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Summary. We are concerned with structural optimization problems where the
state variables are supposed to satisfy a PDE or a system of PDEs and the de-
sign variables are subject to inequality constraints. Within a primal-dual setting,
we suggest an all-at-once approach based on interior-point methods. Coupling the
inequality constraints by logarithmic barrier functions involving a barrier parameter
and the PDE by Lagrange multipliers, the KKT conditions for the resulting sad-
dle point problem represent a parameter dependent nonlinear system. The efficient
numerical solution relies on multilevel path-following predictor-corrector techniques
with an adaptive choice of the continuation parameter where the discretization is
taken care of by finite elements with respect to nested hierarchies of simplicial tri-
angulations of the computational domain. In particular, the predictor is a nested
iteration type tangent continuation, whereas the corrector is a multilevel inexact
Newton method featuring transforming null space iterations. As an application in
life sciences, we consider the optimal shape design of capillary barriers in microfluidic
biochips.

1 Introduction

The optimization of structures and systems has a long history that can be
traced back to the work of Bernoulli, Euler, Lagrange, and Saint-Venant. It
became its own discipline during the second half of the last century when
the rapid progress in electronic data processing required the development and
implementation of highly efficient and robust algorithmic optimization tools.
Nowadays, shape optimization is an indispensable tool for many design issues
in aero- and fluid dynamics, electromagnetics, and structural mechanics.
The spectrum of analytical and numerical methods is well documented by
numerous monographs on the subject that have been published during the
past twenty-five years (cf., e.g., Allaire (2002); Bendsøe (1995); Delfour and
Zolesio (2001); Haslinger and Neittaanmäki (1988); Haslinger and Mäkinen
(2004); Mohammadi and Pironneau (2001); Pironneau (1984); Sokolowski
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and Zolesio (1992)).
In this paper, we will focus on an all-at-once approach by means of primal-dual
interior-point methods. Using classical barrier functions, this results in a pa-
rameter dependent nonlinear system which is solved by a multilevel predictor-
corrector continuation strategy with an adaptive choice of the continuation
steplength along the central path. The predictor relies on a nested iteration
type continuation, whereas the corrector features an inexact Newton method
involving transforming null space iterations as inner iterations. As a multiscale
multiphysics application, we consider the optimal design of capillary barriers
in surface acoustic wave driven microfluidic biochips used for hybridization
and sequencing in genomics.

2 Optimal design of processes and systems

A typical shape optimization problem associated with a time-independent
PDE or a system thereof as the underlying state equation amounts to the
minimization of a shape functional J over bounded domains Ω in Euclidean
space lRd. The state function u is assumed to satisfy a boundary value problem
as described by means of a partial differential operator L, and there may be
further equality and/or inequality constraints on the domain.

inf
Ω

J(u,Ω) , J(u,Ω) :=
∫

Ω

j(x, u(x)) dx, (1a)

subject to Lu = f in Ω , u = g on Γ , h(Ω) ≥ 0. (1b)

The inherent difficulty that the minimization is over a certain class of domains
instead of a set of functions in an appropriate function space can be circum-
vented by the so-called shape calculus as developed by Céa, Delfour, Zolésio
and others (cf., e.g., Delfour and Zolesio (2001)). The necessary optimality
conditions can be stated by means of the shape gradient

∇J(Ω)[V ] = lim
t→0+

J(Ωt(V ))− J(Ω)
t

= 〈∇J(Ω),

where V ∈ X := C2,α(Ω̂; lRd). The shape gradient is a distributional deriva-
tive that can be defined by the velocity method in terms of velocity fields V
describing transformation of domains. The shape gradient admits a boundary
integral representation

