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3.1 Introduction

With several hundred hours of naturalistic, in-the-wild videos and music being 
uploaded to the web per minute and millions of short texts being uploaded every day 
on social media, the big data era brings a plethora of opportunities yet also challenges 
to the field of multimedia mining. A modern multimedia mining system needs to be 
able to handle large databases with varying formats at extreme speeds. These three 
attributes, volume, velocity and variety, together define big data primarily. After a 
general introduction to the topic highlighting the big data challenges in terms of the 
three named Vs, we give an insight into traditional techniques and deep learning 
methodologies to cope with the scalability challenges in all these three respects. The 
inherent qualities of the data driven deep learning approach -  which make it a promis­
ing candidate in terms of scalability -  are then discussed in detail, along with a brief 
introduction to its constituent components and different state-of-the-art architectures. 
To give some insight into the actual effectiveness of the deep learning method for 
feature extraction, we present the latest original research results of a showcase big data 
multimedia mining task by evaluating the pretrained CNN-based feature extraction 
through process parallelization, providing insight into the effectiveness and high 
capability of the proposed approach.

The internet and smart devices today, coupled with social media and e-commerce 
avenues, have made data abundant, ubiquitous and far more valuable. No matter 
what activity one is involved in at any time of the day, whether watching TV, jogging 
or just stuck in traffic, each activity can create a digital trace. The upsurge in social 
media users (e.g., Facebook, YouTube, and Twitter), with increasingly diverse, huge 
amounts of content uploaded every second continuously from all over the world, has 
made multimedia big data far more relevant than ever before. This includes a huge 
variety of photographs, sketches, home videos, music content, live video streams, 
news bulletins, product reviews, reviews of local businesses and tourist places, tweets
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and posts with one’s political or social views, movies, gameplays, and podcasts, to name 
just a few. Organizations today, from industries to political parties, rely on such data 
to get the low-down on current trends and assess their future strategies [1]. All sorts 
of users can benefit from big data multimedia mining for all kinds of novel services.

All this data comes from a vast number of sources all the time from across the globe. 
Data analysis and feature extraction methods need to cope with these astounding rates 
and quantities of data streams. Data-mining tools first need to translate the data into a 
native representation that can be worked on, then into a meaningful representation that 
can effectively be handled for further data-mining and querying, which, in most cases, 
is in the form of feature vectors. The feature extraction or data abstraction encapsulates 
the essential information in a compact form suitable for certain tasks. Because what 
qualifies as "suitable” or “essential” can vary from task to task, this feature extraction step 
is often governed by typicality of the data-mining queries subject to the data modality. 
More often than not, therefore, the tools also need to compute feature transformations 
that enhance their usability by improving the discriminative and predictive scope.

Just as the term implies, one of the most defining characteristics of multimedia big 
data is the enormous volume of data in terms of both the feature dimensions and the 
number of instances. This defining quality, and thus availability of such a quantity 
of data, becomes a game changer for businesses and mining such data through a net­
work effect. As the number of instances or the number of features go up, however, it can 
become exponentially harder to make predictions with the same level of accuracy. This 
is one of the most commonly encountered problem in the machine learning literature, 
called the curse o f dimensionality. For example, the popular distance measures used 
to better understand data, such as the Euclidean distance, fail when the dimensionality 
of the data is too large. This is because with too many co-ordinates in use there is (only) 
a little difference in the distances between different pairs of data samples. Irrelevant 
feature dimensions further add to the unreliability of this similarity or the distance 
measure, as each individual dimension affects the distance computation directly. 
Ironically, even the thousands of instances existing in 100-dimensional space is very 
sparse data. The dataset may appear like a bunch of random points in space with no 
specific underlying pattern. To have any better prediction capability, one will likely need 
millions of instances, thanks to the high dimensionality of the feature vectors (100s 
in this case). A high volume of data also necessitates higher processing memory and 
storage capabilities.

Also, as discussed earlier, the tools first need to translate the data into native 
representation, and then into its abstraction as the features, before any querying or 
data-mining can even begin [2]. Storing the data as native representation itself requires 
some non-zero time. In view of the enormous velocity of the data streams as discussed 
previously, while it is unreasonable to expect to finish even the storing of data, fast 
processing and encapsulation become rather a necessity in the multimedia big data 
context. In benchmarking studies on big data, therefore, computation time is often 
the prime performance measure.

The ubiquity of data generators presents us with another challenge. Because the data is 
gathered from a huge range of devices and sources, and features a rich diversity in terms 
of multimedia formats, also in part due to manifold different multimedia codecs in use 
these days, it is often an alphabet soup of data with a variety of file formats and hierar­
chical structures. This is especially true for multimedia data where it also features mul­
titudes of modalities such as images, videos, audios, documents, tweets, binary system
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logs, graphs, maps, overlaid live traffic or weather data and so on. Affordable new tech­
nology devices, such as Kinect, continue to introduce new modalities of data. More 
specifically, in the case of Kinect-like devices with 3D sensing technology, the data also 
consists of 3D point clusters, varying in space and in time [3].

In summary, all machine learning approaches rely heavily on the features that 
represent the data. A scalable data-mining approach thus requires that all of its 
different components are able to handle huge volume, velocity, and variety in the data 
(Figure 3.1) -  right from the feature extraction step.

