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1 Introduction and motivation 

The importance of the health sector for the well-being of a population is undoubted. The economic 

dimension of the health sector, on the other hand, is often underestimated. This is especially true for the 

case of Germany, as it is one of the countries with the highest expenditures on healthcare in the world. 

With 11.3% of the GDP (Gross Domestic Product), Germany is ranked third in the worldwide comparison 

of health spending behind the United States of America and Switzerland (OECD 2017). Considering only 

the government/compulsory expenditures as a share of the GDP, Germany is even ranked first. The federal 

statistical office of Germany reported recently that for the first time in history, the daily health expenditures 

in Germany had passed the value of 1 billion Euros (Federal Statistical Office of Germany 2018). Issues 

in healthcare are high on the agenda of newspaper reports and the political discussion, as problems in the 

nursing sector currently show. Many hospitals and other healthcare institutions are struggling to cover the 

demand for nursing care. Nurses, on the other side, complain about bad working condition and low wages. 

Furthermore, the German government passed a law, restricting the number of patients a nurse is allowed 

to be responsible for, to improve the provision of patients with nursing care (Federal Ministry of Health 

2018). All these circumstances will force affected institutions to spend more money on nursing care, 

causing a further increase of short to medium term expenditures. Due to an aging population as a result of 

the demographic change, the importance of the healthcare sector will increase additionally in the long run 

(Federal Statistical Office of Germany 2019b). 

Within the healthcare sector, hospitals take a vital position. They are responsible for up to 40% of the 

healthcare expenditures in a country (OECD 2017). On the supply side, the pressure for hospitals to work 

cost efficient has increased significantly within the last 20 years. The introduction of the DRG (diagnosis 

related groups) system is responsible for a considerable part of the effect (Geissler et al. 2011). Hospitals 

now receive a fixed rate per case. Before the DRG introduction, all the costs of a patient’s stay had been 

covered. As a result, the length of stay of inpatients has decreased significantly from 9.2 days in 2000 to 

6.7 days in 2017 (Federal Ministry of Health 2019). More and more hospitals are closing or merging due 

to the increased cost pressure. While 2,242 hospitals existed in 2000, the number shrank to 1,942 in 2017 

(Federal Statistical Office of Germany 2019a). This effect is evaluated diversly. While some fear for the 

supply of rural areas, others regard a thinning of the oversized German hospital sector as overdue (Busse 

& Berger 2018). 

Looking at the demand for hospitals in Germany, a substantial rise in hospital admissions is visible. One 

of the main reasons is the changing age structure of the population (Krämer & Schreyögg 2019). Besides, 

the emergency departments of hospitals struggle with a growing share of outpatient cases that do not need 

emergency treatment (Scherer et al. 2017). These patients appreciate the immediate treatment possibilities 

without the need to apply for an appointment. This behavior worsens the situation of the hospitals as these 

cases cause congestion in the emergency departments while refunding is relatively low. Strategies have 

been developed to induce these people to use primary care resources instead (Köster et al. 2016). 
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Overall, the described situation causes pressure for hospitals to work efficiently. The latest edition of 

Health at a Glance: Europe (OECD/EU 2018) underlines the actuality of the topic. One of the two thematic 

chapters addresses “Strategies to reduce wasteful spending: Turning the lens to hospitals and 

pharmaceuticals”. They argue that evidence suggests that up to one-fifth of health spendings is caused by 

inefficiencies and can be reduced without the performance of the health system. Therefore, the assessment 

of efficiency and identification of causes for inefficiency is an unavoidable first step. Furthermore, the 

identification of best practice examples is helpful for the adaption of commendable structures and 

processes. The scientific literature differentiates between two basic approaches for the estimation of 

efficiency: Parametric and non-parametric approaches (Jacobs et al. 2006) 

While parametric approaches need the specification of the production process in a functional form, non-

parametric methods can treat it as a black box. As a consequence, non-parametric models are superior in 

settings with multiple outputs and have prevailed in the estimation of hospital efficiencies (Hollingsworth 

2003). The most popular method within the non-parametric approaches is the Data Envelopment Analysis 

(DEA). It is based on the theories of Farrell (1957) and was originated by the seminal paper of Abraham 

Charnes, William Cooper, and Edwardo Rhodes (Charnes et al. 1978). The basic CCR model has been 

named after their initials. The idea of the model is quite simple. Efficiency is expressed by the sum of 

weighted outputs divided by the sum of weighted inputs. The weights are decision variables in the resulting 

optimization model and necessary for several reasons. They assure flexibility and fairness of the model, as 

its most favorable set of weights evaluates every decision making unit (DMU). In doing so, no DMU can 

complain that its performance is the result of unfair weighting. Furthermore, the system of complete weight 

flexibility allows the mixture of highly diverse inputs and outputs, which do not have to be measured on 

the same scale or even in the same unit. The resulting efficiency term is maximized for the DMU under 

observation and yields the DMU’s efficiency score. The constraint for the optimization problem restricts 

any DMU in the data sample to receive an efficiency score larger than 1 with the weights of the DMU 

under observation. Furthermore, weights are restricted to non-negative values. The optimization problem 

is given in (1). 

 

 

 

 

Parameters & Sets: 

𝑛𝑛  Number of DMUs 

𝑚𝑚  Number of Inputs 

𝑠𝑠  Number of Outputs 

𝑗𝑗 = 1, … ,𝑛𝑛  Set of DMUs with index 𝑗𝑗 
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𝑖𝑖 = 1, … ,𝑚𝑚  Set of inputs with index 𝑖𝑖 

𝑟𝑟 = 1, … , 𝑠𝑠  Set of outputs with index 𝑟𝑟 

𝑜𝑜 ∈ 1, … ,𝑛𝑛  DMU under observation 

𝑥𝑥𝑖𝑖𝑖𝑖  Input 𝑖𝑖 of DMU 𝑗𝑗 

𝑦𝑦𝑟𝑟𝑖𝑖  Output 𝑟𝑟 of DMU 𝑗𝑗 

 

Decision variables: 

𝑣𝑣𝑖𝑖  Weight for input 𝑖𝑖 

𝑢𝑢𝑟𝑟  Weight for output 𝑟𝑟 

 

max
∑ 𝑢𝑢𝑟𝑟𝑦𝑦𝑟𝑟𝑟𝑟 𝑠𝑠
𝑟𝑟=1
∑ 𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖𝑟𝑟𝑚𝑚
𝑖𝑖=1

 
 

(1a) 

∑ 𝑢𝑢𝑟𝑟𝑦𝑦𝑟𝑟𝑖𝑖  𝑠𝑠
𝑟𝑟=1
∑ 𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑚𝑚
𝑖𝑖=1

≤ 1 ∀𝑗𝑗 (1b) 

𝑣𝑣𝑖𝑖,𝑢𝑢𝑟𝑟 ≥ 0 ∀𝑖𝑖, 𝑟𝑟 (1c) 

 

A problem of (1) is its solvability, as decision variables appear as well in the nominator and denominator 

of (1a) and (1b). Therefore, (1) is a nonlinear problem and cannot be solved by the simplex algorithm. To 

alleviate the solution process, Charnes et al. (1978) used the Charnes-Cooper transformation (Charnes & 

Cooper 1962), which linearises the problem. They get rid of the denominator in (1a) by fixing it to 1 and 

adding it as a new constraint. Besides, (1b) is rewritten slightly. The results yield the typical CCR 

formulation (2). 

 

max�𝑢𝑢𝑟𝑟𝑦𝑦𝑟𝑟𝑟𝑟 
𝑠𝑠

𝑟𝑟=1

 
 

(2a) 

�𝑢𝑢𝑟𝑟𝑦𝑦𝑟𝑟𝑖𝑖  
𝑠𝑠

𝑟𝑟=1

≤�𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖

𝑚𝑚

𝑖𝑖=1

 ∀𝑗𝑗 (2b) 

�𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖𝑟𝑟

𝑚𝑚

𝑖𝑖=1

= 1  (2c) 

𝑣𝑣𝑖𝑖,𝑢𝑢𝑟𝑟 ≥ 0 ∀𝑖𝑖, 𝑟𝑟 (2d) 
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To receive an efficiency score for every DMU of a data sample, the mathematical program (2) needs to be 

solved 𝑛𝑛 times, with every DMU being once the DMU under observation 𝑜𝑜. All efficient DMUs form a 

convex efficiency frontier, which “envelops” all other data points. This property was name-giving for the 

Data Envelopment Analysis. 

In addition to the efficiency score, an optimal production plan for every DMU is created by DEA. For 

inefficient DMUs, this plan shows the changes they need to implement in order to become efficient. The 

DEA model obtains this plan from a linear combination of efficient reference units. This thinking is 

palpable in the dual problem of (2) (Charnes et al. 1978). The orientation of the optimal production plan 

can be modified with the mathematical program. (2) represents the CCR model with input-orientation. 

Input-oriented DEA models provide information on how to remove inefficiency by reducing inputs while 

keeping outputs constant until the DMU under observation is located on the efficient frontier. Output 

oriented models work the other way round. They expand the outputs until the DMU is located on the 

frontier until while holding all inputs at the initial level.  

 

Beginning with the invention of DEA in 1978, a steady increase of publications in the field is visible. This 

trend has gained additional pace in the last ten years and shows signs of exponential growth (Emrouznejad 

& Yang 2018). Emrouznejad & Yang (2018) report the enormous number of 10,300 DEA related published 

journal articles, in total. Currently, around 1,000 new research articles are published every year. Since its 

foundation, the DEA methodology has been developed in a multitude of directions. While the basic CCR 

model is responsible for constant returns to scale (CRS) environments, a first model development (Banker 

et al. 1984) enabled the use of DEA in variable returns to scale (VRS) settings. This BCC model, which 

received its name again according to the initials of its founders (Rajiv Banker, Abraham Charnes, and 

William Cooper), is the second of the two basic models in DEA. The concept of constant and variable 

returns to scale modeling has been adapted to the vast majority of all later model developments. Further 

model developments try to overcome different shortfalls of the basic models or try to provide additional 

advancements. AR (assurance region) models, for example, restrict the weights to specific regions 

(Thompson et al. 1986). SBM (slacks-based measurement) models use the slacks of the dual LP to calculate 

the efficiency score (Tone 2001). Network DEA models (Färe & Grosskopf 2000) try to shed light on the 

transformation process from inputs to outputs, while fuzzy DEA models work with imprecise data (Kao & 

Liu 2000). These models are only some examples to illustrate the variety of DEA modeling. More 

information on existing DEA models can be found in Cooper et al. (2007). 

Among the existing applications, Liu et al. (2013) identified the five areas, which are addressed most 

frequently. Their research shows the significance of DEA for healthcare, as it is the area with the second 

most publications. More DEA implementations are only available for the banking sector. Other popular 

fields of application are agriculture & farm, transportation, and education. According to Liu et al. (2013), 

within the healthcare field, the vast majority of publications is concerned with hospitals. Other healthcare 

applications deal with nursing homes, primary care, and care programs. Healthcare is not only one of the 
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sectors with the most applications, but also with the longest application history. The early adaption of DEA 

for healthcare indicates a natural fit of the method for the sector. The very first healthcare DEA study was 

conducted by Nunamaker (1983), who evaluated the performance of nursing services. The first hospital 

application (Sherman 1984) followed only slightly later. Nowadays, authors as Yasar A. Ozcan and Vivian 

Valdmanis are the leading contributors in the field. Added up, they published more than 70 research articles 

on the topic of healthcare DEA. 

 

Some research questions drive this dissertation. In the beginning, an inventory should answer the questions: 

1) What are the current developments in the field of healthcare DEA? 

2) Which DEA models are famous in healthcare applications? 

The first contribution addresses these questions. As the answers were as well surprising, as unsatisfactory, 

the main research question of this dissertation emerged: 

3) What can be done to advance DEA in healthcare? 

On purpose, the formulation of this central research question is very general. Therefore, not a single answer 

to the question exists. Instead, a pool of answers and suggestions is provided, which is influenced by all 

three contributions. 

2 Summary of the contributions 

This section discusses each contribution of this dissertation. The individual contributions are attached in 

the appendix. 

2.1 The use of Data Envelopment Analysis (DEA) in healthcare with a focus on hospitals 

As discussed in the last section, the dimensions of DEA research have reached an immense volume. To 

keep an overview of all publications is a physical impossibility. This emphasizes the need to divide the 

body of literature into subsections. The different fields of application seem a natural boundary for these 

subsections. The overwhelming body of literature, even within such a subsection, causes the need for 

additional guidance. In the field of healthcare applications, the literature reviews of Hollingsworth et al. 

(1999), Hollingsworth (2003, 2008), and O’Neill et al. (2008) help to gain an overview over the 

publications until 2004. Contribution 1 reviews the connecting period from 2005 to 2016 and closes a gap 

of over ten years of unreviewed publications. Furthermore, due to the increase in publications, the need 

for guidance in addition to the reprocessing of the existing publications is tangible. Contribution 1 
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addresses this need and acts as a roadmap for lessons learned regarding the conduction of DEA in the 

healthcare sector, especially for hospital applications. 

Contribution 1 includes 262 publications from peer-reviewed journals in the review. As for the whole DEA 

literature, an increase in healthcare publications over the period under review is visible. Interesting trends 

are apparent when looking at the geographical focus of the studies. While studies regarding North America 

tend to stay at a constant level, European and Asian studies are on the rise. Other than at the beginning of 

the century, the annual publication rate of both regions now exceeds North America’s. Furthermore, studies 

on the African continent arrived on the scene during the last decade. Nevertheless, their scope stays far 

behind the other regions. Health Care Management Science, the Journal of Medical Systems, and Health 

Policy have been identified as the journals with the most publications in the subsection. Furthermore, the 

research questions scientist are addressing have been reviewed systematically for the first time. Four main 

research clusters become visible: 

 

Cluster 

Number of publications in 

the period under review 

Specific Management Questions 100 

Pure DEA efficiency analysis 99 

New methodology 48 

Effects of reform 36 

 

Figure 1: Research question clusters identified by contribution 1 

 

Most studies are concerned with specific management questions. Within this cluster, a variety of different 

research objectives can be found. Some are trying to examine if quality affects efficiency. Others 

investigate if certain ownership types foster efficient hospital management or if specialization has a 

positive effect on efficiency. A large fraction of the publications under review is merely concerned with 

the conduction of a DEA study. They are summarized in the cluster pure DEA efficiency analysis. They 

often apply DEA for the first time in a particular country or use a model, which has not been applied to 

healthcare settings before. All 99 studies of the cluster share the property that the efficiency estimation 

itself is the reason for publication and not a tool to answer other questions. A surprisingly high number of 

publications (48) is concerned with the development of new methodology for healthcare settings or use 

healthcare applications to demonstrate their developments. This high number of methodological 

advancements in the subsection underpins the relevance and presence of the healthcare field in DEA. 

Although it is the smallest of the four clusters, a considerable number of publications uses DEA to identify 

the effects of reforms in the healthcare sector. The count of 36 publications should be valued even higher, 

as the cluster is far more specific than the others are. Therefore, the identification of the consequences of 

reforms on the efficiency in healthcare can be regarded as the most pressing single research question in 
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healthcare DEA. Especially publications concerning new methodology and specific management questions 

have seen considerable growth.  

Regarding the methodology of the current publications, contribution 1 identifies and reviews three areas: 

data selection, model specification, and subsequent techniques. In the first area, the most relevant inputs 

and outputs are discussed. Little surprising, beds, medical staff, and nurses are the most commonly used 

inputs, while outpatients, inpatients, and other measures for the number of cases are the outputs on top of 

the list. These measures are the basis for a meaningful hospital analysis. However, the review shows plenty 

of other input and output categories, which can be used as inspiration for future studies. Especially the 

inclusion of quality data has been identified as a relevant topic for future studies. The trend shows an 

increasing rate of publications using quality measure in their studies. Furthermore, more and more studies 

that did not include quality measures designate this fact as a drawback and possible improvement for future 

studies. The increasing availability of the corresponding data will clear the way in this direction. In general, 

3.8 inputs and 3.2 outputs have been used on average for a DEA study over the period of review. While a 

slight increase in the number of inputs is visible, the average number of outputs is decreasing to the same 

extent. 

Apart from reviewing the model settings, contribution 1 raises awareness for some common mistakes 

concerning data usage. Although widely known as a pitfall, a significant amount of publications still uses 

an insufficient number of DMUs with regard to the number of inputs and outputs in their study. Different 

rules on the subject can be found in the literature. Dyson et al. (2001) advocate for the use of at least 2 ⋅

(#inputs + #outputs) DMUs in order to ensure sufficient discrimination between the units. However, 19 

of the studies under review neglected this rule. Another problem in DEA applications concerning the data 

setup is the mixture of absolute and relative measures (Dyson et al. 2001). Distortion arises because 

absolute values depend on the size of a unit, while relative values share the same level for all units, 

independent of their size. In hospital applications, the issue mainly occurs, when bed occupancy rates or 

mortality rates are included in a study.  

With regard to the model selection, contribution 1 found quite surprising results: Despite huge efforts in 

model development, the basic CCR and BCC models are by far the most utilized models. This seems even 

more surprising, as issues of these models like the missing integration of slack values into the efficiency 

score, or the assignment of zero weights are known for a long time.  

The use of subsequent techniques is widely spread in DEA. Over two-thirds of the reviewed publications 

apply one of the techniques. With the term subsequent techniques, we summarize all methods that process 

DEA efficiency scores. The most common subsequent techniques are the Malmquist index, regression, and 

bootstrapping. While the use of the Malmquist index is slightly declining, the usage of regression and the 

bootstrapping has grown significantly. Regression as a second stage analysis is already in use for some 

time. Bootstrapping of DEA scores, on the other hand, is a more recent development. The publications of 

Simar & Wilson (2000a, 2000b, 2007) are mainly responsible for the trend to bootstrap DEA scores. The 

procedure provides two benefits: It enables the calculation of confidence intervals for DEA scores and 
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allows for the calculation of bias-corrected estimates. A bias of DEA scores is known to arise because the 

data at hand cannot entirely describe the true (unknown) efficient frontier. Efficient units might be missing 

in the data set, or no DMU has realized theoretically possible efficient production plans in reality. An 

overestimation of the frontier by all DEA models is the result (Bogetoft & Otto 2011). Because of these 

benefits, the bootstrapping procedure has become the most significant methodological trend of the last 

decade. 

In order to enhance the quality of DEA studies in healthcare and to keep track of guidelines and other 

helpful publications, contribution 1 serves as a roadmap for lessons learned. Books and publications aside 

from the reviewed period or general publications outside the healthcare sector are as well considered. 

Through the combination of healthcare specific and unspecific publications, researchers find beneficial 

guidance for the conduction of state of the art DEA studies in healthcare. Finally, contribution 1 discusses 

relevant topics for future publications. The transformation of DEA from an almost exclusively scientific 

tool to an accepted instrument, which is deployed in practice, should be the ultimate target for the research 

community. The development of advanced models might be helpful in this regard. However, as long as the 

reliability of the results can be questioned, even the most advanced model will not be able to earn a 

sufficient amount of acceptance. Two ways are imaginable to foster confidence in DEA. The development 

of a procedure to prove the correctness and reliability of the results would be the most promising way. 

Another possibility lies in the further investigation of the results. A direct implementation of DEA results, 

as the calculation of a “projected DMU” or “improved activities” might pretend, is usually not applicable. 

No unit, independent of the economic sector, can cut down all relevant resources by a significant amount 

and keep the present output level. However, DEA is able to generate valuable insights by the identification 

of best practice examples and pointing at resources that are primarily responsible for inefficiency. Studies 

reporting additional profound process analyses about these resources might help to extend the 

understanding of DEA results. In addition, publications reporting the opinion of various experts on the 

results of a DEA study and their utilization possibilities would be of high value for the scientific community 

and might establish trust in DEA results for practitioners. 

2.2 Benchmarking the Benchmarks – Comparing the accuracy of Data Envelopment Analysis 

models in constant returns to scale settings. 

Despite the considerable effort spent on model development, the basic models are still those, which are 

applied most commonly in DEA. The CCR model (Charnes et al. 1978) is the basic model for constant 

returns to scale settings (CRS). Its counterpart for variable returns to scale (VRS) is the BCC model 

(Banker et al. 1984). The main reason for the high popularity of these models in applications is the lack of 

knowledge for more suitable options. The purpose of contribution 2 is to fill this gap and provide a 

benchmark for constant returns to scale settings that makes the accuracy of DEA models comparable. 

Based on this benchmark, contribution 2 evaluates the performance of different models and assess, if the 
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predominant position of the CCR model is justified. In doing so, the CCR model has to compete against 

the SBM (Tone 2001) and AR (Thompson et al. 1986) models. Furthermore, the BCC model and a random 

number generator are evaluated. The performance of these two models is expected to be inferior, as they 

are no suitable options for the evaluation of CRS data. Nevertheless, useful insights for the validation of 

the benchmarking procedure can be drawn from them. 

The underlying idea of the procedure is to generate artificial data based on a sophisticated data generation 

process (DGP). For the generation of complete data samples, a Monte Carlo procedure is applied. The 

DGP utilizes a production function to generate meaningful input and output data for every DMU. 

Furthermore, the true efficiency score for every DMU is obtainable. The true efficiency score, which is 

unknown in real life applications, is a vital aspect of the procedure. It allows running a DEA with the input 

and output data in order to perform a comparison between the generated true efficiency scores and the 

efficiency scores estimated by the DEA model. A sophisticated DGP is essential for obtaining robust and 

trustworthy results and the derivation of general guidance. The existing literature in the field exposes 

several shortcomings in this regard. A sophisticated DGP consists of three key features.  

First, a suitable production function is necessary. Most researchers in the field applied a Cobb-Douglas 

production function. However, due to its limited flexibility, it has been replaced by the Translog production 

function as state of the art over recent years. Contribution 2 develops the applicability of the Translog 

production function by providing a way for its utilization in pure CRS settings.  

Second, the inclusion of a variety of characteristics, e.g., the number of inputs or the substitutability of 

inputs, is essential. These characteristics allow for the generation of different production scenarios. Almost 

all previous publications considered only two to four different characteristics. Contribution 2 uses eight 

different characteristics to ensure the results are not only valid for very particular production environments. 

The existing literature is extended in particular with regard to substitution effects. Contribution 2 develops 

two characteristics to adjust different settings on the substitution between inputs. 

Finally, employing a sufficient number of levels for each characteristic is essential. In doing so, the levels 

should cover meaningful properties. For example, implementing the number of inputs characteristic with 

the levels one and two does not adequately reflect the majority of production processes, as these numbers 

are too small. Hence, the levels three, five, and seven are utilized in contribution 2, to represent a small, 

midsized, and large production process. Similarly, contribution 2 implements appropriate levels for all 

characteristics. Setting all characteristics to a certain level results in a specific production scenario. In 

combining all levels of all characteristics, contribution 2 employs 1,296 different scenarios. This multitude 

is a significant enhancement of the present literature, as no publication used more than 200 scenarios, so 

far. 

