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Abstract— The human ability to empathise is a core aspect of
successful interpersonal relationships. In this regard, human-
robot interaction can be improved through the automatic
perception of empathy, among other human attributes, allowing
robots to affectively adapt their actions to interactants’ feelings
in any given situation. This paper presents our contribution
to the generalised track of the One-Minute Gradual (OMG)
Empathy Prediction Challenge by describing our approach to
predict a listener’s valence during semi-scripted actor-listener
interactions. We extract visual and acoustic features from the
interactions and feed them into a bidirectional long short-
term memory network to capture the time-dependencies of the
valence-based empathy during the interactions. Generalised and
personalised unimodal and multimodal valence-based empathy
models are then trained to assess the impact of each modality
on the system performance. Furthermore, we analyse if intra-
subject dependencies on empathy perception affect the system
performance. We assess the models by computing the concor-
dance correlation coefficient (CCC) between the predicted and
self-annotated valence scores. The results support the suitabil-
ity of employing multimodal data to recognise participants’
valence-based empathy during the interactions, and highlight
the subject-dependency of empathy. In particular, we obtained
our best result with a personalised multimodal model, which
achieved a CCC of 0.11 on the test set.

I. INTRODUCTION

Empathy is the ability to recognise and relate to the
emotional needs of others, and can be an important human
trait in improving interpersonal relationships [19]. In the field
of medicine, empathy towards the patient is a vital part of
the care-giving process [16]. In psychotherapy, for instance,
treatments from therapists with high empathy towards their
patients have shown to be more effective compared to those
from therapists with low empathy [18], [21]. Despite this,
the ability to empathise is often overlooked by medical
professionals in favour of technological advancements in
diagnosis and treatment [36].

Researchers in the field of human-robot interaction (HRI)
have envisioned the use of automatic empathy prediction
systems to improve HRI [13], [5]. In this regard, previous
approaches analysing empathy from audio- and video-based
features have resulted in promising findings [39] due to the
richness in emotional content of both modalities. With this
in mind, research efforts towards empathy prediction have
explored the use of audio alone [38], in part, due to the

success achieved in the field of computational paralinguistics
of speech [30]. Nevertheless, as it has been shown that the
modelling of facial information is vital in the context of
empathy [33], in recent years, contributions towards empathy
prediction have also come from the domain of computer
vision [15], [7].

This paper reflects our contribution to the generalised
track of the One-Minute Gradual (OMG) Empathy Prediction
Challenge1. Our approach explores the use of unimodal
and multimodal models on the proposed task with audio-
and video-based features. Our main hypothesis relies on the
suitability of multimodal models for automatic valence-based
empathy recognition, since the combination of acoustic and
visual information should be more effective than the utilisa-
tion of one modality alone, as suggested in previous emotion
detection research [37], [25]. We employ OPENSMILE [12]
to extract the extended Geneva minimalistic acoustic param-
eter set (eGeMAPS) [11] from the speech signals, since it
has been very successful in similar affective computing tasks,
such as depression recognition [32], [35]. As visual features,
we extract facial action units (FAUs) using OPENFACE [3],
[6], because FAUs have been shown to be an effective
method for recognising a variety of emotional states [9], [28],
[27]. These features are then employed to train unimodal
and multimodal recurrent models based on bidirectional
long short-term memory networks (BLSTM) [14] to capture
valence-based empathy time-dependencies.

The rest of the paper is laid out as follows. Section II
introduces the dataset utilised, while Section III describes
the methodology followed. Section IV presents the results
obtained from the experiments performed, while Section
V concludes the paper and points out some future work
directions.

II. OMG-EMPATHY PREDICTION DATASET

The OMG Empathy Prediction Dataset used in this work
has been provided by the OMG-Empathy Prediction Chal-
lenge organisers. This corpus contains dyadic interactions
between 4 different actors and 10 different listeners talking
to each other about 8 predefined topics related to one or more
emotional states. Actors were instructed to maintain control

1https://www2.informatik.uni-hamburg.de/wtm/
omgchallenges/omg_empathy.html                                     

                                                                                                                                               



AUDIO 

VIDEO Downsampling 

Audio Frames openSMILE 

OpenFace 
Recurrent 

Neural 
Network 
(RNN) 

Upsampling VALENCE Fusion 

Preprocessing Feature Extraction Post-processing Machine Learning 

Fig. 1: Block diagram illustrating the preprocessing, feature extraction, machine learning and post-processing stages of the
valence-based empathy recognition system implemented and the workflow of the audio and video signals employed as input.

