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1. Introduction 

Throughout this paper we denote by ~ a symmetric design with parameters 
(v, k, 2) and by ~ '  an (induced) symmetric sub-design of N with parameters 
(v', k', 2') satisfying k'<k. This situation has been studied by Haemers and 
Shrikhande [7] who proved the following result (generalizing results of [3] and 
[15]): 
1.1. Theorem. Let ~ and ~ '  be as above and define x by 

(1.1.a) 

Then one has 

(1.1.b) 

x=v'(k-k')/(v-v'). 

n ~ ( k ' - - X )  2 

(where as usual n = k - 2 ) ,  moreover, 

(1.1.c) n=(k'-x) 2 

implies that the incidence structure ~ "  consisting of the points of ~ '  together 
with the blocks of @ not in ~ '  is a 2-design with parameters v"=v', k" =x  and 
2 " = 2 - 2 ' .  

The proof of Haemers and Shrikhande uses an eigenvalue technique due to 
Haemers [6]; it is not clear whether or not (1.1.c) holds provided that @" is a 
design (with the parameters given above). We will prove this in Sect. 2 by 
counting arguments (which turn out to be much more delicate than one would 
expect at first). This also leads to another inequality for the parameters of 
and ~ '  which in general will not coincide with (1.1.b). 

There are also a few further reasons to study this situation again. To begin 
with, eigenvalue techniques are less elementary than counting; also a result 
such as Theorem 1.1 should have a geometric interpretation. In fact, the second 
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part of this theorem suggests the meaning of x (which is the average number of 
points in H' which a given block of H \ H '  contains). A subdesign H' satisfying 
(1.1.c) has been called tight by Haemers and Shrikhande; as they observe this 
generalizes the Baer subdesigns studied by Bose and Shrikhande [-3] and thus 
the well-known Baer subplanes of projective planes (cf. e.g. Dembowski [4]). 
Now a Baer subplane is characterized geometrically by the condition that each 
line not in the Baer subplane meets the subplane in a (unique)point; a natural 
generalization of this condition is the requirement that each block of H \ Y  
meets H' in a constant number of points. This is true for tight subdesigns in 
the sense of Haemers and Shrikhande though the converse remained in doubt, 
as already mentioned. We will prefer to take this requirement as the defining 
condition for a tight subdesign; as already indicated the equivalence of both 
definitions will be demonstrated in Sect. 2. 

In Sect. 3, we will consider a few first examples. It should be remarked that 
not all that many series of symmetric designs with tight subdesigns are known; 
the known examples are due to Haemers and Shrikhande [-7] and to Baart- 
mans and Shrikhande [2]. In the remaining sections of this paper we will use 
projective spaces, affine designs and some Hadamard difference sets to con- 
struct four new series of examples. Unfortunately, in all cases the tight subde- 
sign is trivial; in fact, only one other family of examples is known at present 
(due to [7]), excepting of course the well-known Baer subplanes. 

It is well-known that a symmetric design with a regular (=sharply tran- 
sitive) group of automorphisms is equivalent to a difference set (see e.g. Hall 
[8]). We will consider the case of tight subdesigns for this situation also (and 
may speak of a tight sub-difference set, then) and indicate some families of 
examples, too. 

2. An Inequality for Subdesigns 

2.1. Lemma. Let H' be a subdesign of H and define H" as in Theorem 1.1. Then 
@" is a 2-design if and only if each block in H \ H '  meets H' in a constant 
number x of points. In this case, x is given by (1.1.a) and H" has the parameters 
stated in Theorem 1.1. 

Proof Count all flags (p, B) with p~H' and B ~ H \ H '  in two ways to obtain 

(2.1.a) (v - v') x = v ' ( k -  k'); 

clearly one has v"= v' and 2"=  2 -2 ' .  

2.2. Definition. H' is called a tight subdesign of H provided that H" is a 2- 
design; if furthermore 2=2' ,  then H' is called a Baer subdesign of H. 

The following result shows that this definition is equivalent to the one 
given by Haemers and Shrikhande [--73: 

2.3. Theorem. Let H' be a subdesign of H and define x as in (1.1.a). Then x is 
the average number of points of H' which are contained in a block of H \H ' .  
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Fur thermore  one has 

(2.3.a) n >= k '2 - v' dt q- x ( k  - k'). 

Moreover ,  the fo l lowing  condit ions are equivalent:  

(2.3.b) ~ '  is t ight;  

(2.3.c) n = k 'z - v '2 + x (k  - k'); 

(2.3.d) n = ( k ' -  x) 2. 