〈∇J(Ω), V 〉 =
∫

Γ

〈V, ν〉 {j(x, g) +
∂p

∂ν

∂(g − u)
∂ν

} ds,

involving the adjoint state p that satisfies the adjoint state equation L∗p =
∂j/∂u(·, u). Sufficient optimality conditions invoke the shape Hessian which
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can also be given a boundary integral representation admitting an interpre-
tation as a pseudo differential operator of order 1 (cf., e.g., Eppler and Har-
brecht (2006)). The analytical investigation of shape Hessians and the de-
velopment and implementation of numerical tools based thereon is subject to
intensive ongoing research. The numerical methods developed so far require
some smoothness of the domain and suffer from a lack of stability otherwise.
Since interior-point methods essentially rely on second order information, in
the sequel we will use a more classical approach based on a parametrization
of the domain by a finite number of design variables. The boundary Γ is
represented by a composite Bézier curve using a certain number of Bézier
control points α ∈ Rm,m ∈ N, which serve as design variables. The equality
and/or inequality constraints are expressed by means of the design variables.
For the finite element approximation of (1a)-(1b) we choose α̂ as a reference
design and refer to Ω̂ := Ω(α̂) as the associated reference domain. Then, the
actual domain Ω(α) can be obtained from the reference domain Ω̂ by means
of a mapping Ω(α) = Φ(Ω̂; α). The advantage of using the reference domain
Ω̂ is that finite element approximations can be performed with respect to that
fixed domain without being forced to remesh for every new set of the design
variables. The finite element discretization of (1a)-(1b) with respect to a sim-
plicial triangulation Th(Ω) of the computational domain Ω leads to a finite
dimensional optimization problem

inf
uh,α

Jh(uh, α), (2a)

subject to Lhuh = bh , h(α) ≥ 0, (2b)

where uh ∈ Rn is the finite element approximation of the state u, Jh(uh, α) the
discretized objective functional and Lhuh = bh the algebraic system arising
from the finite element discretization of the PDE.
The inequality constrained nonlinear programming problem (2a)-(2b) will be
numerically solved by adaptive multilevel path-following primal-dual interior-
point methods as described in the following subsections. For ease of notation,
in the sequel we will drop the subindex h.

3 Adaptive multilevel primal-dual interior point methods

We couple the inequality constraints in (1b) by logarithmic barrier functions
with a barrier parameter β = 1/µ > 0, µ → ∞, and the equality constraint
by a Lagrange multiplier λ ∈ lRn. This leads to the saddle point problem

inf
u,α

sup
λ
L(µ)(u, λ, α) , (3)

where L(µ) stands for the Lagrangian

L(µ)(u, λ, α) = B(µ)(u, α) + 〈λ,Lu− b〉. (4)
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Here, B(µ)(u, α) is the so-called barrier function as given by

B(µ)(u, α) := J(u, α) − 1
µ

ln(h(α)) . (5)

and 〈·, ·〉 stands for the Euclidean inner product on Rn (for details cf., e.g.,
Wright (1992)). The central path µ 7−→ x(µ) := (u(µ), λ(µ), α(µ))T is given
as the solution of the nonlinear system

F (x(µ), µ) =



L(µ)

u (u, λ, α)
L(µ)

λ (u, λ, α)
L(µ)

α (u, λ, α)


 = 0 , (6)

where the subindices refer to the derivatives of the Lagrangian with respect
to the primal, the dual, and the design variables. The choice of the barrier
parameter strongly influences the performance of the interior-point method.
There are static strategies with the Fiacco-McCormick approach as the most
prominent one (cf. Fiacco and McCormick (1990)), where the barrier para-
meter is fixed until an approximate solution has been obtained, and there is
a variety of dynamic update strategies (cf. Armand et al. (2007); El-Bakry
et al. (1996); Gay et al. (1998); Nocedal et al. (2006); Tits et al. (2003);
Ulbrich et al. (2004); Vanderbei and Shanno (1999)). Convergence properties
of the Fiacco-McCormick approach have been studied in Byrd et al. (2000)
and Wächter and Biegler (2005), whereas a convergence analysis of dynamic
update strategies has been addressed in Armand et al. (2007); El-Bakry et
al. (1996); Nocedal et al. (2006); Ulbrich et al. (2004).
We consider the solution of (5) by an adaptive continuation method based
on the affine invariant convergence theory of Newton-type methods (see, e.g.,
Deuflhard (2004)).

The adaptive continuation method is a predictor-corrector method with
an adaptively determined continuation step size in the predictor and Newton’s
method as a corrector. It relies on the affine invariant convergence theory of
Newton and Newton-type methods and ensures that the iterates stay within
a neighborhood (contraction tube) of the central path so that convergence to
a local minimum of the original minimization problem can be achieved (cf.
Fig. 1).