TABLE I: OMG-Empathy Prediction Dataset summary with
the total number of interactions recorded, the total number
of frames available, and the number of frames used in our
approach after the preprocessing stage.

Train. Set Devel. Set Test Set
∑

Interactions 40 10 30 80
Original frames 309 875 95 575 228 400 633 850

Used frames 61 975 19 115 45 680 126 770

over semi-scripted conversations, although improvisation was
encouraged, so a natural conversation scenario could be
recorded.

After each interaction, listeners watched their own record-
ing on a computer screen and self-assessed their feelings in
terms of valence on a continuous scale ranging from positive
to negative values with a joystick. In order to collect different
listeners’ reaction levels for the same actor, each actor was
assigned to take part in the interactions corresponding to two
specific topics. Hence, a total of 80 interactions – equivalent
to 422 minutes and 34 seconds of video – were recorded,
which were split into 40, 10 and 30 instances for training,
development and test sets, respectively (cf. Table I). Audio-
visual data was recorded from both the actor and the listener
during the interaction: while audio signals were recorded at a
sampling rate (fs) of 16 kHz, video data was recorded at a fs
of 25 fps. Valence annotations were continuously collected at
a fs of 25Hz.

III. METHODOLOGY

In this work, we implement a valence-based empathy
recognition system that receives audio-visual data recorded
from a conversation between an actor and a listener and
predicts the listener’s valence throughout the interaction. In a
real scenario, such a system might be used by a non-human
agent to recognise the empathy of its interaction partner.
Thus, our approach utilises visual information from the
listener and acoustic information from both the actor and the
listener, since paralinguistics in actors’ utterances might also
impact on listeners’ empathy. The way the actor’s utterances
are being said can affect the listener’s perception of the
actor and, as a consequence, interfere in the interaction.
This section presents the implemented system (cf. Figure 1),
which is publicly available2, and describes its main stages.

2https://github.com/EIHW/OMGempathy2019

A. Preprocessing

The first stage of the system requires a procedure to
overcome the disparity between audio and video sampling
rates, as there are 640 audio samples per video frame.
Previous works concerning the automatic prediction of af-
fective information from multimodal data employed different
solutions to overcome the disparity in sampling rates [31],
[24]. In this regard, our approach adopts the segmentation of
the original audio signals into audio frames. This technique is
based on selecting portions of the original audio stream that
contain those samples corresponding to the temporal length
equivalent to one frame of video.

Taking into account the number of video frames available
in the dataset, and with the aim of speeding up the training
time of the valence-based empathy models, we reduce the
temporal resolution of the listeners’ videos by selecting
1 in 5 consecutive video frames. As a result, the video
sampling rate is lowered to 5 fps and so it is the sampling
rate of the valence annotations (in this case, to 5 Hz) to
synchronise both modalities. We expect this downsampling
to have a small impact in the overall system performance, as
valence annotations are stable with neither marked nor fast
changes over time. Furthermore, we accept the information
loss caused by this sampling rate, as lower sampling rates
were used to re-sample visual data in the affective computing
literature [31].

In order not to reduce the acoustic information but still
meet the matching requirement with the new sampling rate,
our approach generates audio frames equivalent to five video
frames. Additionally, this audio segmentation is performed
in such a way that consecutive audio frames overlap. In par-
ticular, each audio frame contains 50 % of the samples from
the preceding and the proceeding audio frames. Thus, each
audio frame has a length of 0.4 seconds. Zero padding is used
in the first and last audio frame, when necessary, by adding
zeros to the samples of the audio frames corresponding to
the non-existent preceding or proceeding audio frames.

B. Feature Extraction

The next step in the pipeline of the valence-based empathy
recognition system corresponds to the extraction of features
from the input modalities. Due to the relevance of facial
information when judging behavioural cues [1], we hypoth-
esise that listeners’ faces might contain information related
to their level of empathy. Thus, we extract 35 visual features

                                                                                                                                               



from the listener’s face using the OPENFACE software [3],
which captures the intensity of 17 FAUs and the presence
of 18 FAUs. The values of the intensity features range from
0.00 to 5.00: 0.00 indicates the absence of a particular FAU,
while 1.00 and 5.00 indicate the presence of a particular
FAU at minimum and maximum intensities, respectively. On
the other hand, the values of the presence features are 0 or
1, indicating the absence or presence of a particular FAU.
The acoustic features that we extract from the segmented
audio frames correspond to the 88 features defined by the
eGeMAPS feature set [11]. As outlined, eGeMAPS is a fea-
ture set widely used in the affective computing literature [34],
[26], [29], [10], and it is extracted using the open-source
OPENSMILE software [12].