P r o o f  For each block B in ~ \ @ ' ,  let x B denote the number of points of B in 
@'. The same count as in Lemma2.1 now yields 

(2.3.e) y '  x~ = v'(k - k') 
B 

and as there are v - v '  blocks B in N \ Y ,  x indeed is the average of the x B. 
Next count triples (p, q, B) with p, q l B  and p, qE~ '  to obtain 

(2.3.t) ~ xl3(x B - 1) = v'(v' - 1) (2 - 2). 
B 

Hence we have 

,) 
B B 

= v ' ( v '  - 1) (;~ - 2 )  + v ' ( k  - k ' )  - x v ' ( k  - k ' )  

and therefore (using 2 ' ( v ' - l ) = k ' ( k ' - l ) )  the desired inequality (2.3.a). One 
might assume that (2.3.a) is the same as (1.1.b); this will be true if and only if 

(2.3.g) x ( k  + k' - x)  = v'2.  

We will see in Sect. 3 that (2.3.g) is not true, in general; but it is true provided 
that 9 '  is tight. Note that (2.3.b) and (2.3.c) are equivalent, as 

( x  - x , )  2 = 0 
B 

if and only if 9 '  is tight. Note further that (2.3.d) implies (2.3.b) by Theo- 
rem 1.1; thus it remains to prove that (2.3.b) and (2.3.c) together imply (2.3.d). 
To this end, choose a point P0 in 9 \ 9 '  and denote by y the number of blocks 
of ~ '  passing through Po. Then count all flags (p, B) with pe~ ' ,  B e Y  and p o l B  
to obtain 

(2.3.h) v'2 = y k '  + ( k - y )  x;  

now (2.3.h) has the unique solution y = ( v ' 2 - k x ) / ( k ' - x ) ,  since k'4=x. (Other- 
wise one has v' 2 = k x, 2 = k ( k -  k ' ) / ( v -  v') = k ( k -  1)/(v-  1), hence ( k -  1)/ 
( v - 1 ) < ( k - 1 ) / ( v - v ' )  which is absurd unless v ' = l = k ' = x ;  but then k=,~, a 
contradiction.) Thus y does not depend on the choice of the point Po; hence 
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the dual of Lemma2.1 implies y = x  and (2.3.h) becomes the same as (2.3.g) 
which - as already observed - yields (2.3.d) when combined with (2.3.c). 

We now apply Theorem 2.3 under the additional assumption that @ and N' 
each admit a regular group of automorphisms, say G and H (with H<G).  
Using the well-known equivalence between regular automorphism groups of 
symmetric designs and difference sets (cf. Hall [8]) we get: 

2.4. Corollary. Let D be a (v,k, 2)-difference set in G and let D' be a sub- 
difference set with parameters (v', k', 2') in a subgroup H of order v' of G. Then 
(2.3.a) holds and one has equality in this inequality if and only if (2.3.d) holds 
(which means geometrically that the corresponding subdesign ~ ' = d e v D '  of 
=devD is tight where devD denotes the development (G, {D+g: g6G}, 6) of D). 

2.5. Definition. With the same notation as in 2.4 assume that equality holds in 
(2.3.a). Then D' is called a tight sub-difference set of D. 

We will exhibit several series of examples of tight sub-difference sets later. 

3. A Few Examples 

We begin with an isolated example which yields a symmetric design with a 
tight subdesign for a rather small parameter set not yet known to occur in this 
situation (according to [2] and [7]). 

3.1. Example. Let ~ be the complement of the (56, 11, 2)-design discovered by 
Hall, Lane and Wales [,10]; thus ~ is a (56, 45, 36)-design. We note that both 
the point and block set of @ may be taken as an orbit of hyperovals of the 
projective plane of order 4 under P S L  (3, 4), cf. Jdnsson [-12]. Here a hyper- 
oval is a set of 6 pairwise non-collinear points of PG (2,4); its PSL-class 
consists in fact of those hyperovals meeting the given one in an even number 
of points. Then a point of N is on a block of ~ if and only if the correspond- 
ing hyperovals intersect twice, cf. [12]. Now it is also well-known that the 
hyperovals in the given orbit which miss a given line of PG (2,4) pairwise 
intersect (twice); thus ~ contains a symmetric subdesign ~ '  with parameters 
(16, 15, 14). It is easily checked that ~ '  is tight. Of course this does not yield 
an example of a sub-difference set (even though ~ admits a difference set 
representation) as 16 does not divide 56. It may be remarked that ~ also 
contains a tight subdesign with parameters (7, 4, 2), see [-7]; thus a symmetric 
design may have tight subdesigns for more than one parameter set. Comple- 
menting @ again we get the existence of a tight symmetric (16, 1, 0)-subdesign 
in the Hall-Lane-Wales design which is much more interesting than it looks at 
first: these are 16 points and 16 blocks each of which contains only 1 of the 
given 16 points (which corresponds to an induced empty sub-graph of the 
design graph belonging to the (56, 11, 2)-design). Theorem2.3 (or 1.1) also 
shows that no larger set of such points and blocks can exist. 

