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3.1 Introduction

With several hundred hours of naturalistic, in-the-wild videos and music being
uploaded to the web per minute and millions of short texts being uploaded every day
on social media, the big data era brings a plethora of opportunities yet also challenges
to the field of multimedia mining. A modern multimedia mining system needs to be
able to handle large databases with varying formats at extreme speeds. These three
attributes, volume, velocity and variety, together define big data primarily. After a
general introduction to the topic highlighting the big data challenges in terms of the
three named Vs, we give an insight into traditional techniques and deep learning
methodologies to cope with the scalability challenges in all these three respects. The
inherent qualities of the data driven deep learning approach — which make it a promis-
ing candidate in terms of scalability — are then discussed in detail, along with a brief
introduction to its constituent components and different state-of-the-art architectures.
To give some insight into the actual effectiveness of the deep learning method for
feature extraction, we present the latest original research results of a showcase big data
multimedia mining task by evaluating the pretrained CNN-based feature extraction
through process parallelization, providing insight into the effectiveness and high
capability of the proposed approach.

The internet and smart devices today, coupled with social media and e-commerce
avenues, have made data abundant, ubiquitous and far more valuable. No maiter
what activity one is involved in at any time of the day, whether watching TV, jogging
or just stuck in traffic, each activity can create a digital trace. The upsurge in social
media users (e.g., Facebook, YouTube, and Twitter), with increasingly diverse, huge
amounts of content uploaded every second continuously from all over the world, has
made multimedia big data far more relevant than ever before. This includes a huge
variety of photographs, sketches, home videos, music content, live video streams,
news bulletins, product reviews, reviews of local businesses and tourist places, tweets
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and posts with one’s political or social views, movies, gameplays, and podcasts, to name
just a few. Organizations today, from industries to political parties, rely on such data
to get the low-down on current trends and assess their future strategies [1]. All sorts
of users can benefit from big data multimedia mining for all kinds of novel services.

All this data comes from a vast number of sources all the time from across the globe.
Data analysis and feature extraction methods need to cope with these astounding rates
and quantities of data streams. Data-mining tools first need to translate the data into a
native representation that can be worked on, then into a meaningful representation that
can effectively be handled for further data-mining and querying, which, in most cases,
is in the form of feature vectors. The feature extraction or data abstraction encapsulates
the essential information in a compact form suitable for certain tasks. Because what
qualifies as “suitable” or “essential” can vary from task to task, this feature extraction step
is often governed by typicality of the data-mining queries subject to the data modality.
More often than not, therefore, the tools also need to compute feature transformations
that enhance their usability by improving the discriminative and predictive scope.

Just as the term implies, one of the most defining characteristics of multimedia big
data is the enormaus volume of data in terms of both the feature dimensions and the
number of instances. This defining quality, and thus availability of such a quantity
of data, becomes a game changer for businesses and mining such data through a net-
work effect. As the number of instances or the number of features go up, however, it can
become exponentially harder to make predictions with the same level of accuracy. This
is one of the most commonly encountered problem in the machine learning literature,
called the curse of dimensionality. For example, the popular distance measures used
to better understand data, such as the Euclidean distance, fail when the dimensionality
of the data is too large. This is because with too many co-ordinates in use there is (only)
a little difference in the distances between different pairs of data samples. Irrelevant
feature dimensions further add to the unreliability of this similarity or the distance
measure, as each individual dimension affects the distance computation directly.
Ironically, even the thousands of instances existing in 100-dimensional space is very
sparse data. The dataset may appear like a bunch of random points in space with no
specific underlying pattern. To have any better prediction capability, one will likely need
millions of instances, thanks to the high dimensionality of the feature vectors {100s
in this case). A high volume of data also necessitates higher processing memory and
storage capabilities.

Also, as discussed earlier, the tools first need to translate the data into native
representation, and then into its abstraction as the features, before any querying or
data-mining can even begin [2]. Storing the data as native representation itself requires
some non-zero time. In view of the enormous velocity of the data streams as discussed
previously, while it is unreasonable to expect to finish even the storing of data, fast
processing and encapsulation become rather a necessity in the multimedia big data
context. In benchmarking studies on big data, therefore, computation time is often
the prime performance measure.

