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Abstract

In this paper, acoustic emission (AE) signals obtained during quasi-static crack prop-
agation in adhesively bonded beech wood were classified using an unsupervised pat-
tern recognition method. Two ductile one-component polyurethane (1C-PUR) adhe-
sives with the same formulation except for one system being reinforced with short
polyamide (~1 mm long) fibers were compared to a relative brittle phenol-resor-
cinol-formaldehyde (PRF) adhesive. Using only localized AE signals, it was shown
that the signals originating from the crack propagation could be classified into two
different clusters. Comparing the AE signals with a new fractography method, it was
estimated that different clusters are due to distinct failure mechanisms, with signals
of cluster 1 being associated with wood failure and signals of cluster 2 with adhesive
failure. The obtained results suggest that for the PRF adhesive the wood fibers help
to slow down the crack propagation. A similar but lesser effect was noted for the
polyamide fibers added to the 1C-PUR adhesive matrix.
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Introduction

The current development of adhesives for timber load-bearing structures must
meet the performance requirements and at the same time reduce the ecological
and health impact of the adhesives used. Thus, the adhesive industry is trying to
develop new adhesives as an alternative to the PRF adhesive system, which have,
despite their high mechanical performance, the disadvantage of containing a sig-
nificant proportion of formaldehyde, a substance known to be cancerogenic. One
of the best currently available alternatives to these systems are 1C-PUR systems,
but despite encouraging results (Lehringer and Gabriel 2014), the performance
of 1C-PUR adhesives is still below that of long-used commercial systems such as
the PRF. The exact reason explaining why the PRF system is generally perform-
ing better in terms of strength and delamination resistance is still not completely
understood. One possible explanation could originate from the fracture behavior.
Generally, a rupture of the bond line in the wood layer is preferable (and rec-
ommended by the EN 14080 standard, for example) as it implies that the adhe-
sive is stronger than the wood. However, it was shown that the proportion of the
fracture surface occurring in the wood layer, i.e., the wood fracture percentage
(WFP), does not correlate with the strength of the bond line and that depending
on the wood origin, strong variations can be observed (Hass et al. 2014). Typi-
cally, lap shear samples of adhesively bonded wood show no strength differences
between 1C-PUR and PRF (in dry climate), but PRF-bonded samples generally
have a higher WFP than 1C-PUR-bonded samples (Kldusler et al. 2014). Clerc
et al. (2019) have shown that under cyclic loading, crack propagation under Mode
IT 4-ENF is slower and demands higher energy for PRF samples than for 1C-PUR
samples despite showing a relatively similar energy release rate (ERR) under
quasi-static loading. Here, too, 1C-PUR adhesives typically show a failure at the
interface between the wood and the adhesive, whereas PRF generally shows a
higher wood fracture percentage. The question is, therefore, whether the better
performance of PRF adhesive can be partly explained by the failure layer located
in the wood, where its fibrous nature helps to reduce the crack propagation speed
compared to a propagation in the adhesive interface. Typically, a crack stopped
by a fiber during its propagation will branch (supposing that the fracture tough-
ness of the crack propagation domain is lower than that of the fibers) to overcome
the obstacle. Due to the branching of the crack, more surface is created, and an
on average smaller damage size can be expected. It is, however, difficult to know
whether the wood fibrous structure is really reducing the rate of crack propaga-
tion as the observation of the fracture surface is only possible a posteriori.

