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I .
Logic as a formal science is usually practiced today in accordance with the 
syntactic-semantical two-tiered paradigm. Almost every modern logician is 
working in this manner. It was originally developed by Alfred Tarski, and 
after essential preparations by Rudolf Carnap, Saul Kripke made the two- 
tiered paradigm also applicable to modal logic.

What does this methodological paradigm, which is almost universally ap­
plied by modal logicians, consist in? In their science they follow—almost auto­
matically and without question—the following procedure: They start from an 
axiomatic system with a purely syntactical notion of proof for certain modal- 
logical constants; they then apply themselves to the task of finding a model- 
theoretical semantics for this system (if possible, an intuitively satisfying one), 
in which the relevant notion of logical truth (or validity) can be defined. This 
task is, in essence, regarded to be successfully completed if a semantics is found 
which is such that an exact correspondence can be proved to obtain between the 
syntactical notion of proof of the considered axiomatic system and the semanti­
cal notion of logical truth defined with respect to it; that is, if one can prove that 
precisely those formulas of the given logical language are provable in the axio­
matic system that are logically true according to the semantics for that system. It 
is regarded as a deficiency, as a scientific challenge, if one has an axiomatic 
system for certain modal-logical constants but no semantics adequate to it (in 
the sense stated in the previous sentence). Or vice versa: if one has a semantics 
for certain modal-logical constants but no axiomatic system adequate to it. Note 
that the order of the two tiers can, of course, be reversed: the syntactic tier— 
axiomatic system with syntactical proof-concept—is normally, but not always 
methodologically first; sometimes the semantic tier—model-theoretical seman­
tics with definition of logical truth—comes first. The desired result is according 
to both orders of methodological procedure the same: a perfect fit between an 
axiomatic system and a model-theoretical semantics.

Let us ask why it is considered to be a deficiency if a given axiomatic system 
has as yet not been brought into agreement with some model-theoretical seman­
tics. Why are modal logicians in a worldwide competition with each other to 
find a soundness and completeness proof for this or that modal-logical system 
with respect to this or that model-theoretical semantics? Why is scientific re­
spect accorded to the person that succeeds in finding such a proof? If there is 
more to this than that logic, more specifically: modal logic, is simply an exciting 
game (at least for some people), played more or less admirably in accordance to 
certain rules; if, therefore, the two questions just asked are not entirely otiose



166 Explicit Modal Logic

like the question why soccer-players want to score goals and are admired if they 
do, then the usual axiomatic modal-logical systems must be in some way intrin­
sically insufficient; they must suffer from an insufficiency that can be remedied 
by formulating an adequate model-theoretical semantics for them. If a person 
succeeds in formulating such a semantics where there was none previously, then 
the insufficiency is neutralized, we have a generally recognized scientific ad­
vance, and the person who achieved it is accordingly commended.

But what does this intrinsic insufficiency of the usual modal-logical axio­
matic systems consist in? It consists in the fact that these systems do not make 
their own interpretations (what they are about) explicit, or at least not suffi­
ciently explicit. A model-theoretical semantics must be adduced to fill this gap; 
only then the behavior of the modal-logical constants becomes truly transparent, 
only then the axioms, rules and theorems of the axiomatic systems are given a 
scientifically satisfactory justification.

I want to show in this paper that it need not be the case that axiomatic mo­
dal-logical systems do not state their own interpretation. On the contrary, axio­
matic systems of explicit modal logic can be formulated that completely reveal 
how they are to be interpreted. For such systems, as far as the interpretation of 
the logical constants is concerned which are treated in them, a model-theoretical 
semantics is a luxury that can very well be done without. Moreover, since inter­
pretation-explicit systems of modal logic can be used to justify less interpreta­
tion-explicit systems of modal logic (for example, the usual calculi), a different 
methodological paradigm is apparent for doing modal logic (and, by implica­
tion, for doing formal logic in general) than the presently dominant two-tiered 
syntactic-semantical paradigm.

n.
Consider the language ML:

(1)
(i) p, p ', p "  ... are atomic kernel-formulas of ML.
(ii) If 0 and 0 ' are kernel-formulas of ML, then so are (0z>0 f ,  -■,0 

and N0.
(iii) Kernel-formulas of ML are only expressions according to (i)— (ii).

(2)
(¡9 Variables of ML are the expressions x , x .