The ubiquity of data generators presents us with another challenge. Because the data is
gathered from a huge range of devices and sources, and features a rich diversity in terms
of multimedia formats, also in part due to manifold different multimedia codecs in use
these days, it is often an alphabet soup of data with a variety of file formats and hierar-
chical structures. This is especially true for multimedia data where it also features mul-
titudes of modalities such as images, videos, audios, documents, tweets, binary system
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Figure 3.1 The Vs of big data. Volume
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logs, graphs, maps, overlaid live traffic or weather data and so on. Affordable new tech-
nology devices, such as Kinect, continue to introduce new modalities of data. More
specifically, in the case of Kinect-like devices with 3D sensing technology, the data also
consists of 3D point clusters, varying in space and in time [3].

In summary, all machine learning approaches rely heavily on the features that
represent the data. A scalable data-mining approach thus requires that all of its
different components are able to handle huge volume, velocity, and variety in the data
(Figure 3.1) — right from the feature extraction step.

In section 3.2, we first discuss the common strategies adopted to make data-mining
scalable in terms of volume and velocity, when the variety of the data has been duly
considered, i.e., when the framework to represent the data in a consistent form is
in place just as necessary. Next, in section 3.3, we discuss “scalability through feature
engineering’, which is just the process of intelligently picking the most relevant features
going by the data modality and common queries. We also discuss the popular feature
transformation methodologies and the contexts in which each of those are ideal. This
becomes highly relevant for model-based approaches in particular, where the queries
are attended to using explicit heuristics on the features. Section 3.4 introduces an
implicit feature and representation learning paradigm, also called the data-driven
approach, of deep learning, where the most relevant features are implicitly learnt
by establishing mapping between the inputs and outputs through nonlinear functions.
We argue that the inherent qualities of this model make it a great candidate for highly
scalable machine learning as well as a feature extraction paradigm. A few of these
qualities are (i) high flexibility in terms of the number of simultaneous outputs and the
variability in terms of what each can represent, (ii) the breadth of high-level concepts
it can model, e.g., the temporal and spatial correlations along with the intertwined
contexts, (iii) the high modularity and integrability of the models, (iv) the wide scope
for innovation through mixing and matching of various model topologies and the
constituent elements, (v) the scope for velocity scalability through parallelization of the
recursive and repeated elements and functions in the model hierarchy, which are also
its indispensable components, such as the activation functions and kernels. We also
discuss the key elements, most common architectures, and state-of-the-art methods
that have evolved through this mix-and-match approach. Keeping the uninitiated
reader in mind, there are detailed graphical illustrations accompanying the text to help
easy intuitive understanding. We present benchmarking experiments in section 3.5
on testing; for the very first time, the runtimes of pretrained CNN-based feature
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The eigenvalues (4;) and eigenvectors (V;) of the Laplacian matrix reduce the dimen-
sionality of the dataset, effectively representing the entire dataset. The eigenvalues, thus
obtained, also tell us the number of “graphs” or the number of connected data instances
in the dataset, in addition to how this eigenvector representation linearly sums up
representing the data effectively. Parallelization of this process has been proposed [18],
splitting the data with # entries to p different machine nodes. Each node computes
n/p eigenvectors and eigenvalues as necessary through parallelization of the Arnoldi
factorization, using PARPACK [19] (the parallel version of the popular eigensolver
ARPACK [20]).

3.3.3 Parallel [atent Dirichlet allocation and bag of words

The latent Dirichlet allocation and the bag of words approaches are very similar,
where every “document” (this can be also a non-textual sequence of audio, video, or
other data) is viewed as a mixture of “topics’, each defined by a multinomial distri-
bution over a W-word vocabulary. The documents (or the data content) with similar
distribution in terms of topics (feature vectors) are thus considered to be similar.
The paper that first proposed this approach in 2003 [21] discusses the evolution
of this approach from the classical ¢f-idf-based feature reduction technique, and its
close relationship with other intermediate approaches in its evolution such as latent
semantic indexing (LSI) and the probabilistic LSI model (also called the aspect model).
Interestingly enough, essentially the same model was independently proposed in the
study of population genetics in 2000 [22, 23]. Bag of words feature representation
has proved to be useful for machine learning tasks on multiple modalities of data,
such as large-scale image mining [24], text data [25], audio [26], and videos [27]. A
scalable implementation of this approach was proposed in 2011 [28] through both
data and process parallelization, building on some of the previous work in this domain
[29, 30]. Recently, our group released an open-source toolkit, called openXBOW,
that can be easily interfaced with multipte data modalities to generate a summarized
crossmodal bag of words representation [31] (Figure 3.6).

