
Big Data Multimedia Mining: Feature Extraction Facing Volume,
Velocity, and Variety
Vedhas Pandit, Shahin Amiriparian, Maximilian Schmitt, Amr Mousa and
Björn Schuller

3.1 Introduction

With several hundred hours of naturalistic, in-the-wild videos and music being
uploaded to the web per minute and millions of short texts being uploaded every day
on social media, the big data era brings a plethora of opportunities yet also challenges
to the field of multimedia mining. A modern multimedia mining system needs to be
able to handle large databases with varying formats at extreme speeds. These three
attributes, volume, velocity and variety, together define big data primarily. After a
general introduction to the topic highlighting the big data challenges in terms of the
three named Vs, we give an insight into traditional techniques and deep learning
methodologies to cope with the scalability challenges in all these three respects. The
inherent qualities of the data driven deep learning approach - which make it a promis­
ing candidate in terms of scalability - are then discussed in detail, along with a brief
introduction to its constituent components and different state-of-the-art architectures.
To give some insight into the actual effectiveness of the deep learning method for
feature extraction, we present the latest original research results of a showcase big data
multimedia mining task by evaluating the pretrained CNN-based feature extraction
through process parallelization, providing insight into the effectiveness and high
capability of the proposed approach.

The internet and smart devices today, coupled with social media and e-commerce
avenues, have made data abundant, ubiquitous and far more valuable. No matter
what activity one is involved in at any time of the day, whether watching TV, jogging
or just stuck in traffic, each activity can create a digital trace. The upsurge in social
media users (e.g., Facebook, YouTube, and Twitter), with increasingly diverse, huge
amounts of content uploaded every second continuously from all over the world, has
made multimedia big data far more relevant than ever before. This includes a huge
variety of photographs, sketches, home videos, music content, live video streams,
news bulletins, product reviews, reviews of local businesses and tourist places, tweets

Big Data Analytics for Large-Scale Multimedia Search, First Edition.
Edited by Stefanos Vrochidis, Benoit Huet, Edward Y. Chang, and Ioannis Kompatsiaris.
© 2019 John Wiley & Sons Ltd. Published 2019 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/vrochidis/bigdata

62 | Big Data Analytics for Large-Scale Multimedia Search

and posts with one’s political or social views, movies, gameplays, and podcasts, to name
just a few. Organizations today, from industries to political parties, rely on such data
to get the low-down on current trends and assess their future strategies [1]. All sorts
of users can benefit from big data multimedia mining for all kinds of novel services.

All this data comes from a vast number of sources all the time from across the globe.
Data analysis and feature extraction methods need to cope with these astounding rates
and quantities of data streams. Data-mining tools first need to translate the data into a
native representation that can be worked on, then into a meaningful representation that
can effectively be handled for further data-mining and querying, which, in most cases,
is in the form of feature vectors. The feature extraction or data abstraction encapsulates
the essential information in a compact form suitable for certain tasks. Because what
qualifies as "suitable” or “essential” can vary from task to task, this feature extraction step
is often governed by typicality of the data-mining queries subject to the data modality.
More often than not, therefore, the tools also need to compute feature transformations
that enhance their usability by improving the discriminative and predictive scope.

Just as the term implies, one of the most defining characteristics of multimedia big
data is the enormous volume of data in terms of both the feature dimensions and the
number of instances. This defining quality, and thus availability of such a quantity
of data, becomes a game changer for businesses and mining such data through a net­
work effect. As the number of instances or the number of features go up, however, it can
become exponentially harder to make predictions with the same level of accuracy. This
is one of the most commonly encountered problem in the machine learning literature,
called the curse o f dimensionality. For example, the popular distance measures used
to better understand data, such as the Euclidean distance, fail when the dimensionality
of the data is too large. This is because with too many co-ordinates in use there is (only)
a little difference in the distances between different pairs of data samples. Irrelevant
feature dimensions further add to the unreliability of this similarity or the distance
measure, as each individual dimension affects the distance computation directly.
Ironically, even the thousands of instances existing in 100-dimensional space is very
sparse data. The dataset may appear like a bunch of random points in space with no
specific underlying pattern. To have any better prediction capability, one will likely need
millions of instances, thanks to the high dimensionality of the feature vectors (100s
in this case). A high volume of data also necessitates higher processing memory and
storage capabilities.

Also, as discussed earlier, the tools first need to translate the data into native
representation, and then into its abstraction as the features, before any querying or
data-mining can even begin [2]. Storing the data as native representation itself requires
some non-zero time. In view of the enormous velocity of the data streams as discussed
previously, while it is unreasonable to expect to finish even the storing of data, fast
processing and encapsulation become rather a necessity in the multimedia big data
context. In benchmarking studies on big data, therefore, computation time is often
the prime performance measure.

The ubiquity of data generators presents us with another challenge. Because the data is
gathered from a huge range of devices and sources, and features a rich diversity in terms
of multimedia formats, also in part due to manifold different multimedia codecs in use
these days, it is often an alphabet soup of data with a variety of file formats and hierar­
chical structures. This is especially true for multimedia data where it also features mul­
titudes of modalities such as images, videos, audios, documents, tweets, binary system

Figure 3.1 The Vs of big data. Volume

Big Data Multimedia Mining: Feature Extraction Facing Volume. Velocity, and Variety | 63

logs, graphs, maps, overlaid live traffic or weather data and so on. Affordable new tech­
nology devices, such as Kinect, continue to introduce new modalities of data. More
specifically, in the case of Kinect-like devices with 3D sensing technology, the data also
consists of 3D point clusters, varying in space and in time [3].

In summary, all machine learning approaches rely heavily on the features that
represent the data. A scalable data-mining approach thus requires that all of its
different components are able to handle huge volume, velocity, and variety in the data
(Figure 3.1) - right from the feature extraction step.

In section 3.2, we first discuss the common strategies adopted to make data-mining
scalable in terms of volume and velocity, when the variety of the data has been duly
considered, i.e., when the framework to represent the data in a consistent form is
in place just as necessary. Next, in section 3.3, we discuss “scalability through feature
engineering” which is just the process of intelligently picking the most relevant features
going by the data modality and common queries. We also discuss the popular feature
transformation methodologies and the contexts in which each of those are ideal. This
becomes highly relevant for model-based approaches in particular, where the queries
are attended to using explicit heuristics on the features. Section 3.4 introduces an
implicit feature and representation learning paradigm, also called the data-driven
approach, of deep learning, where the most relevant features are implicitly learnt
by establishing mapping between the inputs and outputs through nonlinear functions.
We argue that the inherent qualities of this model make it a great candidate for highly
scalable machine learning as well as a feature extraction paradigm. A few of these
qualities are (i) high flexibility in terms of the number of simultaneous outputs and the
variability in terms of what each can represent, (ii) the breadth of high-level concepts
it can model, e.g., the temporal and spatial correlations along with the intertwined
contexts, (iii) the high modularity and integrability of the models, (iv) the wide scope
for innovation through mixing and matching of various model topologies and the
constituent elements, (v) the scope for velocity scalability through parallelization of the
recursive and repeated elements and functions in the model hierarchy, which are also
its indispensable components, such as the activation functions and kernels. We also
discuss the key elements, most common architectures, and state-of-the-art methods
that have evolved through this mix-and-match approach. Keeping the uninitiated
reader in mind, there are detailed graphical illustrations accompanying the text to help
easy intuitive understanding. We present benchmarking experiments in section 3.5
on testing; for the very first time, the runtimes of pretrained CNN-based feature

64 J Big Data Analytics for Large-Scale Multimedia Search

extraction on audio data, with and without process parallelization, are presented.
Finally, in section 3.6 we present our concluding remarks.

3.2 Scalability through Parallelization

Due to the high volume and velocity of the data, the main challenges posed by big (mul­
timedia) data are the data processing overheads and the added memory requirements.
To meet these challenges, the data-mining approach needs to be highly scalable. The
common strategies adapted for scalability fall into two categories: (i) improve the scala­
bility of the machine learning algorithm itself using, for example, kernel approximations,
parallelization of the processes or the data, or a combination of all three methods, and
(ii) reduce the dimensionality of the data by generating the most compact and useful data
representation possible, alleviating formidable memory and processing requirements,
also called feature engineering.