(ii') If v and v ' are variables of ML, then R(v,v') and (v=v') are 
periphery-formulas of ML.

(iii 0 If 0 is a kernel-formula of ML and v a variable of ML, then T(v,0) is 
a periphery-formula of ML.

(iv") If 0 and 0 ' are periphery-formulas of ML, then so are (0309  
an d -0 .



U. Meixner 167

(v') If <|>[v] is a periphery-formula of ML in which v but not Vv occurs, 
then Vv<|)[v] is a periphery-formula of ML.

(vi0 Periphery-formulas of ML are only expressions according
to (»9—(v9.

(3)
Formulas of ML are precisely the kernel- and periphery-formulas of ML

As schematic letters for kernel-formulas of ML, we use K,K', etc., and as 
schematic letters for variables of ML, x,y,z, ..„etc. (Axiom-schemata that are 
schematic merely with respect to variables will also be called “ axioms.” )

ni.
In the language ML the calculus MK is formulated:

The basis of MK is a standard axiomatic system of elementary predicate 
logic with identity (with the basic operators — ZD and V; other operators 
are defined as usual), which is limited to periphery-formulas o f ML. In 
addition, MK comprises the following axiom- and rule-schemata:

ARI VxR(x,x).
AR2 VxVyVz(R(x,y) o  (R(y,z) D  R(x,z))).
AR3 VxVy(R(x,y) R(y,x)).
ATI Vx(T(x,-.K) = -.T(x,K)).
AT2 VX(T(X,(KD K9) S  (T(X,K) 3  T(x.K'))).
AT3 Vx(T(x,NK) = Vy(R(x,y) z> T(y,K))).
RT1 VxT(x,K) |-K.
RT2 K I- VxT(x,K).

RT1 and RT2 are intended as schemata of provability-rules (not—what would 
be stronger—as schemata of inference rules); that is, they state that if their 
antecedent is provable, then their consequent is also provable.1

1 In Temporal Logic Rescher and Urquhart consider (on p. 38ff) the operator R^A)— “it is 
realized at time t that A” —whose logical behavior is rather similar to that of the operator 
T(x,K). However, as second arguments of T(x,K) only kernel-formulas are allowed to occur: in 
contrast, arbitrary formulas (of the language considered) may be substituted for A in Rt(A).

IV.
The calculus MK is an interpretation-calculus for the kernel-formulas of ML. 
In MK the kernel-formulas of ML are accorded, already on the object­
language level, that interpretation relevant for their logic that is normally
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accorded to them on the meta-language level by the specification of a model- 
theoretical Kripkean interpretation-concept. For Vx is intended to be read as 
“ for all possible worlds x,” T(x,K) is intended to be read as “ it is true in x 
that K” (note that the concept of truth used is not a meta-linguistic one), 
R(x,y) is to be read as “ y is accessible from x.” The logic of the kernel­
formulas of ML (it is no other than the modal propositional logic S5) is 
hereby embedded into an explicit modal logic: into the logic which is defined 
by the axiomatic system MK. Within the object-language ML itself it is pos­
sible to present for every kernel-formula K of ML, (hence also for each prin­
ciple of the logic of the kernel-formulas of ML) a periphery-formula P*[x,K] 
of ML which makes the content of K (its content in the light of the classical 
Kripkean interpretation) completely explicit, and which is provable in the 
interpretation-calculus MK if and only if K itself is provable in MK:

The translation of K into P*[x,K]
Start by replacing K by T(x,K). Then proceed according to (a)—(c) (see 
below), until as second arguments of all occurrences of formulas T(y,K') 
only atomic kernel-formulas of ML are left:
(a) Replace T(y,->K') by —T(y,K').
(b) Replace T (y ,(K bK ")) by (T(y,KT z> T(y,K")).
(c) Replace T(y,NK') by Vy'(R(y,y9 z> T(y',KT).
The final result is the periphery-formula P*[x,K].

Obviously we have on the basis of ATI—RT2: (-MK K iff [-MK T(x,K) iff 
FMK P*[x,KJ.

V.

With respect to the interpretation-calculus MK, we can now state a definition 
of the meta-linguistic concept of logical truth for kernel-formulas of ML 
without recourse to a model-theoretical concept of interpretation defined in 
the meta-language:

Let 0 be a kernel-formula of ML:
0 is logically true iff J-MK VvT(v,0).

