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1. Introduction

Automatic affect recognition plays an essential role in smart con-
versational agent systems that aim to enable natural, intuitive, and
friendly human–machine interaction. Early works in this field have
focused on the recognition of prototypic expressions in terms of basic
emotional states, and on the data collected in laboratory settings,
where speakers either act or are induced with predefined emotional
categories and content [9,29,30,47]. Recently, an increasing amount
of research efforts have converged into dimensional approaches for
rating naturalistic affective behaviours by continuous dimensions
(e. g., arousal and valence) along the time continuum from audio,
video, and music signals [8,10,16,24,32,33,39,46]. This trend is par-
tially due to the benefits of being able to encode small difference in
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affect over time and distinguish the subtle and complex spontaneous
affective states. Furthermore, the affective computing community is
moving toward combining multiple modalities (e. g., audio and video)
for the analysis and recognition of human emotion [19,23,34,43,49],
owing to (i) the easy access to various sensors like camera and micro-
phone, and (ii) the complementary information that can be given
from different modalities.

In this regard, this paper focuses on the realistic time- and
value-continuous affect (emotion) recognition from audiovisual sig-
nals in the arousal and valence dimensional space. To handle this
regression task, a variety of models have been investigated. For
instance, Support Vector Machine for Regression (SVR) is arguably the
most frequently employed approach owing to its mature theoret-
ical foundation. Further, SVR is regarded as a baseline regression
approach for many continuous affective computing tasks [27,31,36].
More recently, memory-enhanced Recurrent Neural Networks (RNNs),
namely Long Short-Term Memory RNNs (LSTM-RNNs) [14], have
started to receive greater attention in the sequential pattern recog-
nition community [7,26,48,50]. A particular advantage offered by
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LSTM-RNNs is a powerful capability to learn longer-term contextual
information through the implementation of three memory gates in
the hidden neurons. Wöllmer et al. [41] was among the first to apply
LSTM-RNN on acoustic features for continuous affect recognition. This
technique has also been successfully employed for other modalities
(e. g., video, and physiological signals) [2,21,26].

Numerous studies have been performed to compare the advan-
tages offered by a wide range of modelling techniques, including the
aforementioned, for continuous affect recognition [21,27,35]. How-
ever, no clear observations can be drawn as to the superiority of any
of them. For instance, the work in [21] compared the performance
of SVR and Bidirectional LSTM-RNNs (BLSTM-RNNs) on the Sensitive
Artificial Listener database [20], and the results indicate that the latter
performed better on a reduced set of 15 acoustic Low-Level-Descriptors
(LLD). However, the opposite conclusion was drawn in [35], where SVR
was shown to be superior to LSTM-RNNs on the same database with
functionals computed over a large ensemble of LLDs. Other results
in the literature confirm this inconsistent performance observation
between SVR and diverse neural networks like (B)LSTM-RNNs and
Feed-forward Neural Networks (FNNs) [27]. A possible rationale behind
this is the fact that each prediction model has its advantages and
disadvantages. For example, SVRs cannot explicitly model contextual
dependencies, whereas LSTM-RNNs are highly sensitive to overfitting.

The majority of previous studies have tended to explore the
advantages (strength) of these models independently or in conven-
tional early or late fusion strategies. However, recent results indicate
that there may be significant benefits in fusing two, or more, models
in hierarchical or ordered manner [15,18,22]. Motivated by these ini-
tial promising results, we propose a Strength Modelling approach, in
which the strength of one model, as represented by its predictions,
is concatenated with the original feature space which is then used as
the basis for regression analysis in a subsequent model.

The major contributions of this study include: (1) proposing the
novel machine learning framework of Strength Modelling specifically
designed to take advantage of the benefits offered by various regres-
sion models namely SVR and LSTM-RNNs; (2) investigating the effec-
tiveness of Strength Modelling for value- and time-continuous emo-
tion regression on two spontaneous multimodal affective databases
(RECOLA and SEMAINE); and (3) comprehensively analysing the
robustness of Strength Modelling by integrating the proposed frame-
work into frequently used multimodal fusion techniques namely early
and late fusion.

The remainder of the present article is organised as follows:
Section 2 first discusses related works; Section 3 then presents
Strength Modelling in details and briefly reviews both the SVR and
memory-enhanced RNNs; Section 4 describes the selected spon-
taneous affective multimodal databases and corresponding audio
and video feature sets; Section 5 offers an extensive set of experi-
ments conducted to exemplify the effectiveness and the robustness
of our proposed approach; finally, Section 6 concludes this work and
discusses potential avenues for future work.

2. Related work

In the literature for multimodal affect recognition, a number of
fusion approaches have been proposed and studied [45], with the
majority of them relevant to early (aka feature-level) or late (aka
decision-level) fusion. Early fusion is implemented by concatenating
all the features from multiple modalities into one combined feature
vector, which will then be used as the input for a machine learn-
ing technique. The benefit of early fusion is that, it allows a classifier
to take advantage of the complementarity that exists between, for
example, the audio and video feature spaces. The empirical experi-
ments offered in [2,15,26] have shown that the early fusion strategy
can deliver better results than the strategies without feature fusion.

