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Propensity-theory of Causality

(0) Since causality is essentially a temporal and modal notion, its analysis in
terms of temporally structured possible worlds has recently been most promi­
nent. Ontological scruples about possible worlds may lead one to seek a different
route of analysis that nevertheless captures both the modal and the temporal
aspects of causality. I present an eligible alternative that is based on the concept
of propensity (from one moment of time to another), which in turn is definable
by the concept of difficulty of realization (from one moment of time to another).
In addition to being technically interesting and straightforward in application,
this approach has the ontological advantage of referring to no unactualized possi­
bilities ( “counterfactualities”)- It includes the analysis of objective probabilistic
causality, which, however, will here appear in a form quite different from that
it is usually presented in.

(1) There are two basic ideas of the propensity-theory of causality:
First: There are two kinds of temporal realization (“temporal being”) tem­

porally centralized (or temporally manifest) realization: x is g at t, or pleo-
nastically x at t is g at /; and temporally decentralized (or temporally latent)
realization: x at t is g at t ’, where t t ' . Temporally decentralized realization
in its turn comes in two kinds: antedated realization: x at g is g at t ’, where
t -< t'-, and postdated realization: x at g is g at I ’, where t' -< t.

Second: Temporal realization coincides analytically with temporal necessity.
This simply means what is expressed by the following biconditional (intended
to be analytical), and does in no manner entail determinism (as we shall see):
It is necessary for x at t to be g at t ’ iff x at t is g at t ’. Thus, “it is necessary
for x at t to be g at (the same moment) /” is synonymous to at t is g
at i” , that is, synonymous to “x is g at temporally centralized necessity
coincides with temporally centralized realization: with temporal realization as
usually conceived. In order to make the identification of temporal necessity and
temporal realization intuitively palatable, take “it is necessary at f” in the sense
of “it is unchangeable at i” ; obviously being g at t is unchangeable for x at t iff
x is g at t, and in general: being g at t' is unchangeable for x at t iff x at t is
(already, though latently) g at t ' .

(2) The basic ideas of the propensity-theory of causality that have just been
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described have, on the face of them, nothing to do with either propensities or
causality. But they are now being generalized in two respects: In the first place
I allow degrees of (temporal) realization, that is, of (temporal) necessity, and in
the second place I allow the relativization of graded realization (necessity) to
particular aspects of the total situation to which it is temporally referred (in a
centralized or decentralized manner). This will give us the propensity-theory of
causality (PTC) as follows:

The basic concept of the PTC is “d(x,t, f ,g ,t 'y ’: “the difficulty for x qua
being f  at t to be g at (or “the distance of x qua being f  at t from being g
at P”). I then define:
Definition 1
(a) I f  d(x,t, f , g ,t’) = oo, then pro(x,t, f, g,t') = 0;
(b) if 0 < d(x, t, f,g , P), then

pro(x,t, f , g,t') = ______ 1______
d(;r,i,/ ,£ ,/ ')  + 1

(The truth of “z/ < z/” demands that both z/ and z/ are real numbers, the truth
of “z/ = z/” does not; “pro(x,t, f ^ t ' ) ” is to be read as “the propensity of x
qua being f  at t is to be g at P” or “the degree in which it is necessary for x
qua being f  at t to be g at / '” .)
Definition 2
x qua being f  at t is g in the degree r at t'
<=^df p ro (x ,t,f,g ,t ')  = r.
Definition 3
It is in the degree r necessary for x qua being f  at t to be g at t' x qua
being f  at t is g in the degree r at t1.
Definition 4
x qua being f  at t is g at t' <=>df 'x qua being f  at t is g in the degree 1 a tt1.
Definition 5
It is necessary for x qua being f  at t to be g at t' <=^dj it is in the degree 1
necessary for x qua being f  at t to be g at t ' .
Definition 6
x at t is g at t' <=>df x qua being con f(x  is f  at t) at t is g at t ' .
(“con f(x  is f  at i)” is to be read as “the conjunction of all f  that x is at t”.)
Definition 7
It is necessary for x at t to be g at t‘ <=>df it Is necessary for x qua being
con f(x  is f  at /) at t to be g at t ' .

