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Abstract

The last decade has seen a substantial body of literature on the
recognition of emotion from speech. However, in comparison to
related speech processing tasks such as Automatic Speech and
Speaker Recognition, practically no standardised corpora and
test-conditions exist to compare performances under exactly the
same conditions. Instead a multiplicity of evaluation strategies
employed – such as cross-validation or percentage splits with-
out proper instance definition – prevents exact reproducibility.
Further, in order to face more realistic scenarios, the community
is in desperate need of more spontaneous and less prototypical
data. This INTERSPEECH 2009 Emotion Challenge aims at
bridging such gaps between excellent research on human emo-
tion recognition from speech and low compatibility of results.
The FAU Aibo Emotion Corpus [1] serves as basis with clearly
defined test and training partitions incorporating speaker inde-
pendence and different room acoustics as needed in most real-
life settings. This paper introduces the challenge, the corpus,
the features, and benchmark results of two popular approaches
towards emotion recognition from speech.

Index Terms: emotion, challenge, feature types, classification

1. Motivation
The young field of emotion recognition from voice has recently
gained considerable interest in the fields of Human-Machine
Communication, Human-Robot Communication, and Multime-
dia Retrieval. Numerous studies have been seen in the last
decade trying to improve on features and classifiers [2]. How-
ever, the research in these fields mostly lacks in two respects:
small, preselected, prototypical, and often non-natural emo-
tional data sets and low comparability of results. Early studies
started with speaker dependent recognition of emotion, just as
in the recognition of speech. But even today the lion’s share
of research relies on either subject dependent or percentage
split and cross-validated test-runs. The latter however still may
contain annotated data of the target speakers, as usually j-fold
cross-validation with stratification (e. g. the VAM corpus) – if
considered at all – yet random selection of instances is em-
ployed. However, only Leave-One-Subject-Out (found e. g. on
the AVIC [3] and the Berlin Emotional Speech (EMO-DB) [4]
databases) or Leave-One-Subject-Group-Out (as with the FAU
AIBO corpus) cross-validation would ensure true subject inde-
pendence. Or, even more realistic, cross-corpora tests.
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The arguably even bigger problem is the simple lack of
exact reproducibility: reading results on randomly partitioned
data, one does not know the exact configuration. As a con-
sequence, figures are not comparable, even if 10-fold cross-
validation is used by two different sites: the splits may be com-
pletely different. Likewise, clearly defined experiments by leav-
ing subjects or groups out or provision of partitioning in some
form of documentation as instance lists on the web will have to
be employed in future studies. Ideally, such definition should be
provided with database releases to avoid high diversity from the
beginning – again, following the example set by speech recog-
nition (cf. e. g. the WSJ or AURORA corpora).

In addition, practically all databases which have been used
by different sites such as the freely available and highly popu-
lar EMO-DB do not contain realistic, non-prompted speech but
prompted, acted speech. Occurrence and distribution of classes
to be modelled for acted data and, by that, their acoustics cannot
simply be transferred to realistic data.

As mentioned above, comparability between research re-
sults in the field is considerably low. Apart from the different
evaluation strategies, the diversity of corpora is high, as many
early studies report results on their individual and proprietary
corpora. Additionally, there is practically no same feature set
found twice: high diversity is not only found in the selection of
low-level descriptors (LLD), but also in the perceptual adapta-
tion, speaker adaptation, and – most of all – selection and im-
plementation of functionals. This again opposes the more or
less settled and clearly defined feature types MFCC, RASTA
or PLP that allow for higher comparability in speech recogni-
tion. Further, different types of feature reduction are used with
astonishingly low documentation on parameter configuration.

One first cooperative experiment is found in the CEICES
initiative [5], where seven sites compared their classification re-
sults under exactly the same conditions and pooled their fea-
tures together for one combined unified selection process. This
comparison was not fully open to the public, which motivates
the INTERSPEECH 2009 Emotion Challenge to be conducted
with strict comparability, using the same database. Three sub-
challenges are addressed using non-prototypical five or two
emotion classes (including a garbage model):

• The Open Performance Sub-Challenge allows contribu-
tors to find their own features with their own classifica-
tion algorithms. However, they will have to stick to the
definition of test and training sets.