Late fusion involves combining predictions obtained from indi-
vidual learners (models) to come up with a final prediction. They
normally consist of two steps: 1) generating different learners; and
2) combining the predictions of multiple learners. To generate differ-
ent learners, there are two primary ways which are separately based
on different modalities and models. Modality-based ways combines
the output from learners trained on different modalities. Examples
of this learner generation in the literature include [12,15,22,37],
where multiple SVRs or LSTM-RNNs are trained separately for dif-
ferent modalities (e.g. audio and video). Model-based ways, on the
other hand, aims to exploit information gained from multiple learn-
ers trained on a single modality. For example in [25], predictions
obtained by 20 different topology structures of Deep Belief Networks
(DBNs). However, due to the similarity of characteristics of differ-
ent DBNs, the predictions cannot provide many variations that could
be mutually complemented and improve the system performance.
To combine the predictions of multiple learners, a straightforward
way is to apply simple or weighted averaging (or voting) approach,
such as Simple Linear Regression (SLR) [15,36]. Another common
approach is to perform stacking [44]. In doing this, all the predictions
from different learners are stacked and used as inputs of a subse-
quent non-linear model (e.g., SVR, LSTM-RNN) trained to make a final
decision [12,25,37].

Different from these fusion strategies, our proposed Strength
Modelling paradigm operates on a single feature space. Using an ini-
tial model, it gains a set of predictions which are then fused with
the original feature set for use as a new feature space in a subse-
quent model. This offers the framework a vital important advantage
as the single modality setting is often faced in affect recognition
tasks, for example, if when either face or voice samples are missing
in a particular recording.

Indeed, Strength Modelling can be viewed as an intermediate
fusion technology, which lies in the middle of the early and late
fusion stages. Strength Modelling can therefore not only work inde-
pendently of, but also be simply integrated into early and late fusion
approaches. To the best of our knowledge, intermediate fusion tech-
niques are not widely used in the machine learning community.
Hermansky et al. [13] introduced a tandem structure that combines
the output of a discriminative trained neural nets with dynamic
classifiers such as Hidden Markov Models (HMMs), and applied it effi-
ciently for speech recognition. This structure was further extended
into a BLSTM-HMM [40,42]. In this approach the BLSTM networks
provides a discrete phoneme prediction feature, together with con-
tinuous Mel-Frequency Cepstral Coefficients (MFCCs), for the HMMs
that recognise speech.

For multimodal affect recognition, a relevant approach – Parallel
Interacting Multiview Learning (PIML) – was proposed in [17] for the
prediction of protein sub-nuclear locations. The approach exploits
different modalities that are mutually learned in a parallel and hier-
archical way to make a final decision. Reported results show that this
approach is more suitable than the use of early fusion (merging all
features). Compared to our approach, that aims at taking advantages
of different models from a same modality, the focus of PIML is rather
on exploiting the benefit from different modalities. Further, simi-
lar to early fusion approaches, PIML operates under a concurrence
assumption of multiple modalities.

Strength Modelling is similar to the Output Associative Relevance
Vector Machine(OA-RVM) regression framework originally proposed
in [22]. The OA-RVM framework attempts to incorporate the contex-
tual relationships that exist within and between different affective
dimensions and various multimodal feature spaces, by training a
secondary RVM with an initial set of multi-dimensional output pre-
dictions (learnt using any prediction scheme) concatenated with the
original input features spaces. Additionally, the OA-RVM framework
also attempts to capture the temporal dynamics by employing a slid-
ing window framework that incorporates both past and future initial
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outputs into the new feature space. Results presented in [15] indicate
that the OA-RVM framework, is better suited to affect recognition
problems than both conventional early and late fusion. Recently
the OA-RVM model was extended in [18] to be multivariate, i.e.,
predicting multiple continuous output variables simultaneously.

Similar to Strength Modelling, OA-RVM systems take input fea-
tures and output predictions into consideration to train a subsequent
regression model to perform the final affective predictions. However,
the strength of the OA-RVM framework is that it is underpinned by
the RVM. Results in [15] indicate that, the framework is not as suc-
cessful when using either a SVR or a SLR as the secondary model.
Further, the OA-RVM is non-casual and requires careful tuning to
find suitable window lengths in which to combine the initial outputs;
this can take considerable time and effort. The proposed Strength
Modelling framework, however, is designed to work with any com-
bination of learning paradigms. Furthermore, Strength Modelling is
casual; it combines input features and predictions on a frame-by-
frame basis. This is a strong advantage over the OA-RVM in terms of
employment in real-time scenarios (beyond the scope of this paper).

3. Strength Modelling

3.1. Strength Modelling

The proposed Strength Modelling framework for affect predic-
tion is depicted in Fig. 1. As can be seen, the first regression model
(Model1) generates the original estimate ŷt based on the feature vec-
tor xt. Then, ŷt is concatenated with xt pair-wise as the input of the
second model (Model2) to learn the expected prediction yt.

To implement the Strength Modelling for these suitable combi-
nation of individual models, Model1 and Model2 are trained subse-
quently, in other words, Model2 takes the predictive ability of Model1
into account for training. The procedure is given as follows:

- First, Model1 is trained with xt to obtain the prediction ŷt .
- Then, Model2 is trained with [xt , ŷt] to learn the expected pre-

diction yt.

Whilst the framework should work with any arbitrary modelling
technique we have selected two commonly used, in the context
of affect recognition, for our initial investigations, namely the SVR
and BLSTM-RNNs which are briefly reviewed in the subsequent
subsection.