In order to evaluate the scenario results, five different performance indicators are developed. They all 

compare the true efficiency scores with the estimates of the DEA model under evaluation. Every 

performance indicator covers a different area. Contribution 2 assess the ability of a DEA model to 
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1. minimize the deviation between the true efficiency score and the estimate  

2. reproduce the correct ordering of the DMUs concerning their efficiency 

3. identify efficient units 

4. identify inefficient units 

5. hit a corridor close to the true efficiency score with the estimate 

 

A suitable efficiency estimator should be able to convince in all five dimensions. In order to receive a 

single benchmark for the accuracy of a DEA model, the average over the five dimensions is calculated. 

The resulting benchmark is called B.-Score and allows the comparison of the performance of different 

DEA models.  

The robustness of results is a crucial issue, as the result of a scenario is stochastic. Therefore, the execution 

of replications is necessary. A scenario’s final result is the average over all performed replications. Almost 

all previous studies use a fixed number of replications. Contribution 2 develops a flexible stopping criterion 

to take account of the increased computational effort due to the extension of scenarios while ensuring the 

robustness of the results at the same time.  

The comparison of the five models with the benchmarking procedure shows an unambiguous dominance 

of the SBM and AR model over the basic CCR model. As expected, the BCC and random number generator 

perform worse than the remaining models. The characteristics having the largest effect on the results are 

the number of DMUs and the number of inputs of a scenario. Using more inputs leads to a decrease in the 

accuracy of the models. On a similar page, fewer DMUs lead to a deterioration in the accuracy of the 

models. Both observations are valid for all models analyzed in contribution 2. However, the SBM and AR 

models present themselves as less vulnerable in adverse scenarios. With regard to all 1,296 scenarios, both 

models are more robust than the others. Especially the reduced weight flexibility of the AR model seems 

to decrease the volatility of results. 

When analyzing the influence of the number of inputs in more detail, a significant impact of the input 

correlation characteristic becomes visible. In general, the higher the correlation, the better the accuracy of 

the DEA models. While only a slight effect of the input correlation in an isolated view is visible, the 

situation changes significantly, when conducting a combined analysis with the number of inputs. For 

higher numbers of inputs, the accuracy of all models drops considerably, if no correlation between the 

inputs exists. Reassuring is the finding, that a slight correlation of 0.35 between the inputs is sufficient to 

mitigate the effect substantially. 

Looking at the performance indicators, the overall results find support in every single performance 

indicator. Even on this level, the CCR performs always worse than the AR and SBM models. The 

inferiority of the CCR model in our overall result is therefore not depending on a single shortcoming or 

indicator definition, but visible over all relevant areas.  

As contribution 2 identifies the number of DMUs and the number of inputs as characteristics with the 

largest impact on the accuracy of a DEA, an investigation of the prominent rule of thumb regarding the 
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usage of inputs and outputs is apparent. Several authors (i.a. Golany & Roll 1989, Dyson et al. 2001, 

Cooper et al. 2007) emphasized the importance to keep the ratio of DMUs to inputs and outputs at a 

reasonable level and formulated different rules of thumb. All these authors reason that disregarding the 

issue leads to insufficient discrimination and correctness of DEA results. Cook et al. (2014) argue that a 

statistical background for these rules is missing and their implementation often occurs out of convenience. 

Contribution 2 performs a separate study to elaborate on the subject. This study evaluates in succession 

different input levels. For every input level, the number of DMUs is examined, which is necessary to reach 

a predefined B.-Score with the CCR model. This predefined B.-Score represents the minimum accuracy a 

DEA study should achieve. The study is based on the property of the B.-Score to rise continually with 

higher DMU numbers. Therefore, an examination of an exact number of DMUs, which is necessary to 

reach the predefined value, is possible. With the results, contribution 2 can provide the background and 

reasoning for the utilization of a rule of thumb regarding the use of sufficient DMUs with regard to the 

number of inputs and outputs. Furthermore, contribution 2 shows that the existing rules of thumb 

underestimate the number of DMUs, which are necessary to conduct DEA studies of sufficient accuracy. 

In addition, the results do not support the linear dependency between the number of DMUs and inputs, 

which the existing rules of thumb assume. Therefore, contribution 2 suggests a new rule of thumb, 

representing the findings of the study. 

2.3 Using Data Envelopment to Estimate Hospital Efficiencies – A Teaching Case 

The conduction of meaningful Data Envelopment Analysis studies contains more pitfalls than many 

researchers are expecting. Contribution 3 provides a teaching case with a hands-on learning experience on 

the topic of hospital DEA. The teaching case addresses relevant issues regarding data, models, and result 

improvement. The data set of the case study is based on mid-sized German hospitals and provides a data 

set containing 70 DMUs. For every DMU, the number of beds, physicians, and nurses as inputs and the 

number of inpatients and outpatients as outputs are provided. These measures portray the service process 

of a hospital and are typical for hospital DEA studies. In addition, the Case Mix Index (CMI) and seven 

quality measures are included for every hospital in the data set. The CMI represents the average case 

severity of a hospital. It is a standard procedure to adjust the patient cases by the CMI to include the case 

severity in the analysis. Overall, contribution 3 leads through the process of conducting a DEA study with 

15 questions, divided into the sections DEA modeling, data description, and results. While the teaching 

case mainly addresses junior DEA users, some parts are also of interest for more advanced DEA 

practitioners. Especially the implementation of the bootstrapping algorithm (Simar & Wilson 2000a) has 

to be highlighted in this context. The bootstrapping approach is a subsequent method that uses resampling 

techniques for result verification. It allows the calculation of bias-corrected efficiency scores. Although 

the inclusion of bootstrapping in DEA studies is more relevant than ever before, researchers often struggle 
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with the implementation, as replicable examples are rare and the existing publications on the subject are 

not always straightforward. 

With regard to the utilized DEA models, the conductor of the case study is concerned with the CCR and 

SBM model. In doing so, the impact of weights and slacks for the analysis is brought into focus. In this 

way, the vast number of zero weights, the CCR model assigns, becomes apparent. Furthermore, the super-

efficiency model finds utilization in the detection of data outliers. The exclusion of these outliers is 

essential, as otherwise, the results of the study are likely to be distorted. Besides the outlier detection, the 

data section addresses as well the treatment of missing values. This issue is widespread for the conduction 

of DEA studies, as a comprehensive data set hardly ever exists. 

Another central component of the case study is the inclusion of quality measures in DEA. In the data 

section, the conductor of the case study gets to know the different dimensions of hospital quality. The topic 

is as well part of the modeling section. A rarely applied two-stage procedure is used to include the quality 

indicators into DEA. In this two-stage procedure, the Helmsman DEA is used in the first stage to create a 

single quality indicator out of the quality measures at hand. The single quality indicator is then multiplied 

with the patient cases in order to weight the case number with the quality of the hospital. In the second 

stage, a regular DEA with the adjusted measures is conducted. The approach has the benefit to prevent the 

DEA model from excluding quality completely by assigning zero weights. This often occurs, when quality 

indicators are used as additional outputs in a DEA study. Furthermore, the procedure is not increasing the 

number of inputs and outputs in the main DEA study. This is in line with the advice of Dyson et al. (2001) 

to be parsimonious with the number of inputs and outputs. 
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3 Discussion of the contributions 

In this section, the research questions posed at the beginning of this dissertation are discussed. The findings 

of all contributions are brought together to answer these questions.   

 

Research question 1: What are the current developments in the field of healthcare DEA? 

Finding the answer to this question is one of the main goals of contribution 1. A first finding is that the 

trend to apply DEA in healthcare settings, especially in hospital environments, is undaunted. Similar to the 

overall trend, a significant increase in DEA studies related to the healthcare field is visible. This fact 

represents a basis for the relevance of this thesis. The geographical origin of the studies, however, changed 

significantly. The annual number of publications from Europe and Asia now exceeds the one from North 

America. Furthermore, the African continent is no longer a blank spot for healthcare DEA studies. 

The examination of the reasons for researchers to conduct healthcare DEA studies exposed two main 

trends: The analysis of specific management questions and the development of new methodology. The 

increased use of DEA for the examination of specific management questions is a good sign. It documents 

the variety of specific fields of application for healthcare DEA and the need for a multicriterial 

benchmarking method. One of the main subjects in this regard is the effect of quality. These studies 

explicitly investigate whether the quality of provided services affects as well the unit's efficiency. 

Furthermore, more and more researchers care about the inclusion of quality indicators in healthcare DEA 

studies. The ongoing development of the methodology is driven by the apparent shortcomings of the basic 

models. Although a vast body of publications exists, the doubts in the results of DEA have not vanished. 

Another development in the field is the utilization of the bootstrapping method in applications. It serves as 

a tool for bias correction and the calculation of significance intervals for the results. The popularity of the 

bootstrap is a further expression for the desire to improve the DEA methodology and provide consistent 

and robust results. Contribution 1 reports a significant increase in the usage of the bootstrap between 2005 

and 2016. Finally, a trend to use regression in a second stage of the study is apparent. In doing so, 

researchers try to understand the coherence of efficiency with environmental factors. Finding the factors 

that mainly affect a DMUs efficiency allows the provision of more detailed guidance for managers or 

politicians.  

 

Research question 2: Which DEA models are famous in healthcare applications? 

As shown in research question 1, the development of models is one of the primary research purposes in 

the field. This leads to the question, which models healthcare DEA applications utilize most frequently. 

The insights of contribution 1 on this issue are quite unexpected. The models with by far the most 

applications are the basic CCR and BCC models. At the first moment, this finding might seem natural, as 

the CCR and BCC models are the embodiment of DEA. On second thought, the finding is astonishing, 

considering the efforts spent on model development for over 40 years. However, as no other model has 
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gained acceptance as a new standard, researchers still apply the basic models. Especially surprising is the 

gap in utilization, in comparison to all other models. The model utilized most after the basic ones, is the 

super-efficiency model. It has been applied in 14 out of 262 studies, while the CCR model records 112 and 

the BCC model 144 applications. 

Almost 80% of studies utilize at least one of the two models. Quite rightly, some compare the results of 

new model developments with the established ones or use multiple models for other reasons. Nevertheless, 

almost 65% of the publications use only the basic models for the efficiency estimation of their studies. One 

in four studies is entirely limited to the use of a basic model. Not even subsequent techniques or second 

stage analyses as Malmquist indices, regression, or bootstrapping find application in these studies. These 

findings express a deficiency of DEA, as essential developments do not access the actual applications. 

 

Research question 3: What can be done to advance DEA in healthcare? 

Research question 3 is the core question of this dissertation and the answers are manifold. All three 

contributions are used to provide answers to this question. 

First, it is essential to stop study misspecifications, where approved rules are existing. By addressing these 

issues in a literature review (contribution 1) and a teaching case (contribution 3), they are made visible and 

distributed for a broad audience. Examples are the mixture of absolute and relative data or the usage of an 

insufficient number of DMUs, considering the number of inputs and outputs. Both problems are known to 

lead to a distortion of results (Dyson et al. 2001). As studies with these issues get published, even reviewers 

seem unaware of the problems. Contribution 1 and contribution 3 especially raise the awareness of junior 

DEA researchers to these issues, as literature reviews and teaching cases are natural starting points into a 

research area. Contribution 3 also addresses the identification of data outliers and the treatment of missing 

data. The neglection of these topics leads as well to avoidable study misspecifications. 

Second, many helpful guidelines for the conduction of DEA in general, as well as for healthcare DEA, are 

existing. These encompass lessons learned for several topics, as model usage or the identification of 

suitable inputs and outputs. The vast body of literature is complicating the knowledge about all these 

valuable publications. Especially for researchers, who are new to the field, this presents a tough challenge. 

To gather the information on existing guidelines, contribution 1 provides a roadmap to lessons learned.  

Third, contribution 1 dedicates a whole section on essential topics for future publications. The 

enhancement of DEA study quality is the core issue of this section and should raise awareness for the 

subject. The section addresses two particular paths to foster confidence in DEA studies. One is the creation 

of a method to assess the accuracy of DEA models. The other is to prove the validity of results by 

documenting successful result implementations in real cases. By addressing these issues, further research 

might dedicate more effort on the enhancement of healthcare DEA and pursue these two directions. 

Fourth, more effort is necessary to represent the service process of hospitals more precisely. The 

meaningful inclusion of quality indicators in all hospital DEA studies is essential in this matter. 

Contribution 1 shows that some authors already try to proceed in this matter. However, the share of hospital 
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studies including quality still needs to grow significantly. More importantly, methods that ensure the actual 

consideration of quality measures need to prevail. Most common is the inclusion of quality indicators as 

additional output. However, most DEA models can erase the indicator for units with a poor quality 

performance from the analysis. As a result, using quality parameters as additional outputs can never lead 

to a decline in efficiency scores. The results of such studies are highly misleading, as DMUs with poor 

quality might arise with higher scores than without the inclusion of the quality output. Spreading a method, 

which overcomes this obstacle is one of the goals of contribution 3. The promoted two-stage procedure 

has two major benefits. First, it allows the calculation of a single quality indicator out of various measures 

via the helmsman method in the first stage. This facilitates the inclusion of different quality dimensions, 

while at the same time, the number of outputs is not inflated. Second, the procedure prevents a neglection 

of quality in the final score through a multiplication of the single quality indicator with the case numbers 

in the second stage. 

Fifth, the usage of the bootstrapping method raises the quality of DEA studies, as it allows for the 

calculation of confidence intervals and bias correction of results. Contribution 1 promotes the method by 

showing its increased relevance in healthcare DEA studies. Furthermore, contribution 3 demands the 

implementation of the bootstrap in the teaching case. By providing an example with a comprehensive 

explanation of the solution and the corresponding implementation, the hurdle for the use of bootstrapped 

DEA is lowered. So far, comprehensible examples on the implementation of the bootstrap are rare. 

Sixth, contribution 3 fosters the understanding of the DEA mechanics in comparing the weight assignment 

of the CCR and SBM models in detail. With more researchers being aware of the differences, more 

reasonable conclusions will be drawn from DEA studies. Besides, highlighting the issues of the basic 

models might encourage more researchers to use advanced models. 

Seventh, as concluded in contribution 1, a method to assess the accuracy of DEA models would be 

extremely beneficial in advancing the DEA methodology. Contribution 2 provides precisely such a system. 

The invention of the B.-Value enables the judgment of a model’s accuracy based on a single score. In 

addition, the development of the B.-Rank in contribution 2 facilitates the comparison of models with 

similar B.-Values. Therefore, the methodology allows the comparison of the accuracy of existing DEA 

models. Furthermore, researchers inventing new model developments can prove their reasonability with 

the help of the method. For a start, contribution 2 shows that the CCR results are less accurate in constant 

returns to scale settings, than these of the SBM and AR model. Due to a slight dominance of the SBM in 

the B.-Rank and more natural feasibility, the use of the SBM as the new gold standard for DEA is 

advocated. 

Eighth, contribution 2 provides valuable general insights for the applicability of DEA. Delivering 

information, under which circumstances DEA grants results of satisfying accuracy is a major contribution 

to the advancement of future studies. In this regard, especially the usage of a sufficient number of DMUs 

depending on the number of inputs and outputs is of interest. Contribution 2 shows that existing rules on 

the subject do not assure adequate study quality as the supposed number of DMUs is too low. Furthermore, 
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the linear dependency, existing rules assume, is not supported by the study results. This amplifies the issue 

in settings with larger numbers of inputs and outputs. Contribution 2 develops a new rule to overcome 

these shortcomings. Adherence to this rule will advance the quality of future DEA studies significantly. 

4 Conclusion 

This dissertation is concerned with the advancement of data envelopment analysis, especially for the 

implementation in hospital settings. It comprises three contributions: The first contribution is a literature 

review, which fills an unreviewed gap of over ten years and encompasses 262 publications. The second 

contribution develops a methodology to assess the accuracy of DEA models. The third contribution sets 

up an advanced teaching case to distribute knowledge on the DEA methodology among researchers and 

practitioners. After a motivation of the topic at the beginning of this theses, three research questions are 

derived that guide the dissertation. The findings of contribution 1 concerning research questions 1 and 2 

lead the way towards the central topic of this thesis, which is stated in research question 3: 

What can be done to advance DEA in healthcare? 

The answers to this central question comprise findings of all contributions. Most importantly, the 

development of a method to compare the accuracy of DEA models is an essential step for the advancement 

of DEA. For the first time, different DEA models can be compared and evaluated based on a neutral 

criterion. The benchmarking method allows the judgment of existing models, as well as the trial of new 

model developments. This procedure allows the formation of new gold standards in DEA, which can 

replace the basic CCR model. An experimental study in the second contribution shows that the SBM 

outperforms the CCR model and should be the new standard for the evaluation of constant returns to scale 

studies. This finding is generally valid for all DEA applications. Its particular relevance for healthcare 

DEA is supported by the answer to research question 2, which highlights an inadequate representation of 

sophisticated models in healthcare applications. 

One of the answers to research question 1 reveals another main field for advancing healthcare DEA studies: 

A trend to include quality measures into the analysis has started. The contributions 1 and 3 promote the 

topic, in order to raise the share of studies considering quality in their analysis. Besides a rising share of 

studies considering quality, meaningful implementation of quality indicators into the studies is of prime 

importance. Contribution 3 presents a two-stage approach using a Helmsman DEA in the first stage. Its 

benefits lie in a suitable inclusion of multiple indicators. Furthermore, it assures that the DMUs cannot 

evade the evaluation of quality. In doing so, the inclusion of quality parameters via the Helmsman DEA 

method is not automatically increasing the average efficiency in a data sample, as other conventional 

methods do. Finally, the method is parsimonious with inputs and outputs, which supports another core 

finding of this thesis: The adherence to meaningful settings for DEA is without any alternative. In this 

regard, the setting with the most substantial impact is the restrainment of inputs and outputs with regard to 
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the available DMU number. Contribution 2 underpins the influence of this setting on the accuracy of results 

and shows that existing guidelines cannot guarantee a sufficient estimation accuracy. Therefore, a new 

guideline is developed, which ensures a higher quality of results for future studies. 

 

The contributions of this thesis open plenty of possibilities for future research. First of all, the presented 

benchmarking procedure for the accuracy of DEA models focusses on constant returns to scale settings. 

An extension of the method to variable returns to scale settings is a natural next step. Furthermore, the 

models under assessment in the experimental study of contribution 2 are a first selection. Further 

evaluations can reveal other existing models that outperform the SBM model. Examining a combination 

of the SBM and AR models, as suggested in Tone (2001) or testing for the best AR restrictions are as well 

suitable future research projects. 

Besides, advancing the development and application of the bootstrap for other models than the CCR is 

desirable for future research. As the method evolves to become state of the art in DEA, a shift of the 

standard DEA model to more sophisticated models should not be prevented by missing bootstrapping 

procedures for these models.  

 

In general, the contributions present encouraging results regarding the accuracy of DEA. Not every DEA 

model delivers satisfying results, and in some settings, DEA should not be applied at all. However, if 

sophisticated models are used in an appropriate environment, DEA is a valuable method for supporting 

decision makers. The contributions of this thesis are meant to advance DEA for healthcare settings and 

help the methodology to find acceptance and application in actual management support. 
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Abstract 

Despite the massive use of Data Envelopment Analysis (DEA) models in scientific applications, no 

publication cared about identifying the DEA model, which is able to provide the most accurate efficiency 

estimates, so far. We develop an established method based on a Monte Carlo data generation process to 

create artificial data. As we use a Translog production function instead of the commonly utilized Cobb 

Douglas production function, we are able to construct meaningful scenarios for constant returns to scale. 

The generated data is then assessed by five different DEA models. Finally, the quality of the resulting 

efficiency estimates is evaluated by five performance indicators and summarized in benchmark scores. 

With this procedure, we can postulate general statements on parameters that influence the quality of DEA 

studies in a positive/negative way and determine which DEA model operates in the most accurate way for 

a range of scenarios. Here, we can show that the Assurance Region and Slacks-Based-Measurement models 

outperform the CCR (Charnes-Cooper-Rhodes) model in constant returns to scale scenarios. We therefore 

recommend a reduced utilization of the CCR model in DEA applications. 

 

Keywords: Data Envelopment Analysis, Monte Carlo experiments, Artificial Data 
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1 Introduction 
From the invention of DEA in 1978 (Abraham Charnes, William Cooper, & Rhodes, 1978) a continuous 

growth in applications and model developments can be explored (Emrouznejad & Yang, 2018). Nowadays, 

it is extremely hard to get an overview over the whole range of DEA models. As a comparison of the 

performance of different DEA models is missing in the current literature, it is difficult to choose a proper 

model for an application. A recent literature review in the field of healthcare (Kohl, Schoenfelder, Fügener, 

& Brunner, 2018) revealed a very predominant position of the basic models (CCR & BCC) in applications. 

On the one hand, this fact is surprising, as the basic models struggle with known problems as slacks and 

zero weights (WilliamW. Cooper, Ruiz, & Sirvent, 2011; Pedraja-Chaparro, Salinas-Jimenez, & Smith, 

1997). On the other hand, it is the obvious implication of a lack of knowledge regarding options that are 

more suitable. At the bottom line, the uncertainty about the accuracy of the efficiency estimates of DEA 

models and the model that yields the best results (for certain circumstances) is the biggest issue of DEA. 

From our point of view, it is the crucial point that prevents DEA from leaving the scientific stage and 

finding actual application by politicians, economists, and managers. 

A judgement of the quality of DEA estimates in real data applications however is not possible, as the true 

efficiency values are unknown. To overcome this obstacle, we generate artificial data, where the true 

efficiency of every decision-making unit (DMU) is known. Therefore, it is possible to compare the 

estimates from different DEA models with the corresponding true values and make statements on the 

quality of the models. In order to derive meaningful conclusions, two aspects for the generation of artificial 

data play a key role. First, a sophisticated Data Generation Process (DGP) is necessary to create reasonable 

data for the DMUs. Second, the consideration of a multitude of different scenarios is essential to derive 

generally valid results. By respecting both aspects, the generation of meaningful data is possible via a 

Monte Carlo Simulation process. Figure 1 depicts the whole process of our procedure. All parts of the 

process will be described in detail in the upcoming sections. 
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Figure 1 - The process of Benchmarking the Benchmarks for one scenario 

 
 

Although no paper had the goal to identify the best DEA model so far, Monte Carlo simulated data has 

already been used to evaluate certain features of DEA. Table 1 gives an overview of these studies and 

shows main characteristics as production function used, number of replications, inputs, outputs etc. The 

identification of the best DEA model however, has not been the goal of a study, yet. Furthermore, both the 

DGP, as the scenario variety show significant room for improvement. As Table 1 shows, most papers 

employed only the very restricted Cobb-Douglas (CD) production function in their DGP (Cordero et al. 

