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O. Introduction 

In this paper we are concerned with (s,r;2, G)-difference matrices. Here G is a 
group of order s and D an (r x s2)-matrix with entries from G such that the 
sequence d~k- djk of differences of rows i and j of D contains each element of G 
exactly ,~ times whenever i +j. (We will use additive notation but G may be non- 
abelian.) Such matrices have been used by Bose and Bush [-1] and by Shrik- 
hande [,15] (in the abelian case) for the construction of orthogonal arrays. The 
author has studied the special case 2--1 in [-10]. Recently, Drake [4] in- 
troduced the notion of a generalized Hadamard matrix over any finite group G 
(Drake's definition is in general stronger than that of Butson [2] and Shrik- 
hande [-15] where only cyclic groups have been investigated). Such a matrix is 
just a square matrix H such that both H and H r are difference matrices. This 
immediately poses the problem of characterizing the generalized Hadamard 
matrices among the difference matrices. We will show that for any difference 
matrix r < s2 and that the complete difference matrices (i.e., r = s2) coincide with 
the generalized Hadamard matrices. Hence in particular the two axioms of 
Drake (on H and H r) are equivalent. 

These results are in fact corollaries of more general results on transversal 
designs (TD's). We first prove that difference matrices and regular resolvable 
TD's are equivalent, thus giving a geometric interpretation of difference matrices 
(here regularity means the existence of a particularly pleasant collineation 
group). For  the case 4=  1 we obtain a connection to projective planes of Lenz 
type at least II. We then show that the existence of just one parallel class in an 
(s, r; 2)-TD forces r < s2 (the general bound being ($2,~- 1)/(s-1), see e.g. Hanani 
[-7]) and that resolvable TD's with r = s 2  are in fact symmetric (i.e., the dual is 
also a TD). Finally, we mention some constructions which in particular yield a 
new class of GH-matrices. 

This paper should be more or less self-contained. For  the general back- 
ground, the reader might consult the referenced books by Hall, Dembowski and 
Raghavarao. We will in general use the notation of Dembowski; e.g., points are 
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always denoted by lower case and lines by upper case letters, [p, q] is the 
number of blocks through points p and q, etc. All structures considered are 
assumed to be finite. 

1. Difference Matrices and Regular TD's 

Definition 1.1 (Bose, Bush; see also [10]). Let G be a group of order s and D 
=(dik ) ( i = l , . . . , r ;  k = l  . . . . .  s2) a matrix with entries from D. D is called an 
(s, r; 2, G)-difference matrix if it satisfies the following condition: 

(1.1) The sequence of differences (dik-dik)k=1 ...... ~ contains each element of G 
exactly 2 times (for all i,j with i:#j and i,j = 1, . . . ,  r). 

We warn the reader that what we just defined to be an (s,r;1, G)-difference 
matrix has been called an ( s , r - 1 ;  G)-difference matrix in [10], [11] and [12]; 
the reason was that an (s, r; G)-difference matrix as defined here corresponds to a 
G-regular set of r -  1 mutually orthogonal Latin squares which was the point of 
view of [10]. 

Definition 1.2 (Hanani). Let Z=(P ,  B, ?-) be an incidence structure and assume 
that the relation ~ defined by 

(1.2) p ~ q  if and only if p = q  or [ p , q ] = 0  

is an equivalence relation on P. The equivalence classes will be called point 
classes. (We avoid the generally used term "groups" as we will encounter real 
groups acting on the "groups" later.) Z is called a transversal design of order s, 
degree r and index 2 or briefly an (s, r; 2)-TD if the following axioms are satisfied: 

(1.3) Each block meets each point class. 
(1.4) p ~ q  implies [p ,q]=2 .  
(1.5) There are r>3  point classes and some point class has precisely s > 2  
points. 

The dual structure of an (s, r; 2)-TD is called an (s, r; 2)-net (Drake and Jungnickel 
[5]). A TD is said to be symmetric if the dual structure is also a TD with the 
same parameters (Drake [4]). A TD is resolvable if its blocks can be partitioned 
into parallel classes where the blocks in any parallel class partition the point set. 

