Symmetric translation nets

By Dieter Jungnickel at GieBen

1. Introduction

Let 2 be an incidence structure with a parallelism || (i.e. an equivalence relation
on the block set of X such that each |-class partitions the point set of X). X is called
an (s, r; w)-net provided that any two non-parallel blocks intersect in precisely u points
and that there are r parallel classes each of which has s blocks in it. It is easily seen
that an (s, r; p)-net is the same as an affine 1-(s*y, su, r)-design. Such structures have
found considerable interest; in case u=1 they are just the well-known Bruck nets
(see [4], [5]) which are equivalent to mutually orthogonal sets of Latin squares providing
a very important tool in the construction of block designs. We mention two special
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classes of (s, r; u)-nets: A complete (s, p)-net is an (s, r; p)-net with r=

the maximum value of r one may have in any (s, r; u)-net and it is reached in fact
precisely when simultaneously X is an (affine) 2-design. For a proof, see e.g. the survey
paper of Mavron [14] who also discusses the second special class of nets we want to
consider, i.e. symmetric (s, p)-nets: These are (s, su; u)-nets whose dual is likewise an
(s, sp; w-net.

The author has studied nets with various types of collineation groups in a series
of papers (for references, cf. [9]). Here we will be concerned once more with translation
nets, i.e. with (s, r; p)-nets admitting a collineation group G acting regularly on the point
set and fixing each parallel class of X. Translation nets have been studied in case y=1
by Sprague [16] and in general by the author in [9]. There we have given lower and
upper bounds on r for various types of translation groups (abelian, nilpotent,...). The
main result of this paper was that the maximum value for r in a non-elementary abelian
p-group is roughly only the p-th part of that in the corresponding elementary abelian
group (see [9], Section 4). Using this and the result of Schulz [15] who proved that any
translation 2-design has a p-group (in fact of exponent p) as its translation group we
obtained:

Theorem 1. An affine translation 2-design with parameters (s, p) and translation
group G exists iff

(i) s is a prime power and p a power of s;

(i) G is elementary abelian.
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Previously, this was only known if one had required the existence of a non-trivial
central dilatation. Regarding symmetric nets, we had shown

Lemma 1. 4 symmetric translation (s, p)-net with nilpotent translation group G exists
iff

(1) s and p are powers of the same prime p;

(i) G is elementary abelian.

We conjectured that the hypothesis that G be nilpotent is unnecessary in this case,
too. We shall now use arguments in analogy to those of Schulz [15] to show the fol-

lowing

Lemma 2. The translation group of a symmetric translation net is necessarily a
p-group.

Combining Lemmas 1 and 2, we immediately have

Theorem 2. A symmetric translation (s, p)-net with translation group G exists iff
1 s and 1 are powers of the same prime p;

(i) G is elementary abelian.

The constructive part of this assertion was already given in [10]. We will now

proceed to proving Lemma 2 using the classification of all finite groups with a partition
(i.e. a set of subgroups which pairwise intersect in 1 only and which cover the group).

2. The proof

Let X be a symmetric translation (s, u)-net with translation group G. Then X may
be represented in the following way (see [9]): points are the elements of G and blocks
are the cosets of a family % = {U,,. .., Uy} of subgroups of G satisfying

(1) |Ul=su for i=1,...,spu;

(2) |U;nUjl=p whenever i#j;
and then also

(3) U;Uj=G whenever i%j.

(In fact one chooses the U, to be the stabilizers in G of the blocks through 1). We now
denote by N the set of all points not joined to 1, i.e.

(4) N={geG: 1 and g are not joined}.
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As X is a symmetric net, not being joined it induces an equivalence relation on the point
set; using this, one immediately sees that N is a subgroup (of order s) of G, as col-
lineations preserve the property of being (not) joined.

Next recall that a line of X is the intersection of all blocks joining two given
points (which are on a common block at all). Lines either are equal or intersect in at
most 1 point. Now it is easily seen that N together with all stabilizers G, (where L is
any line through 1) forms a partition & of G. Assume first that p=1; then in fact
P =9 v {N} is a congruence partition in the sense of André [1], i.e. 2 describes an
affine translation plane. It is well-known that G then has to be an (elementary abelian)

p-group.

Thus assume p+1 henceforth. As &£ is a (non-trivial) partition of G, the results
of Baer [2], [3], Kegel [11] and Suzuki [17] imply that G is one of the following:
a p-group of order >p, a Frobenius group, an HT(p)-group or isomorphic to S,, to
PGL(2,p") or PSL(2, p") with p"=4, or to a Suzuki group Sz(q). We will eliminate
all but the first case, thus proving Lemma 2.