For the first approach, for example, one of the most widely used machine learning
algorithm is the support vector machine (SVM). An SVM (Figure 3.2) separates different
clusters in the data using hyperplanes (linear kernel), hypersurfaces (polynomial kernel),
or hyperspheres (radial basis function kernel). Being such a popular classical approach,
several implementations parallelising the SVM process chain have been proposed
[4-8]. Scalable implementations of several other approaches also exist, e.g., the random
forest [10,11] and or linear discriminant analysis [12,13].

There are two main ways in which parallelization is achieved (Figure 3.3). These two
parallelization techniques, discussed next, could also be combined.

3.2.1 Process Parallelization

In this approach, an algorithm is split into different smaller tasks, and these tasks are
divided among the computing machines for faster processing. This way, parts of the
program are executed simultaneously on different processors, and the program takes
much less time to finish.

3.2.2 Data Parallelization

In this approach, the data are split into different batches. These data batches are then sent
to the different processing units available, all of which house the same set of execution

Figure 3.2 SVM kernels illustrated using web-based implementation of LibSVM [9].

Big Data Multimedia Mining: Feature Extraction Facing Volume, Velocity, and Variety 65

Figure 3.3 In the process parallelization scheme, a task is split into difference processes to be handled
by different processing units simultaneously. In the data parallelization paradigm, the input data is
split into different chunks or batches, each of which is handled by a separate processing unit
independent of the other.

commands. This way, a large amount of data is processed simultaneously and sequential
processing of the data is avoided. In the MapReduce programming model likewise, the
data are divided into independent chunks which are processed by the mapping tasks
simultaneously in a completely parallel manner. This is similar to data parallelism. These
chunks then act as an input to the reducing tasks, whose prime job is to summarize the
mapped information.

3.3 Scalability through Feature Engineering

Feature engineering attempts to reduce the dimensionality of the raw data through cus­
tomized feature computations or through feature transformations, e.g., handcrafted fea­
ture extraction, principal component analysis, or use of pretrained autoencoders for
optimal data representation.

Depending on the type of the data, and knowing the typical queries for that modal­
ity of data, the best defining attributes or features are often extracted. As an example,
for an image, detecting the edges or blobs (i.e., the regions that differ in properties, e.g.,
colour, compared to the surrounding regions) is often of great interest and helps identify
objects in the image. Similarly, for an audio data, the energy and dominant frequency
of the signal together translate to the perceived loudness, subject to the equal loudness
contour. The frequency domain representation of the audio provides us with informa­
tion about the array of dominant frequencies, and consequently the formants and the
harmonic structure. As for the speech signal, knowing the relative location of the for­
mants helps to estimate the vowel being spoken. For video sequences, optical flow is the
feature of interest that helps the relative velocities of the objects in an image to be esti­
mated. Table 3.1 lists the most common handcrafted features particular to the common
modalities of the data.

Table 3.1 Common handcrafted features.

66 J Big Data Analytics for Large-Scale Multimedia Search

Audio Image Video Text

Energy Edges Optical flow Tokenization
Mel frequency
cepstral coefficients

Blobs Image and audio features
per unit time step

Stemmed words

Formant locations Ridges Capitalization pattern
Zero crossing rate Corners Feature differences per

unit time step
Stemmed words

Fundamental
frequency

Interest points Corrected spellings

33.1 Feature Reduction through Spatial Transformations

This is done by decorrelating variables through matrix factorization (e.g., non-negative
matrix factorization (NMF)), analysis of variances (e.g., principal component analysis
(PCA) and linear discriminant analysis (LDA)). For example, PCA transforms observa­
tions of possibly correlated variables into a set of linearly uncorrelated variables called
the principal components. Data is first transformed into a new co-ordinate system such
that the greatest variance by some projection comes to lie on the first co-ordinate,
the second greatest on the second and so on. In many cases, reconstruction using only
the top few principal components is an accurate enough description of the data. PCA
is purely statistical in nature, and it takes into account all of the data samples without
discriminating between the classes the samples belong to. This approach is commonly
known as the unsupervised approach. Certain other techniques use the supervised
approach. These make use of the “class label” information identifying most discriminat­
ing attributes, in other words, the most useful features for classification tasks. LDA is
one of these techniques. This method also relies on a linear transformation of the fea­
tures similar to PCA, but it attempts to compute the axes that maximize the separation
between multiple classes, rather than maximizing the variance across all of the data
samples. The difference between the two approaches can be visualized from Figure 3.4.
However, PCA and LDA are primitive techniques, they are not as useful when it comes
to feature reduction on massive amounts of data. Several methods for feature selection
have now been implemented that are based on variance preservation or use SVM
that are aimed at data-mining on large-scale data [14-16]. The open source toolkit
openBliSSART was the first to bring non-negative matrix factorization to GPU [17].

33.2 Laplacian Matrix Representation

In the simplest terms, the motivation behind algorithms like spectral clustering
approaches is to take into account the adjacencies of every data point with respect
to the dataset as a whole, rather than merely computing the pairwise distances across
the data. Figure 3.5 presents an example case where this can be particularly useful.
The two data points A and B, belonging to the same cluster, are far away from each
other. The pairwise distance of the point C from B is much smaller in comparison. Yet,
intuitively speaking, it makes sense to assign the points A and B to the same cluster,

Big Data Multimedia Mining: Feature Extraction Facing Volume, Velocity, and Variety 67

LDA:
x2 Find axes maximizing the

‘ separation between classes

Figure 3.4 Difference between PCA and LDA feature reduction techniques, reducing the feature
vector dimensionality from 2 to 1 in the example above. PCA aims to find the axes along which
the variance of the data is maximum. The corresponding transformation thus generates feature
dimensions corresponding to linearly uncorrelated variables. PCA, however, does not take into account
the class labels, so the variance maximization alone therefore may result in a non-ideal projection (axis

orX '). LDA aims to find axes maximizing separation between the classes (axisX2 orX ').

and to bin the point C into another, looking at how the two data points A and B are
related or “connected” through the other data points in the feature space.

To achieve this, first a Laplacian matrix (L) is built using the pairwise distances
between the individual data points and Vj (called the adjacency matrix (A)) and the
cluster they belong to (represented by the degree matrix (D))'.

L = D - A (3.1)

or in the symmetric normalized form:

= I - D ^ ,2 AD~X/2 (3.2)

The elements of L and are given by following equations:

deg(üj) if i = j
if i ± j and u¡ is adjacent to
otherwise

(3.3)

Figure 3.5 Spectral clustering takes into account data
adjacencies in addition to the pairwise distances between
the data points. The points A and B are far apart, but belong
to the same class. They relate to each other through other
data points in their close vicinity (adjacency) and the
adjacencies of those data points in iteration. While the points
B and C are much closer in terms of euclidean distance,
the data adjacency consideration makes it clear that they do
not belong to the same class.

*1

68 I Big Data Analytics for Large-Scale Multimedia Search

if i = j
if i ; and is adjacent to Vj

otherwise

(3.4)

The eigenvalues (/Q and eigenvectors (V,-) of the Laplacian matrix reduce the dimen­
sionality of the dataset, effectively representing the entire dataset. The eigenvalues, thus
obtained, also tell us the number of “graphs” or the number of connected data instances
in the dataset, in addition to how this eigenvector representation linearly sums up
representing the data effectively. Parallelization of this process has been proposed [18],
splitting the data with n entries to p different machine nodes. Each node computes
n /p eigenvectors and eigenvalues as necessary through parallelization of the Arnoldi
factorization, using PARPACK [19] (the parallel version of the popular eigensolver
ARPACK [20]).

333 Parallel latent Dirichlet allocation and bag of words

The latent Dirichlet allocation and the bag of words approaches are very similar,
where every “document” (this can be also a non-textual sequence of audio, video, or
other data) is viewed as a mixture of “topics” each defined by a multinomial distri­
bution over a UZ-word vocabulary. The documents (or the data content) with similar
distribution in terms of topics (feature vectors) are thus considered to be similar.
The paper that first proposed this approach in 2003 [21] discusses the evolution
of this approach from the classical tf-idf -based feature reduction technique, and its
close relationship with other intermediate approaches in its evolution such as latent
semantic indexing (LSI) and the probabilistic LSI model (also called the aspect model}.
Interestingly enough, essentially the same model was independently proposed in the
study of population genetics in 2000 [22, 23]. Bag of words feature representation
has proved to be useful for machine learning tasks on multiple modalities of data,
such as large-scale image mining [24], text data [25], audio [26], and videos [27]. A
scalable implementation of this approach was proposed in 2011 [28] through both
data and process parallelization, building on some of the previous work in this domain
[29, 30]. Recently, our group released an open-source toolkit, called openXBOW,
that can be easily interfaced with multiple data modalities to generate a summarized
crossmodal bag of words representation [31] (Figure 3.6).