3.2. Regression models

SVR is extended from Support Vector Machine (SVM) to solve
regression problems. It was first introduced in [4] and is one of the
most dominant methods in the context of machine learning, particu-
larly in emotion recognition [1,27]. Applying the SVR for a regression
task, the target is to optimise the generalisation bounds for regres-
sion in the high-dimension feature space by using a e-insensitive
loss function which is used to measure the cost of the errors of the
prediction. At the same time, a predefined hyperparameter C is set
accordingly for different cases to balance the emphasis on the errors
and the generalisation performance.

Normally, the high-dimension feature space is mapped from the
initial feature space with a non-linear kernel function. However, in

Fig. 1. Overview of the Strength Modelling framework.

our study, we use a linear kernel function, as the features in our cases
(cf. Section 4.2) perform quite well for affect prediction in the original
feature space, similar to [36].

One of the most important advantages of SVR is the convex opti-
misation function, the characteristics of which gives the benefit that
the global optimal solution can be obtained. Moreover, SVR is learned
by minimising an upper bound on the expected risk, as opposed to
the neural networks trained by minimising the errors on all train-
ing data, which equips SVR a superior ability to generalise [11].
For a more in-depth explanation of the SVR paradigm the reader is
referred to [4].

The other model utilised in our study is BLSTM-RNN which has
been successfully applied to continuous emotion prediction [26]
as well as for other regression tasks, such as speech dereverbera-
tion [48] and non-linguistic vocalisations classification [24]. In gen-
eral, it is composed of one input layer, one or multiple hidden layers,
and one output layer [14]. The bidirectional hidden layers separately
process the input sequences in a forward and a backward order and
connect to the same output layer which fuses them.

Compared with traditional RNNs, it introduces recurrently con-
nected memory blocks to replace the network neurons in the hidden
layers. Each block consists of a self-connected memory cell and three
gate units, namely input, output, and forget gate. These three gates
allow the network to learn when to write, read, or reset the value in
the memory cell. Such a structure grants BLSTM-RNN to learn past
and future context in both short and long range. For a more in-depth
explanation of BLSTM-RNNs the reader is referred to [14].

It is worth noting that these paradigms bring distinct sets of
advantages and disadvantages to the framework:

• The SVR model is more likely to achieve the global optimal
solution, but it is not context-sensitive [21];

• The BLSTM-RNN model is easily trapped in a local minimum
which can be hardly avoided and has a risk of over-fitting [7],
while it is good at capturing the correlation between the past
and the future information [21].

In this paper, Model1 and Model2 in Fig. 1 could be either an SVR
modeloraBLSTM-RNNmodel, resultinginfourpossiblepermutations,
i.e., SVR-SVR (S-S), SVR-BLSTM (S-B), BLSTM-SVR (B-S), BLSTM-BLSTM
(B-B). It is worth noting that the B-B structure can be regarded as
a variation of the neural networks in a deep structure. Note, the
S-S structure is not considered, because SVR training is achieved by
solving a large margin separator. Therefore, it is unlikely to get any
advantage in concatenating a set of SVR predictions with its feature
space for subsequent SVR based regression analysis.

3.3. Strength Modelling with early and late fusion strategies

As previously discussed (Section 2), the Strength Modelling
framework can be applied in both early and late fusion strategies.
Traditional early fusion combines multiple feature spaces into one
single set. When integrating Strength Modelling with early fusion,
the initial predictions gained from models trained on the different
feature sets are also concatenated to form a new feature vector. The
new feature vector is then used as the basis for the final regression
analysis via a subsequent model (Fig. 2).

Strength Modelling can also be integrated with late fusion
using three different approaches, i.e., (i) modality-based, (ii) model-
based, and (iii) modality- and model-based (Fig. 3). Modality-based
fusion combines the decisions from multiple independent modalities
(i.e., audio and video in our case) with the same regression model;
whilst model-based approach fuses the decisions from multiple dif-
ferent models (i.e., SVR and BLSTM-RNN in our case) within the same
modality; and modality- and model-based approach is the combina-
tion of the above two approaches, regardless of which modality or
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Fig. 2. Strength Modelling with early fusion strategy.

model is employed. For all three techniques the fusion weights are
learnt using a linear regression model:

yl = 4 +
N∑

i=1

ci • yi, (1)

where yi denotes the original prediction of the model i from N
available ones; 4 and ci are the bias and weights estimated on the
development partition; and yl is the final prediction.

4. Selected databases and features

For the transparency of experiments, we utilised the widely used
multimodal continuously labelled affective databases – RECOLA [28]
and SEMAINE [20], which have been adopted as standard databases
for the AudioVisual Emotion Challenges (AVEC) in 2015/2016 [27,36]
and in 2012 [31], respectively. Both databases were designed to
study socio-affective behaviours from multimodal data.

4.1. Databases

4.1.1. RECOLA
The RECOLA database was recorded in the context of remote

collaborative work. Spontaneous interactions were collected dur-
ing resolving of a collaborative task that was performed in dyads
and remotely through video conference. The corpus consists of
multimodal signals, i.e., audio, video, Electro-CardioGram (ECG),
and Electro-Dermal Activity (EDA), which were recorded continu-
ously and synchronously from 27 French-speaking participants. It is
worth to mention that, these subjects have different mother tongues
(French, Italian, and German), which provides further diversity in
the encoding of affect. In order to ensure speaker-independence,
the corpus was equally divided into three partitions (training,
development /validation, and test), with each partition containing
nine unique recording approximately balanced for gender, age, and
mother tongue of the participants.