The use of AE to monitor damage accumulation in wood material in situ
(Aicher et al. 2001; Jakieta et al. 2008; Reiterer et al. 2000) is a suitable method
to complement common mechanical tests as it permits the detection of the associ-
ated accumulation and interaction of damage in the full specimen volume with
sub-microsecond time resolution. One difficulty of the AE method is the identifi-
cation of the AE signal origin, with respect to both the microscopic source mecha-
nism and its exact location and orientation. Concerning this issue, fractography
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combined with AE-based parameter analysis has been used to identify microscopic
failure mechanism in wood (Ando et al. 2006) and in bamboo (Chen et al. 2018).
Unsupervised pattern recognition (UPR) methods based on AE frequency and/or
AE time domain features have been successfully used to characterize wood failure
(Baensch et al. 2015a; Diakhate et al. 2017; Najafi et al. 2017). These methods
seek the numerically best partition of signals according to selected features into
different clusters to possibly identify different natural classes of AE signals (Sause
et al. 2012a). To associate these natural classes with physical features, a detailed
analysis of the fracture surface/volume should be conducted using for example
multiphysics finite element method (Sause et al. 2012b), nondestructive testing
(Baensch et al. 2015b) or fractography. In wood under tensile stress, Baensch et al.
2015b could combine AE with in situ synchrotron X-ray micro-computed tomog-
raphy to determine the main failure mechanisms were interwall cracks (cell wall
debonding) and cell wall cracks. However, the use of UPR and X-ray CT on ply-
wood miniature specimens yielded the same two AE clusters as obtained for clear
wood (Brunner et al. 2015); no separate AE cluster could be assigned solely to
the adhesive. One possible explanation could be that for the chosen sample geom-
etry (dog-bone tensile sample), the maximal stresses generally do not occur in the
bond line but rather in the wood. In this paper, AE was used to monitor the dam-
age accumulation of adhesively bonded wood under quasi-static Mode 11 4-ENF
loading. Using this test setup, the maximal shear stresses are occurring in the
bond line of the sample. The AE signals were recorded from three wood adhesives
(two relatively ductile 1C-PURs and one relatively brittle PRF system). This set-
ting was chosen to better understand how the structure of the wood adhesive com-
pound influences the crack propagation and how damages evolve for each adhesive
system. For this reason, small polyamide fibers were added to the matrix of one
of the 1C-PUR adhesives, being otherwise identical. AE signals obtained during
the test were then analyzed with an unsupervised pattern recognition to identify
natural clusters. A new fractography method is presented to potentially explain the
microscopic origin of these different clusters.

Materials and methods
Experimental setup
Mechanical test setup

Beech wood (Fagus sylvatica L.) with a mean density of 714 kg/m® at a wood
moisture content of 12% was used for the tests. The wood had no defects such as
knots or grain deviation. Prior to the adhesive bonding, a 15-pm-thick fluoropol-
ymer (ETFE230N) foil was applied between the lamellae on the first 120 mm to
simulate a starter crack. Three adhesives are compared in the tests: The first is a
relatively brittle phenol-resorcinol-formaldehyde (PRF, trade name (Aerodux 185)
and two are ductile one-component polyurethane (1C-PUR) adhesives with a low
modulus of elasticity (MOE). These two 1C-PUR adhesives are based on the same
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polymer, with the difference that additional small polyamide fibers (~1 mm length
and ~0.1 mm diameter) were introduced into the adhesive matrix of the LOCTITE
HB 110 PURBOND (short name HB 110), but not into the LOCTITE VN 3158
(short name: VN 3158). Once cured, the front position of the foil was referenced
as position of the crack tip, and the pre-crack length was set to 110 mm. The sam-
ples were then cut to a width of 20 mm, a crack length of 110 mm and a length of
317 mm. The adhesively bonded wood joints were stored for several days at 23 °C
and 50% relative humidity prior to testing. The end-notched flexure (ENF) speci-
mens were loaded under quasi-static displacement control at 1 mm/min in 4-point
bending Mode II. The test was performed on a servo-hydraulic test machine (type
1237 Instron) equipped with a 1 kN load cell with a load and displacement accuracy
of at least 1% of the measured value.

