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Abstract—The ability for sound to evoke states of emotion is
well known across fields of research, with clinical and holistic
practitioners utilising audio to create listener experiences which
target specific needs. Neural network-based generative models
have in recent years shown promise for generating high-fidelity
based on a raw audio input. With this in mind, this study utilises
the WaveNet generative model to explore the ability of such
networks to retain the emotionality of raw audio speech inputs.
We train various models on 2-classes (happy and sad) of an
emotional speech corpus containing 68 native Italian speakers.
When classifying the combined original and generated audio,
hand-crafted feature sets achieve at best 75.5 % unweighted
average recall, a 2 percent point improvement over the original
only audio features. Additionally, from a two-tailed test on the
predictions, we find that the audio features from the original
speech concatenated with the generated audio features provides
significantly different test result compared to the baseline. Both
findings indicating promise for emotion-based audio generation.

I. INTRODUCTION

Deep generative networks (including Generative Adversarial
Networks (GANs) [1]) have found an abundance of use
cases within the field of machine learning in recent years.
Particularly in the computer audition community as well as
for vision, applications include domain adaptation [2] and
data manipulation [3], amongst others [4], [5]. With gener-
ative methods, e. g., for speech enhancement [6], [7] showing
substantial improvements over previous methods, including
multi-task learning of long short-term memory recurrent neural
networks (LSTM-RNN) [8].

Higher fidelity audio comes with higher computational
costs, making generative networks not yet fully applicable for
realistic real-time audio-based applications. Although, through
the utilisation of pre-trained networks, real-time processing
does show promise for tasks including audio denoising [9].
However, given the often lower dimensionality of data sources,
more effective reinforced real-time frameworks have been
applied to vision tasks, e. g.,image correction [10].

Given that synthetic audio has the ability to immerse a
listener in an emotional environment, and transmit an emo-
tional state [11], there is much room for research in the
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realm of gencrative networks towards personalised variations
of emotional soundscapes. Implemented in real-time and with
specific penalisation ability, such an audio environment could
be implemented in daily life scenarios, e. g.,in the work place
to improve general quality of life [12].

Emotion is a subtle aspect of audio transmission, which may
not be captured via deep generative approaches. Generative
networks are however, able to reach near human replication
in the field of speech synthesis [13], and the perception of
various approaches, including the state-of-the-art has been
evaluated [14]. As well as this, conversion of emotional speech
states utilising the WaveNet Vocoder framework has recently
shown promise [15], and approaches for deriving representa-
tions of emotional speech features found deep convolutional
generative adversarial networks (DC-GANs) to be of most
benefit for feature generation, as compared to convolutional
neural networks (CNNSs) architectures [5], [16]. However,
to the best of the authors’ knowledge, the advantages of
data augmentation utilising emotional data have not yet been
explored in the audio domain, although it is a topic that has
shown to be successful for emotion-based visual data [17].

As an initial step in exploring this topic, we utilise the
large and highly emotionally diverse DEMOS corpus of Ital-
ian emotional speech [18]. Applying pitch-based augmenta-
tion, 2-classes (happy and sad) from the corpus are then
used as training data for several speaker independently parti-
tioned WaveNet models [19]. Post-audio generation from the
WaveNet models, we extract both state-of-the-art and conven-
tional feature sets including, the deep representations of the
DEEP SPECTRUM toolkit [20], as well as hand-crafted features
from the extended Geneva Minimalistic Acoustic Parameter
Set (eGeMAPS) [21]. We choose these feature sets due to
their known strength for similar emotion recognition [22] and
classification [23] tasks. From both the generated and original
data, a series of classification experiments were performed to
ascertain if the generated audio is able to improve results,
assuming that this implies the inclusion of subtle emotion-
related features in the generated audio.

This paper is organised as follows. In the following section
(Section II), the corpus used in our experiments is presented,
including data processing, partitioning and augmentation. We
then describe our experimental settings for both the generative
model Section III, and the following classification paradigm.
Followed by a discussion of results, and concluding remarks
in Section IV and in Section VI, respectively.
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Fig. 1: An overview of the implementation utilised in this study for emotional audio generation with WaveNet. Features
were extracted using both the OPENSMILE and DEEP SPECTRUM toolkits, resulting in eight feature sets, (Baseline DEMOS,
(G)enerated DEMOS, Augmented DEMOS, and Generated Augmented DEMOS ). A Support Vector Machines was utilised

for classification experiments, with optimisation of the complexity only for the 2-class classification.