We next show that the inequalities (1.1.b) and (2.3.a) do not coincide in 
general which is easily seen by checking (2.3.g). 
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3.2. Example. Consider the parameter sets (v, k, 2)=(25,91 3) and (v',k',2')= 
(3, 3, 3) (a (25, 9, 3)-design with a (3, 3, 3) subdesign is known to exist and is e.g. 
exhibited in Seberry [20]). Here x=3(9-3)/(25-3)=9/11; thus N' cannot 
possibly be tight and (2.3.g) is clearly contradicted. So it should be interesting 
to compare the bounds (1.1.b) and (2.3.a). Here in fact (2.3.a) is slightly better 
as (k'-x)2=576/121 whereas k ' 2 - v ' 2 + x ( k - k  ') is 54/11=594/121 (which is - 
in both cases - less than n = 6, as it should be). If we consider a putative (5, 4, 3)- 
subdesign instead of a (3, 3, 3)-design next, both bounds will reject this; but 
here (1.1.b) is slightty stronger. In fact now x=5 /4  and thus (k ' -x)  2 is equal to 
(11/4)2=121/16 whereas k ' Z - v ' 2 + x ( k - k  ') equals 29/4=116/16. Therefore a 
comparison of the two bounds mentioned will not be uniformly possible. I do 
not know an example for a parameter set rejected by one and permitted by the 
other of these bounds, though. 

3.3. Remark. As we have already considered the parameter set (25, 9, 3) we 
take this opportunity to comment on Theorem 9 of Seberry [20]; she claims 
that an inductive application of this theorem yields an existence proof for the 
series of symmetric designs with parameters 

(3.3.a) p ( p i + i _ l ) + l  ' pi+i, pi 

where both p and p - 1  are prime powers and where i is a positive integer (this 
is due to Rajkundlia [19]). The special case of her theorem which would be 
needed here is as follows: The existence of a design with parameters (3.3.a) for 
i = d - 1  with a (c, c, c)-subdesign with c = p d - p + l  implies that of a design 
with parameters (3.3.a) for i=d (with a subdesign with c=p ~+1 - p +  1). Unfor- 
tunately both designs in question cannot have the required subdesigns (unless 
d =  1, where the first design exists): To see this, one does not even need to test 
one of the bounds discussed here; it suffices to note that c is larger than 2 
which is absurd. 

3.4. Theorem. Let q be a prime power. Then there exists a difference set with 
parameters 

(3.4.a) v=q4+q2+l,  k=q2+l,  2=1 

in the cyclic group C~ with a tight sub-difference set with parameters 

(3.4.b) v=q2+q+l ,  k = q + l ,  2=1 .  

Proof This corresponds to a Baer subplane of a projective plane of order q2; 
we choose the Desarguesian plane PG(2, q 2) which by Singer's theorem (see 
[22]) corresponds to a difference set D with parameters (3.4.a). In the standard 
proof of Singer's theorem, PG(2, q 2) is considered as the lattice of linear 
subspaces of GF(q 6) as a vector space over its subfield GF(q2); similarly, 
PG(2, q) is considered as the lattice of subspaces of GF(q 3) over GF(q). But as 
GF(q 3) is also a subfield of GF(q 6) it is clear that the start block GF(q 2) for 
PG(2, q) (which determines a difference set with parameters (3.4.b)) is a subset 
of D provided we choose a 2-dimensional subspace of GF(q 6) containing 
GF(q 2) as the start block for PG(2, q2). [7 
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We remark that this construction has already been used in 1-14] to obtain a 
few difference sets for divisible designs. This shows that sub-difference sets may 
in fact have applications to the construction of other types of designs with 
interesting groups. 