Fig. 3. Strength Modelling (SM) with late fusion strategy. Fused predictions are from
multiple independent modalities with the same model (denoted by the red, green, or
blue lines), multiple independent models within the same modality (denoted by the
solid or dotted lines), or the combination.

To annotate the corpus, value- and time-continuous dimensional
affect ratings in terms of arousal and valence were performed by six
French-speaking raters (three males and three females) for the first
five minutes of all recording sequences. The obtained labels were
then resampled at a constant frame rate of 40 ms, and averaged
over all raters by considering inter-evaluator agreement, to provide
a ‘gold standard’ [28].

4.1.2. SEMAINE
The SEMAINE database was recorded in conversations between

humans and artificially intelligent agents. In the recording scenario, a
user was asked to talk with four emotionally stereotyped characters,
which are even-tempered and sensible, happy and out-going, angry
and confrontational, and sad and depressive, respectively.

For our experiments, the 24 recordings of the Solid-Sensitive Arti-
ficial Listener (Solid-SAL) part of the database were used, in which
the characters were role-played. Each recording contains approxi-
mately four character conversation sessions. This Solid-SAL part was
then equally split into three partitions: a training, development, and
test partition, resulting in 8 recordings and 32 sessions per partition
except for the training partition that contains 31 sessions. For more
information on this database, the readers are referred to [31].

All sessions were annotated in continuous time and continuous
value in terms of arousal and valence by two to eight raters, with the
majority annotated by six raters. Different from RECOLA, the simple
mean over the obtained labels was then taken to provide a single
label as ‘gold standard’ for each dimension.

4.2. Audiovisual feature sets

For the acoustic features, we used the openSMILE toolkit [5] to
generate 13 LLDs, i.e., 1 log energy and 12 MFCCs, with a frame win-
dow size of 25 ms at a step size of 10 ms. Rather than the official
acoustic features, MFCCs were chosen as the LLDs since preliminary
testing (results not given) indicated that they were more effective in
association with both RECOLA [27,36] and SEMAINE [31]. The arith-
metic mean and the coefficient of variance were then computed
over the sequential LLDs with a window size of 8 s at a step size
of 40 ms, resulting in 26 raw features for each functional window.
Note that, for SEMAINE the window step size was set to 400 ms in
order to reduce the computational workload in the machine learn-
ing process. Thus, the total numbers of the extracted segments of
the training, development, and test partitions were 67.5 k, 67.5 k,
67.5 k for RECOLA, and were, respectively, 24.4 k, 21.8 k, and 19.4 k
for SEMAINE.

For the visual features, we retained the official features for both
RECOLA and SEMAINE. As to RECOLA, 49 facial landmarks were
tracked firstly, as illustrated in Fig. 4. The detected face regions
included left and right eyebrows (five points respectively), the nose
(nine points), the left and right eyes (six points respectively), the
outer mouth (12 points), and the inner mouth (six points). Then,
the landmarks were aligned with a mean shape from stable points
(located on the eye corners and on the nose region).

As features for each frame, 316 features were extracted, con-
sisting of 196 features by computing the difference between the
coordinates of the aligned landmarks and those from the mean shape
and between the aligned landmark locations in the previous and
the current frame, 71 ones by calculating the Euclidean distances
(L2-norm) and the angles (in radians) between the points in three
different groups, and another 49 ones by computing the Euclidean
distance between the median of the stable landmarks and each
aligned landmark in a video frame. For more details on the feature
extraction process the reader is referred to [27].

Again, the functionals (arithmetic mean and coefficient of vari-
ance) were computed over the sequential 316 features within a fixed
length window (8 s) that shifted forward at a rate of 40 ms. As a
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Fig. 4. Illustration of the facial landmark features extraction from RECOLA database.

result, 632 raw features for each functional window were included
in the geometric set. Feature reduction was also conducted by apply-
ing a Principal Component Analysis (PCA) to reduce the dimensionality
of the geometric features, retaining 95% of the variance in the orig-
inal data. The final dimensionality of the reduced video feature set
is 49. It should be noted that a facial activity detector was used in
conjunction with the video feature extraction; video features were
not extracted for the frames where no face was detected, resulting
in the number of video segments somewhat less than that of audio
segments.

As to SEMAINE, 5908 frame-level features were provided as the
video baseline features. In this feature set, eight features describes
the position and pose of the face and eyes, and the rest are dense local
appearance descriptors. For appearance descriptors, the uniform
Local Binary Patterns (LBP) were used. Specifically, the registered
face region was divided into 10 × 10 blocks, and the LBP opera-
tor was then applied to each block (59 features per block) followed
by concatenating features of all blocks, resulting to another 5900
features.

Further, to generate features on window-level, in this paper we
used the method based on max-pooling. Specifically, the maximum
of features were calculated with a window size of 8 s at a step size of
400 ms, to keep consistent with the audio features. We applied PCA
for feature reduction on these window-level representations and
generated 112 features, retaining 95% of the variance in the original
data. To keep in line with RECOLA, we selected the first 49 principal
components as the final video features.