For every interaction in the dataset, we extract visual
features ∈ RN×35 and acoustic features ∈ RN×88, where
N corresponds to the total number of frames available from
each interaction to train our valence-based empathy models.
Additionally, we would like to point out that, although no
normalisation is performed on the visual features because of
their bounded range, acoustic features are z-normalised [8],
so they are zero-mean and unit-variance.

C. Machine Learning

The time-dependencies of changes in empathy through-
out the interactions are modelled using a recurrent neural
network (RNN), in particular a bidirectional long short-
term memory network (BLSTM). The architecture of the
neural network we propose employs a BLSTM layer with
M ∈ [30, 40, 50] LSTM units, which is optimised on the
development set, followed by a dense layer with a single
unit, which outputs the valence predictions at every time step.
Respectively, tanh and linear activation functions are em-
ployed in both layers. The parameters of the neural network
are optimised with the concordance correlation coefficient
(CCC) as the loss function with Adam as the optimiser.
From preliminary experiments, the batch size is fixed to five,
and the number of epochs with no improvement allowed
before stopping training is fixed to three.

D. Post-processing

The last stage of the pipeline requires post-processing the
valence predictions to revert the downsampling performed
on the interaction videos at the preprocessing stage. First,
we use a median filter with a kernel size of 301 samples
to remove possible noise from the predicted annotations.
Next, considering the nature of the ground truth valence
annotations over time, we decided to use replication as the
upsampling method. Therefore, each predicted annotation at
low temporal resolution is replicated five times to reach the
sampling rate of the original annotations.

IV. EXPERIMENTAL RESULTS

The main goal of this work is to analyse the performance
differences between unimodal and multimodal models for
valence-based empathy recognition systems. While unimodal
models are trained with visual or acoustic features alone,

TABLE II: Comparison of the concordance correlation co-
efficients (CCC) computed on the development set of the
OMG-Empathy Prediction Dataset with generalised and per-
sonalised unimodal and multimodal models. The 3 best
results obtained are highlighted.

Generalised models Personalised models

Acoustic model 0.04 -0.00 0.03 0.02 0.04 0.05
Visual model -0.02 -0.02 -0.01 -0.02 -0.01 0.04
Multimodal model 0.05 0.07 0.06 -0.02 0.01 0.06

LSTM units 30 40 50 30 40 50

feature-level fusion is employed to train multimodal models
by means of concatenating the features from both modalities.

The first approach to solve the generalised track of the
challenge is based on the use of generalised models, which
are trained with all of the interactions available for training,
regardless of the listeners’ identities. Analysing the self-
assessed annotations, however, we observe that the labelled
valence scores seem to be listener dependent. As gener-
alised models might not be able to capture intra-subject
dependencies on the perception of empathy [20], we also
train personalised models, which are trained exclusively with
interactions corresponding to a particular listener, to solve
the same task. Furthermore, we expect these personalised
models to capture the listeners’ dependencies on the self-
perception of empathy. This way, performance differences,
if any, between generalised and personalised models can be
compared.

Generalised and personalised unimodal and multimodal
models are evaluated by computing the CCC between the
self-assessed annotations and valence scores predicted with
the trained models. Results computed on the development set
for generalised and personalised unimodal and multimodal
models with LSTM units ∈ [30, 40, 50] are presented in
Table II.

The results computed from the generalised models high-
light the suitability of employing multimodal models for the
recognition of empathy, as they provide greater CCC scores
than unimodal models, irrespective of the number of LSTM
units used. For instance, when using 40 LSTM units we
obtain CCCmultimodal = 0.07, CCCvisual = −0.02 and
CCCacoustic = −0.00, while when using 50 LSTM units we
achieve CCCmultimodal = 0.06, CCCvisual = −0.01 and
CCCacoustic = 0.03. On the other hand, the results obtained
from the unimodal models suggest that the visual features
extracted alone are not a suitable predictor of empathy, as
they obtain the lowest CCC scores. As visual data was
successfully used on valence prediction problems [22], this
is a surprising result, which allows us to argue about the
suitability of the visual feature set employed in this work
for the automatic recognition of empathy.