AE test setup

AE equipment (type AMSY-6) and preamplifier (type AEP-3 with a hardware band-
pass between 30 and 1000 kHz from Vallen Systeme GmbH) with 150 kHz resonant
sensors (type SE-150 M from Dunegan Engineering Corp.) and one broadband sen-
sor (type S9208 from Physical Acoustics Corp.) were used. Data acquisition set-
tings were: acquisition threshold 40 dB ,g, duration discrimination time 400 ps and a
rearm time of 1 ms. Two SE-150 M AE sensors were placed on top and bottom each
between the bottom and top loading rollers, and between the top loading rollers,
respectively. In addition, one S9208 sensor was placed on the bottom side between
the top loading rollers (see Fig. 1 for details). All sensors were coupled with a sili-
cone-free vacuum grease and mounted with metal springs.

For assessing the delamination length as a function of time, linear AE signal
source location was performed with the four sensors mounted on the bottom side of
the joint. The signal sources were localized using two different 1-D localization pro-
cessors to find signals, which were correctly identified by the four sensors 2—7-4—6
(see Fig. 1). Using this method, only AE wave propagation in the longitudinal direc-
tion was considered, meaning that only one speed of propagation (v=4250 m/s)
could be used. The AE source location accuracy was checked via the so-called
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Fig.1 Scaled schematic representation of the test setup, with the type and position of each AE sensor—
the type of sensor for sensors 1-6 is SE-150M and S9208 for the sensor 7
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autocalibration for which each sensor in turn was used as emitter of elastic waves,
which were recorded by the other sensors and localized.

Unsupervised pattern recognition (UPR) methodology

The UPR used in this work was adapted from earlier researches on composites
(Sause et al. 2012a) and has been previously applied to wood failure (Baensch et al.
2015a). The algorithm is based on an exhaustive search procedure of AE features
and identifies the most suitable partition without initial assumptions regarding the
number of AE features used and the number of clusters. To this end, a list of K=9
frequency-based AE features were defined to use for the investigation (see Table 1).
The selection of the number of partial powers (6 in this case) in the AE feature set,
in principle, is arbitrary, but experience has shown that 6 is a reasonable choice in
terms of computational effort and results (Sause et al. 2012a; Sause and Horn 2013).
Boundary constraints for the algorithm were chosen as M =3 minimum number of
features to use for a partition and P=10 as maximum number of clusters expected.

Based on these boundary constraints, the algorithm investigates all <AI§> -(P-1)

partitions and ranks the obtained result using cluster validity metrics (Sause et al.
2012a). For this investigation, Gaussian mixture models were chosen as clustering
algorithm with normalization of features using their unit variance.

Fractography
It is hypothesized that different AE signal clusters revealed by UPR are representing

different fracture layers in or near the bond line. The distinction between the dif-
ferent fracture layers on the fracture surface is relatively easy for PRF adhesive as

Table 1 AE features used for the investigation

Peak frequency Joca [Hz]
Frequency centroid o _ [fOpdf [Hz]
centroid — I U(f)df
Weighted peak frequency Jocak = Vfpeak * Jeentroia (Hz]
Partial power b, Jena [%]
fo Hdr/ [ U=(Hdf
1 start
Jutari = 0 kHz

Jfina=1200 kHz

Partial power 1: f; =0 kHz; f,=150 kHz
Partial power 2: f, =150 kHz; f, =300 kHz
Partial power 3: f; =300 kHz; f, =450 kHz
Partial power 4: f, =450 kHz; f, =600 kHz
Partial power 5: f; =600 kHz; f, =900 kHz
Partial power 6: f; =900 kHz; f, =1200 kHz
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Fig. 2 Schematic of the main steps of the fractography analysis method—see text for a detailed descrip-
tion of the method