Proposition 1.3 (Bose, Hanani, Drake, Jungnickel). Let  Z be an (s, r; 2)-TD. Then 
each point class has s points, there are b :=  s22 blocks, each point is on s2 blocks 
and each block contains r points. Furthermore r<(s2 2 - 1)/(s-1). In the case of  
equality, ~ is said to be complete. A TD is complete iff any two blocks intersect 
in precisely ( s 2 - 1 ) / ( s - 1 )  points; then the dual structure is an affine resolvable 
block design (ARBD). 

The proofs may be found in [5, Section 5]. A survey on ARBD's is in [16]. 
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Definition 1.4. Let X be an (s, r; 2)-TD and G a group of order s. I; is called G- 
regular if G acts as a collineation group of Z which is regular on each point class 
and semiregular on the set of blocks. 

Theorem 1.5. Let D=(dlk ) be an (s,r; 2, G)-difference matrix and define an 
incidence structure X(D) = (P(D), B(D), 6) as follows: 

P(D):= ~) Pi with Pi:={(i,x): xeG}; 
i=1 

B(D): = {Bjx: j =  1 . . . . .  s2; x~G} 

where 

Bjx: = {(i, dij + x): i = 1 . . . .  , r}. 

Then X(D) is a resolvable G-regular (s, r; 2)-TD. Conversely, every G-regular TD 
is resolvable and may be described in this way. 

Proof. First let D be a difference matrix and S(D) be defined as above. Clearly 
any two points in the same Pi are not joined. Consider two points (i, x) and (j, y) 
with i+j. Then there are precisely 2 indices k with dik--djk = x -  y. But then (i, x), 
(J, Y)EBk, --cl,k + x for all these k. Conversely, (i, x), (j, y)EBku implies dik + U= X and 
djk+u=y , hence dik--djk=X--y. Thus [(i, x), (j, y)] =2. Hence X(D) is an (s, r; 2)- 
TD; as the sets B/={Bjx :  x~G} obviously are parallel classes, X(D) is resolv- 
able. Finally, 2;(D) is G-regular: let g~G act on /;(D) by ( i , x ) ~ ( i , x + g )  and 
Bjx  -+B j, x + g .  

Now let X be any G-regular (s, r; 2)-TD. In each point class Pi, choose a 
"base point" pz arbitrarily and coordinatize the point qeP~ as (i, g) if and only if 
the image of p~ under g~ G is q; this is well-defined because of the regularity of G 
on each point class. As G is semiregular on the block set, there will be s2 orbits 
B> ;..,Bsx of s blocks each. In each orbit Bj choose a "base block" Bjo 
= {(i, d~j): i=  1, ..., r} arbitrarily. Then Z has been represented in the form 2;(D), 
where D =(d~k ) (i= 1 . . . .  , r; k =  1, ..., s2). So clearly Z is resolvable (the B~ being 
the parallel classes). As we have [(i, x), (j, 0)] =2  for all xeG and all i,j with i , j ,  
it is easily seen that D is an (s, r; 2, G)-difference matrix. 

The case 2=  1 of the previous theorem and the following proposition have 
been stated as a remark in [10] (without proof). 

Proposition 1.6. Let s>=3 and G a group of order s. Then the existence of an 
(s, s; 1, G)-difference matrix is equivalent to the existence of a projective plane of 
order s and Lenz type at least II  which has G as the group of all (p, L)-elations for 
some flag (p, L). 

Proof First let the difference matrix be given and construct X(D) as in Theorem 
1.5. To each parallel class B~(i = 1 . . . .  , s) adjoin a point o%; this yields the dual of 
an affine plane of order s with another point class Po:= {oo ~, ..., 0%}. Now take 
all point classes as the lines of another parallel class B o and adjoin to B o a new 
point 0%. The result is a projective plane of order s which is obviously (o%, P0)- 
transitive with G as the corresponding group of elations. 
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Conversely, given a projective plane of order s with G as group of (p, L)- 
elations, discard the line L with all its points and consider the lines through p as 
point classes. This yields a G-regular (s, s; 1)-TD and the assertion follows by 
Theorem 1.5. 