According to this definition, a kernel-formula 0 of ML is logically true if and 
only if a periphery-formula of ML is provable in MK (in the given interpreta­
tion-calculus for kernel-formulas of ML) that states that it is true in all possi­
ble worlds that 0. This definition of logical truth for kernel-formulas of ML, 
which dispenses with any set-theoretical machinery, appears to be at least as 
satisfactory as the usual definition of their logical truth within a Kripke-style
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model-theoretical semantics for propositional S5. Both definitions, although 
in them logical truth (or validity) is conceived in entirely different ways, nev­
ertheless define concepts that have the same extension: the concepts apply to 
the very same formulas of ML.

VI.
As an interpretation-calculus for the kernel-formulas of ML, MK is trivially sound 
and complete with respect to their logical truth. On the basis of RT1 and RT2 and 
the stated definition of logical truth for kernel-formulas of ML, we have:

For all kernel-formulas 0 of ML:
<t> is logically true iff |-MK 0.

A calculus for kernel-formulas of ML which is not an interpretation-calculus 
for them is of course not trivially sound and complete with respect to their 
logical truth. Soundness and completeness considerations for arbitrary calculi, 
well-known from model-theoretical semantics, can be incorporated into the 
present framework on the basis of the following definitions:

Let C be a calculus for kernel-formulas of ML, for example, a standard 
propositional S5-calculus (as it can be found in Hughes/Cresswell, An In­
troduction to Modal Logic)'.
C is sound with respect to the logical truth of kernel-formulas of ML if 
and only if every formula provable in C is a logically true kernel-formula 
of ML (i.e. a kernel-formula of ML which is provable in MK).
C is complete with respect to the logical truth of kernel-formulas of ML if 
and only if every logically true kernel-formula of ML (i.e. every kernel­
formula of ML which is provable in MK) is provable in C.

Quite obviously, soundness- and completeness considerations for C are tan­
tamount to determining whether the following holds true:

For all kernel-formulas 4> of ML:
he 0 iff hlK $•

The proof of this from the left to the right will not present special difficulties 
for a standard propositional S5-calculus C; it is more difficult, however, to 
prove also the reverse direction: from the right to the left. The crucial point is 
to show that if there is a MK-proof of <j> at all, then there is also a MK-proof 
of it that has a certain standard form, which can be transformed into a C-proof 
of <f) by following certain fixed construction rules. Such a completeness proof
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for C is very different from the usual model-theoretical Henkin-method for 
proving completeness: the (sound) completeness of C is proved by embedding 
C into an interpretation-calculus for the formulas that C refers to. By appro­
priate definitions, issues of logical semantics have been brought within the 
range of essentially syntactical proof-theoretical methods.

vn.
The method of doing logic that has just been described with reference to a 
specific example is not restricted to simple modal propositional logic. Instead 
of the dyadic truth-operator T(x,A) one can, for example, consider the triadic 
truth-operator T(x,y,A) and use this tool for approaching modal tense-logic, 
beginning with its purely propositional form. In the standard interpretation­
calculus for the kernel-formulas K of the language then under consideration, 
one will have, besides the obvious T-schemata for and the following 
T-axiom-schemata:

VxVy(W(x) A Z(y) => [T(x,y,GK) = Vy'(y<y' T(x,y',K))]).
VxVy(W(x) A Z(y) o  [T(x,y,HK) s  Vy'(y'<y T(x,y',K))j).
VxVy(W(x) A Z(y) => [T(x,y,N*K) = Vz(Ry(x,z) z> T(z,y,K))]).

In other words:
For all possible worlds x and time-points y: it is true in x at y that it will be 
always the case that K if and only if it is true in x at all time-points y ' after y 
that K.
For all possible worlds x and time-points y: it is true in x at y that it was al­
ways the case that K if and only if it is true in x at all time-points y ' before y 
that K.
For all possible worlds x and time-points y: it is true in x at y that it is histori­
cally necessary that K if and only if  in all possible worlds z that agree with x 
up to y it is true in z at y that K.

As T-rule-schemata, connecting periphery-formulas with kernel-formulas, 
one will have:

VxVy(W(x) A Z(y) z> T(x,y,K)) |- K.
K ]- VxVy(W(x) A Z(y) z> T(x,y,K)).