• In the Classifier Sub-Challenge, participants may use a
large set of standard acoustic features provided by the or-
ganisers (cf. Sec. 3) in the well known ARFF file format
for classifier tuning. Features may be sub-sampled, al-
tered and combined (e. g. by standardisation or analytical
functions), the training bootstrapped, and several classi-
fiers combined by e. g. ROVER or Ensemble Learning
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or side tasks learned as gender, etc. However, the audio
files may not be used in this task.

• In the Feature Sub-Challenge, participants are encour-
aged to upload their individual best features per unit of
analysis with a maximum of 100 per contribution follow-
ing the example of provided feature files. These features
will then be tested by the organisers with equivalent set-
tings in one classification task, and pooled together in a
feature selection process. In particular, novel, high-level,
or perceptually adequate features are sought-after.

The labels of the test set will be unknown, and all learning
and optimisations need to be based only on the training ma-
terial. However, each participant can upload instance predic-
tions to receive the confusion matrix and results up to 25 times.
The format will be instance and prediction and optionally ad-
ditional probabilities per class. This allows a final fusion by
e. g. ROVER or meta-classification of all participants’ results
to demonstrate the potential maximum by combined efforts (cf.
[5]). As classes are unbalanced, the primary measure to opti-
mise will be unweighted average (UA) recall, and secondly the
weighted average (WA) recall (i. e. accuracy). The organisers
will not take part in the sub-challenges but provide baselines.

This paper describes the data set (Sec. 2), and the features
for the challenge (Sec. 3), the conditions for testing (Sec. 4),
baseline results (Sec. 5), and concluding remarks (Sec. 6).

2. Emotional Speech Data
One of the major needs of the community ever since – maybe
even more than in many related pattern recognition tasks – is
the constant need for data sets. In the early days of the late
1990s, these have not only been few, but also small (∼500
turns) with few subjects (∼10), uni-modal, recorded under stu-
dio noise conditions, and acted. Further, the spoken content
was mostly predefined (e. g. Danish Emotional Speech (DES),
EMO-DB, Speech Under Simulated and Actual Stress (SUSAS)
databases) [4]. These were seldom made public and few an-
notators – if any at all – labelled usually exclusively the per-
ceived emotion. Additionally, these were partly not intended for
analysis, but for quality measurement of synthesis (e. g. DES,
EMO-DB). Today, there are more diverse emotions covered,
more elicited or even spontaneous sets of many speakers, and
larger amounts of instances (up to 10k and more) of more sub-
jects (up to 50), that are annotated by more labellers (4 (AVIC)
- 17 (VAM, [6])) and partly made publicly available. For acted
data, equal distribution among classes is of course easily obtain-
able. Also transcription is becoming more and more rich: addi-
tional annotation of spoken content and non-linguistic interjec-
tions (e. g. AVIC, Belfast Naturalistic, FAU AIBO, SmartKom
databases [4]), multiple annotator tracks (e. g. VAM), manu-
ally corrected pitch contours (FAU AIBO), additional audio
tracks under different noise and reverberation conditions (FAU
AIBO), phoneme boundaries and manual phoneme labelling
(e. g. EMO-DB), different units of analysis, and different levels
of prototypicality (e. g. FAU AIBO). At the same time these are
partly also recorded under more realistic conditions (or taken
from the media). Sadly, concrete test and training partitions
have been defined still for only few databases. This will hope-
fully be overcome in future sets, following all named positive
trends, yet adding multilinguality and subjects of diverse cul-
tural backgrounds. Another positive recent trend is to use more
than one database and even to report first cross-database results.