In section 3.2, we first discuss the common strategies adopted to make data-mining 
scalable in terms of volume and velocity, when the variety of the data has been duly 
considered, i.e., when the framework to represent the data in a consistent form is 
in place just as necessary. Next, in section 3.3, we discuss “scalability through feature 
engineering” which is just the process of intelligently picking the most relevant features 
going by the data modality and common queries. We also discuss the popular feature 
transformation methodologies and the contexts in which each of those are ideal. This 
becomes highly relevant for model-based approaches in particular, where the queries 
are attended to using explicit heuristics on the features. Section 3.4 introduces an 
implicit feature and representation learning paradigm, also called the data-driven 
approach, of deep learning, where the most relevant features are implicitly learnt 
by establishing mapping between the inputs and outputs through nonlinear functions. 
We argue that the inherent qualities of this model make it a great candidate for highly 
scalable machine learning as well as a feature extraction paradigm. A few of these 
qualities are (i) high flexibility in terms of the number of simultaneous outputs and the 
variability in terms of what each can represent, (ii) the breadth of high-level concepts 
it can model, e.g., the temporal and spatial correlations along with the intertwined 
contexts, (iii) the high modularity and integrability of the models, (iv) the wide scope 
for innovation through mixing and matching of various model topologies and the 
constituent elements, (v) the scope for velocity scalability through parallelization of the 
recursive and repeated elements and functions in the model hierarchy, which are also 
its indispensable components, such as the activation functions and kernels. We also 
discuss the key elements, most common architectures, and state-of-the-art methods 
that have evolved through this mix-and-match approach. Keeping the uninitiated 
reader in mind, there are detailed graphical illustrations accompanying the text to help 
easy intuitive understanding. We present benchmarking experiments in section 3.5 
on testing; for the very first time, the runtimes of pretrained CNN-based feature
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extraction on audio data, with and without process parallelization, are presented. 
Finally, in section 3.6 we present our concluding remarks.

3.2 Scalability through Parallelization

Due to the high volume and velocity of the data, the main challenges posed by big (mul­
timedia) data are the data processing overheads and the added memory requirements. 
To meet these challenges, the data-mining approach needs to be highly scalable. The 
common strategies adapted for scalability fall into two categories: (i) improve the scala­
bility of the machine learning algorithm itself using, for example, kernel approximations, 
parallelization of the processes or the data, or a combination of all three methods, and 
(ii) reduce the dimensionality of the data by generating the most compact and useful data 
representation possible, alleviating formidable memory and processing requirements, 
also called feature engineering.

For the first approach, for example, one of the most widely used machine learning 
algorithm is the support vector machine (SVM). An SVM (Figure 3.2) separates different 
clusters in the data using hyperplanes (linear kernel), hypersurfaces (polynomial kernel), 
or hyperspheres (radial basis function kernel). Being such a popular classical approach, 
several implementations parallelising the SVM process chain have been proposed 
[4-8]. Scalable implementations of several other approaches also exist, e.g., the random 
forest [10,11] and or linear discriminant analysis [12,13].

There are two main ways in which parallelization is achieved (Figure 3.3). These two 
parallelization techniques, discussed next, could also be combined.

3.2.1 Process Parallelization

In this approach, an algorithm is split into different smaller tasks, and these tasks are 
divided among the computing machines for faster processing. This way, parts of the 
program are executed simultaneously on different processors, and the program takes 
much less time to finish.

3.2.2 Data Parallelization

In this approach, the data are split into different batches. These data batches are then sent 
to the different processing units available, all of which house the same set of execution

Figure 3.2 SVM kernels illustrated using web-based implementation of LibSVM [9].
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Figure 3.3 In the process parallelization scheme, a task is split into difference processes to be handled 
by different processing units simultaneously. In the data parallelization paradigm, the input data is 
split into different chunks or batches, each of which is handled by a separate processing unit 
independent of the other.

commands. This way, a large amount of data is processed simultaneously and sequential 
processing of the data is avoided. In the MapReduce programming model likewise, the 
data are divided into independent chunks which are processed by the mapping tasks 
simultaneously in a completely parallel manner. This is similar to data parallelism. These 
chunks then act as an input to the reducing tasks, whose prime job is to summarize the 
mapped information.

3.3 Scalability through Feature Engineering

Feature engineering attempts to reduce the dimensionality of the raw data through cus­
tomized feature computations or through feature transformations, e.g., handcrafted fea­
ture extraction, principal component analysis, or use of pretrained autoencoders for 
optimal data representation.

Depending on the type of the data, and knowing the typical queries for that modal­
ity of data, the best defining attributes or features are often extracted. As an example, 
for an image, detecting the edges or blobs (i.e., the regions that differ in properties, e.g., 
colour, compared to the surrounding regions) is often of great interest and helps identify 
objects in the image. Similarly, for an audio data, the energy and dominant frequency 
of the signal together translate to the perceived loudness, subject to the equal loudness 
contour. The frequency domain representation of the audio provides us with informa­
tion about the array of dominant frequencies, and consequently the formants and the 
harmonic structure. As for the speech signal, knowing the relative location of the for­
mants helps to estimate the vowel being spoken. For video sequences, optical flow is the 
feature of interest that helps the relative velocities of the objects in an image to be esti­
mated. Table 3.1 lists the most common handcrafted features particular to the common 
modalities of the data.
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Audio Image Video Text

Energy Edges Optical flow Tokenization
Mel frequency 
cepstral coefficients

Blobs Image and audio features 
per unit time step

Stemmed words

Formant locations Ridges Capitalization pattern
Zero crossing rate Corners Feature differences per 

unit time step
Stemmed words

Fundamental 
frequency

Interest points Corrected spellings

33.1 Feature Reduction through Spatial Transformations

This is done by decorrelating variables through matrix factorization (e.g., non-negative 
matrix factorization (NMF)), analysis of variances (e.g., principal component analysis 
(PCA) and linear discriminant analysis (LDA)). For example, PCA transforms observa­
tions of possibly correlated variables into a set of linearly uncorrelated variables called 
the principal components. Data is first transformed into a new co-ordinate system such 
that the greatest variance by some projection comes to lie on the first co-ordinate, 
the second greatest on the second and so on. In many cases, reconstruction using only 
the top few principal components is an accurate enough description of the data. PCA 
is purely statistical in nature, and it takes into account all of the data samples without 
discriminating between the classes the samples belong to. This approach is commonly 
known as the unsupervised approach. Certain other techniques use the supervised 
approach. These make use of the “class label” information identifying most discriminat­
ing attributes, in other words, the most useful features for classification tasks. LDA is 
one of these techniques. This method also relies on a linear transformation of the fea­
tures similar to PCA, but it attempts to compute the axes that maximize the separation 
between multiple classes, rather than maximizing the variance across all of the data 
samples. The difference between the two approaches can be visualized from Figure 3.4. 
However, PCA and LDA are primitive techniques, they are not as useful when it comes 
to feature reduction on massive amounts of data. Several methods for feature selection 
have now been implemented that are based on variance preservation or use SVM 
that are aimed at data-mining on large-scale data [14-16]. The open source toolkit 
openBliSSART was the first to bring non-negative matrix factorization to GPU [17].

