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Abstract—The adage that there is no data like more data is
not new in affective computing; however, with recent advances
in deep learning technologies, such as end-to-end learning, the
need for extracting big data is greater than ever. Multimedia
resources available on social media represent a wealth of
data more than large enough to satisfy this need. However,
an often prohibitive amount of effort has been required to
source and label such instances. As a solution, we introduce
Cost-efficient Audio-visual Acquisition via Social-media Small-
world Targeting (CAS2T) for efficient large-scale big data
collection from online social media platforms. Our system
is based on a unique combination of small-world modelling,
unsupervised audio analysis, and semi-supervised active learn-
ing. Such an approach facilitates rapid training on entirely
new tasks sourced in their entirety from social multimedia.
We demonstrate the high capability of our methodology via
collection of original datasets containing a range of naturalistic,
in-the-wild examples of human behaviours.

1. Introduction

Contemporary deep topologies such as end-to-end learning,
reinforcement learning, and representation learning require
significantly more data than conventional machine learning
approaches [1]. Therefore, research fields that relies heavily
on data that is laborious and costly to collect and annotate,
such as affective and behavioural computing, struggle to
procure enough reliably labelled instances to adequately
train such systems [2].

However, the good news for researchers and analysts
who would like to exploit these new technologies is that the
required data is out there. Information technology companies
such as Google, Apple, Microsoft, and Facebook collect and
maintain data in exabyte proportions [3]. Importantly, a large
proportion of data has been made publicly available with
very few restrictions limiting it’s collection.

One such resource is social media and video sharing
websites. For example, it was estimated that in July 2015
more than 400 hours of video data were uploaded to the
popular video sharing website YouTube every minute [4].
This vast and growing amount of in-the-wild multimedia

material publicly available online, including produced content
and non-acted personal home videos, represents an untapped
wealth of data for research purposes.

Equally important as large and available data resources, is
the advent of machine learning paradigms which enable the
labelling of large datasets with minimal human assistance [5],
[6]. Strategies like semi-supervised active learning use
confidence values from a machine learning algorithm to
determine whether to keep the automatically assigned label
or to request a human to label the instance in question.
Such paradigms have been used to aid multimodal emotion
recognitionand sound classification tasks [6], [7].

Moreover, thanks to recent advances in crowdsourcing
platforms, when human annotation is required, the labels
can be obtained efficiently with low financial overheads.
Crowdsourcing is the utilisation of a large group of non-
experts to perform a common task; the underlying assumption
being the collective opinion of this large group is quicker
and less demanding to obtain than that of a smaller group of
trained experts. Further, this collective opinion has been
shown to be as high a quality as ones determined by
small groups of experts, at a fraction of the cost [8], [9].
Crowdsourcing has been successfully used in a range of
affective computing applications [10], [11], [12].

While the data and the basic tools needed to generate
big datasets have been available, to the best of the authors
knowledge, no system exists which combines them to
efficiently source multimedia data from internet resources.
In this regard, we herein introduce our COST-EFFICIENT

AUDIO-VISUAL ACQUISITION VIA SOCIAL-MEDIA SMALL-
WORLD TARGETING (CAS2T) system that is purpose-built
for enabling fast, efficient and reliable audio-visual data
collection directly from social media platforms in a cost-
efficient manner.

Our approach combines complex systems theory (Sec-
tion 2.1), unsupervised audio analysis (Section 2.2), semi-
supervised active learning (Section 2.3) and crowdsourcing
(Section 2.4). In heralding this solution, we collect six new
audio databases (Section 3) and demonstrate, via a set of
classification experiments, the effectiveness of our system
(Section 4). Finally, our conclusions and future work plans
are given in (Section 5).
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Figure 1: Block diagram of CAS2T. A network of interwoven YouTube videos is analysed by complex systems components
(a) in order to identify an initial set of ‘related’ multimedia clips available on social media, specified by the source video.
These clips are then passed to an Unsupervised Audio Analyser Component (UAAC) which performs unsupervised event
detection to isolate audio instances of potential interest (b). We then use a mix of semi-supervised active learning (SS-AL)
and crowdsourcing (c) to label the data with minimal human intervention. Samples with low classification certainty (low
confidence samples) are selected to be sent for human annotation, and the instances with high classification certainty (high
confidence samples) are directly added to training data set with labels automatically determined by the machine annotator.
.mp4 and .webm are extensions for video files extracted from YouTube; .wav is an extension of audio files.