3.4 Deep Learning-Based Feature Learning

To make sense of the data, traditional machine learning approaches (including the
ones listed above) rely heavily on the representation of the available data in the
appropriate feature space. The feature extraction step therefore needs to address
extraction of all and only the most relevant features given the machine learning task
at hand. The redundant features simply add to the dimensionality of the feature vectors
unnecessarily, which severely affects their discriminating power. For example, given
a speech sample, the feature sets necessary for automatic speech recognition (ASR),
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overfitting of the model to a very small set of instances. Also, because this training is
done iteratively or incrementally, the training step inherently does not require the model
to know all of the feature space in its entirety at once. This is opposite to SVM-like
algorithms, which often rely heavily on the data clusters present in the feature space
when generating the discriminating hyper-surfaces. Therefore, while large-scale data is
often a problem due to the memory and computation bandwidth available, it is often
looked on as the great advantage when it comes to the neural network-based models.
These models can also afford to split the data inte smaller chunks without compromis-
ing as much on the generalization of the mapping, and thus deal more easily with the
volume issue.

As we will see later, the deep learning model can handle the variety of data modalities,
and can take into account higher concepts such as time and the temporal correlations.
Therefore, it is possible to feed in not only scalar values of the data to the input nodes,
but also the the streams of scalars (i.e., feature vectors), streams of feature vectors (i.e.,
feature matrices), and streams of feature matrices, and so on. This hierarchical math-
ematically generalizing structure is formally known as a tensor, where scalars, vectors,
and matrices are tensors of rank 0, 1, 2 and so on. The uniqueness of the deep learn-
ing approach is that it is perhaps the only approach to date that can work with tensors
of rank higher than 2 as its inputs.

Because these models can easily reorient and adapt to incoming inputs, they can
be used in online systems that are continuously fed with large streams of data in real
time. Big data velocities are way too stupendous for even the storage systems to catch
up in many cases; it is impractical to expect the machine learning algorithms to fin-
ish data processing before the next samples show up. Because the incoming input gets
evaluated using the pretrained weight parameters with simple mathematical functions
alone (without looking at the subspace of the dataset, or the decision trees, like in other
algorithms), the feature-set extraction and the prediction task can be performed at a
much faster rate. Also, because the implicit feature-set extraction and prediction are
both mathematical functions involving repeated use of subfunctions, such as sigmoid or
tanh on the matrices or tensors as their argument, advanced matrix manipulation tech-
niques and parallelization can in theory be applied for faster throughput. The developers
of one of the most popular and influential toolkits today, called Tensorflow, have released
a white paper recently which briefly mentions their plans on introducing just-in-time
(JIT) compilations of the subgraphs [37].

The autoencoders present a special case of deep neural networks, where the cutput
is identical to the input and therefore a different/compressed (or rarely also expanded)
representation of the data is learnt intrinsically. Because the inputs always map
to themselves, the intermediate layers (generally smaller in dimension compared to the
input dimension in the case of a compression autoencoder) represent their compact
or “noise-free” representation. To make the model (and consequently the reduced
representation) more robust against the noise and spurious inputs, the network is
often trained using original, clean input as its expected output, while feeding in the
noisy version of the input to the network (Figure 3.8). This class of autoencoders is
called denoizing autoencoders. Because they map inputs to themselves through mostly
nonlinear transformations, they are often said to perform “implicit learning” of the
data. Such compressed encoding of the input is often referred as the “bottleneck”
representation. The autoencoders can be hierarchically stacked by making the encoded
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concepts and context it should model, the hyper-parameters such as the type of network
elements, governing equations, and quantity of layers and nodes can be determined and
experimented with.