Analysing the results measured from the personalised
models, we observe that the best CCC scores are ob-
tained when the BLSTM layer employs 50 LSTM units.
The results obtained for this particular network configu-
ration are CCCmultimodal = 0.06, CCCvisual = 0.04
and CCCacoustic = 0.05. In this case, we also observe

                                                                                                                                               



TABLE III: Comparison of the concordance correlation co-
efficients (CCC) computed on the development and testing
sets of the OMG-Empathy Prediction Dataset with the se-
lected models to participate in the challenge. The best result
obtained on the testing set is highlighted.

Devel. Set Test Set

Generalised multimodal model
(40 LSTM units) 0.07 0.05

Generalised multimodal model
(50 LSTM units) 0.06 0.06

Personalised multimodal model
(50 LSTM units) 0.06 0.11

that multimodal models obtain a higher CCC score, in
comparison to the unimodal models, and that the lowest
CCC score is obtained from the visual models.

In summary, we highlighted that personalised unimodal
models with 50 LSTM units performed better than gener-
alised unimodal models. Furthermore, personalised multi-
modal models with 50 LSTM units performed at par with
generalised multimodal models. Hence, these results support
the suitability of employing personalised models to capture
the intra-subject dependencies on the perception of empathy,
although each personalised model is only tested on a single
instance due to the limited data available in the development
set, which complicates the draw of a valid conclusion.
Finally, we need to state that none of our results reach the
baseline provided by the challenge organisers, which was
set to CCC = 0.111 for the generalised track. This result
casts doubt on the generalisation capabilities of the trained
models, which might be due to an insufficient amount of
training data, or the reduced representation of the corpus in
the development set.

Participants of the challenge have three attempts to predict
valence annotations on the test set. In this regard, the three
models we select are the generalised multimodal models with
40 and 50 LSTM units, and the personalised multimodal
models with 50 LSTM units, as they provide the highest
CCC scores on the development set. At this point, we would
like to note that during the development phase of our system,
models are trained on interactions belonging exclusively to
the training set, and tested on the development set. When
the development phase is completed, models are trained on
interactions from both training and development sets, and
tested on the test set. Having said this, the results obtained
on the test set with the selected models are summarised in
Table III.

From the results obtained on the test set, we observe
that generalised models perform at par in both development
and test sets, which lowers our confidence in the suitability
of generalised models for automatic valence-based empathy
recognition problems. Nonetheless, for the personalised mod-
els, we observe a performance improvement on the test set,
CCCmultimodal = 0.11, with respect to the development set,
CCCmultimodal = 0.06. This result supports the suitability
of employing personalised models to automatically predict

empathy, and it also suggests the existence of intra-subject
dependencies on the perception of empathy, which cannot be
captured with generalised models.

Regardless of the scenario, the CCC scores measured
are low, which suggests that we might be modelling noise.
Furthermore, the median filter used in the post-processing
stage might impact the system performance, as it smooths
the predictions. Training the models with windowed shifted
portions of the interactions could help improve system per-
formance, as we will increase the size of the training data.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented our approach to the generalised
track of the OMG-Empathy Prediction Challenge with the
aim of analysing the impact of unimodal and multimodal
models on the automatic recognition of valence-based em-
pathy. The results obtained on the development set supported
our hypothesis that both acoustic and visual signals provided
relevant information for empathy modelling, as multimodal
models achieved better CCC scores than unimodal models.
Furthermore, the stronger performances exhibited by our
personalised models indicate the existence of intra-subject
dependencies on the perception of empathy. We obtained
our best experimental results using personalised multimodal
models that use 50 LSTM units in the bidirectional layer,
which resulted in a CCC of 0.06 on the development set
and a CCC of 0.11 on the test set.

In future work, we plan to explore the benefits of re-
aligning the audio-visual and self-assessed information using
annotation delay compensation [17]. Speaker diarisation [4]
could also be a conducive next step, concerning the indi-
vidual impact of utterances from actors or listeners on the
performance of valence-based empathy recognition systems.
We also plan to assess the benefits of alternative feature
spaces [23], [2], in addition to the further investigation
of personalised models employing deeper neural network
architectures with additional hidden layers that would help
to improve the system performance. Furthermore, we will
also consider the use of transfer learning methods to provide
more training data and, at the same time, analyse the task-
dependency of valence-based empathy models.
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[12] F. Eyben, M. Wöllmer, and B. Schuller. openSMILE – The Munich
Versatile and Fast Open-source Audio Feature Extractor. In Proceed-
ings of the 18th ACM International Conference on Multimedia, pages
1459–1462, Firenze, Italy, 2010. ACM.