5. Experiments and results

This section empirically evaluates the proposed Strength Mod-
elling by large-scale experiments. We first perform Strength Mod-
elling for the continuous affect recognition in the unimodal settings
(cf. Section 5.2), i.e., audio or video. We then incorporate it with the
early (cf. Section 5.3) and late (cf. Section 5.4) fusion strategies so as
to investigate its robustness in the bimodal settings.

5.1. Experimental set-ups and evaluation metrics

Before the learning process, mean and variance standardisation
was applied to features of all partitions. Specifically, the global means
and variances were calculated from the training set, which were then
applied over the development and test sets for online standardisation.

To demonstrate the effectiveness of the strength learning, we first
carried out the baseline experiments, where the SVR or BLSTM-RNNs
models were individually trained on the modalities of audio, video,
or the combination, respectively. Specifically, the SVR was imple-
mented in the LIBLINEAR toolkit [6] with linear kernel, and trained
with L2-regularised L2-loss dual solver. The tolerance value of e was
set to be 0.1, and complexity (C) of the SVR was optimised by the
best performance of the development set among [0.00001, 0.00002,
0.00005, 0.0001, . . . , 0.2, 0.5, 1] for each modality and task.

For the BLSTM-RNNs, two bidirectional LSTM hidden layers were
chosen, with each layer consisting of the same number of memory
blocks (nodes). The number was optimised as well by the development
set for each modality and task among [20, 40, 60, 80, 100, 120]. During
network training, gradient descent was implemented with a learning
rate of 10−5 and a momentum of 0.9. Zero mean Gaussian noise
with standard deviation 0.2 was added to the input activations in
the training phase so as to improve generalisation. All weights were
randomly initialised in the range from −0.1 to 0.1. Finally, the early
stopping strategy was used as no improvement of the mean square
error on the validation set has been observed during 20 epochs or the
predefined maximum number of training epochs (150 in our case)
has been executed. Furthermore, to accelerate the training process,
we updated the network weights after running every mini batch of
8 sequences for computation in parallel. The training procedure was
performed with our CURRENNT toolkit [38].

Herein we adapted the following naming conventions, the models
trained with baseline approaches are referred to as individual mod-
els, whereas the ones associated with the proposed approaches are
denoted as strength models. For the sake of a more even performance
comparison the optimised parameters of individual models (i.e., SVR
or BLSTM-RNN) were used in the corresponding strength models
(i.e., S-B, B-S, or B-B models).

Annotation delay compensation was also performed to compen-
sate for the temporal delay between the observable cues, as shown
by the participants, and the corresponding emotion reported by
the annotators [19]. Similar to [15,36], this delay was estimated
in the preliminary experiments using SVR and by maximising the
performance on the development partition, while shifting the gold
standard annotations back in time. As in [15,36] we identified this
delay to be 4 s which was duly compensated, by shifting the gold
standard back in time with respect to the features, in all experiments
presented.

Note that all fusion experiments require concurrent initial pre-
dictions from audio and visual modalities. However, as discussed
in (Section 4.2), visual prediction cannot occur where a face has
not been detected. For all fusion experiments where this occurred
we replicated the initial corresponding audio prediction to fill the
missing video slot.

Unless otherwise stated we report the accuracy of our systems in
terms of the Concordance Correlation Coefficient (CCC) [27] metric:

qc =
2qsxsy

s2
x + s2

y + (lx − ly)2
, (2)

where q is the Pearson’s Correlation Coefficient (PCC) between two
time series (e. g., prediction and gold-standard); lx and ly are the
means of each time series; and s2

x and s2
y are the corresponding

variances. In contrast to the PCC, CCC takes not only the linear cor-
relation, but also the bias and variance between the two compared
series into account. As a consequence, whereas PCC is insensitive to
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bias and scaling issues, CCC reflects those two variations. The value
of CCC is in the range of [−1, 1], where +1 represents total concor-
dance, −1 total discordance, and 0 no concordance at all. One may
further note that, it has also been successfully used as objective func-
tion to train discriminative neural networks [39], and has been used
as the official scoring metric in the last two editions of the AVEC. We
further intuitively compared the difference between PCC and CCC by
Fig. 5. From the figure, the obtained PCC of the two series (black and
blue) is 1.000, while the obtained CCC is only 0.467 as it takes the bias
of the mean and variance of the two series into account. For contin-
uous emotion recognition, ones are often interested in not only the
variation trend but also the absolute value/degree of personal emo-
tional state. Therefore, the metric of CCC fits better for continuous
emotion recognition than PCC.

In addition to CCC, results are also given in all tables in terms of
Root Mean Square Error (RMSE), a poplar metric for regression tasks.
To further access the significance level of performance improvement,
a statistical evaluation was carried out over the whole predictions
between the proposed and the baseline approaches by means of
Fisher’s r-to-z transformation [3]. Unless stated otherwise, a p value
less than 0.05 indicates significance.