3.4 Deep Learning-Based Feature Learning

To make sense of the data, traditional machine learning approaches (including the
ones listed above) rely heavily on the representation of the available data in the
appropriate feature space. The feature extraction step therefore needs to address
extraction of all and only the most relevant features given the machine learning task
at hand. The redundant features simply add to the dimensionality of the feature vectors
unnecessarily, which severely affects their discriminating power. For example, given
a speech sample, the feature sets necessary for automatic speech recognition (ASR),

Big Data Multimedia Mining: Feature Extraction Facing Volume, Velocity, and Variety 69

1 2 3 4 5

1 ii 1

Window 3 Window 4 y v in d o w 5

| Window 4
I ¡ Window 5

Hop Size (Hs) Window Size (Ws)

C odebook
G en era tio n

(Through
random

selection)

1 2 3 4 5

(Cs = 5)

Vector
Assignments

(if one-to-one, Na = 1)

Term Frequencies
Bag o f W ords I ---
Ge n e ra t io n ¡ l n d e x 1 2 3 4 5

j Window 1 5 1
: Window 2 4 1
! Window 3 4 1

1
1
1
2
2

1
1
1
0
1

0
1
1
1
0

4

4
5

1

1
0

Figure 3.6 Bag of words approach. When the size of the moving window matches the size of the
incoming input (or the document) itself, i.e., when the entire incoming input is represented in terms
of the counts of the types of features (or the words) it exhibits, the approach closely resembles
the latent Dirichlet allocation representation.

speaker/gender identification, and emotion recognition are not identical. While speaker
identification is often solved by extraction of the universal background model (UBM)
and i-vectors, the statistics associated with fundamental frequency (FQ) are popular for
gender identification. The more complex paralinguistic tasks might entail extraction of
thousands of features [32-35].

Interestingly enough, a new approach to feature extraction has evolved that attempts
to learn what features are most useful when given a task. This is called the deep learning
approach, and it uses a network of cells similar to neurons in the brain. In addition to big
data, this deep learning has also been a buzzword in both the commercial world and the
research community in recent times. The beauty of the deep learning approach is that
it abstractifies the feature extraction step as part of the training phase itself. Depending
on the task at hand, this artificial neural network-based model attempts to reorient the
intermediate computations (also therefore the “features” in the abstract sense) to best
map the given inputs to the single or array of desired outputs.

70 | Big Data Analytics for Large-Scale Multimedia Search

3.4.1 Adaptability that Conquers both Volume and Velocity

At the heart of any deep learning architecture is a biology-inspired artificial neural
network model with interconnected groups of nodes, akin to neurons in the brain
as discussed previously. In its simplest form, the nodes are organized in the form
of layers (Figure 3.7), passing on the individual outputs from the input layer to the
final output layer. Each node applies a predefined mathematical transformation to the
weighted sum of its inputs to generate an output, or the activation value. This activation
in turn acts as an input for the next set of nodes the given node is connected to. In its
rudimentary form, therefore, each node is defined only by three types of parameters:
(i) the nodes its inputs and outputs are connected to, (ii) the weights applied to these
interconnections, and (iii) the activation function that converts the weighted inputs
to the output value it generates. This most simplistic model is known as the multilayer
perceptron model (MLP). The weights that map the inputs to the expected output
values are learnt through iterations, by attempting to minimize the difference between
the expected outputs and the computed outputs. This cost is mostly minimized using
different versions of the gradient descent algorithm. The term deep refers to the
number of layers that the network features. The higher the number of hidden layers,
the more the degrees of freedom (weight coefficients) with which the model can
perform mapping on large-scale data. While fairly simplistic, it has been theorized
that the model can approximate any continuous function on compact subsets of R"
(universal approximation theorem [36]) using only a single hidden layer with a finite
number of neurons. Depending on the training strategy, the hyperparameters involved
with the training process are the cost function, optimization algorithm, learning rate,
dropout factor, and activation functions used.

Such great adaptability in mapping any inputs to outputs also entails that, given a
very small set of inputs and outputs with the cost function, there likely are multiple pos­
sibilities for the “optimal” mapping. Thus, achieving the most generalizable and robust
mapping necessitates also the use of a large number of training samples in order to avoid

Figure 3.7 The multilayer perceptron model. For every node, the output y is computed by applying a
functional transformation a(a) to the weighted sum of its inputs, where weights are denoted by tv-,
corresponding to input values x r

Computation at every node

Big Data Multimedia Mining: Feature Extraction Facing Volume, Velocity, and Variety | 71

overfitting of the model to a very small set of instances. Also, because this training is
done iteratively or incrementally, the training step inherently does not require the model
to know all of the feature space in its entirety at once. This is opposite to SVM-like
algorithms, which often rely heavily on the data clusters present in the feature space
when generating the discriminating hyp er-surfaces. Therefore, while large-scale data is
often a problem due to the memory and computation bandwidth available, it is often
looked on as the great advantage when it comes to the neural network-based models.
These models can also afford to split the data into smaller chunks without compromis­
ing as much on the generalization of the mapping, and thus deal more easily with the
volume issue.

As we will see later, the deep learning model can handle the variety of data modalities,
and can take into account higher concepts such as time and the temporal correlations.
Therefore, it is possible to feed in not only scalar values of the data to the input nodes,
but also the the streams of scalars (i.e., feature vectors), streams of feature vectors (i.e.,
feature matrices), and streams of feature matrices, and so on. This hierarchical math­
ematically generalizing structure is formally known as a tensor, where scalars, vectors,
and matrices are tensors of rank 0, 1, 2 and so on. The uniqueness of the deep learn­
ing approach is that it is perhaps the only approach to date that can work with tensors
of rank higher than 2 as its inputs.

Because these models can easily reorient and adapt to incoming inputs, they can
be used in online systems that are continuously fed with large streams of data in real
time. Big data velocities are way too stupendous for even the storage systems to catch
up in many cases; it is impractical to expect the machine learning algorithms to fin­
ish data processing before the next samples show up. Because the incoming input gets
evaluated using the pretrained weight parameters with simple mathematical functions
alone (without looking at the subspace of the dataset, or the decision trees, like in other
algorithms), the feature-set extraction and the prediction task can be performed at a
much faster rate. Also, because the implicit feature-set extraction and prediction are
both mathematical functions involving repeated use of subfunctions, such as sigmoid or
tanh on the matrices or tensors as their argument, advanced matrix manipulation tech­
niques and parallelization can in theory be applied for faster throughput. The developers
of one of the most popular and influential toolkits today, called Tensorflow, have released
a white paper recently which briefly mentions their plans on introducing just-in-time
(JIT) compilations of the subgraphs [37].

The autoencoders present a special case of deep neural networks, where the output
is identical to the input and therefore a different/compressed (or rarely also expanded)
representation of the data is learnt intrinsically. Because the inputs always map
to themselves, the intermediate layers (generally smaller in dimension compared to the
input dimension in the case of a compression autoencoder) represent their compact
or "noise-free” representation. To make the model (and consequently the reduced
representation) more robust against the noise and spurious inputs, the network is
often trained using original, clean input as its expected output, while feeding in the
noisy version of the input to the network (Figure 3.8). This class of autoencoders is
called denoizing autoencoders. Because they map inputs to themselves through mostly
nonlinear transformations, they are often said to perform “implicit learning” of the
data. Such compressed encoding of the input is often referred as the “bottleneck”
representation. The autoencoders can be hierarchically stacked by making the encoded

72 Big Data Analytics for Large-Scale Multimedia Search

Figure 3.8 The autoencoder (compression encoder). The hidden layers represent the essence of the
data provided, a meaningful compact representation of the inputs, also called the "bottleneck"
representation.

representation run through a compressing autoencoder, implicitly learning the encoded
representation. This approach has been useful in domain-adaptive sentiment recogni­
tion from speech [38], content-based image retrieval [39], estimating visual tracking
for videos [40], paraphrase detection in texts [41], and a myriad of further tasks.