33.2 Laplacian Matrix Representation

In the simplest terms, the motivation behind algorithms like spectral clustering 
approaches is to take into account the adjacencies of every data point with respect 
to the dataset as a whole, rather than merely computing the pairwise distances across 
the data. Figure 3.5 presents an example case where this can be particularly useful. 
The two data points A and B, belonging to the same cluster, are far away from each 
other. The pairwise distance of the point C from B is much smaller in comparison. Yet, 
intuitively speaking, it makes sense to assign the points A and B to the same cluster,
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LDA:
x2 Find axes maximizing the 

‘ separation between classes

Figure 3.4 Difference between PCA and LDA feature reduction techniques, reducing the feature 
vector dimensionality from 2 to 1 in the example above. PCA aims to find the axes along which 
the variance of the data is maximum. The corresponding transformation thus generates feature 
dimensions corresponding to linearly uncorrelated variables. PCA, however, does not take into account 
the class labels, so the variance maximization alone therefore may result in a non-ideal projection (axis 

orX '). LDA aims to find axes maximizing separation between the classes (axisX2 orX ').

and to bin the point C into another, looking at how the two data points A and B are 
related or “connected” through the other data points in the feature space.

To achieve this, first a Laplacian matrix (L) is built using the pairwise distances 
between the individual data points and Vj (called the adjacency matrix (A)) and the 
cluster they belong to (represented by the degree matrix (D))'.

L = D - A  (3.1)

or in the symmetric normalized form:

= I -  D ^ ,2 AD~X/2 (3.2)

The elements of L and are given by following equations:

deg(üj) if i = j
if i ± j  and u¡ is adjacent to 
otherwise

(3.3)

Figure 3.5 Spectral clustering takes into account data 
adjacencies in addition to the pairwise distances between 
the data points. The points A and B are far apart, but belong 
to the same class. They relate to each other through other 
data points in their close vicinity (adjacency) and the 
adjacencies of those data points in iteration. While the points 
B and C are much closer in terms of euclidean distance, 
the data adjacency consideration makes it clear that they do 
not belong to the same class.

*1
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if i = j
if i ;  and is adjacent to Vj

otherwise

(3.4)

The eigenvalues (/Q and eigenvectors (V,-) of the Laplacian matrix reduce the dimen­
sionality of the dataset, effectively representing the entire dataset. The eigenvalues, thus 
obtained, also tell us the number of “graphs” or the number of connected data instances 
in the dataset, in addition to how this eigenvector representation linearly sums up 
representing the data effectively. Parallelization of this process has been proposed [18], 
splitting the data with n entries to p  different machine nodes. Each node computes 
n /p  eigenvectors and eigenvalues as necessary through parallelization of the Arnoldi 
factorization, using PARPACK [19] (the parallel version of the popular eigensolver 
ARPACK [20]).

333  Parallel latent Dirichlet allocation and bag of words

The latent Dirichlet allocation and the bag of words approaches are very similar, 
where every “document” (this can be also a non-textual sequence of audio, video, or 
other data) is viewed as a mixture of “topics” each defined by a multinomial distri­
bution over a UZ-word vocabulary. The documents (or the data content) with similar 
distribution in terms of topics (feature vectors) are thus considered to be similar. 
The paper that first proposed this approach in 2003 [21] discusses the evolution 
of this approach from the classical tf-idf -based feature reduction technique, and its 
close relationship with other intermediate approaches in its evolution such as latent 
semantic indexing (LSI) and the probabilistic LSI model (also called the aspect model}. 
Interestingly enough, essentially the same model was independently proposed in the 
study of population genetics in 2000 [22, 23]. Bag of words feature representation 
has proved to be useful for machine learning tasks on multiple modalities of data, 
such as large-scale image mining [24], text data [25], audio [26], and videos [27]. A 
scalable implementation of this approach was proposed in 2011 [28] through both 
data and process parallelization, building on some of the previous work in this domain 
[29, 30]. Recently, our group released an open-source toolkit, called openXBOW, 
that can be easily interfaced with multiple data modalities to generate a summarized 
crossmodal bag of words representation [31] (Figure 3.6).

3.4 Deep Learning-Based Feature Learning

To make sense of the data, traditional machine learning approaches (including the 
ones listed above) rely heavily on the representation of the available data in the 
appropriate feature space. The feature extraction step therefore needs to address 
extraction of all and only the most relevant features given the machine learning task 
at hand. The redundant features simply add to the dimensionality of the feature vectors 
unnecessarily, which severely affects their discriminating power. For example, given 
a speech sample, the feature sets necessary for automatic speech recognition (ASR),
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Figure 3.6 Bag of words approach. When the size of the moving window matches the size of the 
incoming input (or the document) itself, i.e., when the entire incoming input is represented in terms 
of the counts of the types of features (or the words) it exhibits, the approach closely resembles 
the latent Dirichlet allocation representation.

speaker/gender identification, and emotion recognition are not identical. While speaker 
identification is often solved by extraction of the universal background model (UBM) 
and i-vectors, the statistics associated with fundamental frequency (FQ) are popular for 
gender identification. The more complex paralinguistic tasks might entail extraction of 
thousands of features [32-35].