2015). Siciliani (2006) for example criticize the CD for its inflexibility regarding input substitution 

elasticity and scale effects. Over the last years, the Translog production function (TL) has emerged as a 

reasonable alternative. It is a generalization of the CD and allows for the creation of more realistic data. 

Therefore, we use the TL for the DGP in this paper. The number of inputs in nearly all studies is set too 

low, as the literature review of Kohl et al. (2018) exhibits a median of 4 inputs over 262 DEA applications 

in hospital settings. Furthermore, most studies only use one setting for the input number. In general, too 

little attention has been paid on the generation of a widespread range of scenarios. This is as well reflected 

by the observation, that most studies only change three or less characteristics in their DGP  
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Banker et al. 1993 -* 5 2 1 128 4 No - Yes 

Banker et al. 1996 -* 25 2 1 48 4 No - Yes 

Pedraja Chaparro et al. 1997 - ≥6 1-6 1 24 2 No AR No 

Smith 1997 - ≥125 2-6 1 20 2 No - No 

Yu 1998 CRESH 25 3 1 21 2 Yes BM Yes 

Zhang & Bartels 1998 - 5-100 2 1 80 3 No - No 

Pedraja-Chaparro et al. 1999 - ≥100 2-20 1 190 3 No - No 

Resti 2000 - N/A 2 3 6 2 No - Yes 

Holland & Lee 2002 - 1,000 2 1 24 3 No FGK No 

Ruggiero 2007 - 100 2 1 20 2 No RM Yes 

Van Biesebroek 2007 -** 50 2 1 9 3 No - Yes 

Perelman & Santín 2009 TL 100 2 2 12 2 No - No 

Krüger 2012 TL, CES 1,000 2 1 144 7 Yes (for CES) FDH Yes 

Cordero et al. 2015 TL 1,000 3 1 28 3 No - No 

* A piecewise CD is used ** CD is used as output constraint in a NPV maximization model over time 

CRESH = Constant Ratio of Elasticity of Substitution, Homothetic; TL = Translog; CES = Constant Elasticity of Substitution 

AR = Assurance Region; BM = Banker and Morey model; FGK = Färe, Grosskopf, Kokkelenberg model; RM = Russell measure; 

FDH = Free disposal hull 

Table 1 - Literature of DEA evaluations via Monte Carlo simulated data 

 
 

Most studies in the field tried to explore properties of the basic DEA models (Smith 1997, Zhang & Bartels 

1998, Pedraja-Chaparro et al. 1999, Holland & Lee 2002). Very popular are as well comparisons between 

the basic DEA and parametric models. The consideration of DEA models apart from the basic CCR and 

BCC models is rather sparse. Only about one third of the studies is considering an alternative DEA model 

at all and none has considered more than one so far. The robustness of results is another issue with regard 

to previous papers. As the DEA estimators depend on the random data, the conduction of replications for 

each scenario is indisputable. Krüger (2012) criticizes in this context the low number of replications of 

many studies. The number of replications varies significantly between studies in a range from 5 to 1,000 

(see Table 1). 

The purpose of this paper is to fill the gap on the uncertainty of the accuracy of DEA models and provide 

a procedure to make the accuracy of DEA models comparable. We bring the reliability of DEA results into 

question and show that the environment of a DEA study has a high influence on the accuracy of the 

estimation results. Light is shed on the “blackbox” of DEA that should raise the awareness that its results 
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are estimates and should be treated accordingly. In doing so, we focus on constant returns to scale (CRS) 

settings and try to answer the question, if the predominant position of the CCR model is justified. 

 

The contribution of this paper is manifold. First, we address the question, whether the CCR model should 

be further on used as the standard model for the evaluation of constant returns to scale settings. For this 

reason, we compare the CCR model with an Assurance Region (AR) and a Slack-Based Measurement 

(SBM) model. A comparison with uniformly distributed random numbers (RAND) and the basic model 

for variable returns to scale (BCC) provide further insight into the reliability and accuracy of the procedure. 

Second, we create a benchmark score that inherits multiple performance indicators. These performance 

indicators cover all relevant properties of an efficiency estimator as e.g. the identification of efficient units 

and the correct ordering of the units’ efficiency values in a sample. Having one benchmarking score, we 

can show how the DMUs / (Inputs + Outputs) ratio has to be set, to achieve a satisfying quality for DEA 

applications. Hence, we derive a new rule for the minimum number of DMUs in DEA applications. Third, 

in order to address the problem of general result validity, we advance the scenario variation significantly. 

A scenario is always a concrete combination of values for all characteristics (e.g. number of DMUs, inputs 

generation characteristics, efficiency score). We generate 1,296 distinct scenarios, whereas no study had 

used more than 200 scenarios so far (see Table 1). Even more important than just the pure number of 

scenarios is the coverage of different characteristics, which influence the DGP and the creation of 

scenarios. With eight different characteristics, we provide another significant advancement compared to 

the existing papers. Fourth, we show how to use the Translog production function in CRS settings. This 

allows an adjustment of the input substitution, which leads to a more realistic DGP. So far, only Krüger 

(2012) and Yu (1998) looked at different input substitutions by the use of a Constant Elasticity of 

Substitution (CES) and Constant Ratio of Elasticity of Substitution, Homothetic (CRESH) production 

functions (see Table 1). The Translog production function however is an even more flexible production 

function and allows for additional settings on input substitution. Fifth, we divide the input substitution into 

the two distinct effects of substitutability and substitution distribution. This contributes as well to the 

generation of more realistic data, as to the variety of scenarios. Sixth, we turn to the problem of result 

robustness. We recognize that the necessary number of replications for each scenario highly depends on 

the number of DMUs. While 50 replications might be sufficient for scenarios with 450 DMUs, 200 

replications might not be sufficient in a scenario with 50 DMUs. Therefore, we develop a flexible stopping 

criterion for the generation of replications.  

 

The remainder of this paper is organized as follows: Section 2 depicts the applied performance indicators 

and the benchmarking procedure itself. In Section 3 we present our data generation process for one DMU 

in detail. The design of our study is described in Section 4 and Section 5 is concerned with the evaluation 

of our study. The results of our experimental study follow in Section 6. Finally, Section 7 provides a 

summary and conclusion. 
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2  Performance indicators & benchmarking procedure 
As the purpose of this paper is the comparison and evaluation of different DEA models, the performance 

indicators for this evaluation are playing a key part. Pedraja-Chaparro et al. (1999) focused on identifying 

such performance indicators for Monte Carlo DEA analyses. Their results form the basis for our 

performance indicators. They argue, “any judgement on the quality of a DEA model must be made in the 

light of the purposes for which the results are used” and name four main purposes of a DEA: 

 

1) Identifying inefficient DMUs, 

2) Ranking the performance of DMUs, 

3) Estimating efficiencies and setting targets for improvement, and 

4) Examining the overall efficiency of an industry. 

 

For our model evaluation, we utilize five different performance indicators. They cover all areas identified 

by Pedraja-Chaparro et al. (1999). Table 2 features all indicators, with 𝜃𝜃𝑖𝑖 denoting the true efficiency of 

DMU 𝑗𝑗 = 1, … ,𝑛𝑛, whereas 𝜃𝜃�𝑖𝑖 is the score estimated by the DEA model. The true efficiency value is 

available for all DMUs through the DGP described in Section 3. All indicators are adapted to have one as 

the best possible value with lower values always being worse. 

 

The mean absolute error (MAE) and the Spearman Rank correlation index (SPEAR) are the most obvious 

indicators. Their usage has already been established in former studies (Yu 1998, Krüger 2012, Cordero et 

al. 2015). They represent the expectation that estimates differ only to a small extent from the true values 

and the ordering of the efficiency estimates corresponds to the true ordering. They represent the purposes 

4) Examining the overall efficiency of an industry and 2) Ranking the performance of DMUs listed above.  
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Indicator Definition 

MAE 1 −  
1
𝑛𝑛
� |𝜃𝜃𝑖𝑖 − 𝜃𝜃�𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

 

SPEAR 
∑ �Rg�𝜃𝜃𝑖𝑖� − Rg(𝜃𝜃)��������� �Rg�𝜃𝜃�𝑖𝑖� − Rg�𝜃𝜃�����������𝑖𝑖

�∑ �Rg(𝜃𝜃𝑖𝑖) − Rg(𝜃𝜃)���������2𝑖𝑖 �∑ �Rg�𝜃𝜃�𝑖𝑖� − Rg�𝜃𝜃�����������
2

𝑖𝑖

 

EFF ��𝑗𝑗 ∈ {1, … ,𝑛𝑛}:𝜃𝜃𝑖𝑖 ≥ 𝑄𝑄(𝜀𝜀) ∩ 𝜃𝜃�𝑖𝑖 ≥ 𝑄𝑄(𝜀𝜀)��
�{𝑗𝑗 ∈ {1, … , 𝑛𝑛}:𝜃𝜃𝑖𝑖 ≥ 𝑄𝑄(𝜀𝜀)}�

⋅ 

 �1−
max���𝑗𝑗 ∈ {1, … , 𝑛𝑛}:𝜃𝜃�𝑖𝑖 ≥ 𝑄𝑄(𝜀𝜀)�� − ��𝑗𝑗 ∈ {1, … ,𝑛𝑛}:𝜃𝜃𝑖𝑖 ≥ 𝑄𝑄(𝜀𝜀)��,  0�

𝑛𝑛 � 

INEFF ��𝑗𝑗 ∈ {1, … ,𝑛𝑛}:𝜃𝜃𝑖𝑖 ≤ 𝑄𝑄(1 − 𝜀𝜀) ∩ 𝜃𝜃�𝑖𝑖 ≤ 𝑄𝑄(1 − 𝜀𝜀)��
�{𝑗𝑗 ∈ {1, … , 𝑛𝑛}:𝜃𝜃𝑖𝑖 ≤ 𝑄𝑄(1 − 𝜀𝜀)}�

∙ 

 �1−
max���𝑗𝑗 ∈ {1, … ,𝑛𝑛}:𝜃𝜃�𝑖𝑖 ≤ 𝑄𝑄(1 − 𝜀𝜀)�� − ��𝑗𝑗 ∈ {1, … ,𝑛𝑛}:𝜃𝜃𝑖𝑖 ≤ 𝑄𝑄(1 − 𝜀𝜀)��,  0�

𝑛𝑛 � 

CORRI �
1
𝛾𝛾
��𝑗𝑗 ∈ {1, … ,𝑛𝑛}�|𝜃𝜃𝑖𝑖 − 𝜃𝜃�𝑖𝑖| ≤ 𝑘𝑘 ⋅ 𝛿𝛿��

𝑛𝑛

𝛾𝛾

𝑘𝑘=1

 

Table 2 - Performance indicators used for evaluation 

 
Next, we turn to the quantification of purpose 1) of a DEA and therefore the ability of a model to identify 

efficient (EFF) and inefficient (INEFF) DMUs. In general DEA, a DMU needs to achieve a score of one 

to be deemed efficient. As the true efficiency values are drawn from continuous distributions, the 

probability to draw an exact value of one is zero. However, there exists a positive probability to draw a 

value of one, because we round to two decimals. Thus, a small interval of different values around one 

actually result in a drawn value of 1.00. Although, the probability to draw such a value is not zero, it 

remains very small. Especially in small scenarios, it is possible that no DMU with a value of one is 

generated, making the identification of such units impracticable. Still, we want to assess if a DEA model 

is able to identify the top performing units of a sample. Therefore, we define a DMU efficient if its true 

efficiency score is at least as high as a certain quantile 𝑄𝑄(𝜀𝜀) of the true efficiency distribution. 

Correspondingly, inefficient DMUs have a true value smaller than or equal to 𝑄𝑄(1 − 𝜀𝜀). With this flexible 

(in)efficiency definition, we are as well able to handle different efficiency distributions in the DGP and 

make the results of various scenarios comparable. Parameter 𝜀𝜀 should be set high enough, to act as an 
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acceptable boundary for efficient units. On the other hand, only if a sufficient number of units is deemed 

efficient, a meaningful analysis on the assessment capability of a model is possible. With regard to the 

balance between these two goals, we set 𝜀𝜀 = 0.85 for our study. As MAE only provides an average value 

without information on the deviation, we track the capability of the models to place their estimates in 

certain corridors around the true values. The mean value over those corridors results in the indicator 

CORRI. The tightness of the corridors is set by the parameter 𝛿𝛿. In our study, we use a corridor of 𝛿𝛿 =

0.05. The implication is to test, how good a model is in placing the efficiency estimate at most 5% points 

apart from its correct value. As a model that has a deviation of 5.1% points in every estimate would fail 

completely at the indicator, although its results are good, we implemented the possibility to regard more 

than one corridor. Therefore, parameter 𝛾𝛾 sets the number of corridors and 𝛿𝛿 is multiplied with the corridor 

number 𝑘𝑘 = 1, … , 𝛾𝛾. In doing so, we generate corridors of the same size. Due to preliminary testing, we 

use three corridors in our study, i.e. 𝛾𝛾 = 3. Consequently, the corridor boundaries are at 5, 10, and 15% 

points. As excellent estimates score in all 𝛾𝛾 corridors, they are implicitly weighted higher. Together with 

the MAE indicator, CORRI represents purpose 3) of a DEA, where the setting of improvement targets is 

implicitly achieved by a convincing efficiency estimation. 

 

After generating the data of a scenario and estimating the efficiency scores, we calculate the performance 

indicators for every model. These indicator values (e.g., MAE) are the average values over all scenarios. 

The final benchmark value of a model consolidates all performance indicators. On our minds, a good DEA 

model should be able to perform convincingly over all indicators. For this reason, we define our aggregated 

indicator B.-Value in Eq. (1). 

 

B.−Value =
MAE+SPEAR+EFF+INEFF+CORRI

5
 (1) 

 

However, despite one model always performs slightly better than another one, the B.-Values of these two 

models can be quite similar. To catch the effect of dominance, we introduce a second aggregated indicator 

B.-Rank in Eq. (2).  

 

B.−Rank =
rank(MAE) + rank(SPEAR) +rank(EFF) +rank(INEFF)+rank(CORRI)

5
 (2) 

 

In a comparison of five models, the model with the best indicator value (e.g., MAE) receives rank one, the 

worst rank five. Repeating this procedure for every single run of every scenario yields in the end the 

average indicator rank, e.g. rank(MAE). The B.-Rank is the average over all indicator ranks and depending 

on the number of models under assessment. Compared to the B.-Value, we do not receive information 
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comparable to other studies. However, the B.-Rank reveals some interesting insights in the comparison of 

two specific models. 

 

Both benchmarking scores are stochastic due to the randomly generated data. To ensure robustness of the 

results, it is essential to conduct a sufficient number of replications for each scenario. A fact, unfortunately 

neglected by many of the existing Monte Carlo analyses of DEA. The necessary number of replications to 

ensure sufficient robustness is strongly depending on the scenario. For these reasons, a static replication 

quantity is not suitable. So far, Zhang & Bartels (1998) are the only ones we are aware of, who are 

generating their replications flexibly, yielding in 5 up to 100 replications per scenario. For our 

benchmarking procedure, we created a process in which we start with the conduction of 50 replications for 

each scenario. After every replication, the B.-Value is recalculated as the average over all replications 

conducted of the scenario, so far. Afterwards, the moving standard deviation of the B.-Value for the last 

25 replications is observed. If this value falls short of 0.1% for all models at the same time, we stop 

performing further replications. Using only the B.-Value for the stopping criterion is reasonable, as 

contrary to the B.-Score, since it is independent from the number of models under evaluation. Figure 2 is 

depicting an example for this procedure. 

 

 

Figure 2 - Example for the moving standard deviation of the B.-Value 

 
 

Each line is presenting the moving standard deviation of the B.-Value for one DEA model. The calculation 

starts after 25 replications. The deviation between the B.-Value after 25, 26, 27… replications is 

decreasing, although results of outlier replications can temporarily raise the standard deviation. In the 

example, the moving standard deviation of the B.-Value falls short of 0.001 for all models after 143 

replications. At this point, we stop performing further replications. The final B.-Value of the scenario is 
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the average value over all 143 replications. Using this dynamic stopping criterion, we ensure the 

reproducibility of our study results. 

3 Data generation process for one DMU  
As in real data sets the true efficiencies are not inherent, these cannot be used for the benchmarking 

procedure. An artificial data set is necessary for the comparison of different DEA models regarding their 

efficiency estimation quality. A sophisticated DGP is therefore important to image real data as closely as 

possible. It stands to reason, that not only one “real” production scenario is existing as companies in 

different economic sectors face different environmental circumstances. For this reason, the creation of a 

variety of scenarios is inevitable. We will discuss the settings for the creation of scenarios used in our study 

in Section 4. For the creation of a meaningful DGP, it is important to keep the need for scenario variations 

in mind. The goal of the DGP is to create a reasonable single output �𝑦𝑦𝑖𝑖� out of meaningful inputs (𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑖𝑖 =

1, … ,𝑚𝑚), and true efficiency values (𝜃𝜃𝑖𝑖) for a DMU 𝑗𝑗. For the sake of simplicity, we drop the DMU index 

𝑗𝑗 in the following, as we always talk about a single DMU. For the calculation of the raw output 𝑦𝑦� of a 

DMU, we utilize the Translog production function given in Eq. (3a), which has been introduced by 

Christensen et al. (1971, 1973) and has advanced as the gold standard for Monte Carlo simulated data in 

the past years. 

 

𝑦𝑦� = �𝑥𝑥𝑖𝑖
𝛼𝛼𝑖𝑖  

𝑚𝑚

𝑖𝑖=1

�𝑥𝑥𝑖𝑖
1
2∑ 𝛽𝛽𝑖𝑖ℎ ln𝑥𝑥ℎ𝑚𝑚

ℎ=1  
𝑚𝑚

𝑖𝑖=1

  (3a) 

 

We use this form for the actual creation of the raw output. For the explanation of characteristics, the 

logarithmic form of the Translog (3b) is easier to handle and will therefore be used most of the time 

hereafter. 

 

ln𝑦𝑦� = �𝛼𝛼𝑖𝑖 ln𝑥𝑥𝑖𝑖 +
1
2
��𝛽𝛽𝑖𝑖ℎ ln𝑥𝑥𝑖𝑖 ln𝑥𝑥ℎ

𝑚𝑚

ℎ=1

𝑚𝑚

𝑖𝑖=1

𝑚𝑚

𝑖𝑖=1

 (3b) 

 

The parameter 𝛼𝛼𝑖𝑖 is predominantly responsible to set the importance of an input 𝑖𝑖 for the production 

process. The parameter 𝛽𝛽𝑖𝑖ℎ can be used to adjust the substitution properties of the production process 

between the inputs 𝑖𝑖 and ℎ. The seven steps of the DGP for one DMU are as follows: 

 

1. Set the number of inputs (𝑚𝑚) for the current DGP, 

2. Draw 𝑚𝑚 raw input values from a uniformly distributed input range, 

3. Adjust the raw inputs with the Corlesky transformation to receive the desired input correlation, 
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4. Choose the importance of inputs to set 𝛼𝛼𝑖𝑖 ∀𝑖𝑖 and the input substitutability and substitution 

distribution to set 𝛽𝛽𝑖𝑖ℎ  ∀𝑖𝑖,ℎ, 

5. Calculate the single raw output (𝑦𝑦�) by using (3a), 

6. Draw a true efficiency value 𝜃𝜃 for the DMU from the true efficiency distribution, and 

7. Calculate the final output 𝑦𝑦 by multiplication of the raw output with the true efficiency value 𝑦𝑦 =

𝜃𝜃 ⋅ 𝑦𝑦�. 

 

To ensure a proper data generation, several properties need to be inherent in each production function. 

According to Coelli et al. (2005), these are: 

 

1) Nonnegativity: The value of the production function is a finite, non-negative, real number, 

2) Weak essentiality: The production of positive output is impossible without the use of at least one 

input, 

3) Monotonicity in inputs: Additional units of an input will not decrease the output (also often called 

free disposability of inputs), and  

4) Concavity in inputs: Any linear combination of the vectors 𝑥𝑥0 and 𝑥𝑥1 will produce an output that is 

no less than the same linear combination of 𝑓𝑓(𝑥𝑥0) and 𝑓𝑓(𝑥𝑥1), i.e., the law of diminishing marginal 

productivity has to hold. 

 

Throughout the whole DGP, we ensure the adherence to these four properties. They are of special 

importance for the calibration of the parameters 𝛼𝛼 and 𝛽𝛽. Apart from 𝛼𝛼 and 𝛽𝛽, 𝜃𝜃 and 𝑥𝑥 need to be specified. 

The phrases in the DGP highlighted in bold are adjustable characteristics that can be used to do so. Their 

calibration, which will be discussed in the following, aims towards the creation of realistic data. 

 

Generation of 𝜽𝜽. The true efficiency value 𝜃𝜃 is drawn from a random distribution. We assume that DMUs 

with an extremely low efficiency will not be able to survive and are not present in the market. Furthermore, 

most studies with sufficient data support show that DMUs with 100% technical efficiency are present, but 

not predominant on the market. Therefore, a true efficiency value of 1 should not have the highest density 

in the distribution. We created a true efficiency distribution, where values between a lower bound and 1 

can be attained and the mode of the distribution is below 1. We utilize a truncated normal distribution, 

which we cut at the lower bound and at an upper bound of 1. Different lower bounds can be set to mimic 

different economies. An according adjustment of the mode and standard deviation keeps the shaping of 

the distribution similar. 

 

Generation of 𝒙𝒙. The settings on the number of inputs, input range, and input correlation all aim towards 

the generation of the input vector 𝑥𝑥. These settings are mainly straightforward as, e.g. changing the number 
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of inputs. The input range defines the lower and upper bound for the (discrete) uniform distribution we 

draw the raw inputs from. A small range implies a very homogenous data set with DMUs of rather similar 

size. A large range on the other hand stands for a more heterogeneous production environment. To assume 

a correlation between input values is rational. A considerably larger DMU will usually use more inputs 

than a smaller one. This fact is considered by applying correlation via a Cholesky decomposition (see 

Hazewinkel 1995) to the inputs. We discuss the values used in our experimental study in Section 4. 

 

Before discussing the next characteristic, we want to recall the purpose of the paper, which is the evaluation 

of the accuracy of DEA models in CRS settings. Ensuring that the generated data inherit the CRS 

assumption is therefore indispensable. The creation of meaningful CRS data from a Translog production 

function is one of the contributions of the paper. Therefore, we have a closer look at the scale elasticity of 

the Translog production function. The necessary condition for CRS 𝜙𝜙(𝑥𝑥) =! 1, can be derived from (3b) 

(see Eq. (4)). 