3.4.2 Convolutional Neural Networks

While the simple neural networks manage to map inputs to their outputs, such a
network often features a fully connected graph (albeit not in both directions), which
completely misses out on important dependencies or relationships between the node
groups. To perform an image recognition task, for example, a simplistic MLP model
might use a flattened single dimensional array generated from 2D pixel values, without
any anticipatory consideration for the spatial relationships existing in the data. We
know from experience, however, that the edges in an image are often defined by the dif­
ferences and deviations between the intensities of the neighbouring pixels. Their spatial
relationships define how slanted the edges are with respect to the horizontal or vertical
axes. It makes sense to assign high magnitude weights (irrespective of the sign) to the
neighbouring pixels rather than those very far away. A carefully weighted sum of the
pixel values, with weights that represent a certain preselected edge orientation (called
the receptive field kernel), tells us whether or not the pixel neighbourhood features a
preselected image pattern, e.g., an edge, or a blob (Figure 3.9). High correlation between
the pixel neighbourhood and the receptive field translates to a high activation value.
Different receptive fields moving across the image through fixed steps (called strides)
in both dimensions can effectively localize different edges and patterns in the image.
Understanding of the spatial relationships between these patterns, and consequently
localization of the high and low activation values, effectively translates to nothing but
an object recognition task itself. Typically, the “pooling layers” are also introduced
in between the layers. The pooling layers reduce the dimensionality of the input matrix
size, while preserving the salient information obtained in the earlier computations

Big Data Multimedia Mining: Feature Extraction Facing Volume, Velocity, and Variety 73

Figure 3.9 In a convolution operation, the receptive field kernel (size: 3 x 3) is multiplied
element-wise with the subset of a pixel matrix of the same size, and these weighted values are
summed together to compute the activation value. A max pooling operation reduces
the dimensionality by computing the maximum value in the kernel of a given size (size: 2 x 2).

through a non-linear transformation, such as a summing or a maximizing function. The
typical example of a pooling layer is the max pooling layer that applies a max operation
for the stated kernel or window. Figure 3.9 features a max pooling layer of a size 2 x 2
kernel and a convolution kernel of size 3 X 3 for illustration purposes. The feature repre­
sentation in the form of activations by the first few convolutional layers often translates
to the likelihood of certain pixel patterns being present in the image. This, in some
sense, is similar to the bag of words approach. The spatial correlation between these
patterns (captured using the convolutional kernel) translates to detection of higher
order patterns. Because these weights get trained, this allows for much more complex
mappings and feature manipulations beyond the standard bag of words approach.

3.4.3 Recurrent Neural Networks

The simple multilayer perceptron model fails to take into account time-related depen­
dencies and relationships existing in the data, which is of utmost importance when it
comes to usual multimedia data that is of a sequential form, e.g., an audio clip, frames
of a video, or even textual data. In these cases, the expected output is dependent not
only on the current input, but also on the sequence of preceding and potentially fol­
lowing inputs. To model this kind of relationship, the outputs of the hidden layer are
often connected back to its own input. In this way, each node in the layer computes a
weighted sum of its inputs coming from a previous layer and the last output it generated.
The inputs from the previous time step, therefore, also affect the activation computation
in the current step. In a bidirectional architecture, the future observations are also used.

Such a network that uses simple perceptrons as its nodes, computing mere non-linear
transformation of the weighted inputs, fails to model long-term dependencies. To
provide the network with the desired capability, alternate topologies for the nodes

74 Big Data Analytics for Large-Scale Multimedia Search

Output layer

Hidden layer

Input layer

unfold

Recurrent neural network unfolded

©Multiplication ©Addition © Subtract from 1 Apply function f Multiply by weight A

Figure 3.10 Ina recurrent neural network, output from a node is fed back to itself to make the past
inputs affect the outputs at the next time step. A simple perceptron, however, fails to capture
the long-term dependencies. The modified cells with internal memory state (e.g., LSTM and GRU cells)
are used to alleviate this problem.

were proposed which feature an internal memory state. The different node topologies
only differ in the way this internal memory state is calculated, and the way this state
is used to compute the outputs in the current and the next time steps. Figure 3.10
illustrates two of the most popular topologies in use today, namely long short-term
memory (LSTM) cells and gated recurrent unit (GRU) cells. By mapping the temporal
relationship of the samples in the sequential data with respect to one another, and also
with the respect to the sequential (or the summarized static) output values through
reiteration and re-usage of the mapping functions, we get the more compact and most
essential representation of the input sequence in terms of far fewer parameters when
using recurrent neural networks. The open source toolkit CURRENNT was the first
one to have GPU implementation of the bidirectional LSTM (BLSTM) [42].

3.4.4 Modular Approach to Scalability

The deep learning approach is characteristically modular and therefore multiplicatively
scalable. One can mix and match different numbers and types of layers (e.g., fully con­
nected, convolutional, recurrent, max pooling) with different numbers and types of
nodes in each layer (e.g., perceptron, LSTM cell, GRU cell) with different activation
functions (e.g., sigmoid, tanh, linear) with a variety of interconnections (densely con­
nected, sparsely connected neural network), also deciding how the output relates to the
inputs (single or multiple class labels, single or multiple regression values, or simply
de-noised inputs) when training the network. This presents a multitude of possibilities
in terms of the network architecture itself, and what all it can possibly model. Depending
on how complex the problem is, and/or how sparse the data are, and what higher level

Big Data Multimedia Mining: Feature Extraction Facing Volume, Velocity, and Variety | 75

concepts and context it should model, the hyper-parameters such as the type of network
elements, governing equations, and quantity of layers and nodes can be determined and
experimented with.

Such an approach has opened up a plethora of opportunities for research in compact
data representation and understanding. It has spawned several new interesting
architectures and findings by blending ideas from different basic topologies discussed
earlier and coming up with innovative architectures. Because in sequential data the
outputs and inputs are temporally correlated, some of the early publications on LSTMs
made use of inputs from the future time steps to compute the output at the current time
step. This gave rise to BLSTMs, which is popular today. These have been especially useful
in helping computing systems better understand sequential media such as speech, for
tasks such as speech overlap detection, language, and acoustic modeling [43,44]. Some
of the recent publications propose network architectures in which the convolutional
neural networks model the sequential data through what are called convolutional recur-
rent neural networks [45-48]. Some have also attempted compact representation of
the sequential data using recurrent autoencoders [49]. A variant of such autoencoders,
called variational autoencoders, employ a special kind of cost function that forces
the bottleneck representation to be as close as possible to a Gaussian distribution
[50]. Recently, drawing inspiration from their earlier work on image generation, called
PixelCNN [51], researchers from DeepMind came up with a generative model for
speech synthesis called Wav eNet, using what they called causal convolutional layers
[52]. Through training using real-life examples, the network is able to generate samples
which when put together resemble natural speech. Because one can also have generative
models beyond the predicitive ones, using deep learning networks, recently researchers
mixed the two, generating an interesting unsupervised machine learning model called
generative adversarial networks (GANs) [53]. In this approach, the two networks, one
generative and the other predictive, compete against each another in a zero-sum game
framework. The basic idea is that the generative network is trained to generate synthe­
sized data instances using the training instances from a latent variable space, while the
predictive network is simultaneously trained to differentiate between the synthesized
instances from the true instances. At the other end of the spectrum, in terms of their
simplicity, are extreme learning machines (ELMs) in which the inputs to hidden layer
weights are randomly assigned and are never updated [54]. In ELMs, only the hidden
layer to output mapping is learnt through iterations. ELM training thus becomes essen­
tially a linear learning problem [55], significantly reducing the computational burden.
While controversial [56-58], these simplistic models seem to work on complex tasks
such as hand-written character recognition [59] or excitation localization for the snore
sounds [60], Another variant of neural networks, called the residual network, makes use
of “shortcut connections” to skip over a few layers to feed the signal to the desired layer
for summation. Thus, instead of directly training the network for the mappings desired
(say, [H(x)]), the residual network instead is trained to learn the mapping between the
input and the desired output that is offset by the input itself (i.e., [H(x} — x]). This mod­
ification in the topology has been shown to alleviate the problem of degradation, which
is the saturation in accuracy with an increase in the number of layers or the depth of a
network [61].