Such an approach has opened up a plethora of opportunities for research in compact
data representation and understanding. It has spawned several new interesting
architectures and findings by blending ideas from different basic topologies discussed
earlier and coming up with innovative architectures. Because in sequential data the
outputs and inputs are temporally correlated, some of the early publications on LSTMs
made use of inputs from the future time steps to compute the output at the current time
step. This gave rise to BLSTMs, which is popular today. These have been especially useful
in helping computing systems better understand sequential media such as speech, for
tasks such as speech overlap detection, language, and acoustic modeling [43, 44]. Some
of the recent publications propose network architectures in which the convolutional
neural networks model the sequential data through what are called convolutional recur-
rent neural networks [45-48]. Some have also attempted compact representation of
the sequential data using recurrent autoencoders [49]. A variant of such autoencoders,
called variational autoencoders, employ a special kind of cost function that forces
the bottleneck representation to be as close as possible to a Gaussian distribution
[50]. Recently, drawing inspiration from their earlier work on image generation, called
PixelCNN [51], researchers from DeepMind came up with a generative model for
speech synthesis called WaveNet, using what they called causal convolutional layers
[52]. Through training using real-life examples, the network is able to generate samples
which when put together resemble natural speech. Because one can also have generative
models beyond the predicitive ones, using deep learning networks, recently researchers
mixed the two, generating an interesting unsupervised machine learning model called
generative adversarial networks (GANs) [53]. In this approach, the two networks, one
generative and the other predictive, compete against each another in a zero-sum game
framework. The basic idea is that the generative network is trained to generate synthe-
sized data instances using the training instances from a latent variable space, while the
predictive network is simultaneously trained to differentiate between the synthesized
instances from the true instances. At the other end of the spectrum, in terms of their
simplicity, are extreme learning machines (ELMs) in which the inputs to hidden layer
weights are randomly assigned and are never updated [54]. In ELMs, only the hidden
layer to output mapping is learnt through iterations. ELM training thus becomes essen-
tially a linear learning problem [55), significantly reducing the computational burden.
While controversial [56-58], these simplistic models seem to work on complex tasks
such as hand-written character recognition [59] or excitation localization for the snore
sounds [60]. Another variant of neural networks, called the residual network, makes use
of “shortcut connections” to skip over a few layers to feed the signal to the desired layer
for summation. Thus, instead of directly training the network for the mappings desired
(say, [H(x)]), the residual network instead is trained to learn the mapping between the
input and the desired output that is offset by the input itself (i.e., [H(x) — x1). This mod-
ification in the topology has been shown to alleviate the problem of degradation, which
is the saturation in accuracy with an increase in the number of layers or the depth of a
network [61].
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3.5 Benchmark Studies

The deep learning approach can effectively and intelligently process various kinds of
data. As discussed, it can easily be customized to account for temporal dependencies
and the contexts, which that are both intrinsic and vital when it comes to the sequen-
tial data, e.g., raw audio clippings, tweets, and news articles. One can also process spatial
information, e.g., photographs, plots, and maps. Even data where the spatial and sequen-
tial contexts are highly intertwined, e.g., videos, console games, and live traffic maps,
can be dealt with effectively using deep learning approaches through little adaptations
in the network and the cells in use. The data can therefore be used in almost its original
form (called end-to-end learning), without having to introduce any customized feature
extraction step. The classical approach requires every data sample to be represented in
feature vector form, and overall data as a 2D matrix (i.e., a rank 2 tensor). Because the
neural network based models can handle higher level concepts (such as the time) effec-
tively, the data is often represented as a tensor of rank even greater than 2. By extension
therefore, the data learning process is inherently scalable, not only in terms of the num-
ber of features in use or the number of samples, but also the modalities and rank of the
tensor it can handle at any given time. We discuss previous benchmarking studies on
deep learning in this section.

Due to its huge potential and the consequent drive from both the industry and the
research community, there is now huge growth in the number of deep learning toolkits
available. Some of these were once the in-house frameworks for industry giants like
Google. The most popular frameworks are Caffe, 2018, CURRENNT [42], Microsoft
Cognitive Toolkit (62], Tensorflow [37], Theano [63], and Torch [64]. Some of these,
like Keras [65], come with an API capable of running on top of other frameworks, e.g.,
Theano and Tensorflow.