Interestingly enough, a new approach to feature extraction has evolved that attempts 
to learn what features are most useful when given a task. This is called the deep learning 
approach, and it uses a network of cells similar to neurons in the brain. In addition to big 
data, this deep learning has also been a buzzword in both the commercial world and the 
research community in recent times. The beauty of the deep learning approach is that 
it abstractifies the feature extraction step as part of the training phase itself. Depending 
on the task at hand, this artificial neural network-based model attempts to reorient the 
intermediate computations (also therefore the “features” in the abstract sense) to best 
map the given inputs to the single or array of desired outputs.
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3.4.1 Adaptability that Conquers both Volume and Velocity

At the heart of any deep learning architecture is a biology-inspired artificial neural 
network model with interconnected groups of nodes, akin to neurons in the brain 
as discussed previously. In its simplest form, the nodes are organized in the form 
of layers (Figure 3.7), passing on the individual outputs from the input layer to the 
final output layer. Each node applies a predefined mathematical transformation to the 
weighted sum of its inputs to generate an output, or the activation value. This activation 
in turn acts as an input for the next set of nodes the given node is connected to. In its 
rudimentary form, therefore, each node is defined only by three types of parameters: 
(i) the nodes its inputs and outputs are connected to, (ii) the weights applied to these 
interconnections, and (iii) the activation function that converts the weighted inputs 
to the output value it generates. This most simplistic model is known as the multilayer 
perceptron model (MLP). The weights that map the inputs to the expected output 
values are learnt through iterations, by attempting to minimize the difference between 
the expected outputs and the computed outputs. This cost is mostly minimized using 
different versions of the gradient descent algorithm. The term deep refers to the 
number of layers that the network features. The higher the number of hidden layers, 
the more the degrees of freedom (weight coefficients) with which the model can 
perform mapping on large-scale data. While fairly simplistic, it has been theorized 
that the model can approximate any continuous function on compact subsets of R" 
(universal approximation theorem [36]) using only a single hidden layer with a finite 
number of neurons. Depending on the training strategy, the hyperparameters involved 
with the training process are the cost function, optimization algorithm, learning rate, 
dropout factor, and activation functions used.

Such great adaptability in mapping any inputs to outputs also entails that, given a 
very small set of inputs and outputs with the cost function, there likely are multiple pos­
sibilities for the “optimal” mapping. Thus, achieving the most generalizable and robust 
mapping necessitates also the use of a large number of training samples in order to avoid

Figure 3.7 The multilayer perceptron model. For every node, the output y is computed by applying a 
functional transformation a(a) to the weighted sum of its inputs, where weights are denoted by tv-, 
corresponding to input values x r

Computation at every node
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overfitting of the model to a very small set of instances. Also, because this training is 
done iteratively or incrementally, the training step inherently does not require the model 
to know all of the feature space in its entirety at once. This is opposite to SVM-like 
algorithms, which often rely heavily on the data clusters present in the feature space 
when generating the discriminating hyp er-surfaces. Therefore, while large-scale data is 
often a problem due to the memory and computation bandwidth available, it is often 
looked on as the great advantage when it comes to the neural network-based models. 
These models can also afford to split the data into smaller chunks without compromis­
ing as much on the generalization of the mapping, and thus deal more easily with the 
volume issue.

As we will see later, the deep learning model can handle the variety of data modalities, 
and can take into account higher concepts such as time and the temporal correlations. 
Therefore, it is possible to feed in not only scalar values of the data to the input nodes, 
but also the the streams of scalars (i.e., feature vectors), streams of feature vectors (i.e., 
feature matrices), and streams of feature matrices, and so on. This hierarchical math­
ematically generalizing structure is formally known as a tensor, where scalars, vectors, 
and matrices are tensors of rank 0, 1, 2 and so on. The uniqueness of the deep learn­
ing approach is that it is perhaps the only approach to date that can work with tensors 
of rank higher than 2 as its inputs.

Because these models can easily reorient and adapt to incoming inputs, they can 
be used in online systems that are continuously fed with large streams of data in real 
time. Big data velocities are way too stupendous for even the storage systems to catch 
up in many cases; it is impractical to expect the machine learning algorithms to fin­
ish data processing before the next samples show up. Because the incoming input gets 
evaluated using the pretrained weight parameters with simple mathematical functions 
alone (without looking at the subspace of the dataset, or the decision trees, like in other 
algorithms), the feature-set extraction and the prediction task can be performed at a 
much faster rate. Also, because the implicit feature-set extraction and prediction are 
both mathematical functions involving repeated use of subfunctions, such as sigmoid or 
tanh on the matrices or tensors as their argument, advanced matrix manipulation tech­
niques and parallelization can in theory be applied for faster throughput. The developers 
of one of the most popular and influential toolkits today, called Tensorflow, have released 
a white paper recently which briefly mentions their plans on introducing just-in-time 
(JIT) compilations of the subgraphs [37].

The autoencoders present a special case of deep neural networks, where the output 
is identical to the input and therefore a different/compressed (or rarely also expanded) 
representation of the data is learnt intrinsically. Because the inputs always map 
to themselves, the intermediate layers (generally smaller in dimension compared to the 
input dimension in the case of a compression autoencoder) represent their compact 
or "noise-free” representation. To make the model (and consequently the reduced 
representation) more robust against the noise and spurious inputs, the network is 
often trained using original, clean input as its expected output, while feeding in the 
noisy version of the input to the network (Figure 3.8). This class of autoencoders is 
called denoizing autoencoders. Because they map inputs to themselves through mostly 
nonlinear transformations, they are often said to perform “implicit learning” of the 
data. Such compressed encoding of the input is often referred as the “bottleneck” 
representation. The autoencoders can be hierarchically stacked by making the encoded
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Figure 3.8 The autoencoder (compression encoder). The hidden layers represent the essence of the 
data provided, a meaningful compact representation of the inputs, also called the "bottleneck" 
representation.

representation run through a compressing autoencoder, implicitly learning the encoded 
representation. This approach has been useful in domain-adaptive sentiment recogni­
tion from speech [38], content-based image retrieval [39], estimating visual tracking 
for videos [40], paraphrase detection in texts [41], and a myriad of further tasks.