First assume that G is a Frobenius group; let K be its kernel and H a Frobenius
complement of G. Using Folgerung 4.9 of Baer [2] H has no non-trivial partition;
thus H is contained in a component X of £. Let a denote the order of H and b the
order of K; then a|b—1 and in particular (a, b))=1. Now assume first that X< N;

then a|s and b=sy% contradicting (a, b)=1. Thus H is contained in a line stabi-
lizer, hence in a block stabilizer U; therefore a|su. Again bzsfﬂ and as (a, b)=1 we
a

conclude that (a, s)=1, i.e. a|u, say u=ac. Then b=s?c and (a, ¢c)=1. Now consider
the set ¥ ={U,n K: i=1,..., su}. Note that each U; n K has order sc, as U;K=G for
reasons of cardinality; also always [(U;nK) n(U;n K)|=|(U;nUy) nK|=c (i*))
using (2) and (U; n U;)) K=G (again for reasons of cardinality: a|u and s’c=|K]). But
this shows that ¥~ satisfies conditions (1) and (2) with u replaced by c; thus ¥~ defines
an (s, su; c)-net. But N<K, as no Frobenius complement may intersect N non-trivially
(because of (s, @)=1); hence this new net still contains points which are not joined. But
this implies (see [7]) that r <sc <su, a contradiction.

Next assume that G is an HT(p)-group, i.e. G is neither a Frobenius nor a p-group,
and one has [G: H,(G)]=p (where H,(G) is the subgroup of G generated by all ele-
ments of order #p). According to a result of Hughes and Thompson [8], there exists an
element g in H=H,(G) of order p. But H is nilpotent (see Kegel [12]) and thus the
centre Z(H) of H has order divisible by p and also by another prime (otherwise G would
be a p-group). Using Folgerung 2. 3 of Baer [2] one has that H is contained in a com-
ponent of #; as H is a maximal subgroup of G it coincides with this component and
then H also must be a component of %; but this implies =1, a contradiction.

If G=3S,, then necessarily s=2 and u=6; thus all components have order 12
which is absurd, as the only subgroup of S, of order 12 is A,.



Jungnickel, Symmetric translation nets 219

Next let G=PSL(2, q) where g is even. Then G has order s*u=(q+1) g(g—1)
and contains elements of order ¢+ 1 and of order g —1 (see Dickson [6], § 260). Clearly
no such element can be in N (otherwise g+1 (resp. ¢g—1) would divide s, hence (g+1)?
(resp. (g—1)?) would divide |G|) and thus these elements are in components of %; as all
such components have the same order sy we conclude that (g+1) (g—1)|su, i.e. that
[G:U]=<q for Ue%. But according Dickson [6], §262 G has no subgroup of index
<g+1 unless g=2, which were absurd. '

(g+1) q(g—1)
1 -1 2
and qT (see [6], §260). As before one sees that

Next let G= PSL(2, q) where ¢=p" is odd. Then G has order s?u=

and contains elements of orders q+
(g+1) (g-1)
4

Thus p(q+1l(q—1)

divides su; but G also contains an element of order p and clearly p|su.

.. 2 . .
divides sy and one has [G: U]§—;i<q for Ue %. Again using

[6], §262 qis one of 3,5,7,9 or 11; in these cases 3, 5, 7, 6, 11 are the smallest possible
indices which immediately rule out all cases except ¢=9. In this case s=12, y=5 and
all components U of % are isomorphic to A5 (see [6], § 260). But U contains an element

-1 ) ..
of order q—2—=4 and A5 does not contain such an element, a contradiction.

Now let G=PGL(2,q). If q is even, then PGL(2,q)=PSL(2,q) has already

been seen to be impossible. Thus let g =p" be odd. Then G has order s*u=(q+1) g(g—1)

p(g*-1)
2

divides su (note that (¢g+1,g—1)=2 in this case!). Choose a component U of % and

and contains elements of orders p, ¢—1 and ¢+1. As before, one sees that

put Uy:=U n PSL(2, q). Then either USPSL(2,q) and [G: U]é% which is imme-

U
diately seen to be impossible using [6], § 262 again; or U, has order _|2_| and we have
2 o
[PSL: Uojg—q. As above, application of [6], § 262 leaves only the possibility g=9;
P

but then G contains an element of order g—1=38, and so PSL contains its square, i.e. an
element of order 4, and one gets a contradiction as before. (U, then would be isomorphic
to A4s).

Finally it remains to consider the Suzuki group Sz(g) (for the Suzuki groups, see
Suzuki [18] or Liineburg [13]). Here |G|=s*u=(q*+1)4*(g—1) where g=22*"';
furthermore G contains elements of orders 4, g—1, g+r+1, g—r+1 where r*=2gq,
i.e. r=29*1_ As before one sees that (g—1) (g+r+1) (g—r+1)=(g—1) (¢*+1) divides

sp; and clearly also 4|su (if g has order 4, then either ge N and 4|s or ge U (for
2

q

some U € %) and 4|su). Thus one has [G: U] éT which is impossible in Sz(g) (see [18]

or [13]).

Hence indeed G is a p-group and the proof of Lemma 2 (and thus of Theorem 2)
is complete.
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Note added in proof. In the mean time, T. C. Hine and V. C. Mavron have given
an elementary proof for Theorems 1 and 2 in their paper “Translations of symmetric
and complete nets”, to appear in Math. Z.
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