the contrast between the wood and the adhesives’ dark color allows distinguishing
fracture of the wood and of the adhesive. However, for the 1C-PUR adhesive, this
is more challenging due to the transparency of the adhesive. To simplify the distinc-
tion (step 1 in Fig. 2), a chemical treatment of the samples using a reacting product
was used (a solution of hydrochloric acid and phloroglucinol). This reagent colors
the lignin in red allowing a better contrast between adhesive and wood, hence allow-
ing distinguishing between adhesive and wood fracture. Approximatively one hour
after applying the reagent, images of both fracture surfaces were taken with a digi-
tal single-lens reflex (DSLR) camera (24.2 megapixel APS-C 22.3%x14.9 mm sen-
sor) and a 100 mm macrolens. The final image resolution was one pixel % 0.01 mm.
Using the color difference (step 2 in Fig. 2), a color mask was applied using HSV
color space to differentiate between the wood and adhesive fracture. Both images
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were then binarized according to the color masks so that a black pixel (=0) corre-
sponds to wood failure and a white pixel (=1) to adhesive failure. Both images were
then superposed to obtain a map of the fracture surface using an OR filter so that if a
pixel appears black (=0) it means that this pixel is black on both images, and hence
indicates wood failure. This allows to distinguish between interface failure (one
fracture surface fails in the wood and the opposite side in the adhesive) and wood
failure. However, the distinction between wood and adhesive rupture based on color
difference is not always exact, especially between zone boundaries. In addition, it
is difficult to superpose and align both surfaces exactly. Both errors will overesti-
mate the wood fracture percentage. To limit this error (step 3 in Fig. 2), only groups
of interconnected black pixels which surfaces correspond to the different crack size
estimation were considered in the calculation of the WFP. The main steps of the
fractography method are summarized in Fig. 2.

Results and discussion
Estimation of the sensitivity of the acoustic emission measurements

Recent developments in the analysis of acoustic emission measurements (Brunner
2016) have shown that it is possible to establish an estimated correlation between
crack area and the recorded linear AE signal amplitude (after amplification, meas-
ured in pV). A similar method is used here to estimate the damage size depend-
ing on the adhesive system. For each sample, the sum of the signal peak voltage is
divided by the cracked surface. The cracked surface is estimated by multiplying the
width of the specimen by the crack length increment measured during the test. This
number is an estimation of the sensitivity and is given in (uV/um?). The crack length
1s measured on both lateral sides of the specimen, and the average value is taken for
the calculation of the cracked surface. However, the exact crack tip position between
these points is not known; therefore to consider a nonlinear crack tip position, upper
and lower bounds are estimated by adding and, respectively, subtracting a half circle
(with a diameter equal to the width of the specimen) to or from the cracked surface.
Additionally, the surface roughness is considered by adding an arbitrary amount of
20% to the upper bound surface value. Using these estimations, lower and upper
bounds are estimated for the sensitivity. Finally, the typical damage surface is com-
puted by dividing the average amplitude of the signals (for one adhesive system) by
the estimated sensitivity. Then, the square root of this surface is calculated to obtain
the typical damage size (considering a quadratic or equivalent circular crack shape).
The average sensitivity and expected crack size are given in Table 2 for the different
adhesive systems.

The influence of the material damping (with a measured far-field damping value
of 0.22 dB,g/cm) on the estimated sensitivity was found to be less than 10% (esti-
mated only from localized signals). Since attenuation was hence neglected, no AE
signal amplitude correction as a function of distance was applied. In the next sec-
tion, the UPR analysis was applied on the sample bonded using the HB 110 and PRF
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Table 2 Estimated sensitivity and estimated crack size for a nonlinear crack tip propagation and for the
different adhesive systems based on the AE signals amplitude—each value is given with upper and lower
bounds

Estimated sensitivity (uV/um?) Estimated crack size (um)

Mean Upper bound Lower bound Mean Upper bound Lower bound
HB 110 7.5E-04 5.3E-04 94E-04 714 850 631
PRF 3.4E-03 2.4E-03 4.3E-03 363 433 321
VN 3158 2.3E-04 1.6E—-04 2.9E-04 863 1028 763

adhesive, respectively. Due to the few signals (n=2) obtained for the samples glued
with the adhesive VN 3158, no further analysis was considered in this case.