2. Multimedia database generation

While online multimedia archives contain a wealth of data, its
practical application in training machine learning systems is
hindered by three obstacles: 1) finding the relevant recordings;
2) segmenting these into meaningful and coherent segments;
and 3) reliably labelling the segments so that they can be
useful in machine learning. In the following subsections, we
describe our solutions to these problems.

2.1. Complex Network Analyser Component

The role of the Complex Network Analyser Component
(CNAC) is to enable fast identification of ‘related’ multimedia
data from online resources. It is currently implemented to
work with YouTube – the world’s largest video sharing web-
site. YouTube has one of the world’s largest recommendation
systems [13], which offers a viewer suggestions as to the
next video they should watch. Whilst the exact workings of
this system are not publicly available, it is known to be based
on features including: the number of video views; video title,
description, and associated metadata; search query tokens;
viewer demographics; and the video rankings (i. e. number
of likes and dislikes) [13].

The CNAC operates under the assumption that the content
of recommended videos is, in general, highly similar (i. e.
related) to the original video and exploits the complex
networks of interconnections generated by YouTube’s rec-
ommendation system by modelling them as graphs with
small-world properties [14]. Given an initial source video
link (cf. ‘YouTube Source Video’ in Figure 1), the CNAC
uses the YouTube Data API to build an undirected graph
G of the videos most highly recommended to the viewer.
The vertices of G represent videos that are considered to
be potentially related to the topic of interest (source video),
and the edges correspond to the recommendations between
videos.

Figure 2: An illustration of the graph G for six searched
subjects. YouTube clips with high Local Clustering Coeffi-
cient (LCC) are more likely to build a clique, as shown by
the different coloured nodes in the graph, and are related to
a specific topic.

The graph G can therefore be thought of as a mapping of
YouTube’s recommendation space in relation to the source
video. To the best of the authors’ knowledge, such a mapping
has not been previously realised. This mapping is required
to reveal the extent of mutual relationships between related
videos of interest. Within G we assume the videos (vertices)
with a greater relation to the topic of interest to have a
higher number of connections (edges) with other vertices.
Accordingly, we use Local Clustering Coefficient (LCC)
algorithms to identify highly related videos [14], [15], [16].

The LCC of a video vi in G quantifies how close its
neighbours are to being a clique (complete graph) and how
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likely they are part of larger highly connected videos groups.
This can be calculated via

Cvi
=

2n

kvi
(kvi

− 1)

where Cvi is the LCC for vi, n is the number of edges that
actually pass between the neighbours of vi, and kvi is the
number of neighbours of vi [14]. Highly related videos in G,
videos with a high number of edges (i. e. recommendations),
will have a high LCC value and conversely, unrelated videos
will have a low LCC. As illustrated in Figure 2, the CNAC
uses the LCC to locate highly mutually related content groups
in G, which can be downloaded and then sent to the UAAC
for further processing.

2.2. Unsupervised Audio Analyser Component

The goal of the Unsupervised Audio Analyser Component
(UAAC) is to extract coherent, meaningful segments from
the collected videos. In achieving this, instances can be
processed by one of two different approaches: energy-based
and spectrum-based. The former is used for videos in which
the target class presents itself as isolated audio events of
approximately known duration against a relatively quiet
background (i.e. the signal-to-noise ratio is high during the
events) and not many other prominent audio sources are
present.

The spectrum-based approach is used when the target
audio events are not necessarily prominent in terms of energy
but are still expected to be distinguishable based on their
spectra, i.e. in order to detect events based on their spectral
rather than temporal coherence. Both approaches share a
similar post-processing stage to produce segments of desired
length.

Denoting the logarithmic energy of the nth short-time
audio frame as En, the energy-based detector computes for
each frame the statistic En,β − En,α, where the two terms
are lowpass-filtered versions of En produced using different
memory coefficients so that α > β, and subtracts the longer-
term average (assumed to be the slowly changing noise floor
level) from the shorter-term average (which may be higher
due to energetic events). Unsupervised thresholding is used
to extract frames with high values for post-processing.