Trying to meet the utmost of these requirements, the FAU

# A E N P R
∑

train 881 2,093 5,590 674 721 9,959
test 611 1,508 5,377 215 546 8,257∑

1,492 3,601 10,967 889 1,267 18,216

Table 1: Number of instances for the 5-class problem

# NEG IDL
∑

train 3,358 6,601 9,959
test 2,465 5,792 8,257∑

5,823 12,393 18,216

Table 2: Number of instances for the 2-class problem

AIBO database [1, Chap. 5] was chosen for the challenge: it
is a corpus with recordings of children interacting with Sony’s
pet robot Aibo. The corpus consists of spontaneous, German
speech that is emotionally coloured. The children were led
to believe that the Aibo was responding to their commands,
whereas the robot was actually controlled by a human opera-
tor. The wizard caused the Aibo to perform a fixed, predeter-
mined sequence of actions; sometimes the Aibo behaved dis-
obediently, thereby provoking emotional reactions. The data
was collected at two different schools, MONT and OHM, from
51 children (age 10 - 13, 21 male, 30 female; about 9.2 hours of
speech without pauses). Speech was transmitted with a high
quality wireless head set and recorded with a DAT-recorder
(16 bit, 48 kHz down-sampled to 16 kHz). The recordings were
segmented automatically into ‘turns’ using a pause threshold of
1 s. Five labellers (advanced students of linguistics) listened to
the turns in sequential order and annotated each word indepen-
dently from each other as neutral (default) or as belonging to
one of ten other classes. Since many utterances are only short
commands and rather long pauses can occur between words due
to Aibo’s reaction time, the emotional/emotion-related state of
the child can change also within turns. Hence, the data is la-
belled on the word level. We resort to majority voting (MV):
if three or more labellers agreed, the label was attributed to the
word. In the following, the number of cases with MV is given
in parentheses: joyful (101), surprised (0), emphatic (2,528),
helpless (3), touchy, i. e. irritated (225), angry (84), motherese
(1,260), bored (11), reprimanding (310), rest, i. e. non-neutral,
but not belonging to the other categories (3), neutral (39,169);
4,707 words had no MV; all in all, there were 48,401 words.

Classification experiments on a subset of the corpus [1, Ta-
ble 7.22, p. 178] showed that the best unit of analysis is nei-
ther the word nor the turn, but some intermediate chunk being
the best compromise between the length of the unit of anal-
ysis and the homogeneity of the different emotional/emotion-
related states within one unit. Hence, manually defined chunks
based on syntactic-prosodic criteria [1, Chap. 5.3.5] are used
here. In contrast to other publications published recently, the
whole corpus consisting of 18,216 chunks is used for this
challenge. For the five-class classification problem, the cover
classes Anger (subsuming angry, touchy, and reprimanding)
Emphatic, Neutral, Positive (subsuming motherese and joyful),
and Rest are to be discriminated. The two-class problem con-
sists of the cover classes NEGative (subsuming angry, touchy,
reprimanding, and emphatic) and IDLe (consisting of all non-
negative states). A heuristic approach similar to the one applied
in [1, Chap. 5.3.8] is used to map the labels of the five labelers
on the word level onto one label for the whole chunk. Since the
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whole corpus is used in this challenge, the classes are highly un-
balanced. The frequencies for the five- and the two-class prob-
lem are given in Table 1 and Table 2, respectively. Speaker inde-
pendence is guaranteed by using the data of one school (OHM,
13 male, 13 female) for training and the data of the other school
(MONT, 8 male, 17 female) for testing. In the training set, the
chunks are given in sequential order and the chunk id contains
the information which child the chunk belongs to. In the test
set, the chunks are presented in random order without any in-
formation about the speaker. Additionally, the transliteration of
the spoken word chain of the training set and the vocabulary
of the whole corpus is provided allowing for ASR training and
linguistic feature computation.

3. Acoustic Features
The main focus was on prosodic features in the past, in particu-
lar pitch, durations and intensity [7]. Comparably small feature
sets (10-100) were first utilised. In only a few studies, low-
level feature modelling on a frame level was pursued, usually
by HMM or GMM. The higher success of static feature vectors
derived by projection of the LLD such as pitch or energy by
descriptive statistical functional application such as lower or-
der moments (mean, standard deviation) or extrema is probably
justified by the supra-segmental nature of the phenomena oc-
curring with respect to emotional content in speech. In more
recent research, also voice quality features such as HNR, jitter,
or shimmer, and spectral and cepstral features such as formants
and MFCC have become more or less the “new standard”. At
the same time, brute-forcing of features (1,000 up to 50,000),
e. g. by analytical feature generation, partly also in combination
with evolutionary generation, has become popular. It seems as
if this (slightly) outperforms hand-crafted features while the in-
dividual worth of automatically generated features seems to be
lower. Within expert-based hand-crafted features, perceptually
more adequate features have been investigated, reaching from
simple log-pitch to Teager energy or more complex features
such as articulatory features (e. g. (de-)centralisation of vow-
els). Further, linguistic features are often added these days, and
will certainly also be in the future. However, these demand for
robust recognition of speech in the first place.