UPR on HB 110 adhesively bonded samples

The partition of all AE localized signals (n=380) obtained for the four different
samples glued with the HB 110 adhesive are shown in Fig. 3. The best partition
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Fig. 3 Resulting partition of the AE signals in 2 clusters for the samples glued with the adhesive HB 110
according to the UPR method—Cl1: cluster 1, CI2: cluster 2
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is obtained with a direct use of the classifier algorithm with two clusters resulting
in an uncertainty of classification (UoC) of 0.97 (Sause and Horn 2013), meaning
that only 3% of the signals are potentially classified in the wrong cluster. In Fig. 3,
marginal histograms are shown for both variables and both cluster data with a fitted
line represent the data distribution. The number of bins was computed based on the
sample standard deviation using Scott’s rule. In further plots, only the fitted line was
plotted to show the data distribution.

In Fig. 4, the relative timescale is compared with the estimated AE source posi-
tion. The general tendency shown in Fig. 4 is that the position of the signal is
increasing with the time duration and that it follows the approximate position of the
crack tip. The signals from clusters 1 and 2 have a comparable temporal distribution.

On average, the energy of the signals from cluster 2 is higher than for cluster 1.
However, no significant difference between the true energy distribution in clusters
1 and 2 was found (at a 5% significance level). In Figs. 3 and 4, all four HB 110
samples are shown in the same plot. However, the proportion for each sample was
different as shown in Table 3.

The main difference between the clusters lies in their frequency characteris-
tics, as the weighted peak frequency is clearly higher for cluster 1 compared to
cluster 2. The physical meaning of different high-frequency proportions between
clusters could be interpreted as originating from different microscopic sources,

Position [cm]
> o S

—
o

-
N
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O  Cluster 1
. Cluster 2
Crack Tip Position

----- Cluster 1 distribution
Cluster 2 distribution

Fig. 4 Linear AE signal location, time and average crack tip position (calculated according to Clerc et al.
2019) for the four samples glued with the adhesive HB 110. Signals of both clusters follow the direction
of the crack propagation
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Table 3 Absolute and relative

number of the signals for the Sample Signals from cluster 1 Signals from cluster 2
.adhesive HB 110 classified HB1a-2 4(1%) 54 (93%)

in clusters 1 and 2—the

number of signals identified in HB3a-1 2(3%) 60 (97%)

cluster 1 is ranging from 0 to HBla-1 7 (T%) 96 (93%)
approximatively 10% HB3a-3 17 (11%) 138 (89%)

1.e., fracture mechanisms (Baensch et al. 2015a). To examine this hypothesis, an
analysis of the fracture surface was conducted.

Prior to the analysis of the fracture surfaces, the estimated damage size was
calculated (according to the above procedure) for each sample. These values were
then used as lower, mean and upper range for estimating the crack size in the
fractography analysis. The average wood fracture percentage is calculated by
summing all the black pixel groups with a group size higher than the estimated
lower crack size. Without lower limit, the estimated wood fracture percentage
would be overestimated due to a high number of small pixel groups. Indeed, if
all pixel groups are considered, the average group size is 0.03 mm?. Given the
size of these groups, they are probably due to the difficulty in superposing exactly
two different images and to select the appropriate color filters to obtain the best
distinction between wood and adhesive failure. Both phenomena will lead to a
superposition of the same color area, interpreted as wood failure if black pixels
are superposed.

The average wood fracture percentage obtained using the fractography analysis
reveals a rough correlation between the number of signals associated with cluster
1 and the average WFP (Table 6). For example, it was noted that sample HB3a-1
had only 2 signals associated with cluster 2 (3%), whereas sample HB3a-3 had
around 12% of its signals associated with cluster 2. The fractography analysis
reveals that the average wood fracture percentage is below 0.1% for the HB3a-1
and around 7% for the HB3a-3.

The number of groups and their size is significantly higher for the HB3a-3
sample compared to the HB3a-1 sample (Fig. 5).