The spectrum-based detector generates an unsupervised
classification of spectral representations of each frame –
here 50-dimensional linear-frequency cepstral vectors – and
selects the frames belonging to the J out of K clusters with
the highest frame energy for post-processing. It thus makes
use of both mutual spectral similarity and signal energy.

The post-processing connects all segments that are sepa-
rated by less than tskip seconds and subsequently discards
all segments whose length is smaller than tmin seconds or
larger than tmax seconds.

When gathering our dataset (cf. Section 3), we used the
following UAAC parameter values (tuned empirically): the
audio frame length was 30 ms spaced at 10 ms frame shift
intervals; α = 0.999, β =0.95, tskip = 0.2 s, tmin = 0.5 s,
and tmax = 10 s for the energy-based detector, which is used

to detect short audio events, and K = 128, J = 116, tskip =
0.25 s, tmin = 2.0 s, and tmax = 30 s for the spectrum-based
detector, which is used to detect speaking styles.

2.3. Semi-Supervised Active Learning

Semi-Supervised Active Learning (SS-AL) has consis-
tently been shown to be a reliable method to reduce human
efforts when annotating data [7]. This approach shares
labelling work between humans and a (pre-trained) machine
learning system in an iterative manner. The SS-AL approach
used in our solution is based on the Semi-Supervised Active
Learning in a pool-based scenario paradigm presented in [7].
The confidence thresholds Clow = 0.15 and Chigh = 0.85
are determined by the performance of the SVM classifier. All
instances with the confidence values Cs > Clow(0.15) and
Cs ≤ Chigh(0.85) will remain in the pool of unlabelled data
U . An overview of this algorithm is given in Algorithm 1.

Algorithm 1 Semi-supervised Active Learning

Given:

• L: a small set of labelled data

• U : a large pool of unlabelled data

• M: an initial model trained by L
• Clow = 0.15, Chigh = 0.85: classifier’s confidence

thresholds

repeat

• Using M to classify every instance in U , and
calculate the corresponding classifier’s confidence
value C

• Choose instances with Cs < Clow from U , and
send them for annotation to manual annotation

• Refer to the new labelled set as Uo
new

• L = L ∪ Uo
new and U = U − Uo

new

• Re-train M using the new L
• Choose instances with Cs ≥ Chigh from U , and

add the corresponding predicted labels

• Refer to the new machine-labelled set as Um
new

• L = L ∪ Um
new and U = U − Um

new

• Re-train M using the new L

until there is no data in the pool predicted as belonging to
the target class OR model training converges OR manual
annotation is not possible

2.4. Harnessing the Crowd

All manual labelling is performed using the
crowdsourcing-based data recording and annotation
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TABLE 1: Specifications of the samples in each data set. ltotal: total length of the data set; lmin and lmax: the minimum
and maximum sample lengths; σ: standard deviation; ntg/nsp: number of all target and speech samples in each set

Train Evaluation
Tasks ltotal lmin/lmax σ ntgt/nsp ltotal lmin/lmax σ ntg/nsp

Freezing 75.9m 2.0 s/29.4 s 5.8 s 409/205 22.4m 2.0 s/28.6 s 5.9 s 91/80

Intoxication 139.7m 2.0 s/29.9 s 6.5 s 514/555 16.7m 2.0 s/24.8 s 5.3 s 97/55

Screaming 53.6m 2.0 s/29.9 s 7.6 s 203/172 22.0m 2.1 s/29.9 s 5.5 s 111/78

Threatening 106.6m 2.0 s/29.8 s 7.4 s 559/93 45.8m 2.0 s/29.2 s 5.2 s 163/278

Coughing 94.3m 0.5 s/28.8 s 3.5 s 1 553/535 63.9m 0.5 s/23.2 s 2.7 s 1 080/491

Sneezing 6.7m 0.5 s/8.0 s 1.3 s 114/124 9.2m 0.5 s/9.3 s 1.4 s 150/141

platform iHEARu-PLAY [8]. This platform provides
volunteers a game-like environment for recording and
annotating speech, features a scoring system, player ranks,
multiple leaderboards, and unlockable badges. Besides
this gamification concept, the platform also has different
mechanisms to ensure the reliability of the labelled data
by the players. A quality control system and methods
of identifying the within-user-agreement are integrated
into iHEARu-PLAY. Each player starts with the level of
trustability of 100%. In addition to the normal questions,
some control questions and consistency questions can be
interspersed in order to validate the annotators’ concentration
during the game.