3.4.2 Convolutional Neural Networks

While the simple neural networks manage to map inputs to their outputs, such a 
network often features a fully connected graph (albeit not in both directions), which 
completely misses out on important dependencies or relationships between the node 
groups. To perform an image recognition task, for example, a simplistic MLP model 
might use a flattened single dimensional array generated from 2D pixel values, without 
any anticipatory consideration for the spatial relationships existing in the data. We 
know from experience, however, that the edges in an image are often defined by the dif­
ferences and deviations between the intensities of the neighbouring pixels. Their spatial 
relationships define how slanted the edges are with respect to the horizontal or vertical 
axes. It makes sense to assign high magnitude weights (irrespective of the sign) to the 
neighbouring pixels rather than those very far away. A carefully weighted sum of the 
pixel values, with weights that represent a certain preselected edge orientation (called 
the receptive field kernel), tells us whether or not the pixel neighbourhood features a 
preselected image pattern, e.g., an edge, or a blob (Figure 3.9). High correlation between 
the pixel neighbourhood and the receptive field translates to a high activation value. 
Different receptive fields moving across the image through fixed steps (called strides) 
in both dimensions can effectively localize different edges and patterns in the image. 
Understanding of the spatial relationships between these patterns, and consequently 
localization of the high and low activation values, effectively translates to nothing but 
an object recognition task itself. Typically, the “pooling layers” are also introduced 
in between the layers. The pooling layers reduce the dimensionality of the input matrix 
size, while preserving the salient information obtained in the earlier computations
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Figure 3.9 In a convolution operation, the receptive field kernel (size: 3 x  3) is multiplied 
element-wise with the subset of a pixel matrix of the same size, and these weighted values are 
summed together to compute the activation value. A max pooling operation reduces 
the dimensionality by computing the maximum value in the kernel of a given size (size: 2 x  2).

through a non-linear transformation, such as a summing or a maximizing function. The 
typical example of a pooling layer is the max pooling layer that applies a max operation 
for the stated kernel or window. Figure 3.9 features a max pooling layer of a size 2 x 2  
kernel and a convolution kernel of size 3 X 3 for illustration purposes. The feature repre­
sentation in the form of activations by the first few convolutional layers often translates 
to the likelihood of certain pixel patterns being present in the image. This, in some 
sense, is similar to the bag of words approach. The spatial correlation between these 
patterns (captured using the convolutional kernel) translates to detection of higher 
order patterns. Because these weights get trained, this allows for much more complex 
mappings and feature manipulations beyond the standard bag of words approach.

3.4.3 Recurrent Neural Networks

The simple multilayer perceptron model fails to take into account time-related depen­
dencies and relationships existing in the data, which is of utmost importance when it 
comes to usual multimedia data that is of a sequential form, e.g., an audio clip, frames 
of a video, or even textual data. In these cases, the expected output is dependent not 
only on the current input, but also on the sequence of preceding and potentially fol­
lowing inputs. To model this kind of relationship, the outputs of the hidden layer are 
often connected back to its own input. In this way, each node in the layer computes a 
weighted sum of its inputs coming from a previous layer and the last output it generated. 
The inputs from the previous time step, therefore, also affect the activation computation 
in the current step. In a bidirectional architecture, the future observations are also used.

Such a network that uses simple perceptrons as its nodes, computing mere non-linear 
transformation of the weighted inputs, fails to model long-term dependencies. To 
provide the network with the desired capability, alternate topologies for the nodes



74 Big Data Analytics for Large-Scale Multimedia Search

Output layer

Hidden layer

Input layer

unfold

Recurrent neural network unfolded

©Multiplication ©Addition ©  Subtract from 1 Apply function f Multiply by weight A

Figure 3.10 Ina recurrent neural network, output from a node is fed back to itself to make the past 
inputs affect the outputs at the next time step. A simple perceptron, however, fails to capture 
the long-term dependencies. The modified cells with internal memory state (e.g., LSTM and GRU cells) 
are used to alleviate this problem.

were proposed which feature an internal memory state. The different node topologies 
only differ in the way this internal memory state is calculated, and the way this state 
is used to compute the outputs in the current and the next time steps. Figure 3.10 
illustrates two of the most popular topologies in use today, namely long short-term 
memory (LSTM) cells and gated recurrent unit (GRU) cells. By mapping the temporal 
relationship of the samples in the sequential data with respect to one another, and also 
with the respect to the sequential (or the summarized static) output values through 
reiteration and re-usage of the mapping functions, we get the more compact and most 
essential representation of the input sequence in terms of far fewer parameters when 
using recurrent neural networks. The open source toolkit CURRENNT was the first 
one to have GPU implementation of the bidirectional LSTM (BLSTM) [42].

3.4.4 Modular Approach to Scalability

The deep learning approach is characteristically modular and therefore multiplicatively 
scalable. One can mix and match different numbers and types of layers (e.g., fully con­
nected, convolutional, recurrent, max pooling) with different numbers and types of 
nodes in each layer (e.g., perceptron, LSTM cell, GRU cell) with different activation 
functions (e.g., sigmoid, tanh, linear) with a variety of interconnections (densely con­
nected, sparsely connected neural network), also deciding how the output relates to the 
inputs (single or multiple class labels, single or multiple regression values, or simply 
de-noised inputs) when training the network. This presents a multitude of possibilities 
in terms of the network architecture itself, and what all it can possibly model. Depending 
on how complex the problem is, and/or how sparse the data are, and what higher level
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concepts and context it should model, the hyper-parameters such as the type of network 
elements, governing equations, and quantity of layers and nodes can be determined and 
experimented with.