In comparison, both other samples (HBla-1 and HB1a-2) show a relatively
similar average wood fracture percentage (0.8% and 1.6%, respectively) and
also a relatively similar percentage of signals associated with cluster 2 (7%).
Considering the four samples, a correlation can be seen between the WFP and
the number of signals associated with cluster 1. The higher weighted peak fre-
quency observed in cluster 1 can be partly explained by the higher rigidity of the
wood compared to the adhesive. Typically, cracks occurring in a brittle medium
are expected to deliver a broad frequency spectrum. Defect-free beech as used
here has a MOE of about 13 GPa, whereas adhesive stiffness is approximatively
1-4 GPa (with 1C-PUR ranging from 1 to 2 GPa and PRF from 3 to 4 GPa; Kliu-
sler et al. 2013). Therefore, failure of the adhesive interface or cohesive failure is
expected to result in AE signals with less broad frequency spectra. This translates
into the different weighted peak frequencies found for the two clusters.
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PRF adhesive

The partition of all localized AE signals (n=1927) obtained for the four differ-
ent samples glued with the PRF adhesive is shown in Fig. 6. The best partition is
obtained with a direct use of the classifier algorithm with two clusters with an UoC
of 0.91.

The number of signals obtained from the PRF samples is much higher than for
the HB 110 samples. This could be an indication of a larger effective fracture sur-
face due to higher roughness or due to a smaller crack increment per AE signal due
to the more brittle PRF adhesive. The average energy per hit for cluster 1 of the PRF
(Table 7) is very similar to cluster 1 of the HB 110 adhesive (Table 4). On average,
a higher number of signals is classified in cluster 1 (Table 5) in comparison with
the HB 110 adhesive, the majority being still classified into cluster 2 (Table 6). On
average, a higher weighted peak frequency is obtained for cluster 1 than for cluster 2
(Table 7). In comparison with the adhesive HB 110, the average weighted peak fre-
quency from clusters 1 and 2 is higher for the PRF adhesive (approx. 20%) (Table 7).

Contrary to the samples glued with the adhesive HB 110, the number of signals
associated with cluster 1 tends to increase nonlinearly with the test duration (Fig. 7).
In comparison, the number of signals from cluster 2 increases gradually until the

B ($))
o o

Partial Power 2 [%]
w
o

0.5 1 1.5 2 25 3 3.5 4

O  Cluster 1
. Cluster 2
----- Cluster 1 distribution

Cluster 2 distribution

Fig. 6 Resulting partition of the AE signals in 2 clusters for the samples glued with the adhesive PRF
according to the UPR method
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Table 4 Main differences between the signals associated with cluster 1 and cluster 2

Cluster 1 Cluster 2
Number (quota) 30 (8%) 348 (92%)
Energy sum (quota) 2.5860e—15 (1%) 4.9583e—13 (99%)
Energy per hit (J) (median) 1.9831e—17 5.5038e—17
Partial power 2 (%) 32.7 22.8
Weighted peak frequency (kHz) 207.3 108.3

Table 5 Absolute and relative
classification of the signals

in cluster 1 and cluster 2

for the PRF samples—the

number of signals identified in

cluster 1 ranges from 10% to
approximatively 20%

Sample Signals from cluster 1 Signals from cluster 2
PRF3B-1 93 (14%) 590 (86%)
PRF2B-1 44 (11%) 351 (89%)
PRF2B-2 44 (18%) 205 (82%)
PRF2B-5 62 (11%) 494 (89%)

Table 6 Average wood fracture percentage (WFP) obtained from the cluster analysis and corresponding
estimated crack size, mean and upper and lower bounds for the samples glued with the adhesive HB 110

Sample Average WFP (%) Crack size mean Crack size up. Bound Crack size low.
value (um) value (um) Bound value (um)

HB1a-2 1.6 663 788 590

HB3a-1 <0.1 721 859 637

HBla-1 0.8 510 603 457

HB3a-3 7 656 775 568

Table 7 Maiq differences. Cluster 1 Cluster 2

between the signals associated

with cluster 1 and cluster 2 for Size (quota) 243 (13%) 1640 (87%)

the PRF samples
Energy sum (J) (quota) 3.81e—14 4.96e—13
Energy per hit (J) (median) 1.9453e—17 2.5276e—17
Partial power 2 (%) 28.6 26.0
Weighted peak frequency (kHz) 257.6 141.3

end of the test, but the number of signals from cluster 1 increases significantly only
after 50% of the relative timescale.