5.2. Affect recognition with Strength Modelling

Table 1 displays the results (RMSE and CCC) obtained from the
strength models and the individual models of SVR and BLSTM-RNN
on the development and test partitions of RECOLA and SEMAINE
databases from the audio. As can be seen, the three Strength Mod-
elling set-ups either matched or outperformed their corresponding
individual models in most cases. This observation implies that the
advantages of each model (i.e., SVR and BLSTM-RNN) are enhanced
via Strength Modelling. In particular the performance of the BLSTM
model, for both arousal and valence, was significantly boosted by
the inclusion of SVR predictions (S-B) on the development and test
sets. We speculate this improvement could be due to the initial SVR
predictions helping the subsequent RNN avoid local minima.

Similarly, the B-S combination brought additional performance
improvement for the SVR model (except the valence case of
SEMAINE), although not as obvious as for the S-B model. Again, we
speculate that the temporal information leveraged by the BLSTM-
RNN is being exploited by the successive SVR model. The best results
for both arousal and valence dimensions were achieved with the
framework of B-B for RECOLA, which achieved relative gains of 6.5 %
and 29.1 % for arousal and valence respectively on the test set when
compared to the single BLSTM-RNN model (B). This indicates there
are potential benefits for audio based affect recognition by the deep
structure formed by combining two BLSTM-RNNs using the Strength
Modelling framework. Additionally, one can observe that there is
no much performance improvement by applying Strength Modelling
in the case of the valence recognition of SEMAINE. This might be
attribute to the poor performance of the baseline systems, which
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Fig. 5. Comparison of PCC and CCC between two series. The black line is gold standard
from RECOLA database test partition, and the blue line is generated by shifting and
scaling the gold standard.

can be regarded as noise and possibly not able to provide useful
information for the other models.

The same set of experiments were also conducted on the video
feature set (Table 2). As for valence, the highest CCC obtained on test
set achieves at 0.477 using the S-B model for RECOLA and at 0.158
using the B-B model for SEMAINE. As expected, we observe that the
models (individual or strength) trained using only acoustic features
is more efficient for interpreting the dimension of arousal rather
than valence. Whereas, the opposite observation is seen for models
trained only on the visual features. This finding is in agreement with
similar results in the literature [8,10,26].

Additionally, Strength Modelling achieved comparable or supe-
rior performance to other state-of-the-art methods applied on the
RECOLA database. The OA-RVM model was used in [15,18], and the
reported performance in terms of CCC, with audio features on the
development set, was 0.689 for arousal [15], and 0.510 for valence
using video features [18]. We achieved 0.755 with audio features for
arousal, and 0.592 with video features for valence with the proposed
Strength Modelling framework, showing the interest of our method.

To further highlight advantages of Strength Modelling, Fig. 6 illus-
trates the automatic predictions of arousal via audio signals (a) and
valence via video signals (b) obtained with the best settings of the
strength models and the individual models frame by frame for a sin-
gle test subject from RECOLA. Note that, similar plots were observed
for the other subjects in the test set. In general, the predictions gen-
erated by the proposed Strength Modelling approach are closer to
the gold standard, which consequently contributes to better results
in terms of CCC.

5.3. Strength Modelling integrated with early fusion

Table 3 shows the performance of both the individual and strength
models integrated with the early fusion strategy. In most cases, the
performance of the individual models of either SVR or BLSTM-RNN
was significantly improved with the fused feature vector for both
arousal and valence dimensions in comparison to the performance
with the corresponding individual models trained only on the uni-
modal feature sets (Section 5.2) in most cases for both RECOLA and
SEMAINE datasets.

For the strength model systems, the early fusion B-S model gen-
erally outperformed the equivalent SVR model, and the structure of
S-B outperformed the equivalent BLSTM model. However, the gain
obtained by Strength Modelling with the early fused features is not
as obvious as that with individual models. This might be due to the
higher dimensions of the fused feature sets which possibly reduce
the weight of the predicted features.

5.4. Strength Modelling integrated with late fusion

This section aims to explore the feasibility of integrating Strength
Modelling into three different late fusion strategies: modality-based,
model-based, and the combination (see Section 3.3). A comparison
of the performance of different fusion approaches, with or without
Strength Modelling, is presented in Table 4. For the systems without
Strength Modelling for RECOLA, one can observe that best individ-
ual model test set performances, 0.625 and 0.394, for arousal and
valence respectively (Section 5.2) were boosted to 0.671 and 0.405
with the modality-based late fusion approach, and to 0.651 and 0.497
with the model-based late fusion approach. These results were fur-
ther promoted to 0.664 and 0.549 when combining the modality-
and model-based late fusion approaches. This result is in line with
other results in the literature [15,27], and again confirms the impor-
tance of multimodal fusion for affect recognition. However, similar
observation can only been seen on the validation set for SEMAINE,
which might be due to the huge mismatch between the validation
and test partitions.
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Table 1
Results based on audio features only: performance comparison in terms of RMSE and CCC between the strength-involved models and the individual models of SVR (S) and BLSTM-
RNN (B) on the development and test partitions of RECOLA and SEMAINE databases from the audio signals. The best achieved CCC is in bold. The symbol of * indicates the
significance of the performance improvement over the related individual systems.