The following two definitions establish the connection between the present
article and my earlier article “Propensity and Possibility” (see the end of the
paper):
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Definition 8
(/(a?, <7, fz) ( “the difficulty for x at t to be g at t ' ”)
4==>df d(x, t, con f ( x  is f  at i), g, t')
Definition 9
p ro (x ,t,g ,t ')  ( “the propensity of x at t to be g at t ' ”)
<=>df p r o (x ,t ,c o n f(x  is f  at t), g, t')

(3) I now head straight for causality:
Definition 10
x being g at t' is a consequence of x being f  at t <=>dj

i. t -< t';
ii. it is necessary for x qua being f  at t to be g at t ' .

Defining

Definition 11
x being f  at t anticipates x being g at t' <=>df

i. t t ';
ii. x qua being f  at t is g at t ' ,

we can prove:
Theorem 1
x being g at t' is a consequence of x being f  at t x being f  at t anticipates
x being g a t t ' .

Various clauses may be added to the definiens of definition 10 in order to
obtain various concepts of causation fitting various intuitions. (If we do want to
exclude instantaneous causation, “t -< t '” is to be changed to “t f '” .) I won’t
go into this detail. Just a few notes: Frequently “cause” is understood to mean
first cause:

Definition 12
x being f  att (first) causes x being g at t' <=>df % being g at t' is a consequence
of x being f  at t, and -< t: it is not necessary for x at t* to be g at t ').
Defining

Definition 13
x being g at t' is anticipated at t <=>df
i. t -< t';

ii. x a tt is g a t t '.

we can prove:
Theorem 2
x being f  a tt causes x being g at t' x being f  at t anticipates x being g at
t ', and x being g at t1 is not anticipated before t.

By adding the clause “not 3h(h is intensional part of f  and h /  f  and x
being g at t' is a consequence of x being h at /)” we obtain the concept of
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precisely sufficient causality. By adding the clause “not 3h(g is intensional part
of h and h /  g and x being h at t' is a consequence of x being f  at t)” we obtain
the concept of maximal causation. (Concerning the notion of intensional part
see below, section 5.)

(4 ) The import of all these definitions is of course vague as long as the concept
on which they all are ultimately based has not been axiomatically characterized.
Here are its axioms:
A l (a) If x is not f  at t, then d(x, t ,f ,g , t') = oo.

(b) If x is f  at t, then d(x,t, f , g, t') = oo or 0 < d(x, t, f, g, t1).
An immediate consequence of Al is:
T h eorem  3
d(x, t, f, g, t1) — oo or 0 < d(x,t, f ,  g, t').

A 2 If x is f  at /, then d(x, t, /, f, i) = 0.
(The reverse is obtained by Al(a), since 0 /  oo.)

We immediately obtain from this:
T h eorem  4
If d (x ,t,f, f, t) = oo, then x is not f  at t.
(The reverse is obtained by A l (a).)
A 3 (a) If d(x,t, f , g,t') = 0 and x is h at t and f  is intensional part of h, then

d(x,t, h,g,t') = 0.
(b) If d(xy t , f ,g y /') = 0 and / —</*, then d(x, t* ,hV  -di,g,t') = 0 .
A3(a) and A3(b) are the conservation-principles of complete realization; for

“d(x,t, f ,9 ,t ')  =  0” is analytically equivalent to “z qua being f  at t is g at
P” (because we can derive d(x,t, f , g,t') = 0  <=> pro(x,t, f , g,t') =  1, using
theorem 3 and definition 1). Complete realization (realization of degree 1) is
preserved in lengthening the temporal sequence (A3(b)), and in strengthening
its basis — the property qua having which at t x has another (or the same)
property at t' (A3(a)).

(5) A3 provides the opportunity for interpolating what has to be said about
the logical background of the PTC.

The language in which it is formulated has four kinds of variables (is a
four-sorted language): variables for properties: f,g , h, f 1 ...; variables for indi­
viduals: x ,y ,z ,x ' ...; variables for moments (points in time): ...; varia­
bles for quantities: r, r ', r* ....