Using the fractography method as described above, it is possible to distinguish
between wood fracture and adhesive failure (using the natural contrast between the
wood and the dark brown PRF adhesive). Summing the number of pixels associated
with wood failure over the cracked surfaces reveals that the crack is generally start-
ing as an interface failure but evolves gradually into wood failure as shown in Fig. 8.
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Fig.7 AE signal location, time and average crack tip position for the four samples glued with the adhe-
sive PRF. Signals of both clusters follow the direction of the crack propagation

Influence of the adhesive system on the cluster features

It has been shown that for both adhesive systems, it was possible to roughly cor-
relate the signals from the lower-frequency cluster 1 with wood failure. It was
also noted that for the samples glued with the PRF adhesive, a higher number of
signals were recorded than for the HB 110 adhesive. Furthermore, the estimated
average crack increment is smaller for the PRF system than for the HB 110. One
further difference is that for the PRF adhesive, the crack is growing into the wood
and propagates into the wood for most of the samples, whereas for the HB 110
samples, the crack propagates at the interface essentially due to an adhesive fail-
ure. Only a small fraction of the fracture surface corresponds to wood failure.
This could indicate that the propagation medium of the HB 110 is more homog-
enous and fewer obstacles have to be overcome during the crack growth, whereas
for the PRF samples, the crack has to propagate through the highly fibrous envi-
ronment of the wood. This hypothesis seems to be confirmed by the very low
number of signals obtained from the VN adhesive, which is even more homog-
enous (due to the absence of polyamide fibers in the adhesive matrix but also due
to the more ductile behavior of the adhesive). For the PRF samples, even though
the number of signals associated with cluster 1 tends to correlate with the wood
fracture percentage, the majority of the signals are still associated with cluster
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Fig. 8 Increase in the wood fracture percentage with increasing crack length for the samples glued with
the PRF adhesive

2 even when the crack is mostly propagating into the wood. The exact reason
for this is not yet completely understood, but it may be that since beech stiffness
perpendicular to the grain is around 1 GPa, if the crack follows a path under an
angle with the grain, the stiffness may well be in the same range as that of PRF. It
may also be that this difference is due to different failure mechanisms occurring
in plain wood. As shown in Fig. 9, the fracture surface is a complex patchwork
of different wood anatomical features. It can be expected that failures of different
anatomical features have different acoustic patterns and that some failure mecha-
nisms have a similar acoustic pattern to interface failure, which would lead to
classification in the same clusters. In addition, as shown in Fig. 6, it is possi-
ble that more clusters exist than those investigated in this study. However, parti-
tions with more than two clusters results in a lower UoC, meaning that potentially
more signals would be classified into the wrong clusters. For this reason, this was
not further considered.

It seems therefore that crack propagation into the wood is advantageous as the
crack has a higher number of obstacles (or obstacles that yield higher energy dis-
sipation) to overcome in order to propagate, hence generating AE signals. This
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1 mm

Fig.9 SEM image of the fracture surface of one PRF sample showing the different anatomical features
failing during the crack propagation—each feature with a possible distinct AE pattern

hypothesis corresponds to the results obtained by Clerc et al. (2019), where in
quasi-static 4-ENF Mode II tests PRF samples had typically a slower crack propa-
gation compared to the HB 110 adhesive, which itself had a slower crack propa-
gation than the VN 3158 adhesive.

For further adhesive development, an optimal adhesive system would need
to have a low MOE for absorbing the damages, but a high cohesive and adhesive
strength so that the easiest growth path for the crack is in the wood. It is, however,
questionable whether it is possible to obtain an adhesive with a low MOE and a high
cohesive/adhesive strength as generally a highly cross-linked polymer has a high
MOE and a high cohesive/adhesive strength due to the greater number of links avail-
able for bonding with the adherent.