4. Symmetric Designs with Tight (c, c, c)-Subdesigns 

In this section we construct two families of symmetric designs with tight 
subdesigns with the trivial parameters (c, c, c). The first of these come from 
projective spaces: 

4.1. Theorem. Let 9=PG2e(2d+ l,q) be the design of'points and hyperplanes 
of the (2d + 1)-dimensional projective space over GF(q). Then 9 has a tight (c, c, c)- 
subdesign with 

(4.1.a) c=qd+. . .+q+l .  

Proof Choose a d-dimensional subspace C of PG(2d+I, q) and consider the 
trivial (c, c, c)-design 9 '  induced on C by the hyperplanes containing C. Now 
9 has parameters 

(4.1.b) v=q2a+l+.. .+q+l,  k=q2~+.. .+q+l,  2 = q 2 d - l + . . . + q + l ;  

this yields x = qa -1+ . . .  + q + 1 and thus (2.3.d) is satisfied. 

4.2. Theorem. Let q be a prime power and d a positive integer. Then there exists 
a difference set with parameters (4.1.b) in the cyclic group C~ with a tight (c, c, c)- 
sub-difference set (where c is given by (4.2.a)) in the unique subgroup H of 
order c of Q.  

Proof By the well-known theorem of Singer [22] 9 admits C v as a regular 
automorphism group and thus corresponds to a difference set with parameters 
(4.1.b). In the standard proof of Singer's theorem PG(2d+ 1, q) is represented as 
the lattice of linear subspaces of GF(q 2e+2) considered as the (2d+2)- 
dimensional vector space over its subfield GF(q). We now choose C as the 
subspace of P G(2d + 1, q) corresponding to the subfield G F(q d+ 1) of G F(q 2d+2) 
in the proof of Theorem 4.1; it is then clear that 9 '  corresponds to the trivial 
(c, c, c)-difference set in the cyclic group of order c induced by GF(qd+l) *. The 
assertion follows if we choose as the start block determining the difference set 
D corresponding to 9 a hyperplane containing C. 

4.3. Remarks. (i) Theorem 4.1 yields a Baer subdesign if and only if 2=2' ,  i.e. 
for d = 1. This case is already due to Haemers and Shrikhande [-7, Example 4]. 

(ii) Projective spaces of even dimension 2d cannot be used to construct 
tight subdesigns, as in this case n = k - 2 = q  2~-1 is not a square contradicting 
(2.3.d). 

(iii) Theorem 4.1 and Lemma 2.1 show that 9 "  here is a design with 
parameters q d + . . . + q + l ,  q d - l x . . . x q + l  and qa+l(qa 2 + . . . + q + l ) .  This is 
uninteresting as it is just a multiple of PGe_l(d,q) (which is also clear 
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geometrically by considering the intersection of a hyperplane not containing C 
with C). 

Our next construction uses certain Hadamard difference sets and thus will 
only be stated in terms of difference sets. 

4.4. Theorem. Let q and q + 2 be odd prime powers. Then there exists a differ- 
ence set with parameters 

(4.4.a) v=q(q+2), k=(q2+2q-1) /2 ,  2=(qZ+2q-3) /4  

in G=(GF(q), +)@(GF(q+2), +) with a tight (q, q, q)-sub-difference set in H 
= {(a, 0): aEGF(q)}. 

Proof It is well-known that 

D = {(a, b)~G: z(a) z(b)= 1} u H  

(where z(a) denotes the quadratic character of a) is a difference set with 
parameters (4.4.a), cf. Hall [9, p. 141]. Clearly H is a (q, q, q)-sub-difference set 
of D and easy calculations show that x = ( q -  1)/2 and that H is tight. 

4.5. Remarks. (i) Theorem 4.4 yields a Baer subdesign if and only if q=  3; but 
a (15, 7, 3)-design with a tight (3, 3, 3)-subdesign can also be obtained from 
Theorem 4.1 with d = 1 and q = 2 and thus is already known from [7]. 

(ii) Note that for q - 1  mod 4 the point set {(1, b): bsGF(q+2)} together 
with the blocks D+(O,y) (y~GF(q+2)) forms a Hadamard-subdesign with 
parameters (q +2, (q + 1)/2, (q-1)/4) of dev D; but this subdesign is not tight (in 
fact x is not even an integer). A similar situation holds for q - 3  mod 4 on the 
point set {(a, 1): a~GF(q)}. 

(iii) The designs ~ "  here have parameters (using 4.4 and 2.1) v"=q, k"=x  
=(q -1 ) /2  and 2" =(q2_ 2q-3) /4  and do not seem to be particularly interest- 
ing. 