Other quantity-terms besides quantity-variables are standard real number
names and standard arithmetical functional expressions (addition, division, sub­
traction, multiplication). A special quantity-term is oo (“infinity”). There are
quantity-terms that are not recursively based on other quantity-terms, but are
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nevertheless non-atomic: all terms d(z/, r, p, 0, r ') (where v is an individual­
term, r, r' are moment-terms, and p, are property-terms).

The following basic predicates are meaningful for quantity-terms, (p, q' in­
dicate the places of substitution for them): ß — ß', ß < ß‘, R(ß) (“ß is a real
number”): Other predicates for quantity-terms, like ß < ß' and ß > ß1, are
defined as usual.

I presuppose the arithmetic of real numbers (plus oo) as part of the back­
ground logic. The list of axioms starts with Vr(Ä(r) or r = oo); not /?(oo);
VrVr'(if r < r ', then R(r) and //(r7)); etc.

Other property-terms besides property-variables are abstraction-terms:
Aî A[i>] (where v is an individual-variable, and all other terms in A[i/] that do
not occur within other terms in Af^] are individual-terms or property-terms);
and conjunction-terms: conpA[p] (where p is a property-variable and A[p] a
temporally definite predicate: it does not contain an expression 0(z/) [see below],
or an expression defined using such an expression). Properties are assumed to
be momentary and non-modal: neither other moments of time nor alternative
courses of events have to be considered for answering the question whether x is
f  at t.

The following basic predicates are meaningful for property-terms (9?, ip indi­
cate the places of substitution for them, v the place of substitution for individual­
terms, t  that for moment-terms): p(y} (“v is 92”), v is p  at r, 0 = p.

The definitions of important functional property-terms are: ~>p := Av'
not^(z// ), (<£> A 0) : =  (^(^O and 0(*/ / ))> (v7 V 0) : =  (^(^Q o r  0(i/ / ))
(where v' does not occur in <£>, 0). A special property-term is k, := Aa?not(ar = x).
A defined predicate meaningful for property-terms is: p is intensional part of
0 := (92 A -i0) = k .

I presuppose as a logical axiom(-schema) ^v{Xv' A[p '](î ) iff A[0|) (v' not in
A[p], v not in A[z/]), and as a logical rule: F 71/(92(1/) iff 0(i/)) |= F p  =  0
(y not in p, ip). (The rule is weaker than an axiom of extensionality!)

I use the following special principles for con 0A[0] (I will not bother about
the general laws for con0A[0] of which the special principles are consequences):

Va?V/V/(a? is f  at t iff f  is intensional part of conffx  is f  at /)), VzV/(/ is
intensional part of con f ( x is fa tt) iff -1/ is not intensional part of con /(x is/a t/)).
They are sufficient for deducing:

f¥g(x is f  V g at t iff x is / at t or x is g at /), V2?V/(a? is ->/ at t iff x is not
/  at /), VarV/V̂ (a? is /  A g at t iff x is / at t and x is g at t).

The following basic predicates are meaningful for moment-terms (r, r' indi­
cate the places of substitution for them): r  r ' , r = t ' . -< is assumed to have
the characteristics of a temporal ordering in the classical sense. But I shall not
here make use of these.
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(6) The list of the main axioms is completed by:
A4 If x is f  at /, then

(a) if d (x ,fc jr , Z') = 0, then d(x,t, f ,^ g ,t ')  -  o°;
(b) if d(x, t, f , g, t1) > 0. then

(c)if d(x,t, f,g ,t')  = oo, then d(x, t, f , -ig, t') = 0.
A5If x is f  at t and (g A h) = k , then

(a) if d(x, t, f, g, t1) = 0 or d(x, t, f , h, t1) = 0,
then d (x ,t,f, g V h, t1) = 0;

(bi) if d(x,t, f, g,t') = oo, then d (x ,t,f,g  V h,t') = d(x,t, f,h,t')-,
(ba) if d(x, t, f, h, t') = oo, then d(x,t, f ,g V  h,t') = d (x ,t,f, g,t'y,
(c) if d(x,t, f, g,t') > 0 and d(x,t, f ,  h,t') > 0, then

d (x ,t,f ,g V  h ,t‘) =
d(x, /, f, g, t')d(x, t , f ,h ,  f )  -  1

d (x ,t , f ,g ,f )  + d (x ,t,f ,h ,t ')  + 2 '