Predictor Step: The predictor step relies on tangent continuation along the
trajectory of the Davidenko equation

Fx(x(µ), µ) x′(µ) = −Fµ(x(µ), µ) (7)

and amounts to the implementation of an explicit Euler step: Given some
approximation x̃(µk) at µk > 0, compute x̃(j0)(µk+1), where µk+1 = µk +
∆µ

(j)
k , according to
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.

b

x(µ0)

Central Path

x
∗

∆µ
(0)
k δx(µk)

x̃(µk)

Fig. 1. Predictor step of the adaptive continuation method.

Fx(x̃(µk), µk) δx(µk) = − Fµ(x̃(µk), µk) , (8a)

x̃(j0)(µk+1) = x̃(µk) + ∆µ
(j)
k δx(µk) , (8b)

starting with j = 0 (j ≥ 1 only if required by the correction step (see below)).
We use ∆µ

(0)
0 = ∆µ0 for some given initial step size ∆µ0, whereas for k ≥ 1

the predicted step size ∆µ
(0)
k is chosen by

∆µ
(0)
k :=

( ‖∆x(j0)(µk)‖
‖x̃(µk)− x̃(j0)(µk)‖

√
2− 1

2Θ(µk)

)1/2

∆µk−1 , (9)

where ∆µk−1 is the computed continuation step size, ∆x(j0)(µk) is the first
Newton correction (see below), and Θ(µk) < 1 is the contraction factor asso-
ciated with a successful previous continuation step.

Corrector step: As a corrector, we use Newton’s method applied to

F (x(µk+1), µk+1) = 0

with x̃(j0)(µk+1) from (8b) as a start vector. In particular, for ` ≥ 0 (Newton
iteration index) and j` ≥ 0 (j being the steplength correction index) we
compute ∆x(j`)(µk+1) according to

Fx(x̃(j`)(µk+1), µk+1) ∆x(j`)(µk+1) = − F (x̃(j`)(µk+1), µk+1), (10)

update x̃(j`+1)(µk+1) := x̃(j`)(µk+1)+∆x(j`)(µk+1) and compute ∆x
(j`)(µk+1)

as the associated simplified Newton correction

Fx(x̃(j`)(µk+1), µk+1)∆x
(j`)(µk+1) = − F (x̃(j`)(µk+1) + ∆x(j`)(µk+1), µk+1).

We monitor convergence of Newton’s method by means of

Θ(j`)(µk+1) := ‖∆x
(j`)(µk+1)‖/‖∆x(j`)(µk+1)‖ .

In case of successful convergence, we set x̃(µk+1) := x̃(j`)(µk+1) with ` being
the current Newton iteration index, accept the current step size ∆µk := ∆µ

(j)
k
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Fig. 2. Correction step of the adaptive continuation method.

with current steplength correction index j and proceed with the next conti-
nuation step. However, if the monotonicity test

Θ(j`)(µk+1) < 1 (11)

fails for some j` ≥ 0, the predicted steplength ∆µ
(j)
k has been chosen too

large so that the predicted solution x̃(j0)(µk+1) is not situated within the
Kantorovich neighborhood of x(µk+1), i.e., it is outside the contraction tube
around the central path (cf. Fig. 2). The corrector step provides a correction
of the steplength for the tangent direction δx(µk) such that the new iterate
stays within the contraction tube. To do so, the continuation step from (8b)
has to be repeated with the reduced step size

∆µ
(j+1)
k :=

( √2− 1
g(Θ(j`))

)1/2

∆µ
(j)
k , (12)

g(Θ) :=
√

Θ + 1− 1

until we either achieve convergence or for some prespecified lower bound
∆µmin observe

∆µ
(j+1)
k < ∆µmin .

In the latter case, we stop the algorithm and report convergence failure.
The Newton steps are realized by an inexact Newton method featuring right-
transforming iterations (cf., e.g., Hoppe et al. (2006); Hoppe and Petrova
(2004)). The derivatives occurring in the KKT conditions and the Hessians
are computed by automatic differentiation (cf., e.g., Griewank (2000)).