Benchmark comparisons between these deep learning frameworks have been con-
ducted in the past. The computational performance of the single framework depends
highly on the available hardware architecture. One of the most critical parameters is the
type of processors in use, i.e., whether central processing units (CPUs) or the graphics
processing units (GPUs), or, in the near future, neuromorphic processing units (NPUs).
The latter provide a much larger degree of parallelization and are therefore suitable for
training deep neural networks. As the actual performance also depends on the employed
version of the corresponding software tools and new frameworks are published on
a regular basis, the reader is referred to online resources to catch up on the latest
benchmarks.

Whereas these deep learning frameworks are well-studied in terms of their
performance in machine learning tasks of all kinds, this is not the case for the
feature-extraction step. In the following sections, we provide experiments and results
for feature extraction via deep learning. For our benchmarking studies, we run feature
extraction on the audio data using pretrained convolutional neural networks.

3.5.1 Dataset

We use the TUT Acoustic Scenes 2017 dataset, currently in use for the DCASE2017
Acoustic scene classification challenge, that was recorded in Finland by Tampere
University of Technology. The dataset consists of 4680 samples recorded in 15 acoustic
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scenes such as the forest, library, metro station, and restaurant indoors. At each
recording location, a 3-5 minute high-quality audio was captured which was then
split into 10-second segments. Each audio clip was recorded using 44.1 kHz sampling
rate and 24 bit resolution. While this is by no means big data, we upsampled the data
through repetition to a high data volume to showcase the principles.

3.5.2 Spectrogram Creation

When it comes to working with audio data, the dynamics in the frequency domain
are often a good indicator. Therefore, features based on the frequency domain rep-
resentation of the audio signal are almost always extracted for any machine learning
tasks, e.g., Mel-frequency cepstral coefficients (MFCC), formant locations, or funda-
mental frequency (F,). A varying spectrum of signal over time is often represented using
a spectrogram, computed using short-time Fourier transform (STFT) or the wavelet
transform. The horizontal axis represents time, the vertical axis represents frequency,
and the magnitude or intensity of the continuous-time complex exponential of a partic-
ular frequency at a particular time is represented by the color or intensity of the point at
that location. As long as one chooses the ‘right’ frame and hop size, taking into account
the time frequency uncertainty principle for a given task, the spectrogram representa-
tion captures all of the quintessential information necessary. Instead of the raw audio
therefore, we used the spectrogram representation as our input in this example. Sum-
marizing, we translated the audio inputs into a format that can be best processed by the
pretrained CNNs we aim to use.

Based on our previous experiments [66], we used the Hanning window of size 256
samples and traversed the audio data with a hop of 128 samples. We computed the power
spectral density in decibels using the Python package numpy [67] and spectrogram rep-
resentation using the matplotlib [68] package, in the perceptually uniform sequential
colour mapping called Viridis. Viridis uses blue to represent the low-range values, and
green and yellow for the mid-range and high-range values, respectively. As in our pre-
vious experiments, we got rid of the axes and the margins presenting redundant infor-
mation that was common across all images by cropping programmatically. The original
spectrogram images were then 387 x 387 pixels, which we rescaled to 227 x 227 pixels
and 224 x 224 pixels, to comply with the AlexNet and VGG19 requirements, respec-
tively. Figure 3.11 contains a few of the spectrograms we generated through this process
from audios from four different classes. As can be seen, the spectrograms differ a lot
visually, so much so that some clear distinctions can be made even with the human eye.
The CNNis pretrained for image classification tasks in particular are, therefore, expected
to perform well on this data, extracting the summarized feature representation with
good discriminative scope.

3.5.3 CNN-Based Feature Extraction

Instead of explicitly computing the higher level audio features, e.g., F, and MFCC,
through a dedicated feature extractor, we fed the spectrograms to pretrained CNNs
that have been proven to work in image classification tasks. More specifically, we
extracted the features using the pretrained AlexNet and VGG19 CNN (see chapter 1,
Refs. 11, 23). The AlexNet was trained using ImageNet data, which featured more than
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Table 3.2 Overview of the architectures of the two CNNs used for the extraction of spectral features,
AlexNet, and VGG19. ch stands for channels.