RECOLA SEMAINE

Audio based method Arousal Valence Arousal Valence

RMSE CCC RMSE CCC RMSE CCC RMSE CCC

a. On the development set
S 0.126 0.714 0.149 0.331 0.218 0.399 0.262 0.172
B 0.142 0.692 0.117 0.286 0.209 0.387 0.261 0.117
B-S 0.127 0.713 0.144 0.348∗ 0.206 0.417∗ 0.255 0.179
S-B 0.122 0.753∗ 0.113 0.413∗ 0.210 0.434 ∗ 0.262 0.172
B-B 0.122 0.755 ∗ 0.112 0.476 ∗ 0.206 0.417∗ 0.255 0.178∗

b. On the test set
S 0.133 0.605 0.165 0.248 0.216 0.397 0.263 0.017
B 0.155 0.625 0.119 0.282 0.202 0.317 0.256 0.008
B-S 0.133 0.606 0.160 0.264 0.205 0.332 0.258 0.006
S-B 0.133 0.665∗ 0.117 0.319∗ 0.203 0.423 ∗ 0.262 0.017
B-B 0.133 0.666 ∗ 0.123 0.364 ∗ 0.205 0.332∗ 0.258 0.006

Interestingly when incorporating Strength Modelling into late
fusion we can observe significant improvements over the corre-
sponding non-strength set-ups. This finding confirms the effective-
ness and the robustness of the proposed method for multimodal
continuous affect recognition. In particular, the best test results of
RECOLA, 0.685 and 0.554, were obtained by the strength models inte-
grated with the modality- and model-based late fusion approach.
This arousal result matches the performance with the AVEC 2016
affect recognition subchallenge baseline system, 0.682, which was
obtained using a late fusion strategy involving eight feature sets [36].

As for SEMAINE, although obvious performance improvement can
be seen on the development set, a similar observation can not be
observed on the test set. This finding is possibly attributed to the
mismatch between the development set and the test set, since all
parameters of the training models were optimised on the devel-
opment set. However, these parameters are not fit for the test set
anymore.

Further, for a comparison with the OA-RVM system, we applied
the same fusion system as used in [15], with only audio and video

features. The results are shown in Tables 4 and 5 for the RECOLA
and SEMAINE database, respectively. It can be seen that, for both
databases, the proposed methods outperform the OA-RVM tech-
nique, which further confirms the efficiency of the proposed Strength
Modelling method.

In general, to provide an overview of the contributions of Strength
Modelling to the continuous emotion recognition, we averaged
the relative performance improvement of Strength Modelling over
RECOLA and SEMAINE for arousal and valence recognition. The cor-
responding results from four cases (i.e., audio only, video only, early
fusion, and late fusion) are displayed in Fig. 7. From the figure,
one can observe an obvious performance improvement gained by
Strength Modelling, except for the late fusion framework. This par-
ticular case is highly attributed to the mismatch between validation
and test sets of SEMAINE as aforementioned, as all parameters of the
training models were optimised on the development set. Employ-
ing some state-of-the-art generation techniques like dropout for
training neural networks might help to tackle this problem in the
future.

Table 2
Results based on visual features only: performance comparison in terms of RMSE and CCC between the strength-involved models and the individual models of SVR (S) and BLSTM-
RNN (B) on the development and test partitions of RECOLA and SEMAINE databases from the video signals. The best achieved CCC is in bold. The symbol of * indicates the
significance of the performance improvement over the related individual systems.

RECOLA SEMAINE

Video based method Arousal Valence Arousal Valence

RMSE CCC RMSE CCC RMSE CCC RMSE CCC

a. On the development set
S 0.197 0.120 0.139 0.456 0.249 0.241 0.253 0.393
B 0.184 0.287 0.110 0.478 0.224 0.232 0.247 0.332
B-S 0.183 0.292 0.110 0.592 ∗ 0.222 0.250 0.252 0.354
S-B 0.186 0.350 ∗ 0.118 0.510∗ 0.231 0.291 ∗ 0.242 0.405
B-B 0.185 0.344∗ 0.113 0.501∗ 0.222 0.249∗ 0.256 0.301

b. On the test set
S 0.186 0.193 0.156 0.381 0.279 0.112 0.278 0.115
B 0.183 0.193 0.122 0.394 0.240 0.112 0.275 0.063
B-S 0.176 0.265 ∗ 0.130 0.464∗ 0.235 0.072 0.285 0.043
S-B 0.186 0.196 0.121 0.477 ∗ 0.249 0.125 0.284 0.068
B-B 0.197 0.184 0.120 0.459∗ 0.235 0.072 0.255 0.158 ∗
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Fig. 6. Automatic prediction of arousal via audio signals (a) and valence via video signals (b) obtained with the best settings of the strength-involved models and individual models
for a subject from the test partition on RECOLA database.

6. Conclusion and future work

This paper proposed and investigated a novel framework,
Strength Modelling, for continuous audiovisual affect recognition.
Strength Modelling concatenates the strength of an initial model, as
represented by its predictions, with the original features to form a
new feature set which is then used as the basis for regression analysis
in a subsequent model.

To demonstrate the suitability of the framework, we jointly
explored the benefits from two state-of-the-art regression models,
i.e., Support Vector Regression (SVR) and Bidirectional Long Short-
Term Memory Recurrent Neural Network (BLSTM-RNN), in three
different Strength Modelling structures (SVR-BLSTM, BLSTM-SVR,
BLSTM-BLSTM). Further, these three structures were evaluated in

both unimodal settings, using either audio or video signals, and the
bimodal settings where early fusion and late fusion strategies were
integrated.