[13] P. Fung, D. Bertero, Y. Wan, A. Dey, R. H. Y. Chan, F. B. Siddique,
Y. Yang, C.-S. Wu, and R. Lin. Towards Empathetic Human-Robot
Interactions. In Proceedings of the International Conference on
Intelligent Text Processing and Computational Linguistics, pages 173–
193, Konya, Turkey, 2016. Springer.

[14] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. Adaptive
Computation and Machine Learning series. MIT Press, 2016.

[15] D. Greenwood, S. Laycock, and I. Matthews. Predicting Head Pose in
Dyadic Conversation. In Proceedings of the International Conference
on Intelligent Virtual Agents, pages 160–169, Stockholm, Sweden,
2017. Springer.

[16] M. Hojat, S. Mangione, T. J. Nasca, M. J. Cohen, J. S. Gonnella,
J. B. Erdmann, J. Veloski, and M. Magee. The Jefferson Scale of
Physician Empathy: Development and Preliminary Psychometric Data.
Educational and psychological measurement, 61(2):349–365, 2001.

[17] Z. Huang, T. Dang, N. Cummins, B. Stasak, P. Le, V. Sethu,
and J. Epps. An Investigation of Annotation Delay Compensation
and Output-Associative Fusion for Multimodal Continuous Emotion
Prediction. In Proceedings of the 5th International Workshop on
Audio/Visual Emotion Challenge, pages 41–48, Brisbane, Australia,
2015. ACM.

[18] B. D. Jani, D. N. Blane, and S. W. Mercer. The Role of Empathy
in Therapy and the Physician-Patient Relationship. Complementary
Medicine Research, 19(5):252–257, 2012.

[19] M. J. Lambert and A. E. Bergin. The Effectiveness of Psychotherapy.
Handbook of psychotherapy and behavior change, 4:143–189, 1994.

[20] R. Lennon and N. Eisenberg. Gender and Age Differences in Empathy
and Sympathy. In N. Eisenberg and J. Strayer, editors, Empathy and Its
Development, chapter 9, pages 195–217. Cambridge University Press,
1990.

[21] T. B. Moyers and W. R. Miller. Is Low Therapist Empathy Toxic?
Psychology of Addictive Behaviors: Journal of the Society of Psychol-

ogists in Addictive Behaviors, 27(3):878–884, 2013.
[22] M. A. Nicolaou, H. Gunes, and M. Pantic. Continuous Prediction of

Spontaneous Affect from Multiple Cues and Modalities in Valence-
Arousal Space. IEEE Transactions on Affective Computing, 2(2):92–
105, April 2011.

[23] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep Face Recognition.
In M. W. J. Xianghua Xie and G. K. L. Tam, editors, Proceedings of
the British Machine Vision Conference, pages 41.1–41.12, Swansea,
UK, September 2015. BMVA Press.

[24] H. Rao, Z. Ye, Y. Li, M. A. Clements, A. Rozga, and J. M. Rehg.
Combining Acoustic and Visual Features to Detect Laughter in Adults’
Speech. In Proceedings of the 1st Joint Conference on Facial Analysis,
Animation, and Auditory-Visual Speech Processing, pages 153–156,
Vienna, Austria, 2015.

[25] F. Ringeval, F. Eyben, E. Kroupi, A. Yuce, J.-P. Thiran, T. Ebrahimi,
D. Lalanne, and B. Schuller. Prediction of Asynchronous Dimensional
Emotion Ratings from Audiovisual and Physiological Data. Pattern
Recognition Letters, 66:22–30, 2015.

[26] F. Ringeval, E. Marchi, C. Grossard, J. Xavier, M. Chetouani, D. Co-
hen, and B. Schuller. Automatic Analysis of Typical and Atypical
Encoding of Spontaneous Emotion in the Voice of Children. In
Proceedings of Interspeech, pages 1210–1214, San Francisco, CA,
US, 2016.

[27] F. Ringeval, B. Schuller, M. Valstar, R. Cowie, H. Kaya, M. Schmitt,
S. Amiriparian, N. Cummins, D. Lalanne, A. Michaud, E. Ciftçi,
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