And one will assume at least the following axioms that describe the structure 
provided by time-points, possible worlds and their relations:

3xZ(x),
3xW(x),
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VxVy(x<y 3  Z(x) A Z(y)),
Vx(Z(x) 3  - .(x<x)),
VxVyVz(x<y Ay<z 3  x<z),
VxVy(Z(x) A Z(y) 3  x<y v y<x v x=y), 
VxVyVz(Ry(x,z) 3  W(x) A W(Z) A Z(y)), 
VxVyVz(Ry(x,z) 3  Vu(u<y 3  Ru(x,z))), 
VxVy(W(x) A Z(y) 3  Ry(x,x)), 
and symmetry and transitivity for Ry(x,z).

It is of course possible to present a model-theoretical semantics for the above 
described interpretation-calculus of the formulas that are considered in propo­
sitional modal tense-logic. But nothing is added in this way to the interpreta­
tion of the logical constants of that logic. Concerning them, in formulating 
such a model-theoretical semantics, one merely repeats on the meta-language 
level what is already stated in the object-language itself. Also, for defining the 
concept of logical truth for the formulas of propositional modal tense-logic 
(that is, the propositional formulas that contain as basic logical constants at 
most —i, 3 , G, H and N*), a model-theoretical semantics is not necessary: the 
above considerations concerning logical truth in the case of simple modal 
propositional logic can easily be transferred to the case of propositional mo­
dal tense-logic. Finally, proofs of soundness and completeness for calculi of 
the latter logic, proofs that abstain from the use of model-theoretical means, 
can, in principle, be constructed relative to the interpretation-calculus pre­
sented. The general idea of such proofs is clear; however, if it is completeness 
that is at issue, the carrying out of that idea in a given concrete case may 
prove to be very difficult.

Note, however, that the completeness of a calculus of propositional modal 
tense-logic is a secondary issue, since we are in the possession of the standard 
interpretation-calculus for propositional modal tense-logical formulas: which­
ever propositional modal tense-logical formula one considers, if it is logically 
true, then it is provable in that interpretation-calculus; this is simply the way 
its logical truth has been defined. Thus, no consistent calculus for proposi­
tional modal tense-logical formulas that respects the intended meaning of the 
constants -i, 3 , G, H and N* can be more complete than the standard interpre­
tation-calculus for propositional formulas containing at most these basic con­
stants.

vin.
How can the described method be applied in the case of predicate logic, say, 
in the case of simple modal predicate logic? As above, in the case of simple 
modal propositional logic, a dyadic truth-operator T(x,K) is sufficient, but the
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kernel-formulas K are now themselves formulas with a predicate-logical 
structure. Provisionally, we assume that they contain no singular terms except 
variables, and that the variables in kernel-formulas are the same as the vari­
ables properly in periphery-formulas (i.e. as the variables in those parts of 
periphery-formulas that are not parts of kernel-formulas). The interpretation­
calculus for the kernel-formulas now under consideration comprises, besides 
the predicate-logical basis, besides the unchanged axioms AR2 and AR3, the 
following axiom-schemata:

AW1 3xW(x).
ARO VxVx(R(x,y) W(x) A W(y)).
ARI Vx(W(x) o  R(x,x)).
ATI Vx(W(x) =) [T(x,->K) s  —iT(x,K)]).
AT2 Vx(W(x) o  [T(x,(KoK9) = (T(x,K) T(x,K'))]).
AT3 Vx(W(x) z> [T(x,NK) s  Vy(R(x,y) z> T(y,K))]).
AT4 Vx(W(x) 2D [T(x,VyK[y]) = VyT(x,K[y])])

(x does not occur in K[y]).

RT1 and RT2 now have the following form:

RT1 Vx(W(x) ID T(x,K)) K (x does not occur in K).
RT2 K |- Vx(W(x) :D T(x,K)) (x does not occur in K).