Here are some important theorems that can be deduced from Al -  A5:
Theorem 5
d (x ,t,f ,g  /\-ig,t') = oo
Theorem 6
If d(x,t, f , g,t') = r and R(r) and h is intensional part of g,

then d(x,t, f ,h ,t ')  < r.
Theorem 7
I f  d(x, t, f , g, t1) = oo and x is f  at t and t -4 t*,
then d(x, t*, hV ->h, g, t1) =  oo
Theorem 8
I f d (x ,t ,f ,g ,t ’) = oo and f  is intensional part of h,
then d (x ,t,h ,g ,t') — oo.
Theorem 9
(a) d(x,t, f  V - i f , g ,t‘) = oo iff\/h(d(x,t,h ,g ,t') = oo);
(b) d(x,t, f  V -if, g,t') = 0 iff¥h( if x is h att, then d(x ,t,h ,g ,t') = 0).
Theorem 10
(a) I f  d (x ,t,f ,g ,t ')  = 0, then d(x ,t', g, g,t') = 0 [that is, x is g at t1];
(b) I f x is f  at t and d(x,t, f, g,t') = oo, then d ^ x ^ g ^ t 1) = oo [that is, x is
not g at t'].
Theorem 11
If f  is intensional part of g and x is g at t,
then d(x,t,g, f , t )  =  0.
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Theorem 12
Ift-<  t ', then d(x, t', g, f , Z) = 0 or d(x, t1 ,g , f , t )  = oo.

(7) A further principle with some intuitive credentials is the Principle of Uni­
formity. I f d(x,t, f , g,t') = r and x is f  at t, then Vt/( if y is f  at t, then
d (y ,t ,f ,g ,t f) = r).

What holds for an x that is f  at t qua being f  at t, that must hold for all y
that are f  at t (qua being f  at Z). Or so it seems.

The principle seems to make merely explicit what is intended by the phrase
“qua being f  at Z” . But in fact it has absurd consequences: ¥y(y is h V ~<h at
Z) and d (x ,t j i \ /  ->h, Xy' (y' = x),t') =  0 are unobjectionable premises; hence by
the Principle of Uniformity V7/(d(?/,Z, h V ->h, Xy1 fy' = rc),Z') = 0), from which
we obtain by theorem 10 is Xy1 (y' = x) at Z')-

The fact of the matter is that the phrase “x qua being f  at Z” does not
cancel the particularity of x. Therefore, instead of the Principle of Uniformity
we ought rather to add to the axioms:
A6 d(x, t, f , g, Z') =  d(x, t, f  A Xy' (y* = x), g, t') = d(x, t, f, g A

Xy' (y' = x),t')
Hence: “x qua being f  at t” means x qua being x [so to speak] and f  at t.

(8) Special properties as bases (at t) for complete realization define special
necessities. The weakest necessity (relative to Z) is defined by the strongest
property x has at Z: con f(x  is f  at Z); it is necessity simpliciter, realization
simpliciter, since we have x at t is g at t' iff x qua being con f(x  is f  at Z) at t
is g at t' iff it is necessary for x qua being con f(x  is f  at Z) at t to be g at t' iff
it is necessary for x at t to be g at t ' .

The strongest necessity is defined by the weakest property x has at t: Xy(y =
y) (y =  y) =  ( f  V “'/))]■ Another property x is guaranteed to have at t
is Xy' (y1 = x): the essence of x which, in strength, is inbetween con /(x is /a tZ )
and Xy fy = y) (it is a genuine intensional part of the former, and the latter is a
genuine intensional part of it), and we may use it to define yet another special
necessity: essential necessity. However, on the basis of A6 it turns out that
essential necessity coincides with the strongest necessity, since we have:
Theorem 13
d(z,Z, Ai/(i/= y),g,t') = d(x,t, X (y = x ) ,g ,f) .