76 J Big Data Analytics for Large-Scale Multimedia Search

3.5 Benchmark Studies

The deep learning approach can effectively and intelligently process various kinds of
data. As discussed, it can easily be customized to account for temporal dependencies
and the contexts, which that are both intrinsic and vital when it comes to the sequen­
tial data, e.g., raw audio clippings, tweets, and news articles. One can also process spatial
information, e.g., photographs, plots, and maps. Even data where the spatial and sequen­
tial contexts are highly intertwined, e.g., videos, console games, and live traffic maps,
can be dealt with effectively using deep learning approaches through little adaptations
in the network and the cells in use. The data can therefore be used in almost its original
form (called end-to-end learning), without having to introduce any customized feature
extraction step. The classical approach requires every data sample to be represented in
feature vector form, and overall data as a 2D matrix (i.e., a rank 2 tensor). Because the
neural network based models can handle higher level concepts (such as the time) effec­
tively, the data is often represented as a tensor of rank even greater than 2. By extension
therefore, the data learning process is inherently scalable, not only in terms of the num­
ber of features in use or the number of samples, but also the modalities and rank of the
tensor it can handle at any given time. We discuss previous benchmarking studies on
deep learning in this section.

Due to its huge potential and the consequent drive from both the industry and the
research community, there is now huge growth in the number of deep learning toolkits
available. Some of these were once the in-house frameworks for industry giants like
Google. The most popular frameworks are Caffe, 2018, CURRENNT [42], Microsoft
Cognitive Toolkit [62], Tensorflow [37], Theano [63], and Torch [64]. Some of these,
like Keras [65], come with an API capable of running on top of other frameworks, e.g.,
Theano and Tensorflow.

Benchmark comparisons between these deep learning frameworks have been con­
ducted in the past. The computational performance of the single framework depends
highly on the available hardware architecture. One of the most critical parameters is the
type of processors in use, i.e., whether central processing units (CPUs) or the graphics
processing units (GPUs), or, in the near future, neuromorphic processing units (NPUs).
The latter provide a much larger degree of parallelization and are therefore suitable for
training deep neural networks. As the actual performance also depends on the employed
version of the corresponding software tools and new frameworks are published on
a regular basis, the reader is referred to online resources to catch up on the latest
benchmarks.

Whereas these deep learning frameworks are well-studied in terms of their
performance in machine learning tasks of all kinds, this is not the case for the
feature-extraction step. In the following sections, we provide experiments and results
for feature extraction via deep learning. For our benchmarking studies, we run feature
extraction on the audio data using pretrained convolutional neural networks.

3.5.1 Dataset

We use the TU T Acoustic Scenes 2017 dataset, currently in use for the DCASE2017
Acoustic scene classification challenge, that was recorded in Finland by Tampere
University of Technology. The dataset consists of 4680 samples recorded in 15 acoustic

Big Data Multimedia Mining: Feature Extraction Facing Volume, Velocity, and Variety | 77

scenes such as the forest, library, metro station, and restaurant indoors. At each
recording location, a 3-5 minute high-quality audio was captured which was then
split into 10-second segments. Each audio clip was recorded using 44.1 kHz sampling
rate and 24 bit resolution. While this is by no means big data, we upsampled the data
through repetition to a high data volume to showcase the principles.

3.5.2 Spectrogram Creation

When it comes to working with audio data, the dynamics in the frequency domain
are often a good indicator. Therefore, features based on the frequency domain rep­
resentation of the audio signal are almost always extracted for any machine learning
tasks, e.g., Mel-frequency cepstral coefficients (MFCC), formant locations, or funda­
mental frequency (Fo). A varying spectrum of signal over time is often represented using
a spectrogram, computed using short-time Fourier transform (STFT) or the wavelet
transform. The horizontal axis represents time, the vertical axis represents frequency,
and the magnitude or intensity of the continuous-time complex exponential of a partic­
ular frequency at a particular time is represented by the color or intensity of the point at
that location. As long as one chooses the ‘right’ frame and hop size, taking into account
the time frequency uncertainty principle for a given task, the spectrogram representa­
tion captures all of the quintessential information necessary. Instead of the raw audio
therefore, we used the spectrogram representation as our input in this example. Sum­
marizing, we translated the audio inputs into a format that can be best processed by the
pretrained CNNs we aim to use.

Based on our previous experiments [66], we used the Hanning window of size 256
samples and traversed the audio data with a hop of 128 samples. We computed the power
spectral density in decibels using the Python package numpy [67] and spectrogram rep­
resentation using the matplotlib [68] package, in the perceptually uniform sequential
colour mapping called Viridis. Viridis uses blue to represent the low-range values, and
green and yellow for the mid-range and high-range values, respectively. As in our pre­
vious experiments, we got rid of the axes and the margins presenting redundant infor­
mation that was common across all images by cropping programmatically. The original
spectrogram images were then 387 X 387 pixels, which we rescaled to 227 X 227 pixels
and 224 x 224 pixels, to comply with the AlexNet and VGG19 requirements, respec­
tively. Figure 3.11 contains a few of the spectrograms we generated through this process
from audios from four different classes. As can be seen, the spectrograms differ a lot
visually, so much so that some clear distinctions can be made even with the human eye.
The CNNs pretrained for image classification tasks in particular are, therefore, expected
to perform well on this data, extracting the summarized feature representation with
good discriminative scope.

3.5.3 CNN-Based Feature Extraction

Instead of explicitly computing the higher level audio features, e.g., Fo and MFCC,
through a dedicated feature extractor, we fed the spectrograms to pretrained CNNs
that have been proven to work in image classification tasks. More specifically, we
extracted the features using the pretrained AlexNet and VGG19 CNN (see chapter 1,
Refs. 11, 23). The AlexNet was trained using ImageNet data, which featured more than

78 Big Data Analytics for Large-Scale Multimedia Search

Task overview

Import
Audio

I

I Raw audio
to
spectrogram generation

s 4096 features!"
,\4 0 9 6 features]

!

Feature extraction using pretrained
convolutional neural network

Parallel Processing

GPU1:

GPU2:

GPU3:

GPUO:

Figure 3.11 Overview of the system with CNN-based feature extraction through parallelization
among GPU cores. In the example, spectrograms are generated from the audio data and plotted using
the Python matplotlib package. The preprocessed plots are used as an input to the pretrained CNNs.
The activations of fully connected layers are then extracted as large deep spectrum feature vectors,
using the Caffe framework. The overall task is split into several processes and is handled by four GPU
cores. Another thread writes the feature vectors into an output file.

15 million annotated everyday images from over 22 thousand categories, and we tested
efficacy of this network in classifying spectrograms likewise [66, 69].

Both AlexNet and VGGNet provide us with 4096 features per spectrogram. This is
huge data compression in itself, considering that every audio clip consists of close to 4
million data points (44 100 Hz X 10 seconds), and the sequential structure of the data
points is also very critical. While such compression necessitates spectrogram generation
first, this intermediate step is not a severe bottleneck.

3.5.4 Structure of the CNNs

Both AlexNet and VGG19 use a combination of convolutional layers, max pooling, fully
connected layers and rectified linear units as the activation functions (see chapter 1,
ref. [26]). AlexNet consists of five convolutional layers, followed by three fully connected
layers. Softmax is applied to the last layer to perform 1000-way classification. VGG19
consists of 19 layers that are grouped in five stacks of convolutional layers with max
pooling. Another key difference between the two networks is that VGG19 uses only
3 x 3 kernels across all its convolutional layers, while AlexNet uses varying kernel sizes.
Table 3.2 summarizes the two network architectures for comparison.

Big Data Multimedia Mining: Feature Extraction Facing Volume, Velocity, and Variety | 79

Table 3.2 Overview of the architectures of the two CNNs used for the extraction of spectral features,
AlexNet, and VGG19. ch stands for channels.

AlexNet 1 VGG19

Input = RGB image
size: 227 x 227 pixels size: 224x224 pixels

1 x Convolution
size: 11; ch: 96; stride: 4

2 x Convolution
size: 3; ch: 64; stride: 1

Max pooling
1 x Convolution
size: 5; ch: 256

2 x Convolution
size: 3; ch: 128

Max pooling

1 x Convolution
size: 3; ch: 384

4 x Convolution
size: 3; ch: 256

Max pooling

lx Convolution
size: 3; ch: 384

4x Convolution
size: 3; ch: 512

Max pooling
1 x Convolution
size: 3; ch: 256

4x Convolution
size: 3; ch: 512

Max pooling
Fully connected FC6 layer, 4096 neurons
Fully connected FC7 layer, 4096 neurons

Fully connected 1000 neurons
Output = probabilities for 1000 object classes through softmax

Once the spectrogram plots are forwarded through the pretrained networks,
the activations from the neurons on the first or second fully connected layers (called/c6
and fc7) are extracted as the feature vectors. The resulting feature vector thus presents
4096 attributes, one for every neuron in the CNN’s fully connected layer. These can
then be passed on to either the traditional or deep learning techniques to perform
automatic scene event classification, similar to previous studies on audio classification
through spectrogram image classification [66, 69].