 

𝜙𝜙(𝑥𝑥) = �
𝜕𝜕 ln 𝑦𝑦�
𝜕𝜕 ln𝑥𝑥𝑖𝑖

𝑚𝑚

𝑖𝑖=1

= �𝛼𝛼𝑖𝑖
𝑖𝑖

+ ��𝛽𝛽𝑖𝑖ℎ
ℎ

ln𝑥𝑥ℎ
𝑖𝑖

=! 1 (4) 

 

For the realization of global CRS, 𝜙𝜙(𝑥𝑥) needs to be equal to one at all possible values of the vector 𝑥𝑥. 

Setting all 𝛽𝛽𝑖𝑖ℎ to zero and the ∑ 𝛼𝛼𝑖𝑖𝑖𝑖  equal to one obviously achieves this goal. The result is a classical 

Cobb-Douglas function with the drawback that altering substitution effects is not possible. By considering 

the symmetry assumption 𝛽𝛽𝑖𝑖ℎ = 𝛽𝛽ℎ𝑖𝑖 (Boisvert 1982, Perelman & Santín 2009) it is possible to re-write Eq. 

(4) (see Eq. (5)). 

  

𝜙𝜙(𝑥𝑥) = �𝛼𝛼𝑖𝑖
𝑖𝑖

+ ��𝛽𝛽ℎℎ + �𝛽𝛽𝑖𝑖ℎ
𝑖𝑖≠ℎ

� ln𝑥𝑥ℎ  
ℎ

 (5) 

 

From Eq. (5) we can see that sufficient conditions for global CRS that still allow the implementation of 

substitution effects can be given in Eq. (6). 

 

𝛽𝛽ℎℎ = −�𝛽𝛽𝑖𝑖ℎ
𝑖𝑖≠ℎ

     ∀ℎ   ∩      �𝛼𝛼𝑖𝑖
𝑖𝑖

= 1 (6) 

 

Generation of 𝜶𝜶. Keeping these conditions in mind, we turn back to the setup of characteristics. The 

implementation of different settings for the importance of the inputs is possible by the choice of 𝛼𝛼. We 
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apply two different settings where ∑ 𝛼𝛼𝑖𝑖 = 1𝑖𝑖  always has to hold to ensure the implementation of CRS. In 

the first setting (SYM), all inputs are equally important for the production which is given in Eq. (7). 

 

𝛼𝛼𝑖𝑖 =
1
𝑚𝑚

     ∀𝑖𝑖 (7) 

 

It can be easily seen that Eq. (7) fulfills the condition ∑ 𝛼𝛼𝑖𝑖 = 1𝑖𝑖  by Eq. (8): 

 

�𝛼𝛼𝑖𝑖

𝑚𝑚

𝑖𝑖=1

= �
1
𝑚𝑚

𝑚𝑚

𝑖𝑖=1

= 𝑚𝑚 ⋅
1
𝑚𝑚

= 1 (8) 

 

For the second setting (ASYM), we generated a pattern, where all inputs have different, yet equidistant 

importance (see Eq. (9)). Input 1 is always the one with the lowest impact on the production. Furthermore, 

the importance of the inputs is rising with their index. As we only consider abstract inputs and the inputs 

could be resorted, this regular assignment inherits no distortion of results. 

 

𝛼𝛼𝑖𝑖 =
𝑖𝑖 + 𝑚𝑚

0.5𝑚𝑚2 + 0.5𝑚𝑚 + 𝑚𝑚2      ∀𝑖𝑖 (9) 

 

Please note that Eq. (9) fulfills ∑ 𝛼𝛼𝑖𝑖 = 1𝑖𝑖  by Eq. (10): 

 

�𝛼𝛼𝑖𝑖

𝑚𝑚

𝑖𝑖=1

= �
𝑖𝑖 + 𝑚𝑚

0.5𝑚𝑚2 + 0.5𝑚𝑚 + 𝑚𝑚2

𝑚𝑚

𝑖𝑖=1

= �
𝑖𝑖

0.5𝑚𝑚2 + 0.5𝑚𝑚 + 𝑚𝑚2

𝑚𝑚

𝑖𝑖=1

+ �
𝑚𝑚

0.5𝑚𝑚2 + 0.5𝑚𝑚 + 𝑚𝑚2

𝑚𝑚

𝑖𝑖=1

= (10) 

1
2𝑚𝑚 ⋅ (𝑚𝑚 + 1)

0.5𝑚𝑚2 + 0.5𝑚𝑚 +𝑚𝑚2 +
𝑚𝑚 ⋅ 𝑚𝑚

0.5𝑚𝑚2 + 0.5𝑚𝑚 + 𝑚𝑚2 =
0.5𝑚𝑚2 + 0.5𝑚𝑚 + 𝑚𝑚2

0.5𝑚𝑚2 + 0.5𝑚𝑚 + 𝑚𝑚2 = 1  

 

For pointing out the difference between the SYM Eq. (7) and ASYM Eq. (9) setting, an example with three 

inputs is chosen. We obtain the values for 𝛼𝛼𝑖𝑖 given in Table 3. 

 

i 1 2 3 

SYM 0.333 0.333 0.333 

ASYM 0.267 0.333 0.400 

Table 3 - Values of 𝛼𝛼𝑖𝑖 for three inputs in SYM and ASYM cases 
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The effects of the two different 𝛼𝛼𝑖𝑖 settings are displayed in Figure 3. To demonstrate the influence of the 

SYM/ASYM setting, we show the impact of a change in one of the three inputs on the resulting output. 

The corresponding input is increased up to 1,000 whereas the other two inputs stay constantly at a value 

of 50. Performing this approach three times, once for each of the inputs 𝑥𝑥1,𝑥𝑥2, and 𝑥𝑥3, results in the three 

lines of Figure 3. For the SYM setting, whatever input is changed, the effects are always the same. For this 

reason, the three lines lie on top of each other. In the ASYM setting, the importance of every input is 

different. As input one has the lowest importance for the production process, a rise in 𝑥𝑥1results in a more 

moderate rise of the output than a rise of 𝑥𝑥2 does. Raising 𝑥𝑥3 yields the largest output growth. 

 

 

 

 

Figure 3 - Example for impact of asymmetry settings; All inputs except for the changing at 50 

 

 

Generation of 𝜷𝜷. Next, we are turning to the substitution of inputs, which can be altered by 𝛽𝛽 in Eq. (3b). 

Limitations in the setting of the 𝛽𝛽 parameters arise from conditions 3) (Monotonicity of inputs) and 4) 

(Concavity in inputs) by Coelli et al. (2005). We address these conditions soon. Furthermore, 𝛽𝛽 needs to 

be symmetric (Boisvert 1982, Perelman & Santín 2009) as given in Eq. (11). 

 

𝛽𝛽𝑖𝑖ℎ =! 𝛽𝛽ℎ𝑖𝑖 (11) 

 

Within the boundaries of these conditions, the 𝛽𝛽 values can be set freely. We see two characteristics, which 

are worth considering in the substitution context. To adjust both characteristics separately, we assume 𝛽𝛽 

can be decomposed into two terms: substitution distribution and substitutability (see Eq. (12)). 

 

𝛽𝛽𝑖𝑖ℎ = 𝜎𝜎𝑖𝑖ℎ�

substitution
distribution

∙ 𝜈𝜈⏞
substitutability

 
(12) 

 

The characteristic of the substitution distribution accounts for the fact, that substitution might, but does not 

have to be equal between all inputs. Responsible for the substitution distribution is the distribution of 𝛽𝛽. 
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Furthermore, we want to consider varying abilities to substitute inputs. We call this characteristic 

substitutability and determine its scale by the magnitude of 𝛽𝛽.  

 

We denote the substitution distribution term by 𝜎𝜎𝑖𝑖ℎ. As the final magnitude of 𝛽𝛽𝑖𝑖ℎ should be determined 

by the parameter 𝜈𝜈, the 𝜎𝜎𝑖𝑖ℎ values are normalized between −1 and 1. The implication from Eq. (11) for 

the substitution distribution term is that 𝜎𝜎𝑖𝑖ℎ = 𝜎𝜎ℎ𝑖𝑖. We implement two different settings for the substitution 

distribution: In the first setting, the substitution between all inputs is equal. In the second setting, the 

substitution is unequal. For both, equal and unequal substitution distribution settings, Eq. (13) needs to 

hold to ensure the adherence to Eq. (6) and therefore the implementation of global CRS. 

 

𝜎𝜎ℎℎ = −�𝜎𝜎𝑖𝑖ℎ
𝑖𝑖≠ℎ

     ∀ℎ (13) 

 

The imposition of an equal substitution distribution is straightforward and can be achieved by Eq. (14).  

 

𝜎𝜎ℎℎ = −1,     𝜎𝜎𝑖𝑖ℎ =
1

𝑚𝑚 − 1
     ∀𝑖𝑖,ℎ, 𝑖𝑖 ≠ ℎ. (14) 

 

For the realization of unequal substitution scenarios, we use a pattern to generate symmetric but unequal 

values for 𝜎𝜎 by Eqs. (15) and (16). A detailed derivation of Eq. (15) and Eq. (16) can be found in the 

Appendix. 

𝜎𝜎𝑖𝑖ℎ = −
𝑚𝑚 ∙ �1.5 − ℎ − 1

𝑚𝑚− 1� − �2 − 2 ∙ ℎ − 1
𝑚𝑚 − 1�

1.5 ∙ 𝑚𝑚 − 2
     ∀𝑖𝑖,ℎ, 𝑖𝑖 = ℎ (15) 

𝜎𝜎𝑖𝑖ℎ =
2 − ℎ − 1

𝑚𝑚 − 1 −
𝑖𝑖 − 1
𝑚𝑚− 1

1.5 ⋅ 𝑚𝑚 − 2
     ∀𝑖𝑖,ℎ, 𝑖𝑖 ≠ ℎ (16) 

 

For both cases, Table 4 is showing an example using three inputs. In the equal substitution distribution 

case, all values on the main diagonal have a value of −1, whereas all others have a value of 0.5. In the 

unequal substitution distribution case, the differing values lead to a different substitution between inputs. 

The lower the value, the better the substitution between two inputs, i.e. it is easier to substitute 𝑥𝑥2 and 𝑥𝑥3 

than 𝑥𝑥1 and 𝑥𝑥2. 
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Equal substitution distribution Unequal substitution distribution 

𝜎𝜎𝑖𝑖ℎ ℎ = 1 ℎ = 2 ℎ = 3 

𝑖𝑖 = 1 -1 0.5 0.5 

𝑖𝑖 = 2 0.5 -1 0.5 

𝑖𝑖 = 3 0.5 0.5 -1 
 

𝜎𝜎𝑖𝑖ℎ ℎ = 1 ℎ = 2 ℎ = 3 

𝑖𝑖 = 1 -1 0.6 0.4 

𝑖𝑖 = 2 0.6 -0.8 0.2 

𝑖𝑖 = 3 0.4 0.2 -0.6 
 

Table 4 - Values of 𝜎𝜎𝑖𝑖ℎ for three inputs in equal and unequal substitution distribution cases 

 
 

Finally, we turn to the term 𝜈𝜈 that allows the adjustment of the substitutability of inputs. The necessary 

monotonicity condition (17) and curvature condition (18) of the production function  are playing a key part 

for the characteristic of regularly behaved production data (Perelman & Santín 2009, Cordero et al. 2015). 

Remember the points 3) (Monotonicity in inputs) and 4) (Concavity of inputs) of Coelli et al. (2005) 

discussed above.  

 

𝜕𝜕𝑦𝑦�
𝜕𝜕𝑥𝑥𝑖𝑖

=
𝑦𝑦�
𝑥𝑥𝑖𝑖
�𝛼𝛼𝑖𝑖 + �𝛽𝛽𝑖𝑖ℎ ln 𝑥𝑥ℎ

𝑚𝑚

ℎ=1

� ≥
!

0          ∀𝑖𝑖 (17) 

𝜕𝜕2𝑦𝑦�
𝜕𝜕2𝑥𝑥𝑖𝑖

=
𝑦𝑦�
𝑥𝑥𝑖𝑖2
�𝛽𝛽𝑖𝑖𝑖𝑖 + �𝛼𝛼𝑖𝑖 + �𝛽𝛽𝑖𝑖ℎ ln𝑥𝑥ℎ

ℎ

�
2

− �𝛼𝛼𝑖𝑖 + �𝛽𝛽𝑖𝑖ℎ ln 𝑥𝑥ℎ
ℎ

�� ≤
!

0       ∀𝑖𝑖 (18) 

 

A meaningful DGP needs to ensure that despite of changing substitutability of inputs, a rise in inputs never 

results in an output decline. This reflects the concept of free disposability of inputs, which is inherent in 

the vast majority of DEA models. For the evaluation of congestion models, our procedure could be adjusted 

at this point. Furthermore, to respect the law of diminishing marginal productivity, concavity needs to be 

assured. For the adherence to the monotonicity and curvature constraints, the magnitude of 𝛽𝛽 plays a crucial 

role. Therefore, we use the mathematical program (19) (19a)to derive 𝜈𝜈. The minimum value for 𝜈𝜈 implies 

a “flat” substitution curve and therefore a high substitutability between inputs, whereas the maximum value 

for 𝜈𝜈 results in low substitutability. 

 

min / max𝜈𝜈  (19a) 

𝛼𝛼𝑖𝑖 + �𝜎𝜎𝑖𝑖ℎ ∙ 𝜈𝜈 ⋅ ln 𝑥𝑥ℎ

𝑚𝑚

ℎ=1

≥ 0 ∀𝑖𝑖 (19b) 



44 

 

𝜎𝜎𝑖𝑖𝑖𝑖 ∙ 𝜈𝜈 + �𝛼𝛼𝑖𝑖 + �𝜎𝜎𝑖𝑖ℎ ∙ 𝜈𝜈 ⋅ ln𝑥𝑥ℎ
ℎ

�
2

− �𝛼𝛼𝑖𝑖 + �𝜎𝜎𝑖𝑖ℎ ∙ 𝜈𝜈 ⋅ ln𝑥𝑥ℎ
ℎ

� ≤ 0 ∀𝑖𝑖 (19c) 

 

The example in Figure 4 shows the impact of the different settings on the production process. We consider 

a simple case of two inputs 𝑥𝑥1 and 𝑥𝑥2 producing one output. 𝑥𝑥1 is increased from 100 to 1,100, while 𝑥𝑥2 is 

decreased simultaneously from 1,100 to 100. Both inputs are equally important for the production, i.e. a 

SYM setting is chosen. As a result, the highest output is reached for 𝑥𝑥1 = 𝑥𝑥2(= 600). From this point on, 

substituting one input into the other leads to an output reduction. In the case of high substitutability, this 

reduction is significantly smaller (solid line) than in the case of low substitutability (dashed line). 

 

 

 

Figure 4 - Substitutability in a 2-input case, where  𝑥𝑥2 = 1200 − 𝑥𝑥1 

 
 

With the two characteristics on substitution, the DGP for a single DMU is complete. The upcoming section 

discusses the specific values chosen in each characteristic. Furthermore, it is pointing out the progression 

from the DGP of a single DMU to the complete experimental study. 

4 Study design 
Apart from a sophisticated DGP for one DMU, the consideration of a multitude of scenarios is vital for the 

general validity of results. A scenario is always a concrete combination of values for all characteristics. 

Apart from the seven characteristics discussed with the DGP for a single DMU, the number of DMUs (𝑛𝑛) 

completes the set of characteristics. So far, Pedraja-Chaparro et al. (1999) created the most scenarios in a 

Monte Carlo DEA evaluation. As denoted in Table 1, they used 190 different scenarios, generated from 

three characteristics. For our benchmarking procedure, we generate 1,296 different CRS scenarios, 

emerging out of all level combinations of our eight characteristics in a multifactorial test design. Compared 
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to the existing literature, our study design achieves a higher level of validity. Table 5 below is summarizing 

all eight characteristics with their value specification.  

 

Characteristic Levels 

1. # DMUs (𝑛𝑛) 50, 150, 450 

2. True efficiencies (𝜃𝜃) low, medium, high 

3. # Inputs (𝑚𝑚) 3, 5, 7 

4. Input correlation 0, 0.4, 0.8 

5. Input range [100, 1100], [100, 10100] 

6. Importance of inputs (𝛽𝛽𝑖𝑖) SYM, ASYM 

7. Input substitution distribution (𝜎𝜎𝑖𝑖ℎ) equal, unequal 

8. Input substitutability (𝜈𝜈) low, high 

Table 5 - Scenarios of the data generation process based on eight distinct characteristics 

 
 

In the following, we describe these specifications for all characteristics. With the levels for 𝑛𝑛, we cover an 

average small (50 DMUs), medium (150 DMUs), and large (450 DMUs) setting for DEA studies. 

Adjusting the number of DMUs is straightforward, i.e. the DGP for one DMU is repeated 𝑛𝑛 times. The 

true efficiency values 𝜃𝜃 are drawn from a random distribution and multiplied with the raw output. In order 

to create reasonable true efficiency values, the values are drawn from a truncated normal distribution. To 

test, if the true efficiencies have an influence on our results, we incorporate different true efficiency 

distributions as characteristics. For the upper efficiency values, truncation is always conducted at 1. The 

lower bound of the true efficiencies depends on the setting: low, medium, and high. We use lower bounds 

of 0.25 (low), 0.40 (medium), and 0.55 (high). This restriction of the true efficiency reflects the fact, that 

in the real world, organizations with extremely low efficiency would not be able to survive. The three 

settings differ in modes and standard deviations to obtain similar curvatures. We apply modes of 0.75 

(low), 0.80 (medium), and 0.85 (high) as well as standard deviations of 0.27 (low), 0.25 (medium), and 

0.23 (high). Figure 5 is depicting the probability distributions for the three levels of efficiency. 
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Figure 5 - Distribution of true efficiency scores 

 

 

The adjustment of the number of inputs (𝑚𝑚) is straightforward. For the selection of values for 𝑚𝑚, we 

analyzed the number of inputs used in over 260 recently published articles reviewed by Kohl et al. (2018). 

Based on this experience we set the value for a small study to three, for a medium sized to five, and for a 

large study to seven. In our DGP, the 𝑚𝑚 inputs for each DMU are drawn from the uniform distributions 

U[100; 1,100] and U[100; 10,100]. We decided to use these ranges on the basis of a pre-study, where we 

compared various ranges. Details of the pre-study are discussed in the Appendix. To obtain correlated 

values, the 𝑚𝑚 raw inputs are transformed by using the Cholesky decomposition (see Hazewinkel 1995) 

with correlation factors of 0, 0.4, and 0.8. The remaining three characteristics (importance of inputs and 

importance of substitution, i.e. input substitution distribution and input substitutability) are set according 

to the results given in Section 3. 

5 Evaluated DEA models 
After generating an instance of a scenario, the resulting data set is evaluated with four different DEA 

models (CCR, BCC, AR, and SBM). This is the widest comparison of DEA models with Monte Carlo 

simulated data so far. In addition, we calculate the benchmark RAND, consisting of randomly drawn 

numbers from the true efficiency distribution. With RAND, we are able to provide a lower bound for our 

benchmark scores and facilitate the classification of the B.-Values of other models. The models under 

evaluation are presented in the following. The model being under high scrutiny is the basic CCR model 

(Charnes et al. 1978). As in the DGP the true efficiency value is multiplied with the output, an output 

0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Probability

Efficiency Score (𝜃𝜃)

High
Medium
Low
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orientation is used for all models to receive appropriate results. We present the envelopment form of the 

CCR model in (20a)-(20d).  

 

max𝜃𝜃�𝑟𝑟    
 

(20a) 

𝑥𝑥𝑖𝑖𝑟𝑟 ≥ ∑ 𝜆𝜆𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1   ∀𝑖𝑖  (20b) 

𝜃𝜃�𝑟𝑟𝑦𝑦𝑟𝑟𝑟𝑟 ≤ ∑ 𝜆𝜆𝑖𝑖𝑛𝑛
𝑖𝑖=1 𝑦𝑦𝑟𝑟𝑖𝑖  ∀𝑟𝑟  (20c) 

𝜆𝜆𝑖𝑖 ≥ 0  ∀𝑗𝑗  (20d) 

 

In general, we use a classic notation, where 𝑥𝑥𝑖𝑖𝑖𝑖 is the amount of input 𝑖𝑖 = 1, … ,𝑚𝑚 of DMU 𝑗𝑗 = 1, … ,𝑛𝑛, 

𝑦𝑦𝑟𝑟𝑖𝑖 is the amount of output 𝑟𝑟 = 1, … , 𝑠𝑠 of DMU 𝑗𝑗 = 1, … ,𝑛𝑛. Variable 𝜆𝜆𝑖𝑖 is the decision variable of the 

envelopment form and 𝜃𝜃�𝑟𝑟 the resulting estimated efficiency score of the model for the observed DMU 𝑜𝑜. 

Although not suitable for the evaluation of CRS data, we also assess the BCC model (Banker et al. 1984), 

which is the basic model for variable returns to scale (VRS). This assessment can be used as a benchmark 

and helps to understand the concept of our research. To receive the BCC model, the mathematical program 

(20) is extended by constraint (21). 

 

∑ 𝜆𝜆𝑖𝑖𝑖𝑖 = 1  (21) 

 

As both basic models have been discussed excessively in the literature, we refer the interested reader to 

standard work as Cooper et al. (2007) for further information. The third model we are evaluating is an AR 

(Assurance Region) model. Assurance region models are DEA models that restrict the values the weights 

of the inputs and outputs can obtain and were developed by Dyson & Thanassoulis (1988). These weight 

restrictions prohibit the expelling of inputs or outputs from the analysis by assigning weights of zero. 

Meanwhile, several ways to restrict the weights of DEA models have emerged. Overviews are provided in 

Allen et al. (1997) and Pedraja-Chaparro et al. (1997). They show that two dimensions for the restriction 

of weights in AR models exist: First, the weights to be constrained (raw vs virtual weight restriction). 

Second, the limits placed on the weights (absolute vs relative weight restrictions). While raw weight 

restrictions just limit the weight in the primal multiplier model itself, virtual weight restrictions limit the 

product of weight and input, i.e. 𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖. Furthermore, absolute restrictions only affect one weight, while 

relative restriction affect the ratio between two weights. Following Pedraja-Chaparro et al. (1997) we focus 

on relative weight restrictions. As we, unlike Pedraja-Chaparro et al. (1997), are working with different 

input elasticities, we chose to apply virtual weight restrictions resulting in the AR model (22). Decision 

variables 𝑣𝑣𝑖𝑖 and 𝑢𝑢𝑟𝑟 denote as usual the weights for input 𝑖𝑖 and output 𝑟𝑟. The parameter 𝑘𝑘 for limiting the 

weights is set in the same way as in Pedraja-Chaparro et al. (1997) as 𝑘𝑘 = 2.  
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min∑ 𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖𝑟𝑟𝑠𝑠
𝑟𝑟=1   

 
(22a) 

∑ 𝑢𝑢𝑟𝑟𝑦𝑦𝑟𝑟𝑟𝑟𝑚𝑚
𝑖𝑖=1 = 1  

 
(22b) 

∑ 𝑢𝑢𝑟𝑟𝑦𝑦𝑟𝑟𝑖𝑖𝑠𝑠
𝑟𝑟=1 ≤ ∑ 𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑚𝑚

𝑖𝑖=1   ∀𝑗𝑗  (22c) 

𝑣𝑣𝑖𝑖,𝑢𝑢𝑟𝑟 ≥ 0  ∀𝑖𝑖, 𝑟𝑟  (22d) 

𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
𝑣𝑣ℎ𝑥𝑥ℎ𝑖𝑖

≤ 𝑘𝑘  ∀𝑖𝑖,ℎ, 𝑖𝑖 ≠ ℎ   (22e) 

 

The last model we are evaluating is the SBM (Slacks-Based Measure) model, which has been developed 

by Tone (2001). We use the linear version that is given in (23). 