2. Generalized Hadamard Matrices 

Clearly difference matrices are generalizations of the generalized Hadamard 
matrices of Drake [-4] (in additive notation). In our terminology, Drake's 
definition reads as follows. 

Definition 2.1 (Drake). Let G be a group of order s and H an (s2 x s2)-matrix 
with entries from G. Then H is called a generalized Hadamard matrix or briefly 
an (s; 2)-GH-matrix iff both H and H r are (s, s2; 2, G)-difference matrices. (The 
choice of name is motivated by (2.1) below.) 

We warn the reader that this definition coincides with Butson's [-2] only in 
the case of the cyclic groups Cp, p a prime (see [-4, Remarks 1.3]). The definition 
also gives rise to the problem of characterizing the GH-matrices among the 
difference matrices. The answer is 

Theorem 2.2. Let D be an (s, r; 2, G)-difference matrix. Then necessarily r < s 2  and 
equality holds if and only if D is an (s; 2)-GH-matrix over G. Hence in particular 
the conditions on H and H r in Definition 2.1 (i.e. Drake's axioms (i) and (ii) in [-4, 
Definition 1.1]) are equivalent. 

This generalizes the classical result that H H  T = h i  is equivalent to H T H  = nt  
for ordinary Hadamard matrices. 

We could give a direct proof of Theorem 2.2 but we prefer to obtain this 
result as a corollary of Theorem 1.5 and results on TD's in general. This will be 
done in Section 3. We now list the known existence results on GH-matrices as 
first examples for difference matrices. 

Proposition 2.3 (Butson, Drake). An (s;2)-GH-matrix over G and thus an 
(s, s2; 2, G)-difference matrix exists in all of  the following cases: 
(2.1) s=2,  G =  C2: Here an ordinary Hadamard matrix of  order 42 is a (2; 22)- 
GH-matrix. The existence problem has been studied extensively and existence is 
conjectured for all values of 2 but this has not been proved up to now. The 
reader should consult [-17]. 
(2.2) s =p, G = Cp, 2 = 2 "~ pk, where m, k are non-negative integers with m < k + 1 
and where p is a prime (Butson [2], see also Drake [-4, Theorem 1.4]). 
(2.3) s=pi~ G=EA(pi), 2 = p  J, where p is a prime, i , j  are non-negative integers 
with i+ 0 and EA (pl) denotes the elementary abelian group of order pi (Drake [4, 
Corollary 1.9]). 

We conclude this section by generalizing Butson's result to arbitrary odd 
prime powers. This simultaneously yields an alternative considerably simpler 
proof of his theorem. 
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Theorem 2.4. Let q be an odd prime,power. Then there exists a (q; 2)-GH-matrix 
over EA (q). 

Proof  Consider EA(q) as the additive group of the Galois field GF(q) and 
define matrices Ai=(a~y ) (x, y ~ G F  (q); i=  1 . . . . .  4) by 

a~y: = x y + (x2/4); a~y: = x y + (n x2/4); 
4- a ~ y : = x y - y 2 - ( x 2 / 4 ) ;  a~y: = ( x y - y  2- (x2/4) ) /n  

where n is any non-square of GF (q). Then put 

We claim that D is the desired GH-matrix. In view of Theorem 2.2 it will be 
sufficient to verify (1.1) for D. Note that each A i is a (q; 1)-GH-matrix over 
EA(q): certainly A = ( x y )  (the multiplication table of GF(q)) is a (q; 1)-GH- 
matrix and the A~'s are obtained from A by adding suitable elements to the rows 
and columns of A which obviously leaves property (1.1) invariant. Thus (1.1) is 
clearly satisfied (with)~ = 2) if we consider two rows of D which both belong to 
(A s A2) respectively to (A 3 A4). Now let x, x' be arbitrary and consider rows x of 
(A~A2) and x' of (A3A4). The differences arising from A a and A 3 then are the 
elements 

y2 + y (x - x') + (x 2 + x' 2)/4 = (y + (x - x')/2)2 + (x x'/2)(y ~ GF (q)). 