Consistency questions are repeated questions on the same
file within the given task and each given answer is internally
compared with the previous answer(s). Control questions
are automatically mixed into the stream of regular tasks and
include definitely wrong answer options that can be chosen
by the user. Users’ answers to these questions influence
their Trustability Score. Giving ‘inconsistent’ or ‘wrong’
answers decreases their Trustability whilst a ‘correct’ answer
increases or maintains it. These scores can be used in a
variety of methods in order to improve overall annotation
quality.

When gathering our datasets, 14 player produced anno-
tations. Since metadata is given voluntarily, we received the
data from 11 players (5 female, 6 male) aged 24 to 35 (mean:
28, standard deviation: 3.1 years) for our six audio tasks.

3. Creating the Databases

For our classification experiments, we have collected six
new audio databases containing different human vocalisation
and speech types; namely coughing, sneezing, freezing
– speech produced by an individual shivering with cold,
intoxication – speech produced under the influence of drugs
or alcohol, screaming, and threatening – speech perceived
by our annotators to be of a threatening manner.

These datasets are based on the concept of acoustic
surveillance [17]. The first two topics are related to the
monitoring of everyday activity – in terms of, e.g. personal
health – in common, relatively quiet environments such
as home or office [17]. For these kinds of events, energy-
based audio segmentation (Section 2.2) was used. The latter
four topics, related to audio-based surveillance for security

purposes in noisy public places, were handled using spectrum-
based segmentation.

Table 1 shows an overview of the databases created. Ac-
tive learning played a major role in reducing human labelling
efforts when collecting this data. We used crowdsourcing to
label an initial set of 3030 audio instances for use in the
set of labelled data (L) and in creating our evaluation sets
(cf. Algorithm 1; Table 1). Ten rounds of active learning
were applied and approximately 80% of the remaining data
instances sourced were machine labelled. This represents a
substantial reduction in human labelling efforts. We also used
the Evaluation set to test the efficacy of our SS-AL approach.
As shown in Figure 3, plotted for threatening speech, SS-AL
greatly improves our system’s learning results in comparison
to random selection of manually labelled instances. Similar
results were observed for all datasets.

4. Experiments

This section outlines the classification approaches used
to generate the presented results.

4.1. Evaluation Metric

The evaluation measure chosen for the tasks is the
Unweighted Average Recall (UAR), i. e. the mean value
of recognition accuracy for each class. We use UAR as our
corpora has an unbalanced class distributions (cf. Table 1).

4.2. Classification Approaches

We generated baseline results using a linear-kernel sup-
port vector machine (SVM) system trained on the Interspeech
2009 Emotion Challenge (IS09-emotion) [18] dataset, with
the SVM cost parameter C optimised for each dataset.

We also use a Bag-of-Audio-Words (BoAW) system
proposed in [19]. This system is trained using either the IS09-
emotion dataset or a 39-dimensional mel-frequency cepstral
coefficient (MFCC) feature representation (12-MFCC, 12-
ΔMFCC, 12-ΔΔMFCC, E, ΔE, and ΔΔE, where E stands
for logarithmic energy of the input speech signal). In order
to learn a codebook and generate a BoAW representation,
the size of the codebook S is optimised and each low-level
descriptor (LLD) will be assigned to a number of its closest
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TABLE 2: Classification results of each paralinguistic task by support vector machine (SVM; linear kernel), Bag-of-Audio-
Words (BoAW)+SVM, and convolutional neural network (CNN) by unweighted and weighted average (UA/WA) recall in
percent. C: complexity parameter of the SVM; cw: number of closest words in the codebook to which each low-level
descriptor (LLD) is then assigned; S: Size of the codebook; The chance level for each task is 50.0 % UAR.