3.5.5 Process Parallelization

We use the Caffe framework to build the CNN models and for process paralleliza­
tion (see chapter 1, ref. [43]). We tested the run times without and with process
parallelization (six processes). The GPU in use was a GeForce GTX Titan X (GPU
clock rate: 1.06 GHz). The program run includes importing the audio data, creation
and initialization of the pretrained convolutional neural network, generation of the
cropped and resized spectrograms, forward pass computations through the pretrained
network, and writing of the 4096 output features per audio input to an output csv
file. The results are tabulated in Table 3.3. To measure the run time for experiments
involving more samples than what we actually have, we upsampled through repetition

80 J Big Data Analytics for Large-Scale Multimedia Search

the audio instances. Because we were interested in benchmarking for feature extraction
process, and how it scales with process parallelization, we did not run an evaluation of
the fully connected classifier section of the network outputting class probabilities (and
thus, we do not present accuracy results), avoiding additional process overhead.

3.5.6 Results

VGG19 has a higher number of layers compared to AlexNet (i.e., 19 compared to 8).
Just as expected, therefore, it takes longer to finish VGG19-based feature extraction, as
can be observed from Table 3.3 and Figure 3.12. Because there is a higher number of
processes, speed up due to process parallelization is more visible for VGG19 than for
AlexNet. On average, the feature extraction process is twice as fast for AlexNet with six
processes run in parallel, while it is 2.6 times as fast for VGG19. Without paralleliza­
tion, the degradation in data processing rate (average number of samples processed
per second) is a lot more severe, dropping from almost 9 samples/second to about 5
samples/second. With parallelization, however, data processing rates are not as badly
affected with a higher number of samples. With a very high number of samples, this gain
also translates to huge savings in the total computation time. The run times stated here
are for the parallelization of the algorithm where raw audio file to feature vector conver­
sion is done sample by sample in iteration. Feature extraction could be further expedited
by implementing data parallelization, by splitting the data into different chunks, with
each program run processing a separate batch of data in parallel.

We used our own tookit called auDeep for this study. It can be downloaded from the
repository located at https://github.com/auDeep/auDeep/.

Table 3.3 Convolutional neural network speed up through process parallelization.

CNN
Number of
samples

Runtime
(seconds)

Average
samples/second Speed up

Single
process

Six
Processes

Single
process

Six
Processes

AlexNet 500 55 27 9.09 18.52 2.04

1000 102 70 9.8 14.29 1.46

5 000 520 340 9.62 14.71 1.53

10 000 1684 692 5.94 14.45 2.43

25 000 4 424 1782 5.65 14.03 2.48

50 000 9 352 3 518 5.35 14.21 2.66

VGG19 500 91 37 5.49 13.51 2.46

1000 180 62 5.56 16.13 2.90

5 000 921 343 5.43 14.58 2.69

10 000 1919 725 5.21 13.79 2.65

25 000 4 900 2 218 5.10 11.27 2.21

50 000 10 203 3 646 4.90 13.71 2.80

Big Data Multimedia Mining: Feature Extraction Facing Volume, Velocity, and Variety 81

Number of audio samples

Figure 3.12 Convolutional neural network speed up through process parallelization (equal to that of
Table 3.3).

3.6 Closing Remarks

Mining on big data multimedia content is a challenge in itself, mainly because of the
three defining attributes of big data (volume, velocity and variety) and the multimodal
nature of the multimedia. This makes it mandatory for the analytical tools to attain
scalability in all three respects right from the feature extraction step. With limitations
on how much hardware and software technology can scale through miniaturization
and parallelization-like strategies, it comes down to inherent qualities of the competing
data-mining methods as to which ones will survive the test of time.

The machine learning approaches rely heavily on the representation of the data in
the feature space, with only the relevant discriminative features retrained and all of the
redundant or irrelevant features removed. The redundant and irrelevant features are
likely to meddle with the predictive ability of the model, adding to processing overheads.
Unlike traditional methods, the deep learning approach is able to learn the most relevant
features, or even the feature transforms implicitly, which makes it a promising candidate
for scalability in terms of both volume and variety. Many traditional approaches do not
take into account the sequential structure of the data (intrinsic to some of the multi­
media data, e.g., audio, live maps, videos) or the spatial relationships within the data
structure (e.g., in images, plots). The deep learning approach can model temporal, spa­
tial, and intertwined correlations as useful features. In theory, it can also take in the data
in its pure raw form, without an explicit feature extraction step. These factors put the
approach at much greater advantage in terms of what concepts and relationships it can
model, adding much more to its potential scalability in terms of variety. The inherent
modularity of the approach only adds further to the scope for innovations through a
mixing and matching approach, and the versatility of the models.

82 J Big Data Analytics for Large-Scale Multimedia Search

In terms of velocity, the gain due to data and process parallelizations is significant,
especially when the machine learning approach uses the same set of sub-functions iter­
atively at different hierarchical levels. For sub-functions with more involved computa­
tions, one can speed up the processing through hash-tables. Unfortunately, most tradi­
tional approaches do not feature such repeated use of functions, but are able to attain
speed up in implementation through some intelligent approximations and assumptions,
in terms of the matrix operations or the kernels in use, or through use of hash-tables
for the most frequent computations. The deep learning approach, on the other hand,
can make use of all these approaches, while also featuring repeated use of predefined
element-wise matrix multiplications, summation operations, and activation functions
like sigmoid, tanh, and the convolution kernels in iteration.

In the context of multimedia big data, we present the results by testing scalability of
the pretrained CNN-based feature extraction, using our auDeep toolkit. We find that
the results for the scalability in terms of velocity are promising, with a speed up factor
that is almost always more than twice, thanks to process parallelization. The versatility
of the deep learning framework is evidenced by the fact that we used CNNs pretrained
on image classification tasks to obtain the deep spectrum features from the audio data,
which have also proven to be useful for audio classification task in our earlier studies. We
intend to achieve further speed up through data parallelization and just-in-time com­
pilation of the reused functions in our future experiments, reducing the computation
times further by great margins.

Likewise, the current investment trends of the industry giants, the growth in big
data, data economy, and the growing competition within the deep learning frameworks
unequivocally imply deep learning is the future for big data analytics.

3.7 Acknowledgements

The research leading to these results received funding from the
EU’s Horizon 2020 Programme through the Innovative Action
No. 645094 (SEWA) and from the German Federal Ministry of
Education, Science, Research and Technology (BMBF) under the
grant agreement no. 16SV7213 (EmotAsS). We further thank the
NVIDIA Corporation for their support of this research by Tesla
K40-type GPU donation.

References

1 Mayer-Schonberger, V. and Cukier, K. (2013) Big data: A revolution that will trans­
form how we live, work, and think, Houghton Mifflin Harcourt.

2 Madden, S. (2012) From databases to big data. IEEE Internet Computing, 16 (3), 4-6.
3 loannidou, A., Chatzilari, E., Nikolopoulos, S., and Kompatsiaris, I. (2017) Deep

learning advances in computer vision with D data: A survey. ACM Computing
Surveys, 50 (2), 20.