 

min τo = t − 1
𝑚𝑚
∑ 𝑆𝑆𝑖𝑖−/𝑥𝑥𝑖𝑖𝑟𝑟𝑚𝑚
𝑖𝑖=1   

 
(23a) 

𝑡𝑡 + 1
𝑠𝑠
∑ 𝑆𝑆𝑟𝑟+/𝑦𝑦𝑟𝑟𝑟𝑟𝑠𝑠
𝑟𝑟=1 = 1  

 
(23b) 

𝑡𝑡𝑥𝑥𝑖𝑖𝑟𝑟 = ∑ 𝛬𝛬𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑛𝑛
𝑖𝑖=1 + 𝑆𝑆𝑖𝑖−  ∀𝑖𝑖  (23c) 

𝑡𝑡𝑦𝑦𝑟𝑟𝑟𝑟 = ∑ 𝛬𝛬𝑖𝑖𝑦𝑦𝑟𝑟𝑖𝑖𝑛𝑛
𝑖𝑖=1 − 𝑆𝑆𝑟𝑟+  ∀𝑟𝑟  (23d) 

𝑡𝑡,𝛬𝛬𝑖𝑖, 𝑆𝑆𝑖𝑖−,  𝑆𝑆𝑟𝑟+ ≥ 0  ∀𝑗𝑗, 𝑖𝑖, 𝑟𝑟   (23e) 

 

The model is able to include all slacks (𝑠𝑠𝑖𝑖−, 𝑠𝑠𝑟𝑟+) into the efficiency score and thus overcomes one deficiency 

of many other DEA models. The variable 𝑡𝑡 is only used for computational reasons. It is multiplied with 

the dual decision variable 𝜆𝜆𝑖𝑖, i.e. Λ𝑖𝑖 = 𝑡𝑡 ∙ 𝜆𝜆𝑖𝑖, and the slacks, i.e. 𝑆𝑆𝑖𝑖− = 𝑡𝑡 ⋅ 𝑠𝑠𝑖𝑖−, 𝑆𝑆𝑖𝑖+ = 𝑡𝑡 ⋅ 𝑠𝑠𝑖𝑖+  for the sake of 

linearization. As a development of the additive models, the SBM model has no orientation. Subsequent to 

the conduction of the efficiency estimation, we assess the quality of the DEA models by using different 

performance indicators introduced in Section 2. 

6 Results 
The result section is split into three parts: First of all, we introduce some examples that help to understand 

the upcoming results. These examples pursue the goal to facilitate the interpretation of the B.-Value. The 

second part is concerned with the results of our main computational study. Here, we derive in detail, which 

models show the best performance and look at the driving factors for these results. Finally, we focus on 

the relevance of the number of DMUs for the result accuracy. Based on our B.-Value, we derive a new 

rule, how many DMUs have to be present in DEA studies, to ensure a sufficient quality of results. 
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6.1 Examples  

To get a better feeling for the study results and the implications of our B.-Value, we present six small 

examples which are easy to grasp (see Table 6). Apart from the fact that always nine DMUs are evaluated, 

the setting of the characteristics for these examples is irrelevant. Rather than looking at the circumstances 

under which a specific B.-Value occurs, the examples demonstrate the implications that can be drawn from 

a certain B.-Value. For the sake of simplicity, we only show results for the basic CCR model. For every 

example, we denote the B.-Value in its headline. Afterwards the five single performance indicators 

introduced in Section 2, whose mean is the B.-Value, are posed. The bottom part of each example shows 

key features of the corresponding DEA. This allows a comparison of the true efficiency value and the 

estimated CCR score as well as the associated ranks for all nine DMUs. 

 
 
 
 
DMU 

1 
2 
3 
4 
5 
6 
7 
8 
9 

 

Example 1: B.-Value = 0.65 
MAE  SPEAR EFF INEFF CORRI 
0.846 0.593 0.444 1 0.370 

True 
Efficiency 

CCR 
Score 

Absolute 
Error 

True 
Rank 

CCR 
Rank 

0.62 1 0.38 7 1 
0.77 1 0.23 4 1 
0.86 0.96 0.10 2 4 
0.51 0.60 0.09 9 9 
0.76 0.88 0.12 5 7 
0.59 0.73 0.14 8 8 
0.75 0.93 0.18 6 5 
0.94 1 0.06 1 1 
0.81 0.9 0.09 3 6 

 

Example 3: B.-Value = 0.75 
MAE  SPEAR EFF INEFF CORRI 
0.883 0.814 0.889 0.500 0.667 

True 
Efficiency 

CCR 
Score 

Absolute 
Error 

True 
Rank 

CCR 
Rank 

1 1 0 1 1 
0.71 0.77 0.06 6 7 
0.50 0.55 0.05 7 8 
0.80 0.93 0.13 4 4 
0.95 1 0.05 2 1 
0.77 0.85 0.08 5 6 
0.36 0.90 0.54 9 5 
0.46 0.49 0.03 8 9 
0.89 1 0.11 3 1 

 

Example 5: B.-Value = 0.85 
MAE  SPEAR EFF INEFF CORRI 
0.884 0.996 1 1 0.370 

True 
Efficiency 

CCR 
Score 

Absolute 
Error 

True 
Rank 

CCR 
Rank 

0.63 0.74 0.11 7 7 
0.70 0.81 0.11 6 6 
0.89 1 0.11 1 1 
0.72 0.85 0.13 4 4 
0.33 0.39 0.06 9 9 
0.71 0.83 0.12 5 5 
0.85 1 0.15 2 1 
0.74 0.88 0.14 3 3 
0.54 0.65 0.11 8 8 

     
 

 
 
 
DMU 

1 
2 
3 
4 
5 
6 
7 
8 
9 

 

Example 2: B.-Value = 0.65 
MAE  SPEAR EFF INEFF CORRI 
0.920 0.661 0.889 0 0.778 

True 
Efficiency 

CCR 
Score 

Absolute 
Error 

True 
Rank 

CCR 
Rank 

0.99 1 0.01 1 1 
0.84 0.89 0.05 4 5 
0.68 0.71 0.03 7 9 
0.70 0.72 0.02 6 8 
0.57 0.82 0.25 9 6 
0.65 0.93 0.28 8 4 
0.96 1 0.04 3 1 
0.98 1 0.02 2 1 
0.71 0.73 0.02 5 7 

 

Example 4: B.-Value = 0.75 
MAE  SPEAR EFF INEFF CORRI 
0.914 0.830 0.778 0.667 0.556 

True 
Efficiency 

CCR 
Score 

Absolute 
Error 

True 
Rank 

CCR 
Rank 

0.77 0.93 0.16 7 5 
0.98 1 0.02 1 1 
0.64 0.78 0.14 9 9 
0.92 1 0.08 2 1 
0.83 0.89 0.06 6 6 
0.84 1 0.16 4 1 
0.84 0.86 0.02 4 7 
0.77 0.79 0.02 7 8 
0.89 1 0.11 3 1 

 

Example 6: B.-Value = 0.85 
MAE  SPEAR EFF INEFF CORRI 
0.884 0.962 1 1 0.407 

True 
Efficiency 

CCR 
Score 

Absolute 
Error 

True 
Rank 

CCR 
Rank 

0.80 0.91 0.11 3 4 
0.66 0.79 0.13 6 5 
0.83 1 0.17 2 1 
0.32 0.39 0.07 9 9 
0.36 0.43 0.07 8 8 
0.73 0.94 0.21 4 3 
0.69 0.77 0.08 5 6 
0.52 0.63 0.11 7 7 
0.91 1 0.09 1 1 

 

Table 6 - Examples for B.-Values of 0.65, 0.75 and 0.85 

 
Although the examples are only six snapshots, they represent our experience with the B.-Value and provide 

helpful indications. They show the difference in the composition of similar B.-Values (the average SD of 

the performance indicators contributing to a B.-Value in our study over all models is 0.1124). Although 

Example 1 and 2 end up with the same B.-Value, the CCR model reached the best possible INEFF value 

in Example 1 and the worst in Example 2. For these examples, the MAE and CORRI indicators behave the 

other way around. Furthermore, Example 2 shows the best CORRI and MAE values of all examples, 

although it has a relatively low B.-Value. The SPEAR indicator shows noticeable differences along with 

different B.-Values. While in the examples with a low B.-Value, the CCR model is barely able to reproduce 

the correct ordering of the efficiency values, the indicator improves significantly with a rising B.-Value. 
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Generally spoken, higher B.-Values indicate, as intended, a higher level of result quality. Especially the 

examples with a B.-Value of 0.65 show very different performances regarding the single indicators. Even 

if the results are in some parts surprisingly good, in aggregation these examples do not fulfill the demands 

of a reliable efficiency estimate. The examples with a B.-Value of 0.75 are not exceptionally good. 

However, we deem the results to be of an acceptable level of quality. From our point of view, models 

receiving a B.-Value of 0.85 (or better) show a very good performance. For these examples, the CORRI 

indicator is the only one with some room for improvement. All others already show convincing results. As 

the results of the examples represent the experiences we made in our computational study, we propose a 

B.-Value of 0.75 as lower threshold for models providing sufficient quality. In order to be classified as a 

good estimate, a value of 0.85 or higher is necessary. 

6.2 Computational study 

With the examples in mind, we turn to the results of our study. As described in Section 5, we evaluate five 

different models on 1,296 different CRS scenarios. The final B.-Values and B.-Ranks reported in Table 7 

are the mean values over all scenarios. Furthermore, we denote the minimum and maximum B.-Values, 

the models achieve in a single scenario, as well as the standard deviation over all scenarios. The RAND 

model serves as a lower bound for our benchmarks. On average, 86.33 replications were necessary to 

terminate a scenario. The maximum number of replications for a scenario was 204. Overall, we created 

111,879 replications, with every replication being analyzed by all DEA models. Due to the performance 

of a sufficient number of replications for each scenario, the results are reproducible if the study is repeated.  

 
Model  B.-Value Min Max SD B.-Rank 

RAND 0.30 0.27 0.35 0.02 4.79 

CCR 0.81 0.40 0.96 0.10 2.86 

BCC 0.73 0.36 0.92 0.12 3.89 

SBM 0.87 0.42 0.99 0.10 1.54 

AR 0.87 0.56 0.98 0.08 1.58 

Table 7 - Results of CRS scenarios 
 

Figure 6 - Boxplots of CRS scenario B.-Value results 

 
 

The results show several (partly very surprising) observations: First, SBM and AR perform best and 

considerably better than the CCR model. This is surprising, as the CCR is still the most popular model in 

applications (Martić et al. 2009). As expected, the BCC model performs worse than the CCR model at the 

evaluation of CRS data. Yet, this fact is a good indicator for the trustworthiness of the results and helps to 

understand the mechanics of our method. With a look on the variance of the results, the AR model shows 

less deviation than SBM, CCR, and BCC. The maximum B.-Values indicate an extremely high quality of 
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DEA results for some scenarios. The maximum B.-Values of SBM and AR close to 1.0 indicate almost 

perfect estimates. This becomes even more outstanding if keeping in mind, that these results describe the 

overall results of a scenario, which is the mean over at least 50 replications. On the other hand, some 

critical aspects get visible when looking at the minimum B.-Value results. They record weak performances 

of all models in some scenarios. The AR model is clearly doing best on that score with a minimum value 

of 0.56. A look at the results in more detail indicates which scenarios are especially concerning. The B.-

Rank results, where 1.0 is the best possible value, support in large parts the findings of the B.-Value. 

However, the SBM model is performing slightly better than the AR model. As explained in Section 2, the 

B.-Rank depends on the number of analyzed models. It is not only a mere measure of dominance on the 

average scenario level, but it looks at every indicator in every replication. A B.-Rank value of exactly one 

is no longer reachable for a model. Assume a single indicator in any replication is better for another model. 

As a consequence B.-Rank is larger than 1.0. As the B.-Rank is affected by the number of models, we will 

conduct pairwise comparisons with the B.-Rank for selected models with separate studies. 

 

Analysis of characteristics. In the following, we are addressing the detailed analysis of all 1,296 

scenarios. The investigation aims at the identification of patterns and trends which are provoked by the 

eight different characteristics. Figure 7 provides an overview over the B.-Values of all analyzed CRS 

models for all 1,296 scenarios.  

 

 

Figure 7 - Results of all 1,296 scenarios for the CRS models 
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Every bar depicts the B.-Value of a model for a single scenario. The scenarios are sorted starting with 

characteristic 1 (# DMUs) in a descending order on the highest level. The second level of sortation is 

characteristic 3 (# inputs), followed by characteristic 4 (input correlation). The further sortation rules can 

be obtained from the magnified areas of the figure. These sortation rules have been chosen to emphasize 

as many findings as possible. 

 

These detailed results exhibit clearly the dominance of the SBM and AR model over the CCR model. The 

darker bars, visualizing the CCR results, stay below the brighter AR and SBM results in every single 

scenario. Turning to the main drivers of these B.-Value results, several coherences are visible. Recent 

studies emphasize the large influence of the number of DMUs and inputs on the accuracy of DEA models. 

Our study can confirm these findings, as shown subsequently. However, these two characteristics are only 

partly responsible for the most distinctive effect visible in Figure 7. Six large gaps (highlighted with 

circles) characterize Figure 7. They reveal the huge impact of the correlation of inputs on the results. 

Missing correlation between the inputs is causing the six gaps. The interdependence between the 

correlation and the number of inputs is both coherent and visible. The use of more inputs is amplifying the 

negative effect of a low correlation. Furthermore, the use of a low number of DMUs is as well amplifying 

the effect. For instance, the average B.-Value for the CCR model drops for 7 inputs, 50 DMUs, and 0.0 

correlation to a value of 0.53. Soothing is the high improvement of the estimates already with the inclusion 

of a moderate correlation of 0.35. A complete absence of correlation between inputs is for most real 

processes rather unlikely. As already indicated, our study confirms the overall influence of the number of 

DMUs and inputs on the quality of the DEA estimates. The more units are evaluated, the higher the B.-

Value and thus the quality of the results (see aggregates in Figure 8). On a related note, it seems fitting that 

a setting with more DMUs needs on average less replications to generate stable results. A very similar 

impact has a change in the number of inputs (see Figure 9). For both effects, our results indicate that AR 

and SBM are more stable with regard to critical scenarios than the CCR model. In other words, their B.-

Value deteriorates less than the CCR’s. 

 

 
Figure 8 - Impact of a change in DMU size on the B.-Value 

 
Figure 9 - Impact of a change of the Input number on the B.-Value 
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The saw tooth appearance of Figure 7 comes from the characteristics 5 (input range) and 2 (true efficiency 

distribution). It becomes evident, that larger input ranges lead to worse results for all models. A rise in the 

true efficiency is affecting all models negatively. Interestingly, this effect is fortified by an increase in the 

number of inputs. In this context, two contradictory effects become apparent. First, a rise in the true 

efficiency pushes more units close to the true efficiency frontier. This helps all models to reproduce the 

frontier more precisely. As a result, the MAE and CORRI indicators are rising. Second, a rise in true 

efficiency squeezes the values to a smaller range. The consequence is a decline in SPEAR, EFF, and INEFF 

as discrimination becomes more difficult. Overall, the negative effects prevail slightly. However, we see 

a smaller effect for BCC and AR. These effects are affected by the number of inputs and they grow with 

an increase in inputs. The effects of input range and true efficiency distribution combined lead to a decline 

within each group of scenarios having the same #DMUs, #Inputs, and correlation. Variation in the 

characteristics 6 (importance of inputs), 7 (input substitution distribution), and 8 (input substitutability) 

have almost no significant effects. Only the AR and SBM model perform marginally worse if the input 

substitutability is high.  

 

Analysis of indicators. After analyzing the results on basis of the eight different characteristics, we turn 

to the indicator level. Table 8 depicts the average indicator values over all 1,296 scenarios and their 

corresponding replications for every model. Remember, the average over all indicator values of a model 

in turn yields its B.-Value. A support of the previous results by all indicators is visible as AR/SBM ≻ CCR 

≻ BCC ≻ RAND is valid for every single indicator.  

 
Indicator RAND CCR BCC SBM AR Avg. 

MAE 0.82 0.91 0.88 0.94 0.93 0.897 

SPEAR 0.00 0.89 0.79 0.92 0.95 0.710 

EFF 0.16 0.76 0.69 0.77 0.83 0.642 

INEFF 0.16 0.83 0.76 0.91 0.89 0.711 

CORRI 0.36 0.63 0.53 0.81 0.76 0.620 

Avg. (=�  B.−Value) 0.30 0.81 0.73 0.87 0.87  

Table 8 - Performance of the DEA models on the indicator level 

 
While MAE yields on average the best results, CORRI has plainly the lowest value of all indicators. This 

captures the fact, that DEA estimates are on average quite good, but getting really close to the correct 

values for the majority of DMUs is nothing that should be expected. The high value of RAND with regard 

to MAE is comprehensible as the values for RAND are drawn from the same range as the true efficiency 

values. Therefore, even RAND values that differ as far as possible from the truth do not receive a MAE 

score of zero. Encouraging is the good performance of most models with regard to the SPEAR indicator. 

The correct ordering of the DMUs efficiency estimates is essential for the credibility of DEA analyses. 
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Especially, the outstanding result of the AR model (SPEAR score of 0.95) has to be acknowledged in this 

regard. Furthermore, a huge difference between the estimates of the DEA models and RAND is apparent. 

RAND is not (and should not be) able to represent the correct ordering of the DMUs. Concerning EFF and 

INEFF, all models are better in identifying inefficient units than in identifying the efficient ones. An 

explanation for this observation is the overestimation of efficiency in large parts by the tested DEA models. 

Consequently, the unjustified declaration of DMUs as efficient is depressing the EFF indicator.  

 

When comparing the top performing SBM and AR models, it becomes apparent that despite identical B.-

Values some differences on the indicator level exist. As mentioned before, the SPEAR value of the AR is 

exceptionally good and cannot be reached by the SBM. Moreover, the AR model is better in identifying 

efficient units. In return, SBM has slight advantages in MAE and INEFF and is clearly the best model with 

regard to CORRI. 

 

Analysis of B.-Ranks. Finally, we are analyzing the B.-Rank results. The comparison of all models with 

the B.-Rank in Table 7 shows a slight dominance of the SBM over the AR model and a clear dominance 

of these two over the other models. As the B.-Rank is, unlike the B.-Value, depending on the number of 

models in the analysis, we conduct three additional studies where only two models are compared (CCR-

SBM, CCR-AR, SBM-AR). With this setting, a B.-Rank of 1.0 is the best and a score of 2.0 the worst 

possible value. A result of 1.0 implies a model is at least as good as its opponent for all indicators in every 

replication in 100% of the cases. The comparison of the SBM and AR model with the CCR model by the 

B.-Rank is quantifying their dominance. In a study with the SBM and CCR models only, the SBM model 

was able to reach a B.-Rank value of 1.05, while the B.-Rank value of the CCR was 1.84. The same 

comparison between the AR and CCR model in a separate study returned likewise a B.-Rank value of 1.05 

for the AR model. The CCR model received a B.-Rank value of 1.90. Based on these surprisingly 

unambiguous results, we advocate for a supersession of the CCR model as the standard model for the 

application of DEA. For the comparison of the top performing models, a slight advantage of the SBM 

(1.43) over the AR (1.48) is visible. These results support the findings of Table 7. Hence, the SBM 

performs more often at least as good as the AR model.  Therefore, we endorse the usage of the SBM model 

as standard DEA model. 

6.3 A guideline for the proper use of the DMU quantity in DEA studies 

The importance of a correct setup of DEA studies with regard to the ratio of the number of DMUs to inputs 

and outputs is well known. The results in Section 6.2 already exhibited increasing study accuracy with a 

rise in the number of DMUs or a reduction in the number of inputs. Other studies with Monte Carlo 

simulated data show similar findings for the CCR model (Smith 1997, Pedraja-Chaparro et al. 1999). In 

our study, we are able to quantify this effect and show its severity. DEA in general tends to overestimate 

efficiency. The increasing accuracy of studies with a higher number of DMUs results among others from 
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a reduced overestimation. This becomes apparent, when comparing the overall average true efficiency 

values with their estimated counterparts for the different levels of characteristic 1 (#DMUs) in Table 9. 

With more DMUs, the values decrease for all models and get closer to the true score of 0.74.  

 

 
True Efficiency CCR BCC SBM AR 

  50 DMUs 0.74 0.86 0.90 0.82 0.83 

150 DMUs 0.74 0.83 0.86 0.79 0.80 

450 DMUs 0.74 0.80 0.83 0.77 0.79 

Table 9 - Comparison of average overall results for 50, 150, and 450 DMUs 

 
 

In this context, a look at existing guidelines for a proper setup of DEA studies with regard to the minimum 

number of DMUs is worthwhile. A selection of guidelines can be found in Table 10 below. Parameter 𝑛𝑛 

denotes the number of DMUs, 𝑚𝑚 gives the number of inputs, and 𝑠𝑠 the number of outputs. 

 
Author Minimum number of DMUs 

Golany & Roll (1989) 𝑛𝑛 ≥ 2(𝑚𝑚 + 𝑠𝑠) 

Boussofiane et al. (1991) 𝑛𝑛 ≥ (𝑚𝑚 ⋅ 𝑠𝑠) 

Bowlin (1998) 𝑛𝑛 ≥ 3(𝑚𝑚 + 𝑠𝑠) 

Dyson et al. (2001) 𝑛𝑛 ≥ 2(𝑚𝑚 ⋅ 𝑠𝑠) 

Cooper et al. (2007) 𝑛𝑛 ≥ max {(𝑚𝑚 ⋅ 𝑠𝑠); 3(𝑚𝑚 + 𝑠𝑠)} 

Table 10 - Guidelines for minimum number of DMUs 

 
 

All of these guidelines endorse a study with 7 inputs, 1 output, and 50 DMUs. However, our results show 

that the quality of such a study is miserable. With this setup, the CCR model reaches a B.-Value of 0.67. 