But these elements contain xx ' /2  once and every element of the form s +(xx ' /2)  
with s a square twice. Similarly, the differences arising from A 2 and A4- are the 
elements 

(y2 + y(n x - x') + (n 2 x 2 + x' 2)/4)/n = (y + (nx - x')/2)2/n + (x x'/2) 

which yields xx ' /2  a second time and all elements of the form u + (xx'/2) with u a 
non-square twice. This completes the proof. 

Using the matrices just constructed and (2.3) in the well-known Kronecker 
product construction (which of course has to be written additively here, see 
Proposition 4.3 below) we obtain 

Corollary 2.5. Let  q=pi  be an odd prime power. Then there exist (q; 2mq m- 1)_ and 
(q;2"~qmpS)-GH-matrices over E A ( q ) f o r  all natural numbers m and all non- 
negative integers j. 

3. Resolvable TD's 

We now study TD's with parallel classes. One first has 

Proposition 3.1. Let  Z be an (s, r; 2)-TD which has at least one parallel class. Then 
necessarily r < s 2. 
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Proof Let C be a parallel class of S a~nd choose any block B of C. By 
Proposition 1.3, C consists of s blocks. Label the remaining m: = s ( s 2 - 1 )  blocks 
of S as G1, ..., G,, and let x~:= 1,B, Gi] for i=  1, ..., m. Counting the flags (p, Gz) 
with plB one obtains by 1.3 

(3.1) ~xi=r ( s2 -1  ). 
i = 1  

Similarly, counting all double flags (p, q, @) with p, qlB, G~ for a fixed point 
p (q = p is allowed, too) one has 

~, x~ =s2-1  +(r -  1)(2- 1); 
GiIp 

summation over all points plB  then yields 

(3.2) ~ x~=r(s2-1+(r -1) (2-1) ) .  
i = 1  

t But using the well-known inequality x i <m x (see e.g. [8, p. 245]), a 
\ i =  1 z i =  1 

short computation gives r_-<s2 from (3.1) and (3.2). 
We remark that it is also well-known that equality holds in the above 

argument if and only if all x i coincide; thus r=s2 if and only if x~=2 for all i (by 
(3.1)). Using this observation we obtain: 

Theorem 3.2. Let S be an (s, s2; 2)-TD. Then the following assertions are 
equivalent: 

(i) S is resolvable. 
(ii) S, is symmetric (see Definition 1.2). 

(iii) Any two blocks of S, intersect in either 0 or ~ points. 
(The dual of such a TD has been called an affine resolvable partial plane in [5] 
and I-4].) 

Proof Trivially, (ii) implies (i). Now suppose the validity of (i). Since r=s2 ,  our 
remarks above show that the dual of S satisfies (1.4) and (trivially) (1.3) and (1.5), 
i.e. ~ is symmetric. So (i) and (ii) are equivalent. But (ii) and (iii) are equivalent 
by Drake I-4, Lemma 2.4] where the dual assertion has been proved. 

In view of these results we will call a resolvable TD with r=s2 completely 
resolvable. The proof given resembles 1,5, 5.3]. Theorem 2.2 is now an easy 
corollary to the results just obtained. By Theorem 1.5 and Proposition 3.1, r < s2 
for any (s, r; ,~, G)-difference matrix D. If actually r--s2, then S(D) is resolvable 
and thus by Theorem 3.2 the dual of 2(D) is also a TD; clearly this TD is also 
G-regular by the construction in Theorem 1.5. As in S(D) (i, y)IBjx iff y - x  =d u 
iff x - y = - dij we see that the dual of S can be described by - D r and therefore 
- D  r and hence D r are difference matrices which completes the proof of 
Theorem 2.2. We also have proven 
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Corollary 3.3. Let  Z be a complete resolvable (and hence symmetric)  TD. Then 2; 
is G-regular if  and only if  its dual is G-regular. I f  Z is described by the difference 
matrix D, then its dual may be described by - D  r. 

Our next result is a generalization of Shrikhande [15, Theorem 2] where the 
special case s = p  a prime, t = 2  has been proved in the language of orthogonal 
arrays. Our proof is essentially the same. 