According to AT4 it is true in the possible world x that all y are K, if for each 
y it is true in x that it is K. On the basis of this axiom the basic laws of predi­
cate logic for kernel-formulas can be easily derived (in fact, much easier than 
in model-theoretical semantics):
VyKlvtoKlvT According to AT4 (etc.), Vx(W(x) z> [T(x,VyK[y]) TD 
T(x,K[y'])]) is provable (x not in K[y], K[y']), hence, according to AT2, 
Vx(W(x) o  T(x,(VyK[ylz>K[y'|))) is also provable, hence, according to RT1, 
VyK[y]oK[y'] can be proved.
K'LDKIV'] |- K'zpVyKlvI (y not in the antecedent, y ' not in the consequent): 
Assume that K'2DK[y"] is provable (y not in K ' and K[y'], y ' not in K ' and 
K[y]), hence, according to RT2, Vx(W(x) z> T(x,(K'z>K[y3))) is also prov­
able (x not in K', K[y'] and K[y]: x is a variable different both from y and y ); 
hence, according to AT2 (etc.), it is provable that Vx(W(x) A T(X.K ') 3  
Tix.Kly'])), and hence, by predicate-logical generalization (for periphery­
formulas!) and quantifier-shift, we can prove Vx(W(x) A T(X,K') DD 
VyT(x,K[y])); therefore, applying AT4, we can also prove Vx(W(x) A 
T(x,K9 o  T(x,VyK[y])), and hence, by AT2 (etc.), Vx(W(x) ZD 
T(x,(K'oVyK[y]))) is provable, and therefore, finally, K'oVyK[y] can be 
proved, according to RT1.
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IX.
Things get much more complicated if the predicate-logical kernel-formulas 
contain other singular terms than variables, for example, proper names and 
definite descriptions. Such singular terms t (other than variables) must not 
occur directly in the periphery-formulas (more precisely: directly in the parts 
of periphery-formulas that are not parts o f kernel-formulas'), but only in the 
context of the functional expression b(x,t)— “ the object that is t in x.” —an 
expression which, in turn, is not allowed to occur in kernel-formulas. These 
syntactical restrictions keep matters clearer; also, in order to avoid unneces­
sary complications, let b(x,t) be considered to be well-formed only if t is a 
singular term for kernel-formulas, in short: a kernel-term.

As T-schema for kernel-formulas that are identity-formulas, we will then 
have:

AT5 Vx(W(x) z> [T(x,(t=t')) s  b(x,t)=b(x,t')]) (x not in (t=O).

If t (a kernel-term) is a rigid designator, then we have: VxVy(W(x) AW(y) o  
b(x,t)=b(y,t)); and conversely: t is a rigid designator, if we have VxVy(W(x) 
AW(y) 3  b(x,t)=b(y,t)). As an axiom for the functional expression b(x,t), one 
will assume

O1 VxVy(W(x) z> b(x,y)=y) ( “Every object is in every possible world x 
identical with that object that it is in x.” )

Such an axiom corresponds to a normal conception of objects. But it is, in 
fact, not a truism, for a friend of counterparts, like David Lewis, will deny it: 
according to him, there is an object y (for example, U.M.) and a possible 
world x (a world different from the actual world) such that y is not identical 
with the object that is y in x; the latter object is, for Lewis, merely a counter­
part of the former. Since kernel-terms, if they are not variables, may occur 
in periphery-formulas outside kernel-formulas only in the context of the func­
tional expression b(x,t), one cannot conclude from O1 that every kernel­
term is a rigid designator. But one can indeed conclude from it that al! vari­
ables (they are all of them kernel-terms) are rigid designators, as can easily 
be seen. Thus, it turns out that all kernel-formulas having the form 
VyVx((x=y)z>N(x=y)) are provable in the present interpretation-calculus;'

2 Here is the proof for this: Assume W(z), R(z,u), T(z,(x=y)): hence by AT5: b(z,x)-b(z,y), 
hence by O l: x=y. From R(z,u) by ARO: W(u), and hence, according to O l, b(u,x)=x. b(u,y)=y. 
Therefore: b(u,x)=b(u,y), and hence by AT5: T(u,(x=y)). Thus from the assumptions W(z) and 
T(z,(x=y)) by predicate-logical generalization (etc.): Vu(R(z,u) c>T(u,(x=y))), and hence by AT3: 
T(z,N(x=y)). And therefore from assumption W(z) alone: T(z,(x=y)) z> T(z,N(x=y)), hence by 
AT2: T(z,((x=y) o  N(x=y))). Consequently, from assumption W(z). by predicate-logical gener-
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t=t'r>N(t=t9, however, is not a theorem-schema of that calculus, since one 
cannot prove in it that all kernel-terms t and t ' are rigid designators— nor 
should one be able to prove this.
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