TABLE I Speaker independent partitions, Train,
(Dev)elopment, Test created from the DEMOS emotional
speech database. Including the distribution of the 2-classes
(Happy and Sad).

| Train | Dev. | Test | >
Speakers 24 22 22 68
Gender M:F 15:9 | 157 15:7 | 45:23
Happy 447 434 514 1395
Sad 493 486 551 1530
> 940 920 | 1065 | 2925

II. THE CORPUS

For this study, we utilise the Database of Elicited Mood
in Speech (DEMO0S) [18]. DEMoOS s a corpus of induced
Italian emotional speech, including the ‘big 6’ emotions, plus
neutral, and additionally guilt. This dataset is comprised of
9365 emotional instances and 332 neutral samples produced
by 68 native speakers (23 females, 45 males).

For this first step study, we chose to use only the emotional
samples of happiness and sadness, as these fall in opposite po-
sitions when observing the the valence and arousal emotional
circumflex [24], and will possibly allow for a more significant
difference between the generated classes. In this way, the sub-
set of DEMOS that we utilised for the study has in total 2 925
instances, with a duration of 2 h:47 m:41 s.

A. Data Pre-Processing

As a first step, the DEMOS the data was normalised across
all speakers. The data then remained at the provided format
of monophonic WAV 44.1k Hz.

As a means of avoiding any speaker dependency during
training, partitioning of the data was made prior with consid-
eration to gender. There is a gender bias in the dataset (45:23,
male:female), and future work could be to consider gender-
independent models, however, with consideration to gender we
balance each (train, development, and test) equally, with the
addition of balancing the instances for the 2-classes of interest
happy and sad (cf. Table I for the partitioning applied)'.

' The Speaker IDs for each partition are as follows: (training) 01 — 17, 21,
22, 29, 31, 36 — 38, (development) 18 — 20, 23 — 28, 30, 32 — 34, 39 — 41,
43 — 48 and (test) 42, 49, 50 — 69.

B. Data Augmentation

In general, it is known that deep networks require a large
amount of data to achieve usable results. With this in mind, al-
though for an emotional speech corpus, the DEMOS database
is reasonable in size, when training the WaveNet system we
applied pitch shifting to augment the input data.

Pitch shifting has shown to be a strong choice over others
such as time and noise augmentation for similar tasks, includ-
ing environmental sound classification [25]. Augmentation was
only applied to the Train and Development partitions, keep-
ing the Test set entirely unchanged. Utilising the LibROSA
toolkit [26], we choose to raise or lower the pitch of the audio
samples, and keep the duration of the samples unchanged.
Each utterance was pitch shifted by a factor 10; 5 lower:
{0.75, 0.80, 0.85, 0.90, 0.95} and 5 higher {1.05, 1.10, 1.15,
1.20, 1.25} increments, which are audibly observed to have
made minimal change to the original data. Resulting in an
DEMOS augmented data set (not including unchanged Test
set) of 19 h:01 m:22s.

III. EXPERIMENTAL SETTINGS

As a first step to explore the potential of emotional audio
generation utilising generative networks, we utilise a Tensor-
Flow implementation of the WaveNet generative framework
for modelling raw audio [19]%. We choose WaveNet as this
is a standard framework in the field of audio generation
(cf. Figure 1 overview of the experimental setting).

WaveNet is an audio implementation of PixelCNN [27],
and is a generative network for modelling features of raw
audio, represented as 8-bit audio files, with 256 possible
values. During the training process, the model predicts audio
signal values (with a temporal resolution of at least 16k Hz)
at each step comparing to the true value, using cross-entropy
as a loss function. Hence, the WaveNet model implements
a 256 class classification [28]. As a means of decreasing
the computational expenses, WaveNet applies the method of
stacked dilated casual convolutions, reducing the receptive
field, and minimising the loss in the resolution [29].

Zhttps://github.com/ibab/tensorflow-wavenet



A. Model Training

As the input for the WaveNet model, we supply 6 training
sets (3 for each class). We then train three models separately
on the augmented Training, Development, and Training plus
Development partitions. The WaveNet model was iterated for
100000 steps and a silence threshold s of 0 was set. s acts
as filter, ignoring samples of silence. Given the subtle nature
of emotion-based speech features s was set to zero to avoid
loss of information. To reach 100000 steps, ca. 22 hours was
needed on an Nvidia GTX TITAN X with 12 GB of VRAM
for each training set model.