Theorem 3.4. Assume the existence of  the series of  complete resolvable TD's with 
parameters s and )o=ts ~, n a nonnegative integer. Then there exists an (s, ts ~+~ 
+ ts" + ... + ts + 1; ts~)-TD for  each n. 

Proof. We use induction on n. For n=O, the resolvable (s, ts; t)-TD can be 
embedded into an (s, ts + 1; t)-TD by adding one point class and adjoining each 
of the new points to the blocks of t distinct parallel classes (see [7, Lemma 61). 
Now suppose that the theorem is true for a particular value of n and consider n 
+1. Let Z be a resolvable (s, t sn+2;ts~+l)-TD and d an (s, t s n + l + . . . + t s  
+1;  tsn)-TD. Then there is a 1-1-correspondence between the ts "+2 parallel 
classes of 2; and the blocks of A. Define the desired TD on the disjoint union of 
the point classes of Z and A by adjoining to each block of any given parallel 
class of Z all points of the corresponding line of A. It is easily checked that the 
result is in deed an (s, t S n + 2 + t s  n+l  + . . .  + t S +  1; tsn+i)-TD. 

Corollary 2.5 and Theorem 1.5 yield series of complete resolvable TD's. 
Using these in the above construction, we obtain: 

Corollary 3.5. Let  p be an odd prime, s any power o f  p and t = 2  m s '~- 1 (m a 
natural number) or t-~2 m pJ s m (m a natural number, j any nonnegative integer). 
Then there exists an (s, ts n+l + t s n + . . .  + t s +  1; tsn)-TD for  each nonnegative 
integer n. 

We remark that the case t = 2  has been obtained by other, much more 
involved methods by Kempthorne and Addelman [13] and that these examples 
meet the Bose-Bush bound which improves the inequality of Proposition 1.3 
when s - 1  does not divide 2 - 1  (see [13 or [4]) and thus have maximum 
possible r. 

4. Some Constructions 

In this section we collect some constructions of difference matrices. But first we 
state a non-existence result due to Drake [4, Theorem 1.10] which generalizes 
the well-known theorem of Hall and Paige on complete mappings: 

Theorem 4.1 (Drake). Let  G be any group o f  even order s with a cyclic Sylow 2- 
subgroup. Then there is no (s, r; ), G)-difference matrix with r>=3 whenever 2 is 
odd. 

We now list some quite trivial constructions. 
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Proposition 4.2. The existence of an (s, r; 2, G)-difference matrix implies the 
existence of an (s, r; n)~, G)-difference matrix for every natural number n. The 
existence of both (s, r; 2, G)- and (s, r; )~', G)-difference matrices implies the exis- 
tence of an (s, r; 2 + Z ,  G)-difference matrix. 

For example, the existence of (9, 18; 2, EA(9))- and (9, 27; 3, EA(9))- 
difference matrices (by Theorem 2.4 and (2.3)) implies the existence of (9, 18; ,~, 
EA (9))-difference matrices for every 2 > 2 (for 2 = 1 the maximum value of r is 9). 

Proposition 4.3 (Shrikhande). The existence of (s, r; 2, G)- and of (s, r'; 2', G)- 
difference matrices implies the existence of an (s, rr'; s22', G)-difference matrix. 

Proof Let D and D' be the given difference matrices and form the Kronecker 
product (written additively) of D and D', i.e. put A=(Aik ) with Aik=dik+D' 
(i= 1, ..., r; k =  1 . . . . .  s2). For the details, see [15, Theorem 3]. 

Proposition 4.3 has already been used in the proof of Corollary 2.5 (it is clear 
that the Kronecker product of complete difference matrices is complete). Anoth- 
er example: the existence of a (9, 9; 1, EA(9))- and of(9, 18; 2, EA (9))-difference 
matrices for every 2 > 2  shown above implies the existence of a (9, 162; 92, 
EA (9))-difference matrix for every 2 > 2. In analogy to the proof of Theorem 3.4 
this implies the existence of (9, 181; 92)-TD's for all 2>2.  Whereas the two 
previous constructions produced new difference matrices over the same group, 
the next ones will yield matrices over another group. 