Such an approach has opened up a plethora of opportunities for research in compact 
data representation and understanding. It has spawned several new interesting 
architectures and findings by blending ideas from different basic topologies discussed 
earlier and coming up with innovative architectures. Because in sequential data the 
outputs and inputs are temporally correlated, some of the early publications on LSTMs 
made use of inputs from the future time steps to compute the output at the current time 
step. This gave rise to BLSTMs, which is popular today. These have been especially useful 
in helping computing systems better understand sequential media such as speech, for 
tasks such as speech overlap detection, language, and acoustic modeling [43,44]. Some 
of the recent publications propose network architectures in which the convolutional 
neural networks model the sequential data through what are called convolutional recur- 
rent neural networks [45-48]. Some have also attempted compact representation of 
the sequential data using recurrent autoencoders [49]. A variant of such autoencoders, 
called variational autoencoders, employ a special kind of cost function that forces 
the bottleneck representation to be as close as possible to a Gaussian distribution 
[50]. Recently, drawing inspiration from their earlier work on image generation, called 
PixelCNN [51], researchers from DeepMind came up with a generative model for 
speech synthesis called Wav eNet, using what they called causal convolutional layers 
[52]. Through training using real-life examples, the network is able to generate samples 
which when put together resemble natural speech. Because one can also have generative 
models beyond the predicitive ones, using deep learning networks, recently researchers 
mixed the two, generating an interesting unsupervised machine learning model called 
generative adversarial networks (GANs) [53]. In this approach, the two networks, one 
generative and the other predictive, compete against each another in a zero-sum game 
framework. The basic idea is that the generative network is trained to generate synthe­
sized data instances using the training instances from a latent variable space, while the 
predictive network is simultaneously trained to differentiate between the synthesized 
instances from the true instances. At the other end of the spectrum, in terms of their 
simplicity, are extreme learning machines (ELMs) in which the inputs to hidden layer 
weights are randomly assigned and are never updated [54]. In ELMs, only the hidden 
layer to output mapping is learnt through iterations. ELM training thus becomes essen­
tially a linear learning problem [55], significantly reducing the computational burden. 
While controversial [56-58], these simplistic models seem to work on complex tasks 
such as hand-written character recognition [59] or excitation localization for the snore 
sounds [60], Another variant of neural networks, called the residual network, makes use 
of “shortcut connections” to skip over a few layers to feed the signal to the desired layer 
for summation. Thus, instead of directly training the network for the mappings desired 
(say, [H(x)]), the residual network instead is trained to learn the mapping between the 
input and the desired output that is offset by the input itself (i.e., [H(x} — x]). This mod­
ification in the topology has been shown to alleviate the problem of degradation, which 
is the saturation in accuracy with an increase in the number of layers or the depth of a 
network [61].
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3.5 Benchmark Studies

The deep learning approach can effectively and intelligently process various kinds of 
data. As discussed, it can easily be customized to account for temporal dependencies 
and the contexts, which that are both intrinsic and vital when it comes to the sequen­
tial data, e.g., raw audio clippings, tweets, and news articles. One can also process spatial 
information, e.g., photographs, plots, and maps. Even data where the spatial and sequen­
tial contexts are highly intertwined, e.g., videos, console games, and live traffic maps, 
can be dealt with effectively using deep learning approaches through little adaptations 
in the network and the cells in use. The data can therefore be used in almost its original 
form (called end-to-end learning), without having to introduce any customized feature 
extraction step. The classical approach requires every data sample to be represented in 
feature vector form, and overall data as a 2D matrix (i.e., a rank 2 tensor). Because the 
neural network based models can handle higher level concepts (such as the time) effec­
tively, the data is often represented as a tensor of rank even greater than 2. By extension 
therefore, the data learning process is inherently scalable, not only in terms of the num­
ber of features in use or the number of samples, but also the modalities and rank of the 
tensor it can handle at any given time. We discuss previous benchmarking studies on 
deep learning in this section.

Due to its huge potential and the consequent drive from both the industry and the 
research community, there is now huge growth in the number of deep learning toolkits 
available. Some of these were once the in-house frameworks for industry giants like 
Google. The most popular frameworks are Caffe, 2018, CURRENNT [42], Microsoft 
Cognitive Toolkit [62], Tensorflow [37], Theano [63], and Torch [64]. Some of these, 
like Keras [65], come with an API capable of running on top of other frameworks, e.g., 
Theano and Tensorflow.

Benchmark comparisons between these deep learning frameworks have been con­
ducted in the past. The computational performance of the single framework depends 
highly on the available hardware architecture. One of the most critical parameters is the 
type of processors in use, i.e., whether central processing units (CPUs) or the graphics 
processing units (GPUs), or, in the near future, neuromorphic processing units (NPUs). 
The latter provide a much larger degree of parallelization and are therefore suitable for 
training deep neural networks. As the actual performance also depends on the employed 
version of the corresponding software tools and new frameworks are published on 
a regular basis, the reader is referred to online resources to catch up on the latest 
benchmarks.

Whereas these deep learning frameworks are well-studied in terms of their 
performance in machine learning tasks of all kinds, this is not the case for the 
feature-extraction step. In the following sections, we provide experiments and results 
for feature extraction via deep learning. For our benchmarking studies, we run feature 
extraction on the audio data using pretrained convolutional neural networks.

3.5.1 Dataset

We use the TU T Acoustic Scenes 2017 dataset, currently in use for the DCASE2017 
Acoustic scene classification challenge, that was recorded in Finland by Tampere 
University of Technology. The dataset consists of 4680 samples recorded in 15 acoustic
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scenes such as the forest, library, metro station, and restaurant indoors. At each 
recording location, a 3-5 minute high-quality audio was captured which was then 
split into 10-second segments. Each audio clip was recorded using 44.1 kHz sampling 
rate and 24 bit resolution. While this is by no means big data, we upsampled the data 
through repetition to a high data volume to showcase the principles.