AlexNet vGG19
Input = RGB image
size: 227 x 227 pixels size: 224 x 224 pixels
1xConvolution 2 x Convolution
size: 11; ch: 96; stride: 4 size: 3; ch: 64; stride: 1
Max pooling
1xConvolution 2 x Convolution
size: 5; ch: 256 size: 3; ch: 128
Max pooling
4x Convolution

1x Convolution

ize: 3; ch: 256
size: 3; ch: 384 Sizer i ¢

Max pooling
4% Convolution
size: 3; ch: 512

1x Convolution

size: 3; ch: 384 -
Max pooling
1x Convolution 4x Convolution
size: 3; ch: 256 size: 3; ch: 512
Max pooling

Fully connected FC6 layer, 4096 neurons

Fully connected FC7 layer, 4096 neurons

Fully connected 1000 neurons

QOutput = probabilities for 1000 object classes through softmax

Once the spectrogram plots are forwarded through the pretrained networks,
the activations from the neurons on the first or second fully connected layers (called fc6
and fc7) are extracted as the feature vectors. The resulting feature vector thus presents
4096 attributes, one for every neuron in the CNN’s fully connected layer. These can
then be passed on to either the traditional or deep learning techniques to perform
automatic scene event classification, similar to previous studies on audio classification
through spectrogram image classification [66, 69].

3.5.5 Process Parallelization

We use the Caffe framework to build the CNN models and for process paralleliza-
tion (see chapter 1, ref. [43]). We tested the run times without and with process
parallelization (six processes). The GPU in use was a GeForce GTX Titan X (GPU
clock rate: 1.06 GHz). The program run includes importing the audio data, creation
and initialization of the pretrained convolutional neural network, generation of the
cropped and resized spectrograms, forward pass computations through the pretrained
network, and writing of the 4096 output features per audio input to an output csv
file. The results are tabulated in Table 3.3. To measure the run time for experiments
involving more samples than what we actually have, we upsampled through repetition
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the audio instances. Because we were interested in benchmarking for feature extraction
process, and how it scales with process parallelization, we did not run an evaluation of
the fully connected classifier section of the network outputting class probabilities (and
thus, we do not present accuracy results), avoiding additional process overhead.

3.5.6 Results

VGG19 has a higher number of layers compared to AlexNet (i.e., 19 compared to 8).
Just as expected, therefore, it takes longer to finish VGG19-based feature extraction, as
can be observed from Table 3.3 and Figure 3.12. Because there is a higher number of
processes, speed up due to process parallelization is more visible for VGG19 than for
AlexNet. On average, the feature extraction process is twice as fast for AlexNet with six
processes run in parallel, while it is 2.6 times as fast for VGG19. Without paralleliza-
tion, the degradation in data processing rate (average number of samples processed
per second) is a lot more severe, dropping from almost 9 samples/second to about 5
samples/second. With parallelization, however, data processing rates are not as badly
affected with a higher number of samples. With a very high number of samples, this gain
also translates to huge savings in the total computation time. The run times stated here
are for the parallelization of the algorithm where raw audio file to feature vector conver-
sion is done sample by sample in iteration. Feature extraction could be further expedited
by implementing data parallelization, by splitting the data into different chunks, with
each program run processing a separate batch of data in parallel.

We used our own tookit called auDeep for this study. It can be downloaded from the
repository located at https://github.com/auDeep/auDeep/.

Table 3.3 Convolutional neural network speed up through process parallelization.

Number of Run time Average
CNN samples (seconds) samples/second Speed up
Single Six Single Six
process Processes process Processes
AlexNet 500 55 27 9.09 18.52 2.04
1000 102 70 9.8 14.29 1.46
5000 520 340 9.62 14.71 1.53
10 000 1684 692 5.94 14.45 243
25 000 4424 1782 5.65 14.03 248
50 000 9352 3518 535 14.21 2.66
VGG19 500 91 37 549 13.51 246
1000 180 62 5.56 16.13 290
5 000 921 343 543 14.58 2.69
10 000 1919 725 521 13.79 2.65
25000 4900 2218 5.10 11.27 221

50 000 10203 3646 4.90 13.71 2.80
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