With regard to some indicators, it even performs as bad as RAND, i.e. drawing random numbers. To exhibit 

the relationship between the number of DMUs and the number of inputs, we conduct new calculations. 

The goal is to reveal for settings with different numbers of inputs, how many DMUs are necessary to 

receive always the same result accuracy. Therefore, we conduct a study regarding two inputs and examine, 

how many DMUs are necessary to exceed a predetermined B.-Value with the CCR model. The same 

procedure is repeated for 3, 4, 5, 6, and 7 inputs. In comparison to our main study in Section 6.2, where 

1,296 scenarios have been analyzed, the characteristics 1 (#DMUs) and 3 (#Inputs) are fixed. As both 

characteristics had three different levels in Section 6.2, the resulting B.-Values for the new studies are the 
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average values over 144 �= 1,296
3⋅3

� scenarios. The results for a predetermined B.-Value of 0.75 and 0.80 

are depicted in Figure 10.  

 
Figure 10 - DMU/Input ratios resulting in constant B.-Values 

 
 

Three observations become apparent: 

1) The number of DMUs needed to ensure a sufficient level of quality in DEA is far higher than 

suggested by the existing guidelines.  

2) There is no linear relationship between the number of inputs and the number of DMUs when 

considering a constant level of quality. This fact is as well not captured by any of the existing 

guidelines. 

3) The curve with a B.-Value of 0.80 has a far steeper ascend than the curve with a B.-Value of 0.75. 

To conduct studies with a higher level quality, depending on the number of inputs, a considerable 

number of additional DMUs might be needed. 

 

Overall, it is important not to be wasteful on the use of additional inputs. A more precise reproduction of 

the production process might otherwise be displaced by a far less accurate efficiency estimation. To capture 

observations 1) and 2) above, we propose the following rule for the minimum number of DMUs used in 

DEA studies in (21). 

 

𝑛𝑛 ≥ 20 +
𝑚𝑚 + 𝑠𝑠 − 1

2
∙ �−10 + 10 ∙ (𝑚𝑚 + 𝑠𝑠 − 3)� (24) 

 

The new rule presents a reasonable approximation of the CCR curve with a B.-Value of 0.75. Remember, 

we identified 0.75 as the necessary B.-Value for an acceptable level of quality. The result seems a fitting 

measure for the restriction of the minimum number of DMUs for DEA in general. For the creation of the 
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rule, we utilized the property of the results to resemble an arithmetic series. The difference between two 

consecutive elements follows the pattern 𝑎𝑎𝑖𝑖+1 = 𝑎𝑎𝑖𝑖 + 10. Tests with eight and nine inputs revealed a good 

fit of the rule for higher numbers of 𝑚𝑚 as well. Although our DGP includes only a single output, a 

generalization for inputs and outputs is vital. As in many existing rules inputs and outputs are 

interchangeable, it stands to reason to include outputs in our rule in the same way. 

7 Conclusion 
In this paper, we provide a method to assess the quality of DEA model estimations and make their 

performance visible for everyone interested in DEA applications. We utilize Monte Carlo simulation based 

on a Translog production function for the underlying data generation process. The generation of a multitude 

of meaningful scenarios is playing a key role. We are generating 1,296 scenarios with constant returns to 

scale and evaluate the results by the use of five different performance indicators. Our research enhances 

for the first time a comparison of the level of quality of DEA models. We can show that the CCR model, 

which is still state of the art for evaluations with CRS settings, is performing worse than AR and SBM 

models. As a consequence, we advocate for a rise in AR and SBM applications. Remarkable in this context 

is the prominent position of the AR model with regard to the absence of a special calibration of the weight 

restriction. As the SBM model is performing in more scenarios at least as good as the AR model than vice 

versa, we endorse the establishment of the SBM model as the standard DEA model. Regarding the 

influence of scenario parameters, we can show that the number of DMUs, the number of inputs, and the 

correlation between inputs has a major influence on the quality of DEA analyses. While some of these 

interdependencies were already established, the first time quantification of these effects allows the 

formulation of a new rule for the minimum number of DMUs. This rule should be used in DEA analyses, 

to achieve a reasonable level of quality for the estimates. If the adherence to this rule is not possible, e.g. 

due to a strong limitation in the number of DMUs, a DEA should not be conducted. 

 

Future research could extend our methodology to variable returns to scale scenarios. Another drawback of 

the analysis is the use of just a single output in the DGP. Perelman & Santín (2009) showed how to extend 

the Translog DGP to a two input, two output setting. The generalization to a meaningful multi-input, multi-

output DGP is however not trivial and leaves room for future research. Furthermore, we want to address 

the negligence of noise in the data generation process. The reason behind this is the idea to create awareness 

for the accuracy of DEA results in a perfect setting. We intend to initiate further validation of DEA models 

with the presented method, both for other already existing models and for new developments. In this way 

the faith in DEA results could be strengthened and DEA might be able to leave the scientific stage and 

receive more attention by managers, economists, and politicians. 
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8 Appendix 

8.1 Derivation of unequal substitution distribution 

The parameter 𝜎𝜎𝑖𝑖ℎ needs to be designed symmetric (𝜎𝜎𝑖𝑖ℎ = 𝜎𝜎ℎ𝑖𝑖) and (13) has to hold. Furthermore, the final 

values should be normalized to the interval [−1, 1]. The starting point for the idea of the derivation of 

unequal substitution distribution was to reduce 𝜎𝜎𝑖𝑖ℎ by an equidistant amount with a rise in 𝑖𝑖 or ℎ and 

replace the values on the main diagonal later on to satisfy (13). An example for 𝑚𝑚 = 3, which is satisfying 

our desire for symmetry and equidistant differences before the replacement of the values on the main 

diagonal would be 𝜎𝜎𝑖𝑖ℎ′ = �
2 1.5 1

1.5 1 0.5
1 0.5 0

�. A general formula to reproduce this pattern for 𝑚𝑚 inputs yields 

in Eq. (25). 

 

𝜎𝜎′𝑖𝑖ℎ = 2 −
𝑖𝑖 − 1
𝑚𝑚− 1

−
ℎ − 1
𝑚𝑚 − 1

    ∀𝑖𝑖,ℎ. (25) 

 

In order to satisfy (13), the values on the main diagonal need to be replaced by the sum of the remaining 

values in their row, multiplied by -1. Since the 𝜎𝜎′𝑖𝑖ℎ-values build an arithmetic sequence, ∑ 𝜎𝜎′𝑖𝑖ℎ𝑖𝑖  can be 

computed by 𝑚𝑚
2

(𝜎𝜎′𝑖𝑖1 + 𝜎𝜎′𝑖𝑖𝑚𝑚) = 𝑚𝑚
2
⋅ �2 − 𝑖𝑖−1

𝑚𝑚−1
− 1−1

𝑚𝑚−1
+ 2 − 𝑖𝑖−1

𝑚𝑚−1
− 𝑚𝑚−1

𝑚𝑚−1
� = 𝑚𝑚 ∙ �1.5 − 𝑖𝑖−1

𝑚𝑚−1
�. In the 

example above, we would receive for ℎ = 1, 2, 3 the values 4.5, 3, 1.5. The values on the main diagonal 

have to be the negation of ∑ 𝜎𝜎′𝑖𝑖ℎ𝑖𝑖,𝑖𝑖≠ℎ = 𝑚𝑚 ⋅ �1.5 − 𝑖𝑖−1
𝑚𝑚−1

� − �2 − 2 ⋅ 𝑖𝑖−1
𝑚𝑚−1

�. We receive Eq. (26). 

 

𝜎𝜎′𝑖𝑖ℎ = −𝑚𝑚 ⋅ �1.5 −
𝑖𝑖 − 1
𝑚𝑚− 1

� − �2 − 2 ⋅
𝑖𝑖 − 1
𝑚𝑚 − 1

�   ∀𝑖𝑖 = ℎ (26) 

 

In the example, 𝜎𝜎11,𝜎𝜎22,𝜎𝜎33 take the values −2.5,−2,−1.5. Finally, in order to obtain values between -1 

and 1, all values are divided by the absolute value of the largest element �|𝜎𝜎11| = 𝑚𝑚 ⋅ �1.5 − 1−1
𝑚𝑚−1

� −

�2 − 2 ⋅ 1−1
𝑚𝑚−1

� = 1.5 ⋅ 𝑚𝑚 − 2�. Dividing (25) and (26) by 1.5 ⋅ 𝑚𝑚 − 2 leads to the formulas (15) and (16). 

 

8.2 Pre-study on input ranges 

In a pre-study, we tested the effect of changing input ranges. To keep the computational time of this study 

manageable, only scenarios with 50 DMUs were considered (6,480 scenarios in total). The pre-study 

shows, that all models react similarly to a change of the input range. An increase of the range is decreasing 

the B.-Value of all models. After a rather strong B.-Value decrease in the lower input ranges, the values 
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settle down around an input range of 6,000. To include a high and a low value into our analysis, we adopt 

input ranges of 1,000 and 10,000 for our DGP. 
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Abstract 

This case study has the intention to guide through the conduction of a meaningful Data Envelopment 

Analysis (DEA) in the healthcare sector. A data sample on German hospitals is provided and used 

throughout different tasks. Apart from the implementation of the DEA model itself, the case study also 

covers areas of pre- and post-processing. As a result, the user of the case study is confronted with common 

pitfalls and learns to work with procedures, which have emerged as gold standards. The participant is 

encouraged to use methods for the detection of outliers and for the treatment of missing values to cover 

common issues in this field. The comparison of different DEA models enhances the understanding of the 

mechanics of DEA, especially the relevance of slacks for the analysis. In including quality data into the 

study, another essential feature for hospital analyses is addressed.  

With the Helmsman DEA, an interesting, however, rather unfamiliar procedure is presented to achieve a 

meaningful inclusion of the quality data into the analysis. Using bootstrapping as a subsequent method 

completes the study. Finally, a recommendation for the grading of the tasks is given. The results and the 

source code to all implementations are provided. 

 

Keywords: Data Envelopment Analysis, Efficiency Estimation, Hospital, Healthcare, Quality, 

Bootstrapping, Case Study 

  

Using Data Envelopment Analysis to Estimate Hospital 
Efficiencies – A Teaching Case  



64 

 

1 Introduction 
The health care sector represents one of the essential parts of social welfare in every country. It is common 

consent that due to an aging population, the importance and demand for health services in Germany will 

further increase in the upcoming years. Hospitals are in almost all countries a crucial pillar of the healthcare 

system. With a decrease in hospital numbers over the past decades and a declining length of stay of patients 

as a consequence of the introduction and revision of the DRG system, the supply side of the hospital market 

is shrinking (Klauber et al. 2019). Putting an increasing pressure for hospitals to work at least cost-covering 

on top of it, a rise in efficiency is without an alternative for hospitals and the healthcare sector. However, 

the identification of efficient best-practice examples to learn from is not an easy task for hospital managers. 

As a decision maker, you look at the literature for efficiency estimation and identify two main 

methodological directions: parametric and nonparametric methods. Parametric approaches as regression 

and Stochastic Frontier Analysis usually have the disadvantage that a functional form of the production 

(or service) process needs to be determined. Furthermore, many parametric models only allow for a single 

output. For these reasons, the nonparametric methods are used more frequently when it comes to the 

assessment of efficiency in hospitals (Jacobs et al. 2006). Within the non-parametric methods, data 

envelopment analysis (DEA) models have prevailed as state of the art for multiple inputs, multiple outputs 

settings. When focusing more on the setup of DEA studies, you learn that for the execution of a meaningful 

DEA study, the usage of homogenous decision making units (DMUs), in your case hospitals, is of prime 

importance (Dyson et al. 2001). From your experience as a decision maker, this is reasonable, as small and 

specialized private hospitals cannot be compared with large university hospitals providing maximum care 

for an entire region. Therefore, it makes sense for you to limit the analysis to a specific hospital size. The 

hospital you are working for is a medium-sized hospital. In 2017, the German hospital sector encompasses 

1,942 hospitals, with 1,592 hospitals being deemed as general hospitals (Federal Statistical Office of 

Germany 2018).  The average size of a general hospital in Germany is 282.9 beds. Figure 1 shows the 

distribution of the size of general hospitals in more detail.  
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Figure 1: number of general hospitals according to bed clusters (Federal Statistical Office of Germany 2018) 

 

The cluster between 200 and 299 beds seems a fitting choice for your analysis. It inherits your hospital and 

provides a sufficient amount of DMUs. As the cluster represents as well the average hospital size, the 

results are also representing large parts of the German hospital Markert in general. A further advantage of 

this bed range is the automatic exclusion of university hospitals. University hospitals have different 

objectives, as research and training of residents are additional goals. Therefore, the mixture of hospital 

types might distort the results. 

Restricted by the bed size corridor, you want to compare the performance of the following hospitals (Table 

1): 

 
DMU Hospital Departments Ownership CMI 

1 Agaplesion Ev. Bathildiskrankenhaus Bad Pyrmont 7 private non-profit 1.036 
2 Asklepios Klinik Lich GmbH  5 private for-profit 1.01 
3 Borromäus-Hospital Leehr gGmbH 9 private non-profit 0.885 
4 DIAKOMED gGmbH Diakoniekrankenhaus Chemnitzer Land  8 private non-profit 0.955 
5 Diakoniekrankenhaus Halle 10 private non-profit 1.226 
6 Diakonissenkrankenhaus Dresden 10 private non-profit 0.875 
7 Dominikus Krankenhaus GmbH Berlin 4 private non-profit 1.407 
8 Donau-Ries-Klinik Donauwörth 7 public 0.829 
9 DRK Krankenhaus Luckenwalde 9 private non-profit 0.978 

10 Elbe Klinikum Buxtehude 5 public 0.911 
11 Ev. Diakonissenkrankenhaus Leipzig 12 private non-profit 1.071 
12 Ev. Krankenhaus Ludwigsfelde-Teltow 4 private non-profit 0.87 
13 Ev. Krankenhaus Mettmann GmbH 6 private non-profit 0.921 
14 Evangelische Krankenhaus Bethanien Iserlohn gGmbH 8 private non-profit 0.793 
15 Gemeinschaftsklinikum Mittelrhein, St. Elisabeth Mayen 7 private non-profit 1.024 
16 Gesundheitszentrum Tuttlingen 6 public 0.904 
17 Heilig Geist Krankenhaus Köln 7 private non-profit 0.876 
18 Helios Albert-Schweitzer-Klinik Northeim 11 private for-profit 0.979 
19 Helios Klinik Lutherstadt Eisleben 7 private for-profit 0.953 
20 Helios Klinik Köthen 5 private for-profit 1.005 
21 Helios Klinik Rottweil 11 private for-profit 0.94 
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22 Helios St. Marienberg Klinik Helmstedt  5 private for-profit 1.084 
23 Hospital Zum Heiligen Geist Kempen 7 private for-profit 0.757 
24 Josephs-Hospital Warendorf 8 private non-profit 0.925 
25 Katholische Kliniken Ruhrhalbinsel (St. Josef Krankenhaus Kupferdreh) 9 private non-profit 1.05 
26 St. Marien-Hospital Oberhausen 9 private non-profit 0.958 
27 Katholisches Krankenhaus Dortmund-West 4 private non-profit 0.878 
28 AMEOS Klinik am Bürgerpark Bremerhaven 5 private for-profit 0.996 
29 Klinik Vincentinum Augsburg 5 private for-profit 0.743 
30 Helios Klinik Herzberg/Osterode 9 private for-profit 0.933 
31 Kliniken Hochfranken Münchberg 7 public 1.035 
32 Kliniken Kreis Mühldorf a. Inn - Klinik Mühldorf 6 public 0.939 
33 Helios Klinik Erlenbach 7 private for-profit 0.843 
34 Klinikum in den Pfeifferschen Stiftungen gGmbH  6 private non-profit 1.21 
35 Klinikum Mittelbaden Rastatt-Forbach 7 public 0.913 
36 Klinikum Oberlausitzer Bergland gemeinnützige GmbH 6 public 0.81 
37 Helios Klinik Cuxhaven 12 private for-profit 0.964 
38 Helios Klinik Jerichower Land  9 private for-profit 0.879 
39 Krankenhaus St. Josef Schweinfurt 7 private non-profit 0.854 
40 Krankenhaus St. Joseph-Stift Dresden 9 private non-profit 0.94 
41 Krankenhaus St. Marienwörth 9 private non-profit 0.858 
42 Krankenhaus-Spital Waldshut-Tiengen 9 public 0.761 
43 Rhön-Kreisklinik gGmbH Bad Neustadt a.d.Saale  6 private for-profit 0.872 
44 Kreiskrankenhaus Emmendingen 9 public 0.886 
45 Kreiskrankenhaus Winsen 5 public 0.914 
46 Lahn-Dill-Kliniken Dillenburg-Herborn  8 public 1.068 
47 Malteser Krankenhaus St. Johannes-Stift Duisburg 10 private non-profit 0.985 
48 Maria-Hilf-Krankenhaus Bergheim 11 private non-profit 0.841 
49 Marienkrankenhaus Soest  10 private non-profit 1.141 
50 Helios Kliniken Mittelweser 10 private for-profit 0.968 
51 Paracelsus Klinik Adorf 4 private for-profit 1.091 
52 Paracelsus Klinik Schöneck 6 private for-profit 1.091 
53 Pleißental-Klinik 5 public 0.851 
54 Sankt Marien-Hospital-Buer 9 private non-profit 1.035 
55 Segeberger Kliniken GmbH 4 private for-profit 1.457 
56 Helios St. Elisabeth-Krankenhaus Bad Kissingen 10 private for-profit 0.864 
57 St. Elisabeth-Stift Damme 8 private non-profit 0.897 
58 St. Josef -Krankenhaus Engelskirchen kath. Kliniken Oberberg 5 private non-profit 1.133 
59 St. Josef-Hospital GFO Kliniken Bonn 7 private non-profit 0.906 
60 St. Josef-Krankenhaus Haan 5 private non-profit 1.001 
61 St. Josefs-Hospital Cloppenburg gGmbH 9 private non-profit 1.009 
62 St. Josefskrankenhaus Heidelberg 6 private non-profit 1.126 
63 St. Marien-Krankenhaus Lankwitz 7 private non-profit 1.159 
64 St. Nikolaus Stiftshospital GmbH Andernach 10 private non-profit 0.902 
65 St. Theresien-Krankenhaus Nürnberg 12 private non-profit 0.907 
66 St. Walburga-Krankenhaus Meschede  9 private non-profit 0.846 
67 Vinzenz-Pallotti-Hospital 6 private non-profit 0.83 
68 Waldkrankenhaus St. Marien Erlangen 11 private non-profit 1.231 
69 Westpfalz-Klinikum GmbH Standort Kusel 11 public 1.132 
70 Wilhelm Anton Hospital Goch 5 private non-profit 0.843 

 

Table 1: DMUs forming the data sample; source: Klauber et al. (2019)1

                                                      

 
1 Note that most data sources are in German. An online translator could be used for translation. However, all necessary data are 

provided and the usage of the original sources is not necessary. 
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Apart from the number of departments, Table 1 inherits the ownership type and the case mix index (CMI) 

of the hospitals. The ownership type and funding is a distinctive feature for hospitals in Germany. 28.8% 

of all hospitals are public hospitals, 37.1% private-for-profit, and 34.1% private-non-profit (Klauber et al. 

2019). It can be argued that the inclusion of different ownership types also results in an inhomogeneous 

data sample. However, you think the service process in all groups is sufficiently comparable, as hospitals 

of all types use the same resources (e.g., beds, physicians, and nurses) to deliver the same outputs (treated 

patients). The CMI reflects the complexity and resource need of all treated cases in the hospital. A low 

CMI indicates a hospital is treating on average cases of lesser severity, while the opposite is valid for a 

high CMI. A CMI of 1 reflects the average severity of cases in Germany (Geissler et al. 2011). Including 

this measure into the analysis seems reasonable for you as, e.g., a complicated heart surgery consumes by 

far more resources than a standard delivery without complications. From chapter nine of Ozcan (2014), 

you learn that your feeling is correct, and the adjustment of the number of patients by the CMI has emerged 

as a standard procedure. In doing so, the analysis as well procures for the fact that a hospital receives more 

reimbursement for complex patients.  

To figure out, which data you need from these hospitals, you consider a recent literature review on DEA 

in healthcare with a focus on hospitals (Kohl et al. 2018). It gives you an insight into standard input/output 

settings for hospital DEA studies. You learn that the parameters used most often in hospital DEA studies 

are beds, nurses, physicians, inpatients, and outpatients. These measures seem fitting for you to describe 

the service process of a hospital. The number of beds provides a central figure of the capacity of a hospital. 

Physicians and nurses are most vital for the hospital's service process. Furthermore, personnel costs are 

the main cost driver of hospitals, and it is advised to use more than one labor category (Chilingerian & 

Sherman 2011). Therefore, you plan to include the full-time equivalents (FTE) of physicians and nurses in 

the data sample. You find all the necessary data at hospital search engines as the BKK-Klinikfinder 

(https://www.bkk-klinikfinder.de) and gather them in Table 2. 