Proposition 4.4. Let D be an (s, r; 2, G)-difference matrix and ~9: G ~ G '  be a group 
epimorphism with IG'l=s ' and [ker~[=t  (so s ' t=s) .  Then D 0 is an (s', r; 2t, G')- 
difference matrix. 

For example, the well-known existence of a (12, 6; 1, EA (4)| C3)-difference 
matrix (see [9]) implies the existence of (6, 6; 2, C6)-, (4, 6; 3, EA(4))- and (3, 6; 
4, C3)-difference matrices. In view of Theorem 4.1, the first of these results seems 
particularly interesting. The last example may also be obtained by Theorem 2.4 
and Proposition 4.2. Proposition 4.4 also yields the proof of (2.3) by applying it 
to a (if+J, if+J; 1, EA(p~+J))-difference matrix for which we may take a 
multiplication table of G F ( / + j )  (this is due to Drake [4, Corollary 1.9]). 

Proposition 4.5. The existence of (s, r; 2, G) and (s', r; 2', G')-difference matrices 
implies the existence of an (ss', r; 22', G| matrix. 
Proof Let D and D' be the given difference matrices and form the matrix 

((dl l, d'l l) ... (d11, d'l,~,,v) ... (dl,s.~, d'l l)... (dl,~;., d'l,s,.Z,) I 
DOD':  = i 

\(dr1, d'ri)"-(dr1, d'r, s'z,) .. (dr, sz, d;1) ... (dr, sZ, d;, s,;c) / 
It is easily checked that D| is the desired (ss', r; 22', GOG')-difference 
matrix. (This generalizes [10, Theorem 12-].) 

For example, using a (6, 6; 2, C6)- and a (5, 6; 1, Cs)-difference matrix, we 
obtain a (30, 6; 2, C3o)-difference matrix. In our next constructions, we do not 
have to know difference matrices already; the ingredients here will be TD's in 
general and difference families. 
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Theorem 4.6. Let (G, +, ") be a ring of order s and let {x 1 . . . . .  xt} be a set of units 
of G such that x i - x  J is a unit too whenever i +j. Then the existence of an (s, r; it)- 
TD implies the existence of an (s, rt + 1; 2s, G)-difference matrix. 

Proof. It is well known that the existence of an (s, r; it)-TD is equivalent to the 
existence of an orthogonal array (s 2 2, r, s, 2) (see e.g. [4, Proposition 3.2]). We 
recall that such an array is an (r x s a it)-matrix with entries from a symbol set of s 
elements such that each (2xseit)-submatrix contains each possible column 
vector (x, y) precisely it times. Thus let A be an (s 2 2, r, s, 2)-orthogonal array 
with symbols from G. Then clearly A is an (s, r; sit, G)-difference matrix. Now 
put 

where 0 is a row of O's. We have to verify (1.1) for D. As each element of G 
appears in each row of A exactly s2 times and as each x~ is a unit, (1.1) holds for 
row 0 and any other row of D. As A is a difference matrix, (1.1) holds for any 
two rows within the same x~ A. Now let i:l=j and consider rows k and 1 of x~A 
and xjA. If k = l ,  we obtain differences of the form ( x i - x j ) y ;  as y appears 
exactly s2 times in row k of A and as x~-x j  is a unit, this yields each element of 
G exactly s2 times. Finally let kq= 1. Let y and z be any two elements of G. Then 
by the orthogonality property of A, we obtain the pair (xiy , x~z) precisely 2 
times. But it is clear that precisely s pairs (y, z) will satisfy the equation x~ y - x ~  z 
=c  for any given ceG. 