SVM BoAW+SVM CNN

Evaluation Evaluation Evaluation

Tasks Feature Set C UA (WA) C cw S UA (WA) UA (WA)

Freezing
IS09-emotion 10−6 70.19 (70.76) 10−6 30 4 200 67.48 (69.01) 56.91 (58.48)

MFCCs – – 10−6 20 3 600 65.56 (66.08) 51.06 (53.22)

Intoxication
IS09-emotion 100 64.71 (62.50) 10−2 20 3 600 72.57 (73.03) 66.84 (69.74)

MFCCs – – 100 20 3 600 66.72 (69.08) 67.54 (67.11)

Screaming
IS09-emotion 10−3 89.21 (88.88) 10−5 30 4 200 96.98 (97.35) 89.22 (90.45)

MFCCs – – 100 20 3 600 93.97 (94.71) 87.30 (88.89)

Threatening
IS09-emotion 10−5 73.82 (72.10) 10−2 30 4 200 66.26 (72.33) 71.85 (70.75)

MFCCs – – 10−2 30 4 200 66.96 (72.11) 70.30 (68.41)

Coughing
IS09-emotion 10−3 95.36 (96.37) 10−4 30 4 200 96.69 (96.05) 95.44 (94.72)

MFCCs – – 10−4 30 4 200 97.58 (97.52) 93.60 (92.04)

Sneezing
IS09-emotion 10−3 79.26 (79.38) 10−4 20 3 600 76.44 (76.63) 85.16 (85.22)

MFCCs – – 10−3 20 3 600 79.83 (78.46) 80.17 (80.41)

words cw. The BoAW results given were generated after
finding the optimum configuration.

Moreover, we trained a convolutional neural network
(CNN) architecture for all classification tasks. The network
is comprised of three convolutional blocks, followed by two
fully-connected layers with 500 units and a softmax layer.
Each convolutional block contains two convolutional layers
[20], each with 256 feature maps, the first layer having a
kernel size of five time steps, and the second having a kernel
size of one time step. The convolutional layers in each block
were followed by max-pooling applied on groups of two
time steps with a stride of two time steps. Each convolutional
or fully-connected layer was followed by a rectified linear
unit (ReLU) non-linearity, and Batch Normalisation [21]
was applied before each non-linearity. We applied mean
and variance normalisation to each MFCC feature, across
each audio clip. The networks were trained on random one-
second patches from the audio clips, thus augmenting the
training data in a similar way to [22]. Learning was done
by minimising a cross-entropy loss using stochastic gradient
descent with learning rate of 0.1, using minibatches of 64
examples. At evaluation time, the predictions of each network
were averaged across five one-second samples from each
audio clip.

As seen in Table 2, all systems performed at well above
chance level. The SVM approach achieved the best perfor-
mance for the Freezing and Threatening tasks; while BoAW
achieved the highest UAR for the Intoxication, Screaming,
and Coughing tasks. Our neural network, with the exception
of the Sneezing task, did not perform as strongly as expected;
however, its performance matches the other classifiers across
the tasks.

Figure 3: Learning curves of the threatening task for semi-
supervised active learning (SS-AL) and random sampling.
The initial training set consists of 31 samples with un-
weighted accuracy (UA) 51.14 %. After SS-AL, the size
of the training set has increased to 652 samples with UA
73.26 %; of those added samples, 527 and 94 samples have
been labelled by the machine learning system and human
annotators, respectively.

5. Conclusion and Outlook

Our solution is highly effective at rapidly constructing
new audio(-visual) databases or enhancing existing ones.
As a consequence, data-driven approaches can benefit from
the availability of additional data and achieve better per-
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formances. CAS2T is a combination of complex analysis
based on the small-world properties of graphs, unsupervised
audio segmentation, and semi-supervised active learning. The
results demonstrate that the process can be used to build
datasets for use with both conventional and contemporary
machine learning approaches. We have demonstrated how
the vast archives of data available to us on the Internet can
be harnessed for building and validating real-world acoustic
surveillance systems to improve the quality of life. The
inherent large variability as well as the sheer volume of
online multimedia data will further enable us to develop
robust systems for real-life environments by ensuring that
the system evaluations are not too optimistic and that the
systems will be capable of working under realistic, noisy,
and unpredictable conditions.

Potential future work includes extending the system to
operate on a range of social media platforms. The efficacy
of our event detection may be increased by combining audio
and visual information. We also plan to utilise collected data
in our cross-modal representation learning research [23], [24].
Finally, the autonomy of the system can be further increased
by exploring natural language processing and deep zero-
resource processing techniques to enable self-gathering and
self-labelling of truly large, original and in-the-wild datasets,
setting the stage for the next generation of intelligent big
data analytics systems.
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