3.5.2 Spectrogram Creation

When it comes to working with audio data, the dynamics in the frequency domain 
are often a good indicator. Therefore, features based on the frequency domain rep­
resentation of the audio signal are almost always extracted for any machine learning 
tasks, e.g., Mel-frequency cepstral coefficients (MFCC), formant locations, or funda­
mental frequency (Fo). A varying spectrum of signal over time is often represented using 
a spectrogram, computed using short-time Fourier transform (STFT) or the wavelet 
transform. The horizontal axis represents time, the vertical axis represents frequency, 
and the magnitude or intensity of the continuous-time complex exponential of a partic­
ular frequency at a particular time is represented by the color or intensity of the point at 
that location. As long as one chooses the ‘right’ frame and hop size, taking into account 
the time frequency uncertainty principle for a given task, the spectrogram representa­
tion captures all of the quintessential information necessary. Instead of the raw audio 
therefore, we used the spectrogram representation as our input in this example. Sum­
marizing, we translated the audio inputs into a format that can be best processed by the 
pretrained CNNs we aim to use.

Based on our previous experiments [66], we used the Hanning window of size 256 
samples and traversed the audio data with a hop of 128 samples. We computed the power 
spectral density in decibels using the Python package numpy [67] and spectrogram rep­
resentation using the matplotlib [68] package, in the perceptually uniform sequential 
colour mapping called Viridis. Viridis uses blue to represent the low-range values, and 
green and yellow for the mid-range and high-range values, respectively. As in our pre­
vious experiments, we got rid of the axes and the margins presenting redundant infor­
mation that was common across all images by cropping programmatically. The original 
spectrogram images were then 387 X 387 pixels, which we rescaled to 227 X 227 pixels 
and 224 x 224 pixels, to comply with the AlexNet and VGG19 requirements, respec­
tively. Figure 3.11 contains a few of the spectrograms we generated through this process 
from audios from four different classes. As can be seen, the spectrograms differ a lot 
visually, so much so that some clear distinctions can be made even with the human eye. 
The CNNs pretrained for image classification tasks in particular are, therefore, expected 
to perform well on this data, extracting the summarized feature representation with 
good discriminative scope.

3.5.3 CNN-Based Feature Extraction

Instead of explicitly computing the higher level audio features, e.g., Fo and MFCC, 
through a dedicated feature extractor, we fed the spectrograms to pretrained CNNs 
that have been proven to work in image classification tasks. More specifically, we 
extracted the features using the pretrained AlexNet and VGG19 CNN (see chapter 1, 
Refs. 11, 23). The AlexNet was trained using ImageNet data, which featured more than
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Figure 3.11 Overview of the system with CNN-based feature extraction through parallelization 
among GPU cores. In the example, spectrograms are generated from the audio data and plotted using 
the Python matplotlib package. The preprocessed plots are used as an input to the pretrained CNNs. 
The activations of fully connected layers are then extracted as large deep spectrum feature vectors, 
using the Caffe framework. The overall task is split into several processes and is handled by four GPU 
cores. Another thread writes the feature vectors into an output file.

15 million annotated everyday images from over 22 thousand categories, and we tested 
efficacy of this network in classifying spectrograms likewise [66, 69].

Both AlexNet and VGGNet provide us with 4096 features per spectrogram. This is 
huge data compression in itself, considering that every audio clip consists of close to 4 
million data points (44 100 Hz X 10 seconds), and the sequential structure of the data 
points is also very critical. While such compression necessitates spectrogram generation 
first, this intermediate step is not a severe bottleneck.

3.5.4 Structure of the CNNs

Both AlexNet and VGG19 use a combination of convolutional layers, max pooling, fully 
connected layers and rectified linear units as the activation functions (see chapter 1, 
ref. [26]). AlexNet consists of five convolutional layers, followed by three fully connected 
layers. Softmax is applied to the last layer to perform 1000-way classification. VGG19 
consists of 19 layers that are grouped in five stacks of convolutional layers with max 
pooling. Another key difference between the two networks is that VGG19 uses only 
3 x 3  kernels across all its convolutional layers, while AlexNet uses varying kernel sizes. 
Table 3.2 summarizes the two network architectures for comparison.
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Table 3.2 Overview of the architectures of the two CNNs used for the extraction of spectral features, 
AlexNet, and VGG19. ch stands for channels.

AlexNet 1 VGG19

Input = RGB image
size: 227 x 227 pixels size: 224x224 pixels

1 x Convolution 
size: 11; ch: 96; stride: 4

2 x Convolution 
size: 3; ch: 64; stride: 1

Max pooling
1 x Convolution 
size: 5; ch: 256

2 x Convolution 
size: 3; ch: 128

Max pooling

1 x Convolution 
size: 3; ch: 384

4 x Convolution 
size: 3; ch: 256

Max pooling

lx  Convolution 
size: 3; ch: 384

4x Convolution 
size: 3; ch: 512

Max pooling
1 x Convolution 
size: 3; ch: 256

4x Convolution 
size: 3; ch: 512

Max pooling
Fully connected FC6 layer, 4096 neurons
Fully connected FC7 layer, 4096 neurons

Fully connected 1000 neurons
Output = probabilities for 1000 object classes through softmax

Once the spectrogram plots are forwarded through the pretrained networks, 
the activations from the neurons on the first or second fully connected layers (called/c6 
and fc7) are extracted as the feature vectors. The resulting feature vector thus presents 
4096 attributes, one for every neuron in the CNN’s fully connected layer. These can 
then be passed on to either the traditional or deep learning techniques to perform 
automatic scene event classification, similar to previous studies on audio classification 
through spectrogram image classification [66, 69].