B. Audio Generation

After training each WaveNet model for 100000 steps, we
generate new speech audio samples. Based on an approxima-
tion of the mean duration from each partition of the original
DEMoS data (Train = 2.6s , Dev. = 2.6s, Train+Dev. =
2.6s ), we generated samples of 2.6s for the Train, Devel-
opment and the combined Train and Development models,
with total instances of 2 123. Due to limited computational
processing time, we only reach ca. 75 % of the original DE-
MOS quantity 3. For generation, the hyperparameters remain
the same, with the temperature threshold ¢ of 1.0 applied —
lowering ¢ causes the model to focus on higher probability
predictions. Following this, we also apply data augmentation
in the same manner as described in Section II-B to each of
these generated partitions. Spectrogram plots of the generated
audio in comparison to the original audio data can be seen
in Figure 2. From a qualitative analysis of the generated data,
attributes of the original speech, i.e. accent and intonation are
audible, despite the presence of noise that has occurred in
excess during generation.

C. Feature Extraction and Fusion

For both datasets, the generated and the original, we extract
conventional hand-crafted features, and state-of-the-art deep
representations. Resulting in 8 features sets (4 hand crafted,
and 4 deep), from 4 variations of the data: (1) Original
DEMOS, (2) Augmented DEMOS, (3) Generated DEMOS,
and (4) Augmented Generated DEMOS.

Given the success of the extended Geneva Minimalistic
Acoustic Parameter Set (eGeMAPS) [21], we utilise this as
a conventional handcraft approach. From each instance, the
¢GeMAPS acoustic features arc extracted with the OPENS-
MILE toolkit [30]. Using the default parameter settings from
OPENSMILE for the low-level descriptors (LLDs) of each
feature set, the higher level suprasegmental features were
extracted over the entire audio instance.

Additionally, we extract a 4096 dimensional feature
set of deep data-representations with the DEEP SPEC-
TRUM toolkit [31]*. DEEP SPECTRUM has shown success for
other emotion-based speech tasks [23]. For this study, we
extract mel-spectrograms with a viridis colour map, using the

3For the interested reader, a selection of generated data can be found here:
https://bit.ly/32KzXTf
4https://github.com/DeepSpectrum/DeepSpectrum

default DEEP SPECTRUM settings and the VGG16 pre-trained
imagenet model [32], with no window size or overlap applied.
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Fig. 2: Spectrogram representation of speech files. ‘Sad’
original audio (a) and ‘Sad’ generated audio (b), as well as
‘Happy’ original audio (c) and ‘Happy’ generated audio (d).
Files names indicated in caption. High frequency noise can be
seen in excess for the generated audio, however, vocal features
such as formants are also seen to be replicated in the lower
frequency range.

D. Classification Approach

A support vector machine (SVM) implementation with
linear kernel from the open-source machine learning toolkit
Scikit-Learn [33] is used for our experiments. During the
development phase, we trained a series of SVM models,
optimising the complexity parameters (C' € 10~4, 1073, 1072,
1071, 1), evaluating their performance on the Development
set. For original DEMOS data we re-trained the model with
the concatenated Train and Development set, and evaluate the
performance on the Test set. For the Generated DEMOS , we
utilise the data which has been generated from the combined
Training and Development WaveNet, and evaluated on the
original DEMOS test. Further, upon creation of the 8 afore-
mentioned features sets, we prepared 5 experiments which
were repeated for each feature set type (DEEP SPECTRUM and
eGeMAPS), in various combinations of the data, with all tested
on the original unseen DEMOS Test partition:

1) Baseline (original data for Training, Development).

2) Generated (generated speech for Training, Development).

3) Baseline + generated (combined baseline and generated
in Training, Development).

4) Generated + augmentation of original (combined gen-
erated with pitch shifting augmentation of original for
Training, Development).

5) Augmented generated + augmented original (combined
pitch shifting augmentation of generated speech with
augmented original for Training, Development).

IV. RESULTS AND DISCUSSION

When observing the results found in Table II, it can be
seen that for both DEEP SPECTRUM and eGeMAPS results,
there is an improvement on the classification baseline when
applying the generated audio to the Training set. We will
discuss experiments in relation to the number indicated in
the results table, as previously described in section III-D. To
evaluate the significant (or not) difference between predictions,
we conduct a two-tailed T-test, rejecting the null-hypothesis
at a significance level of p < 0.05 and below. For this, we



checked each Test set prediction result for normality using a
Shapiro-Wilktest [34].