We perform the predictor-corrector scheme in a multilevel framework with
respect to a hierarchy of discretizations. We describe the multilevel approach
in case of a two-level scheme with the levels ` − 1 and ` (cf. Fig. 3). The
prediction is done by nested iteration in such a way that some adaptive con-
tinuation steps are performed on the coarser level `−1 before a predicted value
is computed on the finer level `. The corrector is a Newton multigrid method
incorporating a two-level PDE solver featuring appropriate smoothers. The
iterates are checked for acceptance by the level ` monotonicity test. In some
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more detail, we illustrate the two-level scheme in case of two continuation steps
on level `− 1. We assume that approximations x`−1(µk) and x`(µk) are avail-
able for some continuation parameter µk. Firstly, we perform 2 continuation
steps with an adaptive choice of the continuation steplengths. Secondly, we
use the the level `−1 approximations x`−1(µk) and x`−1(µk+2) as well as the
level 1 approximation x`(µk) to obtain a level 1 prediction at µk+2. This ap-
proximation is then corrected by the two-level Newton multigrid scheme and
checked for acceptance by the level ` monotonicity test. In the general case
of more than 2 levels, the multilevel predictor-corrector continuation method
consists of a recursive application of the two-level scheme.

Fig. 3. Two-level predictor-corrector scheme

4 Numerical results

Microfluidic biochips are used in pharmaceutical, medical and forensic appli-
cations as well as in academic research and development for high throughput
screening, genotyping and sequencing by hybridization in genomics, protein
profiling in proteomics, and cytometry in cell analysis (cf., e.g., Pollard and
Castrodale (2003); Wagner et al. (2002)). Recent nanotechnological devices
are surface acoustic wave driven biochips with integrated fluidics on top of the
chip consisting of a lithographically produced network of channels and reser-
voirs (see Fig. 4 (left)). The core of the technology are nanopumps featuring
surface acoustic waves generated by electric pulses of high frequency. These
waves propagate like a miniaturized earthquake, enter the fluid filled channels
and thus cause a flow which transports the DNA or protein containing liquid
along the network to a reservoir where the chemical analysis is performed (see,
e.g., Wixforth et al. (2002, 2004). Between the channels and the reservoirs
are capillary barriers (cf. Fig. 4 (right)) which have to be designed in such a
way that a precise filling of the reservoirs is guaranteed.
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Fig. 4. Microfluidic biochip (left) and capillary barrier (right)

Mathematical models for SAW biochips are based on the linearized equa-
tions of piezoelectricity in Q1 := (0, T1)×Ω1

ρ1
∂2ui

∂t2
− ∂

∂xj
cijkl

∂uk

∂xl
− ∂

∂xj
ekij

∂Φ

∂xk
= 0 , (13a)

∂

∂xj
ejkl

∂uk

∂xl
− ∂

∂xj
εjk

∂Φ

∂xk
= 0 (13b)

with appropriate initial conditions at t = 0 and boundary conditions on Γ1 :=
∂Ω1. Here, ρ1 and u = (u1, u2, u3)T denote the density of the piezoelectric
material and the mechanical displacement vector. Moreover, ε = (εij) stands
for the permittivity tensor and Φ for the electric potential. The tensors c =
(cijkl) and e = (eikl) refer to the forth order elasticity tensor and third-order
piezoelectric tensor, respectively.
The modeling of the micro-fluidic flow is based on the compressible Navier-
Stokes equations in Q2 := (0, T2)×Ω2

ρ2

(∂v
∂t

+ (v · ∇)v
)

= −∇p + η ∆v +
(
ζ +

η

3
) ∇(∇ · v) , (14a)

∂ρ2

∂t
+∇ · (ρ2 v) = 0 , (14b)

v(x + u(x, t), t) =
∂u
∂t

(x, t) on (0, T2)× Γ2 (14c)

with suitable initial conditions at t = 0. Here, ρ2,v = (v1, v2, v3)T and p
are the density of the fluid, the velocity, and the pressure. η and ζ refer
to the shear and the bulk viscosity. The boundary conditions include the
time derivative ∂u/∂t of the displacement of the walls Γ2 = ∂Ω2 of the mi-
crochannels caused by the surface acoustic waves. The induced fluid flow in-
volves extremely different time scales. The damping of the jets created by the
SAWs happens on a time scale of nanoseconds, whereas the resulting acoustic
streaming reaches an equilibrium on a time scale of milliseconds. We per-
form a separation of the time-scales by homogenization using an expansion
v = v0 + εv′ + ε2v′′ + O(ε3) of the velocity v in a scale parameter ε > 0
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representing the maximal displacement of the walls and analogous expansions
of the pressure p and the density ρ2. We set v1 := εv′,v2 := ε2v′′ and define
pi, ρ2,i, 1 ≤ i ≤ 2, analogously. Time-averaging the second order (in ε) system
according to 〈w〉 := T−1