During shear loading, the main causes of rupture in the wood are probably asso-
ciated with interwall (middle lamella) cracks (Fig. 9). The average weighted peak
frequency of cluster 1 of both adhesives is around 200-250 kHz, which corresponds
approximatively to cluster A presented by Baensch et al. (2015a). Vergeynst et al.
(2014) have shown, by using FEM modeling of signal propagation in wood, that
the brittle rupture phenomenon will generate signals with a higher WFP, whereas
the ductile rupture phenomenon will result in signals with a lower WFP. It should,
however, be added that, even though the speed of the mechanism leads to a shorter
or longer rise time of the source (voltage/load build-up), this will influence the rise
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time of the signals, but also the frequency spectrum. The higher-frequency compo-
nents of the signals will be more attenuated in the material than low-frequency com-
ponents. Therefore, this will also depend on the source—sensor distance and its mate-
rial properties. With an average WFP of ~600 kHz, the signals of cluster B found
by Baensch et al. (2015a) have a much higher WFP than the signals obtained in the
present study. This could be due to the more brittle rupture of the wood obtained
under tension loading and/or to different rupture phenomena occurring between
softwood (spruce in the case of Baensch et al. 2015b) and hardwood in the present
study. Cluster B in Baensch et al. (2015b) was associated with the transversal cell
wall cracks in the RT plane, a type of rupture which was not observed on the tested
samples. As shown in Fig. 9, the main type of wood rupture was interwall/cell wall
cracks in the LT/LR plane. This confirms the results obtained by Ando et al. (2006),
where under shear loading, mainly interwall (middle lamella) failure of wood was
observed.

One further point to discuss is that the present analysis was specifically con-
ducted on samples tested under quasi-static loading. AE measurements were also
taken on samples tested under cyclic loading but were not analyzed as the signal/
noise ratio was too high for dedicated AE analysis. Further, as noted by Clerc et al.
(2019), cyclic loaded PRF samples had a lower wood fracture percentage as typi-
cally observed under quasi-static loading. However, the average wood fracture of
these samples remains higher than for 1C-PUR-bonded samples. It can therefore be
assumed that the presented hypotheses are still valid (but probably to a lesser extent)
in case of cyclic fracture loading. Nevertheless, this should be confirmed with addi-
tional tests.

Conclusion

For both adhesive systems, PUR and PREF, it was possible to show that the AE sig-
nals associated with cluster 1 correspond to wood fracture. The proposed method of
associating fractography with acoustic emission allows estimating even a very small
percentage of wood failure through a higher resolution of the cracked surfaces. The
following points can be summarized:

e Two types of clusters could be identified for two different types of adhesive;
these clusters seem to correspond to different failure mechanisms in the bond
line, cluster 2 being associated with crack propagation in the interface and clus-
ter 1 being associated with crack propagation in the wood layer near the inter-
face.

e By using fractography, it was shown that the size and number of pixel groups
associated with wood failure reflect the number of signals corresponding to clus-
ter 1 for the adhesive HB 110.

e [t was shown for the adhesive PRF that the number of signals associated with
cluster 1 is increasing with the test duration. Comparing the fracture surface, it
was shown that the crack is starting from an adhesive failure type and propagates
into the wood, hence reflecting the signal classification into cluster 1.
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The presented results suggest that the addition of short fibers (<1 mm) in an
adhesive helps slowing down the crack propagation. The addition of fibers in the
adhesive may, however, be limited for practical reasons (viscosity too high, agglom-
eration of fibers and difficulty in obtaining a uniform application). In addition, it
seems that the wood structure is more efficient in slowing the crack than the modi-
fied 1C-PUR adhesive. Further research on adhesive development should focus on
obtaining a transition of the fracture surface away from the interface into the wood
to improve the crack propagation resistance of relatively ductile wood adhesives.
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