4 Graf, H.P., Cosatto, E., Bottou, L., Durdanovic, I., and Vapnik, V. (2004) Parallel
support vector machines: The cascade SVM, Proceedings of the 17th International

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Big Data Multimedia Mining: Feature Extraction Facing Volume, Velocity, and Variety | 83

Conference on Neural Information Processing Systems (NIPS '04), Vancouver, British
Columbia, Canada, pp. 521-528, MIT Press.
Sun, Z. and Fox, G. (2012) Study on parallel SVM based on MapReduce, in Pro­
ceedings of the International Conference Parallel and Distribution Processing
Techniques and Applications The Steering Committee of The World Congress in
Computer Science, Computer Engineering and Applied Computing (WorldComp),
pp. 495-502.
Caruana, G., Li, M., and Qi, M. (2011) A MapReduce based parallel SVM for large
scale spam filtering, in 2011 Eighth International Conference on Fuzzy Systems and
Knowledge Discovery (FSKD), Volume 4, pp. 2659-2662, IEEE.
Zhang, J.P., Li, Z.W., and Yang, J. (2005) A parallel SVM training algorithm on
large-scale classification problems, in International Conference on Machine Learning
and Cybernetics, pp. 1637-1641.
Chang, E., Zhu, K., Wang, H., Bai, H„ Li, J., Qiu, Z., and Cui, H. (2008) Parallelizing
support vector machines on distributed computers, in Neural Information Processing
Systems, pp. 257-264.
Chang, C.C. and Lin, C.J. (2011) LIBSVM: A library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2 (3), 27:1-27:27.
Mitchell, L., Sloan, T.M., Mewissen, M., Ghazal, P., Forster, T., Piotrowski, M., and
Trew, A.S. (2011) A parallel random forest classifier for R, in Proceedings of the 2nd
International Workshop on Emerging Computational Methods for the Life Sciences,
ACM, pp. 1-6.
Wright, M.N. and Ziegler, A. (2015) ranger: A fast implementation of random
forests for high dimensional data in C++ and R. arXiv preprint:!508.04409.
Pang, S., Ozawa, S., and Kasabov, N. (2005) Incremental linear discriminant analysis
for classification of data streams. IEEE Transactions on Systems, Man, Cybernetics,
and Systems, Part B (Cybernetics), 35 (5), 905-914.
Hubert, M. and Van Driessen, K. (2004) Fast and robust discriminant analysis. Com­
putational Statistics and Data Analysis, 45 (2), 301-320.
Pudil, P., Novovicovä, J., and Kittler, J. (1994) Floating search methods in feature
selection. Pattern Recognition Letters, 15 (11), 1119-1125.
Siedlecki, W. and Sklansky, J. (1989) A note on genetic algorithms for large-scale fea­
ture selection. Pattern Recognition Letters, 10 (5), 335-347.
Bradley, P.S. and Mangasarian, O.L. (1998) Feature selection via concave minimiza­
tion and support vector machines, in International Conference on Machine Learning,
pp. 82-90.
Weninger, E and Schuller, B. (2012) Optimization and parallelization of monau­
ral source separation algorithms in the openBliSSART toolkit. Journal of Signal
Processing Systems, 69 (3), 267-277.
Chen, W.Y., Song, Y., Bai, H., Lin, C.J., and Chang, E.Y. (2011) Parallel spectral clus­
tering in distributed systems. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 33 (3), 568-586.
Maschho, K.J. and Sorensen, D. (1996) A portable implementation of ARPACK for
distributed memory parallel architectures, in Proceedings of the Copper Mountain
Conference on Iterative Methods, April, pp. 9-13.
Lehoucq, R.B., Sorensen, D.C., and Yang, C. (1998) ARPACK users' guide: solution of
large-scale eigenvalue problems with implicitly restarted Arnoldi methods, SIAM.

84 I Big Data Analytics for Large-Scale Multimedia Search

21 Blei, D.M., Ng, A.Y, and Jordan, M.I. (2003) Latent Dirichlet allocation. Journal o f
Machine Learning Research, 3, 993-1022.

22 Pritchard, J.K., Stephens, M., and Donnelly, P. (2000) Inference of population struc­
ture using multilocus genotype data. Genetics, 155 (2), 945-959.

23 Blei, D.M. (2012) Probabilistic topic models. Communications of the ACM, 55 (4),
77-84.

24 Philbin, J., Chum, O.» Isard, M., Sivic, J., and Zisserman, A. (2007) Object retrieval
with large vocabularies and fast spatial matching, in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1-8.

25 Dhillon, I.S., Fan, J., and Guan, Y. (2001) Efficient clustering of very large document
collections. Data Mining for Scientific and Engineering Applications, 2, 357-381.

26 Schmitt, M., Janott, C., Pandit, V., Qian, K., Heiser, C., Hemmert, W., and Schuller,
B. (2016) A Bag-of-audio-words approach for snore sounds' excitation localisation,
in Proceedings of the 14th ITG Conference on Speech Communication, Paderborn,
Germany, pp. 230-234.

27 Deng, J., Cummins, N., Han, J., Xu, X., Ren, Z., Pandit, V., Zhang, Z., and Schuller,
B. (2016) The University of Passau Open Emotion Recognition System for the Mul­
timodal Emotion Challenge, in Proceedings of the 7th Chinese Conference on Pattern
Recognition, CCPR, Springer, Chengdu, P.R. China, pp. 652-666.

28 Liu, Z., Zhang, Y, Chang, E.Y., and Sun, M. (2011) Plda+: Parallel latent Dirich­
let allocation with data placement and pipeline processing. ACM Transactions on
Intelligent Systems and Technology, 2 (3), 26.

29 Wang, Y, Bai, H„ Stanton, M., Chen, W.Y, and Chang, E.Y. (2009) PLDA: Parallel
latent Dirichlet allocation for large-scale applications, in International Conference on
Algorithmic Applications in Management, Springer, pp. 301-314.

30 Newman, D., Asuncion, A.U., Smyth, R, and Welling, M. (2007) Distributed infer­
ence for latent Dirichlet allocation, Proceedings of the 20th International Conference
on Neural Information Processing Systems (NIPS '07), Vancouver, British Columbia,
Canada, pp. 1081-1088, Curran Associates Inc.,

31 Schmitt, M. and Schuller, B. (2017) openXBOW - Introducing the Passau
Open-Source Crossmodal Bag-of-Words Toolkit. Journal of Machine Learning
Research, 18, 3370-3374.

32 Schuller, B., Steidl, S., Batliner, A., Vinciarelli, A., Scherer, K., Ringeval, E,
Chetouani, M., Weninger, E, Eyben, E, Marchi, E., Mortillaro, M., Salamin, H.,
Polychroniou, A., Valente, E, and Kim, S. (2013) The INTERSPEECH 2013 Com­
putational Paralinguistics Challenge: Social Signals, Conflict, Emotion, Autism, in
Proceedings of the 14th Annual Conference of the International Speech Communica­
tion Association (INTERSPEECH), ISCA, Lyon, France, pp. 148-152.

33 Schuller, B., Steidl, S., Batliner, A., Hantke, S., Hönig, E, Orozco-Arroyave, J.R.,
Nöth, E., Zhang, Y, and Weninger, F. (2015) The INTERSPEECH 2015 Compu­
tational Paralinguistics Challenge: Degree of Nativeness, Parkinson’s & Eating
Condition, in Proceedings o f the 16th Annual Conference of the International
Speech Communication Association (INTERSPEECH), ISCA, Dresden, Germany,
pp. 478-482.

34 Schuller, B., Steidl, S., Batliner, A., Hirschberg, J., Burgoon, J.K., Baird, A., Elkins,
A., Zhang, Y, Coutinho, E., and Evanini, K. (2016) The INTERSPEECH 2016 Com­
putational Paralinguistics Challenge: Deception, Sincerity & Native Language, in

35

36

37

38

39

40

41

42

43

44

45

46

47

Big Data Multimedia Mining: Feature Extraction Facing Volume, Velocity, and Variety | 85