 
DMU Beds Physicians Nurses Inpatients Outpatients DMU Beds Physicians Nurses Inpatients Outpatients 

1 280 85.75 181.52 12'018 10'578 36 225 44.64 161.49 8'954 9'589 
2 242 84.78 156.32 12'761 28'278 37 214 78.50 120.50 10'358 23'987 
3 256 83.25 198.66 14'268 31'588 38 241 60.20 117.80 11'524 11'974 
4 230 54.40 184.60 8'817 18'739 39 272 57.34 230.95 13'743 20'394 
5 200 55.49 145.97 6'228 7'989 40 240 88.65 251.91 13'890 19'908 
6 220 81.03 210.70 13'152 15'244 41 274 59.45 161.04 13'215 22'243 
7 253 56.48 156.06 6'643 12'523 42 251 75.94 162.69 13'595 23'682 
8 255 71.09 213.02 12'173 24'381 43 225 48.88 157.95 10'606 N/A 
9 253 67.64 170.73 10'950 20'913 44 263 68.26 150.50 11'699 16'550 
10 275 96.75 247.52 14'874 49'511 45 255 77.57 181.12 14'857 28'801 
11 250 84.42 167.48 13'343 992 46 261 51.73 189.03 13'323 17'999 
12 250 56.74 160.99 9'797 18'644 47 267 61.50 196.70 8'549 9'447 
13 245 69.84 177.11 10'862 17'625 48 205 59.94 143.80 8'465 12'963 
14 256 44.83 131.93 10'456 5'785 49 265 87.26 227.51 12'995 N/A 
15 251 64.85 201.89 11'332 25'200 50 249 97.80 211.80 16'078 27'815 
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16 228 77.13 157.46 12'580 N/A 51 275 21.90 91.00 5'028 5'153 
17 291 96.18 227.32 16'562 35'028 52 275 22.50 81.20 4'244 5'830 
18 210 93.30 177.10 13'226 18'900 53 240 55.62 192.45 10'400 16'627 
19 247 55.70 144.00 9'578 7'400 54 257 77.98 150.16 4'167 469 
20 264 72.90 161.40 11'105 13'692 55 230 55.80 139.60 8'118 4'193 
21 275 66.10 127.40 11'180 16'965 56 225 55.30 141.20 10'089 9'116 
22 283 93.20 199.30 16'154 18'920 57 244 82.50 221.05 13'672 48'801 
23 279 72.05 180.56 11'773 26'781 58 245 49.56 125.12 7'263 20'930 
24 261 62.87 188.04 12'528 19'231 59 236 59.33 164.56 12'647 25'616 
25 265 103.57 197.86 14'023 23'255 60 217 43.01 130.11 7'935 9'306 
26 247 50.36 114.51 5'471 10'914 61 257 82.81 297.02 13'361 57'718 
27 263 42.54 149.82 9'705 18'474 62 249 53.99 155.05 8'393 13'798 
28 215 57.49 224.45 10'351 N/A 63 274 59.40 142.18 7'508 18'432 
29 248 6.00 146.02 10'983 3'031 64 257 61.63 197.36 11'630 28'651 
30 214 76.40 153.00 10'654 18'979 65 276 63.47 249.50 11'729 N/A 
31 235 42.88 174.44 10'322 9'016 66 232 43.00 147.94 9'686 11'944 
32 267 76.08 268.86 15'472 16'497 67 223 62.41 171.89 11'866 35'519 
33 262 68.90 167.90 13'938 19'149 68 290 108.49 312.30 12'759 15'962 
34 270 73.49 235.14 9'954 11'408 69 244 69.86 219.21 8'304 15'708 
35 260 92.37 213.41 13'896 14'036 70 223 54.06 199.77 9'872 14'295 

  

Table 2: Inputs and outputs of the DMUs 

Apart from the standard inputs and outputs, you learn from Kohl et al. (2018) that the inclusion of quality 

indicators has gained rising attention over the past decade. This sounds as well reasonable to you, as many 

studies you have seen neglected a proper representation of the hospital's service process. The ultimate goal 

of every hospital is to cure patients. The mere number of admissions in a hospital, however, reveals nothing 

about the quality of the treatment. When conducting a hospital DEA, the following example should be kept 

in mind: A hospital, in which every patient is dying because not a single physician is employed and patients 

cannot be treated, will be rated 100% efficient if the number of patient admissions is the only output. It is 

needless to say that this example is highly exaggerated. However, the intuition behind it stays relevant for 

common settings. As evaluable recovery indicators are not existing, the inclusion of quality indicators is 

indispensable. You know that the publication of quality indicators is mandatory in Germany since the 

introduction of the DRG system in 2004 (Tiemann et al. 2012). Since then, the Federal Joint Committee 

(G-BA), which is under statutory supervision of the Federal Ministry of Health is developing the federal 

quality assurance program. Three of these quality indicators (QI 2009, QI 50722, and QI 50778) are 

available in the data sample in Table 3. All three indicators deal with community-acquired pneumonia, 

which is the infection with the highest mortality in Germany. An insufficient treatment is increasing the 

mortality rate of affected patients (Institute for quality assurance and transparency in health care 2019). QI 

2009 documents if an antimicrobial therapy has been started within the first eight hours after admission. 

Studies have shown increased survivability of patients with an immediately starting antimicrobial therapy 

(Houck et al. 2004, Mandell et al. 2007). QI 50722 tracks if the respiration rate is measured at the 

admission. The patient’s respiration rate is important to assess the severity of the infection and to determine 



69 

 

a treatment plan. Finally, QI 50778 reports the ratio of observed to expected deaths. Studies indicate that 

the implementation of quality management concerning the disease can reduce its mortality rate 

(Capelastegui et al. 2004). An obligation to provide documentation for the illness is existing since 2005. 

Overall, the infection is a) relevant, b) treatment affects the patient’s recovery and c) is well documented. 

With these characteristics, the quality indicators of the infection serve as a good quality proxy. The 

“institute for quality management and transparency in the health system” (IQTIG) is reporting the quality 

indicators for the disease. In addition, the information is available via hospital search engines as the BKK-

Klinikfinder (https://www.bkk-klinikfinder.de) or the Weisse Liste (https://www.weisse-liste.de).  

Apart from the mandatory quality indicators, the Weisse Liste reports general patient satisfaction statistics. 

The recommendation rate and the satisfaction rates for medical care, nursing care, and organization & 

service are included in the data sample as additional quality indicators. All seven quality indicators are 

obtainable in Table 3.  
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DMU QI 
2009 

QI 
50722 

QI 
50778 

Recom-
mendation 

Satisfaction 
with 

medical 
care 

Satisfaction 
with 

nursing 
care 

Satisfaction 
with 

organi-
zation and 

service 

DMU QI 
2009 

QI 
50722 

QI 
50778 

Recom-
mendation 

Satisfaction 
with 

medical 
care 

Satisfaction 
with 

nursing 
care 

Satisfaction 
with 

organi-
zation and 

service 
1 95.9 72.8 4.1 78% 77% 81% 74% 36 94.4 97.4 14.9 79% 83% 81% 80% 
2 99.5 100 9.3 83% 85% 82% 76% 37 91.1 98.3 15.1 70% 76% 78% 70% 
3 91.5 9.8 14.9 85% 85% 84% 80% 38 98.3 98.5 13.3 72% 79% 76% 72% 
4 96.1 99.6 14.7 87% 86% 86% 85% 39 96.9 99.6 10.6 86% 83% 84% 80% 
5 91.8 100 19.9 89% 89% 88% 83% 40 91.2 96.4 15.6 94% 91% 89% 88% 
6 93.6 93.9 7.5 90% 88% 89% 86% 41 95.1 96.7 10.6 87% 86% 84% 80% 
7 96.6 98.1 15.7 83% 84% 82% 79% 42 92 97.7 3.4 69% 76% 77% 73% 
8 96.9 98.4 8.6 80% 81% 82% 79% 43 89.9 89.6 6.1 73% 78% 78% 75% 
9 91.5 98.8 13.3 79% 80% 81% 80% 44 90.8 100 4.7 79% 82% 82% 79% 

10 94.2 94.7 11.2 80% 82% 82% 76% 45 90.7 97.3 3.4 82% 81% 79% 76% 
11 95.1 96.8 6.7 85% 86% 85% 81% 46 97.7 100 9.1 73% 78% 78% 73% 
12 96.9 80.3 8.9 75% 82% 81% 76% 47 97.6 99.6 2.1 79% 81% 79% 74% 
13 93.6 98.8 4.8 77% 79% 80% 72% 48 94.4 98.1 4.6 69% 76% 76% 70% 
14 96.5 98.9 18.8 75% 78% 78% 73% 49 96.6 100 8.5 84% 82% 81% 78% 
15 N/A N/A N/A 81% 84% 82% 76% 50 91.6 91.3 10.2 66% 73% 75% 67% 
16 100 100 2.6 81% 82% 81% 77% 51 100 98.8 10.1 88% 86% 86% 85% 
17 99.2 99.7 9.9 74% 81% 79% 73% 52 N/A N/A N/A 88% 86% 86% 85% 
18 97.9 92.7 3.5 68% 79% 74% 71% 53 95.1 90.8 15.1 90% 88% 86% 86% 
19 95.7 98.1 10 79% 84% 82% 78% 54 97 96.2 13 79% 79% 79% 73% 
20 87.1 98.4 11.5 77% 82% 79% 76% 55 97.3 100 4.5 80% 81% 80% 75% 
21 95.7 97.5 5.7 72% 78% 77% 71% 56 97.7 74.6 10.2 74% 78% 78% 74% 
22 94.5 96.1 11.5 63% 75% 73% 65% 57 88.6 100 5.6 85% 83% 85% 81% 
23 100 93.5 11.8 81% 83% 80% 78% 58 96.4 99.5 7.1 81% 82% 82% 78% 
24 98.9 98.5 5.6 81% 83% 84% 77% 59 93.3 99.1 3.2 83% 83% 81% 78% 
25 96.4 98.7 6 81% 82% 79% 75% 60 90.3 100 3.6 81% 82% 81% 77% 
26 99.4 97.5 9.6 74% 81% 77% 71% 61 99.2 99.6 11.2 77% 81% 81% 78% 
27 83.8 98.3 11.4 80% 80% 78% 78% 62 100 96.3 9.9 83% 86% 83% 80% 
28 90.5 99.3 8.6 63% 71% 70% 62% 63 97 97.8 14.5 76% 80% 77% 76% 
29 93.3 88.8 13 90% 89% 85% 87% 64 100 100 4 80% 83% 81% 76% 
30 96.2 97.7 8.7 70% 78% 77% 70% 65 89.9 98 11 80% 83% 82% 78% 
31 93.3 98 14.6 90% 87% 87% 86% 66 84.8 99 8.9 69% 75% 76% 71% 
32 91 96.5 7.4 79% 83% 83% 79% 67 90.8 100 12.1 75% 80% 77% 72% 
33 99.4 99.4 16.3 67% 76% 75% 67% 68 89.5 72.5 8.6 84% 85% 83% 79% 
34 92.9 97.8 14 86% 85% 85% 81% 69 90.5 98.2 13.5 74% 79% 77% 71% 
35 98 85 5.1 73% 78% 76% 73% 70 90.2 98.3 5.3 78% 79% 78% 73% 

 

Table 3: Quality measures of the DMUs 
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2 Tasks 
The forthcoming tasks aim at the conduction of a meaningful DEA in the German hospital sector. By 

addressing the tasks, you are guided through a range of essential topics, which have to be considered to 

provide a reasonable DEA. The topics cover the stages of preprocessing, processing, and postprocessing. 

Figure 2 provides an overview of the treated topics. Furthermore, it shows which tasks are related to which 

stage in the conduction of DEA. 

 

 

 

Figure 2: Framework on the conduction of a DEA and the allocation of the tasks to the different  stages 

 

 DEA modeling 

i) For the efficiency estimation, a standard CCR model (Charnes et al. 1978) and the more advanced 

SBM model (Tone 2001) shall be used. Formulate and describe the input-oriented CCR model in its 

primal (multiplier) and dual (envelopment) form. Explain briefly the linearization of the primal CCR 

model from its original idea as a fractional program. Provide as well the primal and the dual form of 

the linearized SBM model. An elaboration on the linearization of the SBM model is not necessary. 

Please note that standard literature as Cooper et al. (2007) is covering all aspects of this task.  

ii) Compare the CCR and SBM model briefly. What is an obvious advantage in the efficiency score 

calculation of the SBM model over the CCR model? 

iii) For the identification of outliers in section B.iv), a super-efficiency DEA model (Andersen & Petersen 

1993) is used. Describe the model and its difference to the CCR model briefly.  

iv) Think of one reason each, why DEA can be deemed as a fair/unfair estimation method, considering 

the view of all DMUs. Hint: Consider the multi-input, multi-output setting of the studies. 
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v) No gold standard for the treatment of quality data in DEA has emerged, yet. The reason for this is 

manifold. First of all, no standard quality measures for DEA have emerged, yet. Second, consistent 

quality measures are not always available for a complete data sample. Third, some argue that quality 

is not a part of technical efficiency (Nuti et al. 2011). If quality measures are used, they are usually 

treated as additional outputs (Kohl et al. 2018). However, some unresolved issues remain with this 

procedure. An alternative approach is presented by Ferrier & Trivitt (2013), which is called 

‘Helmsman’. Describe the approach and its benefits towards the use of quality data as output. 

vi) Bootstrapping (Simar & Wilson 1998, 2000b) has emerged as one of the most relevant methodological 

advancements in the past decade. Describe briefly the idea of bootstrapping in general and why it is 

useful for DEA. What is the difference between the naive and the smoothed bootstrap method? Hint: 

The publications of Simar & Wilson are in large parts very technical. Bogetoft & Otto (2011) provide 

an explanation of the Bootstrap for DEA which is easier to follow. 

 

 

 Data description 

i) Analyze the data sample and calculate summary statistics (minimum, maximum, mean, standard 

deviation) for all measures. Provide Boxplot diagrams for the inputs (beds, physicians, nurses) and 

outputs (inpatients, outpatients). Check if a correlation between the inputs and outputs is present, as 

demanded by Dyson et al. (2001).  

ii) Which dimensions of quality are existing according to Donabedian (1988)? To which dimensions can 

the provided indicators be assigned? 

iii) The data sample reveals missing data for the outputs. That’s because the data source reports for some 

hospital a divergent definition for outpatient cases. In order to avoid distorted results, these values 

have been left blank. Describe the suggestion of Kuosmanen (2009) on the treatment of missing data 

and apply it to the data sample. 

iv) Data Envelopment Analysis is known to be very sensitive to data errors. To avoid problems, check 

your data for outliers following the approach of Banker & Chang (2006). Describe briefly the approach 

and the results. How can the results be explained and what are possible treatments of the issue? 

v) When conducting a DEA study, several pitfalls need to be evaded. Among the most common mistakes 

are the mixture of relative and absolute data and an insufficient number of DMUs compared to the 

number of inputs and outputs. Describe these issues briefly. What are the protocols Dyson et al. (2001) 

suggest to tackle them? 
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 Results 

i) Use the Helmsman DEA approach to create a single quality indicator. Use both, the CCR and SBM 

model to create the measure and compare the results. Where do the differences in the results come 

from?  

Note: The SBM can’t handle values of 0. Replace these values with a marginal value as 1.00E-6. 

ii) Multiply the case mix indices (Table 1) with the respective inpatient and outpatient cases of each 

hospital (Table 2). Afterward, proceed in the same way with the single quality indicators obtained in 

C.i) to receive quality- and severity-adjusted output figures. Conduct a DEA study with these outputs 

and the inputs from Table 2 using the CCR and SBM model. Exclude outliers identified in B.iv) from 

the study. Furthermore, exclude as well DMUs, which receive no meaningful score in any of the 

models. Compare the results of both models. Which DMUs are deemed efficient and what becomes 

apparent, when looking at efficient/inefficient units? 

iii) What are possible managerial insights for you as a decision maker, if the hospital you are working for 

is the Helios Klinik Köthen (DMU 20)? What are the theoretical suggestions for improvement with 

regard to the CCR and SBM results? Which hospitals are suitable best practice examples? Note: 

Standard literature as Cooper et al. (2007) might again be helpful for this task. 

What is your feeling on the practicability of these theoretical suggestions? Which implications can 

be drawn, if you did the same analysis last year and the efficiency score of your hospital has 

increased by 0.1? 

iv) Perform the bootstrap procedure 100 times (using the CCR model), to create confidence intervals and 

bias-corrected values for your estimates. For the calculation of the bandwidth parameter ℎ, a variety 

of approaches exist (e.g., Simar & Wilson 2000a, Daraio & Simar 2007, Puenpatom & Rosenman 

2008). Use a bandwidth parameter of ℎ = 0.06158, which corresponds to the approach of Puenpatom 

& Rosenman (2008). Compare the results with those of C.ii). 
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3 Solutions 
 DEA models 

i)  

The CCR (Charnes, Cooper, Rhodes) model (Charnes et al. 1978) is the initial DEA model. Its general 

idea is to express (and maximize) efficiency as a ratio of weighted outputs to weighted inputs. The weights 

are decision variables of the optimization problem and do not need to be predefined. In the fractional 

programming form, the initial output-to-input ratio idea is palpable: 

 

Parameters & Sets: 

𝑛𝑛  Number of DMUs 

𝑚𝑚  Number of Inputs 

𝑠𝑠  Number of Outputs 

𝑗𝑗 = 1, … ,𝑛𝑛  Set of DMUs with index 𝑗𝑗 

𝑖𝑖 = 1, … ,𝑚𝑚  Set of inputs with index 𝑖𝑖 

𝑟𝑟 = 1, … , 𝑠𝑠  Set of outputs with index 𝑟𝑟 

𝑜𝑜 ∈ 1, … ,𝑛𝑛  DMU under observation 

𝑥𝑥𝑖𝑖𝑖𝑖  Input 𝑖𝑖 of DMU 𝑗𝑗 

𝑦𝑦𝑟𝑟𝑖𝑖  Output 𝑟𝑟 of DMU 𝑗𝑗 

 

Decision variables: 

𝑣𝑣𝑖𝑖  Weight for input 𝑖𝑖 

𝑢𝑢𝑟𝑟  Weight for output 𝑟𝑟 

 

max
∑ 𝑢𝑢𝑟𝑟𝑦𝑦𝑟𝑟𝑟𝑟 𝑠𝑠
𝑟𝑟=1
∑ 𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖𝑟𝑟𝑚𝑚
𝑖𝑖=1

 
 

(1a) 

∑ 𝑢𝑢𝑟𝑟𝑦𝑦𝑟𝑟𝑖𝑖  𝑠𝑠
𝑟𝑟=1
∑ 𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑚𝑚
𝑖𝑖=1

≤ 1 ∀𝑗𝑗 (1b) 

𝑣𝑣𝑖𝑖,𝑢𝑢𝑟𝑟 ≥ 0 ∀𝑖𝑖, 𝑟𝑟 (1c) 

In the next step, Charnes et al. (1978) linearized their fractional program to facilitate solving the problem. 



 

75 

 

max�𝑢𝑢𝑟𝑟𝑦𝑦𝑟𝑟𝑟𝑟 
𝑠𝑠

𝑟𝑟=1

 
 

(2a) 

�𝑢𝑢𝑟𝑟𝑦𝑦𝑟𝑟𝑖𝑖  
𝑠𝑠

𝑟𝑟=1

≤�𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖

𝑚𝑚

𝑖𝑖=1

 ∀𝑗𝑗 (2b) 

�𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖𝑟𝑟

𝑚𝑚

𝑖𝑖=1

= 1  (2c) 

𝑣𝑣𝑖𝑖,𝑢𝑢𝑟𝑟 ≥ 0 ∀𝑖𝑖, 𝑟𝑟 (2d) 

This linear program (LP) is known as the multiplier form of the CCR model. As for every LP, a dual 

formulation for (2) is existing. It is known as the envelopment form and expresses the idea to describe 

every decision making unit (DMU) as a linear combination of all existing units. If a linear combination 

exists, that produces the same output with fewer inputs, a DMU is deemed inefficient. Otherwise, it is 

efficient. This linear combination defines an efficient peer unit for every DMU. The distance of a DMU to 

its peer unit describes the inefficiency of a unit. As the envelopment form has some computational 

advantages over the multiplier form and the comparison with the SBM is facilitated, we mainly focus on 

this form hereafter. 

Additional notation: 

𝜃𝜃𝑖𝑖  Efficiency score of DMU 𝑗𝑗 

𝜆𝜆𝑖𝑖  Share of DMU 𝑗𝑗 in the efficient peer unit of DMU 𝑜𝑜  

 

min𝜃𝜃𝑟𝑟  (3a) 

𝜃𝜃o𝑥𝑥𝑖𝑖o ≥� 𝜆𝜆𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
𝑛𝑛

𝑖𝑖=1
 ∀𝑖𝑖  (3b) 

𝑦𝑦𝑟𝑟o ≤� 𝜆𝜆𝑖𝑖
𝑛𝑛

𝑖𝑖=1
𝑦𝑦𝑟𝑟𝑖𝑖   ∀𝑟𝑟  (3c) 

𝜆𝜆𝑖𝑖 ≥ 0 ∀𝑗𝑗  (3d) 

 

To receive an efficiency estimate 𝜃𝜃𝑖𝑖 for every DMU in the data sample, the model needs to be solved 𝑛𝑛 

times, with every DMU being once under observation, i.e. 𝑗𝑗 = 𝑜𝑜. Note that ∑ 𝜆𝜆𝑖𝑖𝑖𝑖  does not have to be equal 

to 1 in the CCR model. 
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The Slacks-Based-Measurement model (SBM), invented by Tone (2001), is built on the idea to designate 

the  input slacks 𝑠𝑠𝑖𝑖− from (3b) and the output slacks 𝑠𝑠𝑟𝑟+ from (3c) and include them into the efficiency 

score. Usually, the envelopment form of the model is used, as its idea is only visible in this form. The 

linear version is given in (4). 

Additional notation: 

𝑡𝑡  Variable used for computational reasons (linearization) 

𝑆𝑆𝑖𝑖𝑟𝑟−   Slack in input 𝑖𝑖 of DMU 𝑜𝑜; 𝑆𝑆𝑖𝑖𝑟𝑟− = 𝑡𝑡 ⋅ 𝑠𝑠𝑖𝑖𝑟𝑟−  

𝑆𝑆𝑟𝑟𝑟𝑟+  Slack in output 𝑟𝑟 of DMU 𝑜𝑜; 𝑆𝑆𝑖𝑖𝑟𝑟+ = 𝑡𝑡 ⋅ 𝑠𝑠𝑖𝑖𝑟𝑟+  

Λ𝑖𝑖 Share of DMU 𝑗𝑗 in the efficient peer unit of DMU 𝑜𝑜; Λ𝑖𝑖 = 𝑡𝑡 ∙ 𝜆𝜆𝑖𝑖 

 

min𝜃𝜃𝑟𝑟 = 𝑡𝑡 −
1
𝑚𝑚
�𝑆𝑆𝑖𝑖𝑟𝑟−/𝑥𝑥𝑖𝑖𝑟𝑟

𝑚𝑚

𝑖𝑖=1

 
 

(4a) 

𝑡𝑡 +
1
𝑠𝑠
�𝑆𝑆𝑟𝑟𝑟𝑟+ /𝑦𝑦𝑟𝑟𝑟𝑟

𝑠𝑠

𝑟𝑟=1

= 1 
 

(4b) 

𝑡𝑡𝑥𝑥𝑖𝑖𝑟𝑟 = �𝛬𝛬𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ 𝑆𝑆𝑖𝑖𝑟𝑟−  ∀𝑖𝑖  (4c) 

𝑡𝑡𝑦𝑦𝑟𝑟𝑟𝑟 = �𝛬𝛬𝑖𝑖𝑦𝑦𝑟𝑟𝑖𝑖

𝑛𝑛

𝑖𝑖=1

− 𝑆𝑆𝑟𝑟𝑟𝑟+  ∀𝑟𝑟  (4d) 

𝑡𝑡,𝛬𝛬𝑖𝑖,𝑆𝑆𝑖𝑖𝑟𝑟− ,  𝑆𝑆𝑟𝑟𝑟𝑟+ ≥ 0 ∀𝑗𝑗, 𝑖𝑖, 𝑟𝑟   (4e) 

 

The dual (multiplier) form of the SBM model is given in (5):  

 

max𝜃𝜃𝑟𝑟  (5a) 

𝜃𝜃0 + 𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖𝑟𝑟 − 𝑢𝑢𝑟𝑟𝑦𝑦𝑟𝑟𝑟𝑟 = 1  (5b) 

�𝑢𝑢𝑟𝑟𝑦𝑦𝑟𝑟𝑖𝑖  
𝑠𝑠

𝑟𝑟=1

≤�𝑣𝑣𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖

𝑚𝑚

𝑖𝑖=1

  (5c) 

𝑣𝑣𝑖𝑖 ≥
1

𝑚𝑚𝑥𝑥𝑖𝑖𝑟𝑟
 ∀𝑖𝑖  (5d) 
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𝑢𝑢𝑟𝑟 ≥
𝜃𝜃𝑟𝑟
𝑠𝑠𝑦𝑦𝑟𝑟𝑟𝑟

 ∀𝑟𝑟  (5e) 

 

The model is able to include all slacks into the efficiency score and thus overcomes one deficiency of many 

other DEA models. 

