blood for an exceptionally broad frequency range and at different
temperatures and hematocrit values. A combination of models for the
different dispersion regions enabled nearly perfect fits of the broad-
band spectra. The obtained fit curves represent an excellent estimate
of the dielectric properties of blood for a wide range of parameters.
They are provided for electronic download in the supporting informa-
tion and can be employed for SAR calculations and other application
purposes. The different dispersion regions have been analyzed in
detail. The observed electrode-polarization effects are accounted for
by an equivalent circuit model assuming a distribution of relaxation
times. While our analysis of the low-frequency region cannot com-
pletely rule out the presence of an α-dispersion in blood, we can
satisfactorily describe our low-frequency data without invoking such a
relaxation. This finding agrees with earlier results stating the absence of
an α-relaxation in blood [28]. The analysis of the β-relaxation using
standard cell models partly leads to unreasonable results for the
intrinsic dielectric properties. This most likely can be ascribed to cell
aggregation playing an important role in “real” blood samples, in
contrast to suspensions of erythrocytes prepared by standard solutes,
often reported in literature. Cell aggregation seems to be important
especially for the dielectric behavior at the low-frequency side of the
β-relaxation. In contrast, using only parameters determined at
frequencies beyond theβ-peak frequency, leads to reasonable estimates
of the conductivity and dielectric constant of the cell interior. In
addition, we find strong hints that the β-relaxation is in fact composed
of two separate relaxation processes, which we ascribe to the marked
deviations of the RBCs from spherical geometry.

We observe clear dispersion effects in the region between theβ- and
γ-relaxations, which often is ascribed to a so-called δ-relaxation.
However, our analysis of the broadband spectra including electrode
polarization,β-dispersion, and γ-relaxation leads to excellent fits in this
region, which thus is revealed to be a superposition of different
contributions and not due to a separate relaxation process. Thus, while
there clearly is dispersion in blood between the β- and γ-relaxations,
there is no evidence for a δ-relaxation. Finally, detailed information on
the γ-relaxation in blood is provided. Its properties closely resemble
those of the relaxation caused by reorientational molecular motions in
pure water. However, some minor differences arise, which seem to
indicate less cooperative motions of the water molecules in blood
samples.

Overall, the dielectric spectra of blood are of astonishing simplicity if
considering the complexity of blood, being composed of a variety of
different constituents. In fact we have described our broadband spectra
without assuming any intrinsic frequency dependence in the complete
range from 1 Hz up to about 1 GHz and only the γ-dispersion arising
from the tumbling motion of the water molecules is of intrinsic nature.
Of course, there is the strong β-relaxation, which may be regarded as
quasi-intrinsic but as it is ofMaxwell–Wagner type, in a narrower sense
it should be considered as artificial. However, of course for many
applications (e.g., the calculation of SAR values) the overall dielectric
properties and not only the intrinsic ones are of essential importance
and we hope our work will serve for these purposes in the future.
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