For the Classifier Sub-Challenge, a feature set is provided
that shall best cover the described gained knowledge. We there-
fore stick to the findings in [8] by choosing the most common
and at the same time promising feature types and functionals
covering prosodic, spectral, and voice quality features. Fur-
ther, we limit to a systematic generation of features. The cre-
ation of more elaborate features will be left as subject of the
Feature Sub-Challenge. For highest transparency we utilise
the open source openSMILE feature extraction1. In detail, the
16 low-level descriptors chosen are: zero-crossing-rate (ZCR)
from the time signal, root mean square (RMS) frame energy,
pitch frequency (normalised to 500 Hz), harmonics-to-noise ra-
tio (HNR) by autocorrelation function, and mel-frequency cep-
stral coefficients (MFCC) 1-12 in full accordance to HTK-based
computation. To each of these, the delta coefficients are ad-
ditionally computed. Next the 12 functionals mean, standard
deviation, kurtosis, skewness, minimum and maximum value,
relative position, and range as well as two linear regression co-
efficients with their mean square error (MSE) are applied on a

1F. Eyben, M. Wöllmer, B. Schuller (2009): Speech and Music
Interpretation by Large-Space Extraction, http://sourceforge.
net/projects/openSMILE.

LLD (16 · 2) Functionals (12)
(Δ) ZCR mean
(Δ) RMS Energy standard deviation
(Δ) F0 kurtosis, skewness
(Δ) HNR extremes: value, rel. position, range
(Δ) MFCC 1-12 linear regression: offset, slope, MSE

Table 3: Features for the Classifier Sub-Challenge: low-level
descriptors (LLD) and functionals.

chunk basis as depicted in Table 3. Thus, the total feature vector
per chunk contains 16 · 2 · 12 = 384 attributes.

4. Realism and Classification Performance
With this challenge, we aim at two related, but independent
objectives: comparability and realism. Above, we have dealt
with the first objective. As for the second one: a fully re-
alistic approach towards automatic processing of emotions in
speech means dealing with non-acted, non-prompted, realistic
(i. e. spontaneous) data, many speakers, and all data obtained.
During the last years, not only many authors agreed that we do
need realistic data, a few – but of course, not enough – realis-
tic databases have been recorded and processed as well. As far
as we can see, however, almost never the full data set has been
processed. This is different from the transition from read speech
to spontaneous speech in automatic speech recognition (ASR)
where normally, always all data have been employed apart from,
for instance, non-linguistic vocalisations, etc., which are treated
as garbage; but they are still treated and not removed from the
signal before processing. In emotion processing, normally a
subset of the full database is taken consisting of somehow clear,
i. e. more or less prototypical cases. This is not only a clever
move to push classification performance, it simply has grown
out from the problem of class assignment in emotion process-
ing: there is no simple and unequivocal ground truth. In ASR,
however, a lexicion can be established containing all the words
or word forms found in the database. We have elaborated on
these differences in [9]. So far, we have defined majority vot-
ing cases for our FAU AIBO database as well and concentrated
on this sub-set. For a four-class problem, unweighted average
recall was in the range of above 65 %; using only very prototyp-
ical cases, an unweighted average recall close to 80 % could be
obtained. By mapping onto a two-class-problem, classification
performance could be pushed above 90 %, [9] and unpublished
experiments. Using ‘realistic data’, however, not only means
using spontaneous data, it means as well using all these data.
Whereas the first, qualitative aspect, has been taken into account
by several studies yet, the second, sort of ‘quantitative’ aspect,
has still been neglected by and large. With this challenge, we
therefore want to initiate work dealing with this second aspect
as well by employing the full database; in our opinion, this con-
stitutes the last step before automatic emotion processing (in-
cluding full ASR and automatic chunking) really can be used
‘in the wild’, i. e. in real applications. This means at the same
time to scale down our expectations for classification perfor-
mance. In ASR, a rough estimate for the difference between
read and spontaneous data was that, at least to start with, one
could expect an error rate for spontaneous data twice the size
than the one for read data [10]. Of course, we cannot simply
transfer this empirically obtained estimate onto our classifica-
tion problem. Yet we definitely will have to deal with a plainly
lower classification performance.
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#States Recall [%] Precision [%]
UA WA UA WA