3.5.5 Process Parallelization

We use the Caffe framework to build the CNN models and for process paralleliza­
tion (see chapter 1, ref. [43]). We tested the run times without and with process 
parallelization (six processes). The GPU in use was a GeForce GTX Titan X (GPU 
clock rate: 1.06 GHz). The program run includes importing the audio data, creation 
and initialization of the pretrained convolutional neural network, generation of the 
cropped and resized spectrograms, forward pass computations through the pretrained 
network, and writing of the 4096 output features per audio input to an output csv 
file. The results are tabulated in Table 3.3. To measure the run time for experiments 
involving more samples than what we actually have, we upsampled through repetition
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the audio instances. Because we were interested in benchmarking for feature extraction 
process, and how it scales with process parallelization, we did not run an evaluation of 
the fully connected classifier section of the network outputting class probabilities (and 
thus, we do not present accuracy results), avoiding additional process overhead.

3.5.6 Results

VGG19 has a higher number of layers compared to AlexNet (i.e., 19 compared to 8). 
Just as expected, therefore, it takes longer to finish VGG19-based feature extraction, as 
can be observed from Table 3.3 and Figure 3.12. Because there is a higher number of 
processes, speed up due to process parallelization is more visible for VGG19 than for 
AlexNet. On average, the feature extraction process is twice as fast for AlexNet with six 
processes run in parallel, while it is 2.6 times as fast for VGG19. Without paralleliza­
tion, the degradation in data processing rate (average number of samples processed 
per second) is a lot more severe, dropping from almost 9 samples/second to about 5 
samples/second. With parallelization, however, data processing rates are not as badly 
affected with a higher number of samples. With a very high number of samples, this gain 
also translates to huge savings in the total computation time. The run times stated here 
are for the parallelization of the algorithm where raw audio file to feature vector conver­
sion is done sample by sample in iteration. Feature extraction could be further expedited 
by implementing data parallelization, by splitting the data into different chunks, with 
each program run processing a separate batch of data in parallel.

We used our own tookit called auDeep for this study. It can be downloaded from the 
repository located at https://github.com/auDeep/auDeep/.

Table 3.3 Convolutional neural network speed up through process parallelization.

CNN
Number of 
samples

Runtime 
(seconds)

Average 
samples/second Speed up

Single 
process

Six 
Processes

Single 
process

Six 
Processes

AlexNet 500 55 27 9.09 18.52 2.04

1000 102 70 9.8 14.29 1.46

5 000 520 340 9.62 14.71 1.53

10 000 1684 692 5.94 14.45 2.43

25 000 4 424 1782 5.65 14.03 2.48

50 000 9 352 3 518 5.35 14.21 2.66

VGG19 500 91 37 5.49 13.51 2.46

1000 180 62 5.56 16.13 2.90

5 000 921 343 5.43 14.58 2.69

10 000 1919 725 5.21 13.79 2.65

25 000 4 900 2 218 5.10 11.27 2.21

50 000 10 203 3 646 4.90 13.71 2.80
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Figure 3.12 Convolutional neural network speed up through process parallelization (equal to that of 
Table 3.3).

3.6 Closing Remarks

Mining on big data multimedia content is a challenge in itself, mainly because of the 
three defining attributes of big data (volume, velocity and variety) and the multimodal 
nature of the multimedia. This makes it mandatory for the analytical tools to attain 
scalability in all three respects right from the feature extraction step. With limitations 
on how much hardware and software technology can scale through miniaturization 
and parallelization-like strategies, it comes down to inherent qualities of the competing 
data-mining methods as to which ones will survive the test of time.

The machine learning approaches rely heavily on the representation of the data in 
the feature space, with only the relevant discriminative features retrained and all of the 
redundant or irrelevant features removed. The redundant and irrelevant features are 
likely to meddle with the predictive ability of the model, adding to processing overheads. 
Unlike traditional methods, the deep learning approach is able to learn the most relevant 
features, or even the feature transforms implicitly, which makes it a promising candidate 
for scalability in terms of both volume and variety. Many traditional approaches do not 
take into account the sequential structure of the data (intrinsic to some of the multi­
media data, e.g., audio, live maps, videos) or the spatial relationships within the data 
structure (e.g., in images, plots). The deep learning approach can model temporal, spa­
tial, and intertwined correlations as useful features. In theory, it can also take in the data 
in its pure raw form, without an explicit feature extraction step. These factors put the 
approach at much greater advantage in terms of what concepts and relationships it can 
model, adding much more to its potential scalability in terms of variety. The inherent 
modularity of the approach only adds further to the scope for innovations through a 
mixing and matching approach, and the versatility of the models.
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In terms of velocity, the gain due to data and process parallelizations is significant, 
especially when the machine learning approach uses the same set of sub-functions iter­
atively at different hierarchical levels. For sub-functions with more involved computa­
tions, one can speed up the processing through hash-tables. Unfortunately, most tradi­
tional approaches do not feature such repeated use of functions, but are able to attain 
speed up in implementation through some intelligent approximations and assumptions, 
in terms of the matrix operations or the kernels in use, or through use of hash-tables 
for the most frequent computations. The deep learning approach, on the other hand, 
can make use of all these approaches, while also featuring repeated use of predefined 
element-wise matrix multiplications, summation operations, and activation functions 
like sigmoid, tanh, and the convolution kernels in iteration.

In the context of multimedia big data, we present the results by testing scalability of 
the pretrained CNN-based feature extraction, using our auDeep toolkit. We find that 
the results for the scalability in terms of velocity are promising, with a speed up factor 
that is almost always more than twice, thanks to process parallelization. The versatility 
of the deep learning framework is evidenced by the fact that we used CNNs pretrained 
on image classification tasks to obtain the deep spectrum features from the audio data, 
which have also proven to be useful for audio classification task in our earlier studies. We 
intend to achieve further speed up through data parallelization and just-in-time com­
pilation of the reused functions in our future experiments, reducing the computation 
times further by great margins.

Likewise, the current investment trends of the industry giants, the growth in big 
data, data economy, and the growing competition within the deep learning frameworks 
unequivocally imply deep learning is the future for big data analytics.
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