I include the definitions of essential necessity and essential realization:
Definition 14
It is essentially necessary for x at t to be g at t ’ <=^df it is necessary for x qua
being Xy fy = x) [ “qua being x”] at t to be g at t ’.
Definition 15
x at t is essentially g at t ’ <=>dj % qua being Xy (y = x) at t is g at t ’.
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D efin itio n  16
x is essentially g at t x at t is essentially g at t.

(9 ) Something has to be said about our cognition of causation and necessity in
general. Given the PTC, the problem of cognition boils down to the question
in what manner we can verify and falsify basic statements about distances, that
is, difficulties of realization, in particular, statements assigning 0 or oo distance.
Suppose someone asserts “d(x0 , to, fa, go, to) =  0” • This we can verify by finding
out that a?o is fa at t 0 and that go is an intensional part of fa (using theorem
11). And we can falsify it by finding out, either that xq is not fa at to, or that
xq is not go at to-

But suppose xq is both go and fa at to, but go is not an intensional part of
/o? The cognized presence of what objective features makes us then reject or
accept “d(zo,to,/o, <7o,to) =  0”? The problem becomes even more severe if the
statement is “d(a?o, to, fa, go, G) =  0” , where to -< G. The cognized presence of
what objective features over and above that ro is fa at to and that a?o is go at
ti, which is all that we can observe, makes us assert or deny this?

Hume, of course, would have contended that there are no such objective
features whose presence can be cognized. If we agree with him, then we have to
account for the strange fact that there are countless statements about objective
difficulties of realization zn the future —  subjective probabilities in no manner
enter into their meaning — that informed people unhesitatingly agree to, and
others that they unhesitatingly deny. By virtue of what cognized fact? Should
we say that there is a direct intuitive knowledge of difficulties of realization? I
leave it at this question. I only add that every objective theory of causation and
necessity — not only the propensity-theory — is troubled by the epistemological
problem so forcefully pointed out by Hume. Subjective theories of causation
and necessity, on the other hand, miss the entire point of these two concepts.
Whatever is analyzed by these theories, it is not causation and necessity. A
theory of causation and necessity is objective; or there is no such theory.

(10) I end this paper by giving some examples of the application of the PTC:
(a) Formulations of determinism (in the sequence of their strength):
Leibnizian determinism:

VxVfVtYt'fd^x, t, Xy(y = xj, f ,  t') =  0 or d(x, t, Xy(y = x), f ,  f )  =  oo).
Laplacian determinism:

\fx 'i f^ t 'i t '(d (x ,t , f , t / ) =  0 or d ( x ,t , f , t ')  =  oo).
Causal determinism:

\fx 'ifit(B t , {t' -< t and d (x ,t ', f , t )  =  0) or
3t, (t/ -< t and d(x, t', f ,  t) =  oo)).

Causal determinism is actually a rather weak assertion; it does not conflict with
the assumption of free decision previous to the act] it only says that an act is
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determined to occur or determined not to occur at some moment in the past;
it does not say that an act is determined to occur or determined not to occur
at any moment in the past.

None of these versions of determinism or its negation is implied by the PTC.

(b) Definition of propositional causation:
That x is f  at t causes that y is g at t' <=>df x being Xz(f(x) and z — z)

at t causes x being Xz(g(y) and z = z) at t’.
The property Xz(J(x) and z = z) can represent the (momentary, non-modal)

state-of-affairs that x is f .  This is so, because \/y(Xz(f(x) and z = z )(y) iff
f(x)) is a logical theorem, and Xz(f(x) and z = z) = Xz(z = z) or Xz(f(x)
and z = z) = Xznot(z = z) is not (in view of the absence of the principle of
extensionality for properties). The logical background is to be strengthened by
x is f  at t iff y is Xz(f(x) and z = z) at t.
(c) Definition of agent causality:

Among the (momentary, non-modal) properties are the (momentary, non-
modal) action-properties] among the individuals are the persons. The following
definition of personal or agent causality can be formulated:

x at t causes that y is g at t' <=>df x is a person and 3 / ( /  is an action­
property and x is f  at t) and pro(x,t, c o n f( f  is an action-property and x is f
at t), Xz(g(y) and z = z),t') = 1 and not3t*(t* -< t and pro (x,t*, c o n f( f  is an
action-property and x is f  at t),t) =  1) and notBt*(t* -< t and pro(x, t*, Xz(g(y)
and z = z),t') = 1).