1 62.3 71.7 65.2 69.8
2-class 3 62.9 57.5 61.1 70.0

5 66.1 65.3 63.6 71.3

1 35.5 50.8 29.6 57.1
5-class 3 35.2 34.7 27.5 57.2

5 35.9 37.2 29.3 59.0

Table 4: Baseline results employing the low-level descriptors of
the Classifier Sub-Challenge tasks by dynamic modelling.

5. Baseline Results
For provision of baseline results, we consider the two pre-
dominant architectures within the field: Firstly, dynamic mod-
elling of LLD as pitch, energy, MFCC, etc. by hidden Markov
models. Secondly, static modelling using supra-segmental in-
formation obtained by statistical functional application to the
same LLD on the chunk level. We decided to entirely rely on
two standard publicly available tools widely used in the commu-
nity: the Hidden Markov Model Toolkit (HTK)2 in the case of
dynamic, and the WEKA 3 Data Mining Toolkit3 in the case of
static modelling. This ensures easy reproducibility of the results
and reduces description of parameters to a minimum: unless
specified, defaults are used. Constantly picking the majority
class would result in an accuracy (WA recall) of 70.1 % for the
two-class problem and 65.1 % for the five-class problem, while
the chance level for UA recall is simply 50 % and 20 %, respec-
tively. As instances are unequally distributed among classes,
we consider balancing of the training material to avoid classi-
fier over-fitting. We decided for applying the Synthetic Minor-
ity Oversampling TEchnique (SMOTE). Note that up-sampling
does not have any influence in the case of dynamic modelling:
for each class one HMM is trained individually and equal priors
are assumed. Table 4 depicts these results for the two- and five-
class tasks (classification by linear left-right HMM, one model
per emotion, diverse number of states, 2 Gaussian mixtures, 6+4
Baum-Welch re-estimation iterations, Viterbi) by recall and pre-
cision. Further standardisation of the whole sets, individually,
is considered to cope with biases occurring to different room
acoustics, etc. In Table 5 results are shown employing the whole
feature set of the Classifier Sub-Challenge with support vector
machine classification (sequential minimal optimisation learn-
ing, linear kernel, pairwise multi-class discrimination). Thereby
the influence of these two pre-processing steps is seen. Note that
the order of operations is crucial, as the standardisation leads to
different results if classes are balanced.

6. Conclusions
The need for a first official challenge on emotion recognition
from speech was motivated and the conditions were laid out.
Though not aiming at maximum performance, the baseline re-
sults clearly demonstrate the difficulty of the switch from per-
formances in the lab to dealing with “everything that comes in”.

Clearly, more such comparisons and challenges as NIST
evaluations in the field of speech processing, or the MIREX
challenges in the field of music retrieval will be needed.
Thereby feature extraction or classification code will have to be
made available for the organisers or – even better – to the com-

2http://htk.eng.cam.ac.uk/docs/docs.shtml
3http://www.cs.waikato.ac.nz/ml/weka/

Process Recall [%] Precision [%]
1 2 UA WA UA WA

- - 62.7 72.6 66.4 70.6
2-class S B 67.6 68.3 65.2 72.3

B S 67.7 65.5 64.8 72.7

- - 28.9 65.6 35.5 57.0
5-class S B 38.2 39.2 30.0 59.7

B S 38.0 32.2 29.4 59.8

Table 5: Baseline results Classifier Sub-Challenge task by static
modelling. Diverse pre-processing strategies: training balanc-
ing (B) by SMOTE and standardisation (S).

munity. In particular future challenges may address audiovisual
emotion recognition, or lead to even more realism by consider-
ing cross-corpora, multi-cultural, and multi-lingual evaluations.
The first step is done – may the next ones follow soon.
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