Results gained on the widely used RECOLA and SEMAINE
databases indicate that Strength Modelling can match or outperform
the corresponding conventional individual models when performing
affect recognition. An interesting observation was that, among our
three different Strength Modelling set-ups no one case significantly
outperformed the others. This demonstrates the flexibility of the pro-
posed framework, in terms of being able to work in conjunction with
different combination of regression strategies.

A further advantage of Strength Modelling is that, it can be imple-
mented as a plug-in for use in both early and late fusion stages. Results
gained from an exhaustive set of fusion experiments confirmed this

Table 3
Early fusion results on RECOLA and SEMAINE databases: performance comparison in terms of RMSE and CCC between the strength-involved models and the individual models of
SVR (S) and BLSTM-RNN (B) with early fusion strategy on the development and test partitions of RECOLA and SEMAINE databases. The best achieved CCC is in bold. The symbol of
* indicates the significance of the performance improvement over the related individual systems.

RECOLA SEMAINE

Early fusion method Arousal Valence Arousal Valence

RMSE CCC RMSE CCC RMSE CCC RMSE CCC

a. On the development set
S 0.121 0.728 0.113 0.544 0.213 0.392 0.252 0.436
B 0.132 0.700 0.109 0.513 0.217 0.354 0.257 0.205
B-S 0.122 0.727 0.118 0.549 0.210 0.374 0.239 0.363
S-B 0.127 0.712 0.096 0.526 0.208 0.423 ∗ 0.253 0.397
B-B 0.126 0.718∗ 0.095 0.542∗ 0.210 0.421∗ 0.241 0.361∗

b. On the test set
S 0.132 0.610 0.139 0.463 0.224 0.304 0.292 0.057
B 0.148 0.562 0.114 0.476 0.204 0.288 0.244 0.127
B-S 0.132 0.610 0.121 0.520 ∗ 0.204 0.328∗ 0.264 0.063
S-B 0.144 0.616∗ 0.112 0.473 0.198 0.408 ∗ 0.275 0.144 ∗

B-B 0.143 0.618 ∗ 0.114 0.499∗ 0.220 0.307∗ 0.265 0.060
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Table 4
Late fusion results on the RECOLA database: performance comparison in terms of RMSE and CCC between the strength-involved models and the individual models of SVR (S) and
BLSTM-RNN (B) with late fusion strategies (i.e., modality-based, model-based, or the combination) on the development and test partitions of RECOLA database. The best achieved
CCC is in bold. The symbol of * indicates the significance of the performance improvement over the related individual systems.

RECOLA

Late fusion Arousal Valence

Dev. Test Dev. Test

Fusion type RMSE CCC RMSE CCC RMSE CCC RMSE CCC

a. Modality-based
A + V; S 0.117 0.777 0.134 0.654 0.128 0.493 0.149 0.386
A + V; B 0.126 0.736 0.134 0.671 0.104 0.475 0.113 0.405
A + V; B-S 0.114 0.791 ∗ 0.130 0.668 0.090 0.664 ∗ 0.105 0.542 ∗

A + V; S-B 0.117 0.778 0.128 0.681 ∗ 0.096 0.586∗ 0.105 0.495∗

A + V; B-B 0.117 0.779∗ 0.130 0.680∗ 0.095 0.601∗ 0.106 0.506∗

b. Model-based
A; S + B 0.119 0.771 0.132 0.651 0.112 0.335 0.117 0.284
V; S + B 0.179 0.230 0.172 0.184 0.096 0.588 0.110 0.497
A; (B-S) + (S-B) + (B-B) 0.117 0.778 ∗ 0.132 0.664 ∗ 0.108 0.409 ∗ 0.120 0.303 ∗

V; (B-S) + (S-B) + (B-B) 0.171 0.344 ∗ 0.171 0.222 ∗ 0.095 0.599 ∗ 0.111 0.477
c. Modality- and model-based

A + V; S + B 0.113 0.795 0.130 0.664 0.089 0.670 0.107 0.549
A + V; (B-S) + (S-B) + (B-B) 0.110 0.808 ∗ 0.127 0.685 ∗ 0.088 0.671 0.103 0.554

State-of-the-art method
OA-RVM 0.135 0.725 0.150 0.612 0.171 0.384 0.169 0.392

advantage. The best Strength Modelling test set results on the RECOLA
dataset, 0.685 and 0.554, for arousal and valence respectively were
obtained using Strength Modelling integrated into a modality- and
model-based late fusion approach. These results are much higher than
the ones obtained from other state-of-the-art systems. Moreover, on
the SEMAINE dataset, competitive results can also be obtained.

There is a wide range of possible future research direction associ-
ated with Strength Modelling to build on this initial set of promising
results. First, only two widely used regression model were investi-
gated in the present article for affect recognition. Much of our future
efforts will concentrate around assessing the suitability of more other
regression approaches (e. g., Partial Least Squares Regression) for use
in the framework. Investigating a more general rule of what kind of
models can be implemented together in the framework help to expand

its application. In addition, it is interesting to extend the framework
widely and deeply. Second, motivated by the work in [17], we will
also combine the original features with the predictions from different
modalities (integrating the predictions based on audio features with
the original video features for a final arousal or valence prediction),
rather than from different models only. Furthermore, we also plan to
generalise the promising advantages offered by Strength Modelling,
by evaluating its performance on other behavioural regression tasks.
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