5. A Construction Using Affine Designs 

Wallis [24] used affine designs to construct strongly regular graphs which in 
some cases turned out to be design graphs. Thus each affine design provides a 
symmetric design which happens to have a tight subdesign: 

5.1. Theorem. Assume the existence of an affine design with parameters v, b, r, k, 
2. Then there exists a symmetric design with parameters 

(5.1.a) v~=(r+l)v,  k l = k r  and 21=k2 

with a tight (r + 1, r, r -  1)-subdesign. 

Proof The symmetric design in question exists by the result of Wallis [24]. 
Now his proof is quite involved; but using the simple alternative proof of [16] 
it is easily seen that the desired tight subdesign exists. In fact the proof of [16] 
is based on the "method of auxiliary matrices" and consists of replacing the 
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entries of the incidence matrix of a trivial (r + 1, r, r-1)-design by "auxiliary 
matrices" Mi~ where Mij is non-zero if the corresponding entry was ~0. 
Moreover, each Mij:t:0 has all diagonal entries = 1 and thus the entries in the 
upper left corners of the Mij form the desired tight subdesign. In fact x = 2 here 
and then (2.3.d) is easily checked using r = k + 2. [3 

5.2. Corollary. A symmetric design with parameters (v, k, 2) and a tight (c+ 1, c, 
c-1)-subdesign exists in at least the following cases: 

(5.2.a) v=qd+l(qd+...+q2+q+2), k=qd(qd+.. .+q+l),  
)~=qd(q~-l+...+q+l), c=qd+. . .+q2+q+l ;  

(5.2.b) v=16a  2, k=2a(4a-1) ,  2 = 2 a ( 2 a - 1 ) ,  c = 4 a - 1  

whenever 4a is the order of a Hadamard matrix. 

Proof. This follows from 5.1 using the known parameters of affine designs, cf. 
Shrikhande 1-21]. [3 

5.3. Remarks. (i) Theorem 5.1 generalizes a result of Haemers and Shrikhande 
[-7] who obtained (5.2.a) for d = l  using the corresponding special case of 
Wallis' theorem which is due to Ahrens and Szekeres [1]. 

(ii) 5.1 yields a Baer subdesign if and only if 2'=)L1, i.e. r - 1  = k 2 which holds 
(using the well-known representation of the parameters of an affine design in 
terms ofs=v/k  and #=k/s, cf. [21-1) if and only i f#=1.  Thus all possible examples 
have parameters (5.2.a) with d = l ,  though existence is known only for prime 
powers q. 

(iii) It is well-known that regular Hadamard matrices (i.e. having constant 
row and column sums) can only exist for square orders 4a2; the existence then 
is equivalent to that of a symmetric design with parameters (4a 2, 2a 2 - a ,  a 2 - a )  
by considering the (+1, -1)- incidence  matrix of such a design, cf. Hall 
[-7, p. 206]. Thus (5.2.b) shows that the existence of a Hadamard matrix of 
order 4a implies that of a regular Hadamard matrix of order 16a2; but the 
proof of [16] moreover yields that this matrix may be required to be sym- 
metric with constant diagonal. Hence one has an alternative proof of Theo- 
rem 4.4 of Goethals and Seidel [5-1 which we did not point out in [16]. In this 
connection we mention that the existence of a regular Hadamard matrix of 
order 4a 2 implies that of a symmetric design with parameters (5.2.b) and with 
a tight subdesign with parameters (4a a, 2a2-a,  a2-a)  by a result of [7]; this 
shows that regular Hadamard matrices are of interest in the study of tight 
subdesigns. 

(iv) In case of Theorem 5.1 the design @" of Lemma2.1 has parameters v" 
= r + l ,  k " = x = 2  and 2 " = 2 1 - 2 ' = ( k - 1  ) (2-1).  Thus 5.2 yields the existence 
of designs with parameters 

(5.3.a) v=q~ +... +q+ 2, k=qa-~ +... +q+ l a n d 2 = q ( q a - ~ - l ) ( q a - ~ + . . . + l )  
for all prime powers q and all positive integers d; and 

(5.3.b) v=4a, k = 2 a - 1  and )~=(2a-1)(2a-2)  whenever a is the order of a 
Hadamard matrix. 
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Series (5.3.b) is not totally without interest as it yields e.g. a (12, 5, 20)-design 
which is one of the ingredients required in the recursive existence proof for 
designs with k=5  and 2=20, cf. Hanani [11]. 