According to this definition agent causality is always free causality [this
is expressed by the clause “not3t*(t* -< t and pro(x,t*, con f ( f  is an action­
property and x is f  at i),/) = 1)”] and first causality [this is expressed by the
clause “not3t*(t* -< t and pro(x,/* ,Xz(g(y) and z = z),t') = 1)”]; it is not,
however, sole causality: x at t causes that y is g at t ’ does not exclude according
to the definition that z at t causes that y is g at t ’, where z /  x. (“t < iff
follows from the definiens; if we want to exclude instantaneous agent causality,
‘7 /  has to be added to it.)
(d) Definition of causal influence and probabilistic causality:

x being f  at t exerts causal influence on x with respect to g and t’ <=>df
0 < pro(a?, / , <;, £') /  pro(x,t, Xz(z = x),g ,t').

We can distinguish positive and negative causal influence: replace either
by “> ” or by “< ”. pro(x,t, Xz(z = x),g ,t') is the essential (or inner) propensity
of x at t to be g at t ’. It seems plausible to assume:/« case neither g nor
-ig is an intensional part of Xz(z = x) and t t ', the inner propensity of
x at t to be g at t ’ is equal to the inner propensity of x at t to be -ig at
t ’ (contradicting Leibnizian determinism, since not for every property g and
individual x: g is an intensional part of Xz(z = x) or -ig is an intensional part
of Xz(z =  x)). Thus, (deterministic) causality (in the sense of first causality)
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implies positive causal influence: From x being f  ai t causes x being g at I ’
we obtain pro(x,t, f ^ t ' )  =  1, whereas pro(x ,t, Xz(z = x ),g ,t')  = 0.5, since
/-<< ', and neither g nor -ig is an intensional part of Xz(z = x):
(1) suppose g is an intensional part of Xz(z =  x); let t* be a moment before t;
by theorem 5 and A4 we have

d(x,t*,g  V ->g,g V - ^ , t ')  =  0 [x is g V ^g  at f ,  ~\g K ^g) = g V ->0],
hence by A6

d(x, t* ,gV  —>g, Xz(z = z), t ’) =  0;
hence by theorem 6 and 3

d ( x , t \g  V ^ g ,g ,t ')  = 0,
hence by A3 (a)

rf(x,t*, co n fix  is f a t  t*),g, t') =  0 —
in contradiction to first causation.

(2) Suppose -ig is an intensional part of Xz(z = x),
hence by theorem 11

d(x, t', Xz(z = x), -^g, t') =  0,
hence via theorem 10 x is not g at t'; but x is g at t' by pro (x ,t, f ,g ,t ')  = 1
and theorem 10.

Probabilistic causality is defined in terms of causal influence:

x being f  at t is a (probabilistic) cause of x being f  at t 1 <=>df % is g at t f ,
and x being f  at t exerts positive causal influence on x with respect to g and t ' .

“t t 1” follows from the definiens of causal influence (hence there can be no
causal influence into the past!): Suppose t' -< t;
by theorem 12

d(x, t 1, f ,  g ,t) = Q or d(x, f ,  f ,  g, t) =  00;
if the last, then by definition 1

pro ' , / ,£ , / )  =  0 —
which excludes causal influence with respect to g and t (see the definition); if,
however, the first, then

p ro ( ;r ,/ ',f ,0 ,t)  =  1
by definition 1, and by theorem 12 we also have because of U -< t:

d (x ,t',X z(z  = x ) ,g ,t)  =  0 or d(x, t1, Xz(z =  x ),^ ,t)  — 00;
the latter contradicts d(a?, t 1, f ,g , t , )  = 0 because of theorem 10; hence

d(x,t', Xz(z = x ) ,g ,t)  = 0,
hence by definition 1

p ro (x ,t',X z(z  = x ) ,g ,t)  = 1;
hence

pro (x, t ’, f ,  g ,t,)  = pro (x, t', Xz(z = x), g, t) —
which excludes causal influence with respect to g and t (see the definition).
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