For the application of Theorem 4.6 one needs enough units in G. The best 
one can do is obviously taking a finite field GF (s). This sometimes allows to 
improve results we could get with the previous methods. For example, the 
existence of (4, 9; 2)- and of (5, 8; 2)-TD's for all 2>__2 (see Hanani [7, (3.3) and 
(3.4)~) implies the existence of (4, 28; 42, EA (4))- and of (5, 33; 5 it, Cs)-difference 
matrices for all 2>=2. The previous results only yield (for 2=3) (4,24; 12, 
EA(4))- and (5, 25; 15, Cs)-difference matrices. Next consider some non prime 
power examples: e.g. there are (15, 6; 1)-, (12,7; 1)-and (20, 5; 1)-TD's which 
yields the existence of (15, 13; 15, Cls)- , (12, 15; 12, EA(4)Q C3)- and (20, 16; 20, 
EA(4)| matrices. (For 12, we can do better: the Kronecker 
product of a (12, 6; 1, EA(4)|  C3)-difference matrix with itself yields (12, 36; 12, 
EA(4) | C3)). ) These last examples are easily generalized to give 

Corollary 4.7. Let s=ql  ... q, be the prime power factorization of s and put q: 
=min  {qi: i=1,  ..., n}. Then the existence of an (s, r; 1)-TD implies the existence 
of an (s, r ( q -  1)+ 1; s, EA(qO(~...GEA(q,))-difference matrix. 

Of course, r = q +  1 is always possible by the theorem of McNeish; but this 
yields only q2 rows which we can also obtain from the Kronecker product of an 
(s, q; t, EA (q 1) |  | EA (q,))-difference matrix with itself. Such a matrix always 
exists by (2.3) and Proposition 4.5 (due to [10, Corollary 141). So Corollary 4.7 is 
interesting only if we know better values than the McNeish bound. The next 
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corollary supposes the existence of a complete (s, r; t)-TD, i.e. r =(s 2 t -  1)/(s- 1) 
or equivalently of an ARBD with parameters s and # = t  (cf. Drake and 
Jungnickel [5, Propositions 5.6 and 5.7]). The special case of s a prime was 
proved by Shrikhande [15, Theorem 1 (ii)]. Using r=(s  2 t - 1 ) / ( s - 1 )  and Theo- 
rem 2.2 we have 

Corollary 4.8. Let  s be a prime power and assume the existence of  an ARBD with 
parameters s and # =  t. Then there exists an (s; s t ) -GH-matr ix  over EA(s). 

Unfortunately, this does not yield any new GH-matrices as the only known 
series of ARBD's have parameters s a prime power and t = s "  respectively s = 2  
and 4t the order of an (ordinary) Hadamard matrix (see [16]). We mention one 
more corollary to Theorem 4.6 which follows by the first part of the proof and 
gives some examples for the non-abelian case too. 

Proposition 4.9. Let  G be any group of  order s and assume the existence o f  an 
(s, r; 2)-TD. Then there exists an (s, r; 2s, G)-difference matrix. 

Using the ARBD's mentioned above we obtain (s, s n + . . . + s + l ;  s n, G)- 
difference matrices for any group G of order s (s a prime power). Our last 
construction uses difference families. Recall that a (v, k, 2)-difference family over 
a group G of order v is a family D 1 . . . .  , D, of subsets D i of cardinality k of G 
such that the list of differences x - y  (where x and y are distinct elements of the 
same Di) contains each nonzero element of G exactly 2 times (see e.g. [6]). We 
now generalize [10, Theorem 19] and obtain 

Theorem 4.10. Assume the existence o f  a (v, k, 2)-difference family  over G and of  a 
(k, r; 1)-TD with a parallel class. Then there exists a (v, r; 2, G)-difference matrix. 

Proof  From the (k, r; 1)-TD with parallel class C form an orthogonal array 
(k 2, r, k, 2) on the symbols {1, ..., k} s.t. the last k columns are the vectors 
(x . . . .  ,x) r, x~{1 . . . .  ,k}. (This may be done by taking the blocks of C to 
correspond to the last k columns and by labelling each point on the x'th block 
of C as x.) Discard these last k columns and replace each entry i by the i'th 
element of the set Dj of the given difference family (j fixed); this yields an (r x k(k 
- 1))-matrix Aj over G. Then put 

D:--(A 1A 2 ... An O) 

where 0 denotes an (r • 2)-zero matrix. Using the orthogonality property of the 
array and the fact that { D  1 . . . .  , D,} was a (v, k, 2)-difference family one may 
check that D is a (v, r; 2, G)-difference matrix. 