From the DEEP SPECTRUM results we see slight improve-
ment when utilising the generative data with the original data.
Of most interest is experiment 3 in which the result improves
over the original baseline by 0.9 percent points, at the same
classification complexity of C = 10~2. When performing a T-
test with test predictions of experiment 3 against experiment
1, we obtain p = 0.05, which would suggest a borderline
significant difference in this improvement. We also see im-
proved results for experiment 5 although this is not found to be
significantly different to the baseline. Better results were found
for Test with larger complexity optimisation values; however,
this occurred due to overfitting on the Development set and
therefore the result is not reported.

Experiment 2 from the DEEP SPECTRUMresults, which
utilises the generated data only in the Training set, received
below chance level, implying that the original data is needed
for this scenario. However, when we observe the eGeMAPS
result for experiment 2, there is a 5 percent point increase in
comparison to DEEP SPECTRUM features. This shows promise,
although through significance testing between experiment 2 of
DEEP SPECTRUM and eGeMAPS results, there is no signifi-
cant difference found.

Continuing with the results from eGeMAPS features, the
best result is seen in experiment 4, with a 75.5 % UAR, 1.9
percent higher than the baseline experiment 1. This results
would suggest that the known emotionality of the eGeMAPS
feature set is more able to capture the emotion from the
gencrated data, as compared to the DEEP SPECTRUM result for
this experiment. However, no significant difference is found
between these experiments when evaluating with a T-test.

The result of the eGeMAPS experiment 5 are significantly
different from the baseline experiment 1 with p = 0.006. This
does show promise for additional pitch based augmentation
on the generated data; however, for experiment 4 which is our
highest result, no significant difference over the baseline was
found (p = 0.069).

V. LIMITATIONS

When considering the limitation of this study, we see that
the results do show promise, but there is minimal significance
to the improvement. It may be of benefit to consider deeper
networks for classification of the generated data rather than the
conventional SVM. Specifically, networks which incorporate
the time-dependency which are inherent to audio, e. g., RNNs
or convolutional RNNs [35]. As well as this, incorporating
multiple data sets, and more emotional classes may be fruitful
for evaluation, given the tendencies we have seen arise from
this first step 2-class setup. Additionally, the pitch shifting
may also be altering emotional attributes, therefore we would
consider exploring alternative augmentation methods including
additive noise and time-shifting.

In this way, our results are also limited by the single
WaveNet architecture that we have implemented, and it would
be of best interest to evaluate alternative generative networks

TABLE II: Results for 2-class classification (happy vs sad)
across all experimental setups on the DEMOS corpus as
described in Section III-D. Utilising a SVM, optimising C,
and reporting unweighted average recall (UAR) on both DEEP
SPECTRUM and eGeMAPS feature set (Dim)ensions, including
(O)riginal, (G)enerated and (A)ugmented data. Chance level
for this task is 50 % UAR. * indicates significant difference
over the baseline (1).

SVM DEEP SPECTRUM

| Dim C Dev. Test
(1) Baseline 4096 1072 740 735
2) G 4096 1072 592  49.0
3)G+0 4096 1072 653 74.4
4 G+AO 4096 1073 804 734
GBG)YAG+AO | 4096 1073 857 741

SVM eGeMAPS

| Dim C Dev. Test
(1) Baseline 88 107! 737 736
2) G 88 1072 586 55.8
3)G+0 88 1 769 740
4 G+AO0 88 1 799 755
BYAG+AO 88 1 845 74.1%

including DC-GAN:Ss [36], allowing for deeper hyperparameter
optimisation. Additionally, other deep generative networks im-
plementations which have shown success, ¢. g., SpecGAN [37]
may be useful for this task.

VI. CONCLUSIONS AND FUTURE WORK

In this study, we have utilised an emotional speech corpus
to take a first step in evaluating the ability for emotional
audio to be regenerated via the generative model for raw
audio, WaveNet. In this way, we are working towards the use
of generative models as a means of generating personalised
emotional audio environments, €. g., adapting a stressful audio
environment (soundscape) into a more enjoyable space, based
on the needs of an individual.

Findings from this have shown promise for emotional
generative audio showing an improvement on a binary (happy
vs sad) classification paradigm. Deep representations of the
audio, and the handcrafted features of eGeMAPS, result in
improvements over the dataset baseline. Results suggest that
some emotionality is retained in the generated data, in particu-
lar we find a slight above chance result for eGeMAPS features
from only generated training sets.

Given the promise shown from these results, in future work
we would consider expanding our research for generative
audio across a variety of emotional audio domains, €. g., music
and the soundscape, as a means of exploring immersive use-
cases. In this same way, it would be of interest to explore
audio generation with larger duration, evaluating the human
perception of such emotion-based generation.
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