∫ t0+T

t0
w dt, T := 2π/ω, we arrive at the following

Stokes equations in Ω2

−η ∆v2 −
(
ζ +

η

3

)
∇(∇ · v2) +∇p2 = 〈−ρ2,1

∂v1

∂t
− ρ2,0[∇v1]v1〉 , (15a)

ρ2,0∇ · v2 = 〈−∇ · (ρ2,1v1)〉 , (15b)
v2 = − 〈[∇v1]u〉 on Γ2 . (15c)

which describe the stationary flow pattern, called acoustic streaming, resulting
after the relaxation of the high frequency surface acoustic waves (for further
details we refer to Antil et al. (2008); Gantner et al. (2007); Köster (2007)).

Table 1. History of the adaptive multilevel predictor-corrector strategy (Capillary
barriers, 4 Levels)

level k µ ∆µ ∆J

1 0 2.0E+02
2.83E+00

1 6.3E+02 4.3E+02 1.87E-05
2 1.1E+03 4.9E+02 3.40E-06
3 1.6E+03 5.1E+02 1.09E-06
4 2.3E+03 6.8E+02 5.70E-07
5 3.5E+03 1.1E+03 3.63E-07
6 5.3E+03 1.9E+03 1.99E-07
7 8.8E+03 3.5E+03 1.02E-07
8 1.6E+04 7.3E+03 4.50E-08

2 2 1.1E+03 9.2E+02
4 2.3E+03 1.2E+03
6 5.3E+03 3.0E+03
8 1.6E+04 1.1E+04

3 4 2.3E+03 2.1E+03
8 1.6E+04 1.4E+04

4 8 1.6E+04 1.6E+04

We have considered the optimal design of a capillary barrier for a domain
consisting of part of a microchannel close to a reservoir with two passive outlet
valves to allow for an outflow in case of the stopping mode of the barrier (cf.
Fig. 5). The objective functional J has been chosen of tracking type according
to

J(v2, p2, α) :=
1
2

∫

Ω(α)

|v2 − vd
2 |2 dx +

1
2

∫

Ω(α)

|p2 − pd
2|2 dx
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Fig. 5. Optimally designed capillary barrier:Velocity profile in the flow mode (left)
and in the stopping mode (right)

subject to the Stokes system (15a)-(15c) with Signorini type boundary con-
ditions at the junction between the microchannel and the reservoir. We have
used m = 16 Bézier control points of a Bézier curve representation of the
barrier as design variables subject to bilateral constraints. Table 1 contains
the history of the multilevel interior-point method described in the previous
section in case of four levels 1 ≤ ` ≤ 4 with 2362 degrees of freedom (DOFs)
on the coarsest grid (level 1) and 141634 DOFs on the finest grid (level 4).
The number k indicates the continuation steps, µk and ∆µk := µk−µk−1 refer
to the inverse of the barrier parameter βk and the increment in µk, and ∆Jk

is the difference between the corresponding values of the objective functional.
We have performed two continuation steps on a coarser grid before proceeding
by nested iteration to the next finer grid, and we have used |∆Jk| < TOL
with TOL := 1.0E−07 as a termination criterion for the continuation process.
Fig. 5 displays the optimal design of the barrier and the associated velocity
profiles in the flow mode (fluid flow into the reservoir) and in the stopping
mode (backflow). For further results and a comparison with other continua-
tion methods and update strategies of the barrier parameter we refer to Antil,
Hoppe and Linsenmann (2008).
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J. Haslinger and P. Neittaanmäki; Finite Element Approximation for Optimal
Shape Design: Theory and Applications. John Wiley & Sons, Chichester,
1988.
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