5.4. Theorem. Let q be a prime power and d a positive integer. Then there exists 
a difference set with parameters (5.2.a) in G=(GF(qd+t), +)| 1 with a tight 
(c + 1, c, c - 1 )  sub-difference set. 

Proof As already noted in 1-16], the existence of a difference set with parame- 
ters (5.2.a) in G is a simple consequence of Theorem 5.1 if one starts with the 
affine design AGd(d+l,q) of points and hyperplanes of the affine space 
AG(d+ 1, q). As it is also obvious that the trivial design used may be required 
to have a cyclic incidence matrix, the assertion follows. 

5.5. Remark. The existence of difference sets with parameters (5.2.a) is due to 
McFarland [17] who proved more generally that Co+ 1 may be replaced by 
any group H of order c + 1. It is not difficult to see from his proof that H still 
affords a tight (c+ 1, c, c-1)-sub-difference set; thus one also obtains examples 
in non-abelian groups. 

We will now give a few examples for difference sets with tight sub-difference 
sets corresponding to regular Hadamard matrices. As noted in [16], these 
cannot be obtained as a consequence of Theorem5.1. We here give a con- 
struction which is the difference set analogue of a procedure used by Baart- 
mans and Shrikhande [2]. 

5.6. Theorem. Let G be a group of order 4a 2 and assume the existence of 2a 
subgroups U1,... , U2a of G of order 2a which have pairwise trivial intersection. 
Then there exists a difference set with parameters 

(5.6.a) v=4a 2, k = 2 a 2 - a  and 2 = a 2 - a  

with a tight (2a, 2 a -  1, 2a-2)-sub-difference set. 

Proof It is well-known that 
2a 

D = q \ { 0 }  
i=1 

is a difference set with parameters (5.6.a) (cf. [13, Proposition5.9]; but this 
result seems to be folklore and an example for a--3 is already contained in 
Hall [9]). Clearly each Ui\{0 } is a (2a, 2 a - l ,  2a-2)-sub-difference set of D in 
U~; the reader may check that this is tight. D 

5.7. Corollary. Difference sets with parameters (5.6.a) and tight (2a, 2 a - l ,  
2a-2)-sub-difference sets exist at least in the following cases: 

(5.7.a) a=2 b, G=(GF(q2b+2), +); 

(5.7.b) a=3 ,  H = S  6or C 6 and G = H Q H ;  

(5.7.c) a=4, G a certain non-abelian group of order 64. 

Proof For (5.7.a), choose as the U/ 2a maximal subgroups of G. In case (5.7.b) 
take U I = H X  {0}, /22={0 } x H  and U3={(h,h): hEH}. (5.7.c) is due to Sprague 
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[-23] who has in fact de t e rmined  all possibi l i t ies  for G and  the U~ in case a 
=4 .  [1 

5.8. Remarks. (i) Difference sets with pa rame te r s  (5.6.a) have first been  s tudied 
by M e n o n  [18] who also gave a p roduc t  cons t ruc t ion  (the cases a = u  and  a 
=u' yield a=2uu').  Unfor tuna te ly ,  this does not  car ry  over  to  the s i tua t ion  
s tud ied  here. 

(ii) The subgroups  U~ of  G in T h e o r e m 5 . 6  form a "pa r t i a l  congruence  
p a r t i t i o n " ;  these objects  are equivalent  to " t r ans l a t i on  nets"  (nets with a 
t ransi t ive  t r ans la t ion  group)  and  have been s tudied  in detai l  in [13] and  in 
[23]. 

6. Conelusion 

W e  have thus exhibi ted  4 new series of  symmet r ic  designs with t ight  subde-  
signs. Unfor tuna te ly ,  all subdesigns  in ques t ion  are tr ivial  designs and  it would  
cer ta inly  be interest ing to find more  examples  with non- t r iv ia l  t ight  subdesigns.  
W e  conc lude  this pape r  with a list of  a few smal le r  p a r a m e t e r  sets (say n < 50) 
not  yet con ta ined  in 1-2] and  [7] which have been ob t a ined  here:  

Table 1 

(v, k, 2) (v', k', 2') Proof by Difference set analogue 

(35, 17, 8) (5, 5, 5) 4.4 yes 
(56, 45, 36) (16, i5, 14) 3.1 no 
(63, 31, 15) (7, 7, 7) 4.1 with q=2=d or 4.4 yes 
(99, 49, 24) (9, 9, 9) 4.4 yes 
(143, 7i, 35) (1i, 11, 11) 4.4 yes 
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