This construction yields e.g. the existence of (40, 13; 4, C4o)-, (15, 7; 3, C15)-, 
(21, 5; 1, C:I  )- and (57, 8; 1, C57)-difference matrices. (The corresponding differ- 
ence families may be found in [6] and the existence of TD's with one more point 
class than the value of r given above implies the existence of resolvable TD's 
with the value stated.) Application of Proposition 4.4 then yields e.g. (20, 13; 
8, C40 )- and (10, 13; 16, C~o)-difference matrices. Unfortunately it is in general 
not possible to give a similar construction for (say resolvable) (k, r; #)-TD's with 
# ~ 1 as we can not assume that all pairs (x, x) occur in the last columns. (This 
would clearly force r__< k.) Using one parallel class one may again obtain the last 
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k columns as (x, ..., x) r. The construction above then yields a matrix (no zero 
columns added up to now) which yields every nonzero element of G 2//t imes as 
a difference and 0 k (# -1 )  times (for any two distinct rows). So we may get the 
desired result by adding zero columns provided that k ( # - 1 ) <  2#. Thus we have 

Proposition 4.11. Assume the existence of a (v, k, 2)-difference family over G with 
k(/~- l) __< 2# and of a (k,r; #)-TD with a parallel class. Then there exists a 
(v, r; 2#, G)-difference matrix. 

We may apply Proposition 4.11 for # < k  and the trivial (k+ l ,  k, k -1) -  
difference family which exists in any group G. For k a prime power and p = k 
resp. / /=2  (by (2.3) and Theorem 2.4 in conjunction with Theorem 1.5) we 
obtain 

Corollary 4.12. Let q be a prime power and G be any group of order q + 1. Then 
there exist both (q+l ,  q2; q(q-1) ,G) -  and (q+ l ,  2q; 2(q-1),G)-difference 
matrices. 

E.g., we obtain (6, 25; 20, C6)- and (6, 10; 8, C6)-difference matrices. Similar- 
ly, application of Theorem 4.10 to the trivial difference families yields a (6, 5; 
4, C6)-, a (10, 9; 8, C10)- and a (14, 13; 12, Ci4)-difference matrix. In general, one 
has 

Corollary 4.13. Let q be a prime power and G be any group of order q + 1. Then 
there exists a (q + 1, q; q -  1, G)-difference matrix. 

We just used difference families in the construction of difference matrices. It 
should be remarked that the converse is possible too. This has been done (for 2 
= 1) in [11, Theorem 4.1]. This result is easily generalized to the following result 
(the term (v, k, 2; s)-difference family is explained in [11, Definition 2.3]): 

Theorem 4.14. Assume the existence of a (v, k, 2; s)-difference family in G and of a 
(t, k; )~', G')-difference matrix. Then there also is a (tv, k, 22'; st)-difference family 
in GOG'.  Furthermore, if the (v,k,)L; s)-family is maximal (i.e. an ordinary 
difference family) and if there also is an ordinary (t, k, 22')-difference family in G', 
then there exists an ordinary (tv, k, ~,2')-difference family in G@G'. 

We leave the proof to the reader (cf. [11]) and give some numerical examples 
instead. Take a (91, 10, 1)-difference family in C9i ; the existence of (13, 13; 
1, C13 )- and of (7, 14; 2, CT)-difference matrices implies the existence of a (91, 10; 
2, C9a)-difference matrix. Then we obtain (91% 10, 2"-l)-difference families in 
C91 @... | C91 for all natural numbers n. Similarly, one obtains (133% 12, 2"-1)_ 
difference families in Ci33|174  for all n. Note that [11, Theorem 3.1] 
cannot be applied in these cases. Or take (16, 6, 2)- and (31, 6, 1)-difference 
families in EA(16) resp. C3i. We then obtain (16 k 31% 6, 2k)-differenee families in 
EA(16k)| ") for all k and n (not both 0). 
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