Proceedings of the 17th Annual Conference of the International Speech Communica­
tion Association (INTERSPEECH), ISCA, San Francisco, CA, pp. 2001-2005.
Schuller, B„ Steidl, S., Batliner, A., Bergelson, E., Krajewski, J., Janott, C., Amatuni,
A., Casillas, M., Seidl, A., Söderström, M., Warlaumont, A., Hidalgo, G., Schnieder,
S., Heiser, C., Hohenhorst, W., Herzog, M„ Schmitt, M., Qian, K., Zhang, Y.,
Trigeorgis, G., Tzirakis, P., and Zafeiriou, S. (2017) The INTERSPEECH 2017 Com­
putational Paralinguistics Challenge: Addressee, Cold & Snoring, in Proceedings of
the 18th Annual Conference of the International Speech Communication Association
(INTERSPEECH), ISCA, Stockholm, Sweden.
Zainuddin, Z. and Pauline, O. (2007) Function approximation using artificial neural
networks, in Proceedings of the 12th WSEAS International Conference on Applied
Mathematics, World Scientific and Engineering Academy and Society (WSEAS),
MATH’07, pp. 140-145.
Abadi, M. et al. (2016) Tensorflow: Large-scale machine learning on heterogeneous
distributed systems. arXiv preprint arXiv:1603.04467.
Deng, J., Zhang, Z., Eyben, E, and Schuller, B. (2014) Autoencoder-based Unsuper­
vised Domain Adaptation for Speech Emotion Recognition. IEEE Signal Processing
Letters, 21 (9), 1068-1072.
Krizhevsky, A. and Hinton, G.E. (2011) Using very deep auto encoders for content­
based image retrieval., in ESANN 2011, 19th European Symposium on Artificial
Neural Networks, Bruges, Belgium, April 27-29.
Wang, N. and Yeung, D.Y. (2013) Learning a deep compact image representation for
visual tracking, in Advances in Neural Information Processing Systems, pp. 809-817.
Socher, R., Huang, E.H., Pennington, J., Ng, A.Y., and Manning, C.D. (2011)
Dynamic pooling and unfolding recursive autoencoders for paraphrase detection,
in Neural Information Processing Systems, vol. 24, pp. 801-809.
Weninger, F., Bergmann, J., and Schuller, B. (2015) Introducing CURRENNT:
the Munich Open-Source CUDA RecurREnt Neural Network Toolkit. Journal of
Machine Learning Research, 16, 547-551.
Mousa, A.E.D. and Schuller, B. (2016) Deep bidirectional long short-term memory
recurrent neural networks for grapheme-to-phoneme conversion utilizing complex
many-to-many alignments, in Proceedings of the 17th Annual Conference o f the Inter­
national Speech Communication Association (INTERSPEECH), ISCA, San Francisco,
CA, pp. 2836-2840.
Hagerer, G., Pandit, V., Eyben, E, and Schuller, B. (2017) Enhancing LSTM
RNN-based speech overlap detection by artificially mixed data, in Proceedings of
the AES 56th International Conference on Semantic Audio, AES, Audio Engineering
Society, Erlangen, Germany, pp. 1-8.
Liang, M. and Hu, X. (2015) Recurrent convolutional neural network for object
recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 3367-3375.
Pinheiro, P.H. and Collobert, R. (2014) Recurrent convolutional neural networks for
scene labeling, in International Conference on Machine Learning, pp. 82-90.
Donahue, J., Anne Hendricks, L., Guadarrama, S., Rohrbach, M., Venugopalan, S.,
Saenko, K., and Darrell, T. (2015) Long-term recurrent convolutional networks for
visual recognition and description, in Proceedings of the IEEE Conference Computer
Vision and Pattern Recognition (CVPR), pp. 2625-2634.

86 J Big Data Analytics for Large-Scale Multimedia Search

48 Keren, G. and Schuller, B. (2016) Convolutional RNN: an enhanced model for
extracting features from sequential data, in Proceedings of the International Joint
Conference on Neural Networks (IJCNN) as part of the IEEE World Congress on
Computational Intelligence (IEEE WCCI), Vancouver, Canada, pp. 3412-3419.

49 Maas, A.L., Le, Q.V., O’Neil, T.M., Vinyals, O.» Nguyen, R, and Ng, A.Y. (2012)
Recurrent neural networks for noise reduction in robust ASR, in Proceedings of the
13th Annual Conference of the International Speech Communication Association
(INTERSPEECH), ISCA, Portland, OR, pp. 22-25.

50 Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A.C., and Bengio, Y. (2015)
A recurrent latent variable model for sequential data, in Proceedings of the 28th
International Conference on Neural Information Processing Systems (NIPS ’15),
Volume 2, Montreal, Canada, pp. 2980-2988, MIT Press, Cambridge, MA.

51 van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A. et al.
(2016) Conditional image generation with pixelcnn decoders, in Proceedings of the
30th International Conference on Neural Information Processing Systems (NIPS’16),
pp. 4790-4798, Curran Associates Inc.

52 van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A.,
Kalchbrenner, N., Senior, A., and Kavukcuoglu, K. (2016) Wavenet: A generative
model for raw audio. CoRR abs/1609.03499.

53 Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., and Bengio, Y. (2014) Generative adversarial nets, Proceedings of the
27th International Conference on Neural Information Processing Systems (NIPS ’14),
Volume 2, Montreal, Canada, pp. 2672-2680, MIT Press, Cambridge, MA.

54 Huang, G.B., Zhu, Q.Y, and Siew, C.K. (2006) Extreme learning machine: theory and
applications. Neurocomputing, 70 (1), 489-501.

55 Lin, S., Liu, X., Fang, J., and Xu, Z. (2015) Is Extreme Learning Machine Feasible?
A Theoretical Assessment (Part II). IEEE Transactions on Neural Network Learning
Systems, 26 (1), 21-34.

56 Liu, X., Lin, S., Fang, J., and Xu, Z. (2015) Is an extreme learning machine feasible?
A theoretical assessment (Part I). IEEE Transactions on Neural Network Learning
Systems, 26 (1), 7-20.

57 Wang, L.P. and Wan, C.R. (2008) Comments on “The Extreme Learning Machine”.
IEEE Transactions on Neural Networks, 19 (8), 1494-1495.

58 Huang, G.B. (2008) Reply to ‘Comments on “The Extreme Learning Machine”’. IEEE
Transactions on Neural Networks, 19 (8), 1495-1496.

59 Chacko, B.P., Krishnan, V.V., Raju, G., and Anto, P.B. (2012) Handwritten charac­
ter recognition using wavelet energy and extreme learning machine. International
Journal of Machine Learning and Cybernetics, 3 (2), 149-161.

60 Qian, K., Janott, C., Pandit, V, Zhang, Z., Heiser, C., Hohenhorst, W., Herzog, M.,
Hemmert, W , and Schuller, B. (2016) Classification of the excitation location of
snore sounds in the upper airway by acoustic multi-feature analysis. IEEE Transac­
tions on Biomedical Engineering^ (8), 1731-1741.

61 He, K., Zhang, X., Ren, S., and Sun, J. (2016) Deep residual learning for image recog­
nition, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 770-778.

Big Data Multimedia Mining: Feature Extraction Facing Volume, Velocity, and Variety | 87

62 Agarwal, A., Akchurin, E., Basoglu, C., Chen, G., Cyphers, S., Droppo, J., Eversole,
A., Guenter, B„ Hillebrand, M., Hoens, T.R., Huang, X., Huang, Z., Ivanov, V.,
Kamenev, A., Kranen, P„ Kuchaiev, O., Manousek, W, May, A., Mitra, B., Nano,
O., Navarro, G., Orlov, A., Partha sarathi, H., Peng, B., Radmilac, M., Reznichenko,
A., Seide, F., Seltzer, M.L., Slaney, M., Stolcke, A., Wang, H., Wang, Y, Yao, K., Yu,
D., Zhang, Y., and Zweig, G. (2014) An Introduction to Computational Networks and
the Computational Network Toolkit. Microsoft Technical Report MSR-TR-2014-112.

63 Bastien, E, Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I., Bergeron, A.,
Bouchard, N., Warde-Farley, D., and Bengio, Y. (2012) Theano: new features and
speed improvements. arXiv preprint arXiv:1211.5590.

64 Collobert, R., Kavukcuoglu, K., and Farabet, C. (2011) Torch?: A Matlab-like envi­
ronment for machine learning, in BigLearn, NIPS Workshop, EPFL-CONF-192376.

65 Chollet, F. et al. (2015) Keras, https://github.com/fchollet/keras.
66 Amiriparian, S., Gerczuk, M., Ottl, S., Cummins, N., Freitag, M., Pugachevskiy, S.,

and Schuller, B. (2017) Snore sound classification using image-based deep spectrum
features, in Proceedings of the 18th Annual Conference of the International Speech
Communication Association (INTERSPEECH), ISC A, Stockholm, Sweden.

67 Walt, S.V.D., Colbert, S.C., and Varoquaux, G. (2011) The numpy array: a structure
for efficient numerical computation. Computing in Science & Engineering, 13 (2),
22-30.

68 Hunter, J.D. (2007) Matplotlib: A 2D graphics environment. Computing In Science &
Engineering, 9 (3), 90-95.

69 Freitag, M., Amiriparian, S., Gerczuk, M., Cummins, N., and Schuller, B. (2017) An
‘End-to-Evolution’ Hybrid Approach for Snore Sound Classification, in Proceedings of
the 18th Annual Conference of the International Speech Communication Association
(INTERSPEECH), ISCA, Stockholm, SE.