 

ii)  

Both models are linear DEA models that calculate technical efficiency scores. One difference is the 

orientation of the models. While the CCR model can be input or output oriented, the SBM model has no 

orientation. An input-oriented model tries to minimize the inputs to reach the given output. An output-

oriented model, on the other hand, maximizes the output using the available inputs. Additive models, as 

the SBM, combine both approaches. 

Another difference is the treatment of slacks. While in the CCR model slacks do not contribute to the 

efficiency score, the SBM score is based on them. This fact is an advantage of the SBM model. In the CCR 

model, a DMU is deemed efficient, if it reaches a score of 1, and furthermore, no slacks are present 

(Charnes et al. 1978). This definition, however, leads to misinterpretations of the results, as slacks are 

rarely reported. In addition, no approach on the interpretation of results with slacks exists. A reliable 

ranking of DMUs based on CCR scores is therefore not possible. 

 

iii)  

The super-efficiency model (Andersen & Petersen 1993) is very close to the CCR model. The only 

difference is the exclusion of the DMU under consideration in constraints (3b) and (3c) from the reference 

sets. The result is model (6):  

 

min𝜃𝜃𝑟𝑟  (6a) 

𝜃𝜃o𝑥𝑥𝑖𝑖o ≥� 𝜆𝜆𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
𝑛𝑛

𝑖𝑖=1,𝑖𝑖≠𝑟𝑟
 ∀𝑖𝑖  (6b) 

𝑦𝑦𝑟𝑟o ≤� 𝜆𝜆𝑖𝑖
𝑛𝑛

𝑖𝑖=1,𝑖𝑖≠𝑟𝑟
𝑦𝑦𝑟𝑟𝑖𝑖   ∀𝑟𝑟  (6c) 

𝜆𝜆𝑖𝑖 ≥ 0 ∀𝑗𝑗  (6d) 

 

From a technical point of view, the modification is equivalent to a restriction of the constraints as solution 

possibilities are dropped. The results of the underlying minimization problem are therefore at least as high 
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as those of the CCR model. The practical consequence is the possibility to receive scores larger than 1. 

This allows discrimination and ranking of efficient units. Units receiving a score larger than 1 are called 

super-efficient. 

 

iv)  

The main problem when considering multi-input, multi-output settings for benchmarking is to create a 

single measure out of this multi-dimensionality. As a consequence, the inputs and outputs need to be 

weighted. As every DMU might consider a different set of weights as the ideal solution for themselves, 

they will not agree on a generally valid set of weights. DEA is a fair estimation method in this regard, as 

it uses for every DMU its ideal input and output weights. Consequently, no DMU can complain that it 

would have performed better with other weights. On the other hand, the flexibility to assign the weights 

freely allows the model to eliminate criteria, where the DMU performs weakly. This can be deemed unfair, 

as it allows DMUs to avoid the evaluation of crucial criteria. 

 

v)  

The Helmsman approach uses DEA to create a single statistic, out of various available measures and was 

first used by Lovell (1995). The approach abandons the usual DEA setting, where inputs, outputs, and a 

transformation process in-between are required. Instead, a decision-making apparatus is seen as a single, 

constant unitary input. Technically, this implies the use of a single input with the value 1 for every DMU. 

All available measures are handled as outputs (Figure 3). 

 

 

 

Figure 3: Comparison of a regular DEA and the Helmsman DEA approach 

 

Ferrier & Trivitt (2013) use the Helmsman to create a single quality statistic out of a multitude of quality 

indicators in a preprocessing stage. Afterward, they multiply the quality measure with the number of 

inpatients and outpatients, to receive quality adjusted measures. These adjusted outputs are then used in 

the main DEA study. This procedure is similar to the established approach of multiplying the CMI with 

the number of treated cases to receive a severity-adjusted measure. The benefit lies in the higher 

significance of the measure, especially for DEA studies. Having the number of cases and the CMI as 

separate outputs would allow the DEA model to eliminate one of them by assigning a negligible weight. 
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As a consequence, highly inefficient hospitals treating inadequately few, but severe cases would be deemed 

efficient just because of the severity of the cases. A multiplicative adjustment of the cases by the CMI 

cures the problem and ties the case severity to the number of cases. The same thoughts can be applied to 

the field of quality. A hospital should neither be deemed efficient by just having high quality without 

treating an adequate number of patients, nor by treating a lot of patients but with poor quality. Therefore, 

the Helmsman offers an interesting approach to include multiple factors of quality into DEA analysis. In 

addition, using the Helmsman to create a single quality indicator in a preceding step prevents the principal 

DEA analysis from being bloated by too many inputs and outputs. As all indicators are used as outputs, an 

output-oriented view is reasonable. (7) denotes the resulting model (Ferrier & Trivitt 2013). 

 

max𝜃𝜃𝑟𝑟  (7a) 

𝜃𝜃𝑟𝑟𝑦𝑦𝑟𝑟o ≤� 𝜆𝜆𝑖𝑖
𝑛𝑛

𝑖𝑖=1
𝑦𝑦𝑟𝑟𝑖𝑖   ∀𝑟𝑟   (7b) 

�𝜆𝜆𝑖𝑖

𝑛𝑛

𝑖𝑖=1

= 1 ∀𝑗𝑗  (7c) 

𝜆𝜆𝑖𝑖 ≥ 0 ∀𝑗𝑗  (7d) 

 

 

vi)  

Bootstrapping is a resampling method promoted for DEA by Simar & Wilson (1998) which constitutes 

one of the biggest methodological trends in DEA over the past years (Kohl et al. 2018). It is relevant for 

DEA mainly for two reasons. First, DEA is known to inherit a positive bias in its estimates (Nedelea & 

Fannin 2013, Mitropoulos et al. 2014). This bias emerges, as the estimated production frontier is based on 

the DMUs in the data sample. However, not every efficient input/output combination that is theoretically 

possible is utilized by a DMU in the real world. Therefore, apart from efficient DMUs missing for other 

reasons, the estimated frontier is always too low (Simar & Wilson 2011). As a consequence, DEA assumes 

the DMUs to be closer to the production frontier as they really are and assigns efficiency scores which are 

biased upwards. The bootstrapping procedure can be used to correct for this upwards bias. Second, the 

possibility to create statistical inference is a huge advancement for DEA studies. The missing knowledge 

on the robustness of the results is one of the biggest disadvantages of DEA. The bootstrap helps to alleviate 

the problem with the possibility to create significance intervals for the efficiency estimates.  

The general idea of bootstrapping DEA scores is quite simple. It is explained based on an example in 

Figure 4 with 3 DMUs in a 1 input, 1 output setting. An initial DEA study with the CCR model is conducted 
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(Step 1 in Figure 4). Afterward, all DMUs are projected to the frontier (Step 2 in Figure 4). In the next 

step, every DMU 𝑗𝑗 gets a new efficiency score 𝜃𝜃𝑖𝑖⋆ assigned. For this new efficiency score, a value 𝛽𝛽𝑖𝑖 from 

the initial efficiency estimates is randomly drawn with replacement for every DMU 𝑗𝑗. In the simplest form 

of bootstrapping, 𝜃𝜃𝑖𝑖⋆ = 𝛽𝛽𝑖𝑖. This proceeding is called naive bootstrapping. A more sophisticated approach 

is discussed later on. The projected DMUs are adjusted by their “new” efficiency scores, resulting in a 

“new” (bootstrapped) data sample (Step 3 in Figure 4). Now, a new DEA study can be conducted in which 

one by one, every “old” DMU is assessed with regard to the bootstrapped data sample A', B', C'. In step 4 

of Figure 4, the result for DMU A is depicted. Afterward, Step 4 is repeated for B and C. The resulting 

values 𝜃𝜃𝑖𝑖𝑏𝑏 are the outcome of bootstrap iteration 𝑏𝑏 = 1. Steps 3 & 4 are repeated for 𝑏𝑏 = 1, … ,𝐵𝐵 bootstrap 

iterations, with 𝐵𝐵 = 2000 being an established scope (Simar & Wilson 2000b). 

 
Step 1 

 
DMU Input Output Efficiency 

(𝜃𝜃𝑖𝑖) 

A 5 2 0.4 

B 5 5 1 

C 10 7 0.7 
 

Step 2 

 
DMU Projected 

Input 

Projected 

Output 

A 5 ⋅ 0.4 = 2 2 

B 5 ⋅ 1 = 5 5 

C 10 ⋅ 0.7 = 7 7 
 

Step 3 

 
DMU New Efficiency 

(𝜃𝜃𝑖𝑖⋆) 

Bootstrapped 

Input 

A' 0.7 2 ÷ 0.7 = 2.86  

B' 0.4 5 ÷ 0.4 = 12.5  

C' 0.7 7 ÷ 0.7 = 10  
 

Step 4 

 
DMU Bootstrapped 

Efficiency (𝜃𝜃𝑖𝑖𝑏𝑏) 

A 0.57 
 

 

Figure 4: Steps in conducting a naive bootstrap iteration for an input-oriented CCR model in an example with 3 DMUs, 1 input, and 1 output 

 

A discussion on the significance and applicability of the naive bootstrap procedure for DEA arose 

(Löthgren 1998, Ferrier & Hirschberg 1999, Simar & Wilson 1999a, 1999b). The smoothed bootstrap from 

Simar & Wilson (2000b) emerged as state of the art for DEA applications from this discussion. While the 

general idea of the procedure is still the same, the resampling of the efficiency scores changes (it is 

“smoothed”). A problem of the naive procedure is the occurrence of spikes, as only a limited number of 

efficiency estimates exists from the initial DEA. This problem is growing more severe, the fewer DMUs a 

study consists of. Kernel density estimators could be used to overcome this issue (see e.g. Silverman 2018). 

The underlying idea of this method is to distort the naive resampled efficiency scores 𝛽𝛽𝑖𝑖 for DMU 𝑗𝑗 using 

𝜃𝜃�𝑖𝑖 = 𝛽𝛽𝑖𝑖 + ℎ𝜀𝜀𝑖𝑖, where 𝜀𝜀𝑖𝑖 is a standard normal distributed error term. ℎ is a bandwidth parameter, deciding 

on the magnitude of the smoothing. However, this smoothing procedure needs to be treated with caution, 

as otherwise, efficiency scores greater than one might be generated. To avoid this pitfall, values bigger 

than one are reflected (see e.g. Bogetoft & Otto 2011): 
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𝜃𝜃�𝑖𝑖 = �
𝛽𝛽𝑖𝑖 + ℎ𝜀𝜀𝑖𝑖           if  𝛽𝛽𝑖𝑖 + ℎ𝜀𝜀𝑖𝑖 ≤ 1 
2 − 𝛽𝛽𝑖𝑖 − ℎ𝜀𝜀𝑖𝑖  otherwise           (8) 

In the next step, the values need to be adjusted to receive parameters with asymptotically correct mean and 

variance: 

𝜃𝜃𝑖𝑖⋆ = �̅�𝛽 +
𝜃𝜃�𝑖𝑖 − �̅�𝛽

�1 + ℎ2/𝜎𝜎�2 
 (9) 

�̅�𝛽 = 1
𝑛𝑛
∑ 𝛽𝛽𝑖𝑖𝑛𝑛
𝑖𝑖=1  denotes the mean of the naive bootstrapped efficiency scores and 𝜎𝜎�2 = 1

𝑛𝑛
∑ �𝜃𝜃𝑖𝑖 − �̅�𝜃𝑖𝑖�

2𝑛𝑛
𝑖𝑖=1  

the variance of the initial DEA estimates 𝜃𝜃𝑖𝑖. The smoothed values 𝜃𝜃𝑖𝑖⋆ are then used as in the naive bootstrap 

to create a new (bootstrap) data set, on which the original DMUs are measured against. The result is the 

efficiency estimate 𝜃𝜃𝑖𝑖𝑏𝑏 for bootstrap iteration 𝑏𝑏. In the final step, a bias correction is performed, which 

reduces the already mentioned overestimation of DEA. An estimator for this bias is calculated via the 

difference between the average results of the bootstrap iterations and the original DEA estimates: 

bias𝑖𝑖⋆ =
1
𝐵𝐵
�𝜃𝜃𝑖𝑖𝑏𝑏
𝐵𝐵

𝑏𝑏=1

− 𝜃𝜃𝑖𝑖 (10) 

 

The bias-corrected bootstrap estimator is calculated by subtracting the bias from the original DEA estimate.  

𝜃𝜃�𝑖𝑖
⋆ = 𝜃𝜃𝑖𝑖 − �

1
𝐵𝐵
�𝜃𝜃𝑖𝑖𝑏𝑏
𝐵𝐵

𝑏𝑏=1

− 𝜃𝜃𝑖𝑖� = 2𝜃𝜃𝑖𝑖 −
1
𝐵𝐵
�𝜃𝜃𝑖𝑖𝑏𝑏
𝐵𝐵

𝑏𝑏=1

 (11) 

 

The algorithm of Bogetoft & Otto (2011) for the whole procedure can be found in the Appendix. 
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 Data description 

i)  

The dataset contains three inputs (beds, physicians, and nurses) and two outputs (inpatients and 

outpatients). Furthermore, the CMI and seven quality indicators are present.  

Descriptive statistics of all measures can be found in Table 4. An average hospital in the study has 250 

beds, 66 physicians and 178.7 nurses. Almost 30,000 patients are treated on average. The average case mix 

index of 0.97 shows that the hospitals in the study do not only represent an average size for the German 

hospital market but also treat patients of average severity.  

 
Measure Min Max Mean Std. Dev. 

Beds 200.0 291.0 249.7 21.3 

Physicians 6.0 108.5 66.2 19.2 

Nurses 81.2 312.3 178.7 44.2 

Inpatients 4,167 16,562 11'109.3 2'810.8 

Outpatients 469 57,718 18'355.2 10'848.3 

CMI 0.74 1.46 0.97 0.1 

QI 2009 84 100 94.5 3.8 

QI 50722 10 100 94.9 12.1 

QI 50778 2 20 9.5 4.3 

Recommendation 63% 94% 78.9% 6.9% 

Satisfaction with medical care 71% 91% 81.5% 3.9% 

Satisfaction with nursing care 70% 89% 80.6% 3.9% 

Satisfaction with organization and service 62% 88% 76.5% 5.3% 

 

Table 4: Descriptive statistics of inputs, outputs and quality indicators 

 

A more detailed impression of the inputs and outputs of the data sample can be gained from the boxplot 

diagrams in Figure 5. Only a few data points are deemed as outliers in the boxplot diagrams, underpinning 

the homogeneity of the data sample. Even the complete absence of outliers for beds is little surprising as 

the bed size is fixed to a certain corridor and determines which data is included in the sample. Outstanding 

is the outlier with regards to physicians. The outlying unit needs less than a tenth of the average number 

of physicians. In addition, three units are able to treat considerably more outpatients than the rest in the 

sample. The exclusion of outliers is relevant to prevent the study from distortion. However, outliers cannot 

be judged by the boxplot diagrams alone. They do not reveal, if in combination with the other measures, a 

coherent picture emerges, or if unreliable data might be present. An additional test in the upcoming section 

iv) will be able to answer this question. 
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Figure 5: Boxplot diagrams of inputs and outputs 

Table 5 displays the correlation between the inputs and outputs. According to Dyson et al. (2001), 

correlation between inputs and outputs is necessary for DEA to produce meaningful results. As beds are 

not necessary for the treatment of outpatients, a lower correlation between the two measures is reasonable. 

However, the number of beds still acts as a proxy for the capacity and endowment of the hospital. Therefore 

some correlation between the measures is as well not surprising. The observability of the same trend for 

physicians and nurses is however unexpected. The correlation is in both cases higher for inpatients than 

for outpatients. Altogether, a significant correlation between inputs and outputs is present.  

 

  Inpatients Outpatients  
Beds 0.259 0.146  
Physicians 0.653 0.481  
Nurses 0.605 0.519  

 

Table 5: Correlation between the inputs and outputs of the data sample 

 

ii)  

With the growing availability of data, the usage of quality measures in DEA became more and more 

popular. However, Afzali et al. (2009) came to the conclusion, that too little attention has been given to 

the usage of quality measures in DEA studies, so far. A reason for the unsatisfying use of quality measures 

in DEA is certainly the difficulty to quantify the abstract term of quality. Furthermore, the term quality 

includes multiple dimensions in the hospital environment. Donabedian (1988) was the first to analyze the 

different dimensions of quality of care. He finally defined three dimensions of care: 
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(1) Structure quality 

(2) Process quality 

(3) Outcome quality 

Structural quality relates to the environment, in which care is executed. It involves material resources, 

human resources, and organizational structure, as, e.g., methods of reimbursement. Process quality 

includes actions that are conducted to cure the patient. Here, as well the actions of the patient to seek care, 

as the diagnosis and treatment by professionals is accounted for. Outcome quality is concerned with the 

actual result of the treatment. Outcome quality also comprises the satisfaction of a patient with the 

treatment. 

The indicators QI 2009 and QI 50722 are process indicators. QI 50778, the recommendation rate and the 

satisfaction rates serve as outcome indicators. Note: The structure quality dimension is, according to Ferrier 

& Trivitt (2013), already covered by the inputs of a DEA. 

 

iii)  

Various authors address the field of outlier detection as a preprocessing before the actual DEA analysis 

with a variety of methods, e.g., Wilson (1993), Simar (2003), Johnson & McGinnis (2008), Bahari & 

Emrouznejad (2014). Banker & Chang (2006) use the super-efficiency concept to detect outliers. They 

perform a super-efficiency DEA (Andersen & Petersen 1993) in which the DMU under consideration is 

excluded from the reference set as described in section A.iii). Therefore, efficiency values bigger than 1 

are attainable. According to Banker & Chang (2006), DMUs with an efficiency score larger than 1.2 are 

possible outliers and should be considered for elimination from the data sample. Table 6 lists the results of 

the super-efficiency analysis. Nine DMUs receive a score larger than 1. DMU 29, the Vincentinum 

Augsburg is an obvious outlier with a super-efficiency score of 7.11.  
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DMU Name Super-Efficiency Score 

29 Klinik Vincentinum Augsburg 7.11 

61 St. Josefs-Hospital Cloppenburg gGmbH 1.18 

38 Helios Klinik Jerichower Land  1.12 

57 St. Elisabeth-Stift Damme 1.10 

37 Helios Klinik Cuxhaven 1.08 

50 Helios Kliniken Mittelweser 1.06 

45 Kreiskrankenhaus Winsen 1.04 

67 Vinzenz-Pallotti-Hospital 1.04 

41 Krankenhaus St. Marienwörth 1.01 

 

Table 6: DMUs with a super-efficiency score >1 

 

With a look at the data, it is apparent that the unrealistically small number of only six physicians is 

responsible for the extremely high super-efficiency score. As an explanation serves the exceptionally high 

number of external physicians in the hospital. As these are not accounted in the number of physicians, an 

unrealistic super-efficiency score is the results. For this reason, the DMU has to be either excluded from 

the data sample, the number of external physicians needs to be added to the number of physicians, or an 

adjustment of the distorted input according to Kuosmanen (2009) need to be carried out. If the number of 

external physicians is taken into account, the new input value for the physicians of the hospital will result 

in 6 + 56 = 62. However, this value bears some distortions as well, as the DMU will be the only one with 

external physicians being taken into account. Yet, the value might still be relevant as a rather pessimistic 

estimate. By applying the procedure of Kuosmanen (2009), the value for physicians is replaced by 2 ⋅

max𝑥𝑥𝑝𝑝ℎ𝑦𝑦𝑠𝑠𝑖𝑖𝑦𝑦𝑖𝑖𝑦𝑦𝑛𝑛𝑠𝑠 = 217. In the results section, the DMU will be excluded from the evaluation. 

The other super-efficient units are not that conspicuous, as all have a value smaller than 1.2. Therefore no 

other unit needs to be taken care of. 

 

iv)  

The occurrence of missing or corrupt data in a sample is not rare. Kuosmanen (2009) was the first to 

address the problem of missing data in DEA systematically. He showed, that the exclusion of DMUs with 

missing data can distort DEA results more gravely, than the inclusion of the DMU with a replacement 

value does. Due to DEAs ability to assign the weights freely, a single bad input or output will not influence 

a DMUs performance seriously. The exclusion of a DMU, however, might change the whole frontier and 

influence all DMUs that regard the DMU as its peer unit. Therefore, his solution is to assign a pessimistic 

value to the missing data. For outputs, zero is the most possible pessimistic value. Missing inputs should 
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take a value 𝑀𝑀𝑖𝑖 that is significantly bigger than the largest value existing in the data sample for input 𝑖𝑖, i.e. 

𝑀𝑀𝑖𝑖 ≫ max𝑥𝑥𝑖𝑖. Using this procedure, the missing values for outpatients should be replaced with a value of 

0.  

 

v)  

A mixture of absolute and relative values leads to a distortion of results. While larger units have 

automatically larger absolute input and output values, indices and relative values are often independent of 

their size. Dyson et al. (2001) use the following DMUs as an example:  

 
DMU Input 1 Output 1 Output 2 Output 3 

1 10 12 15 1.6 

2 20 24 30 1.6 

 

Table 7: Example illustrating the issue of mixing absolute and relative data (Dyson et al. 2001) 

 

Both DMUs work under the same efficiency and environmental conditions and perform equally in the real 

world. As DMU 2 is twice as big as DMU 1, the values of input 1 and the outputs 1 and 2 are twice the 

values of DMU 1. Both DMUs have the same value for Output 3, as it is an index measure. The DEA 

results will be unsatisfying, as only DMU 1 will be deemed efficient. For most DEA models it appears that 

DMU is producing the same level of Output 3 with half the input. 

Note: The CCR model will assign a value of 1 to both DMUs. However, DMU 2 will contain slack on 

output 3 and can therefore not be deemed efficient. Dyson et al. (2001) advise scaling all measures to work 

either only with absolute or as relative values.  

Another pitfall arises by choosing too many inputs and outputs for a limited amount of DMUs. The more 

inputs and outputs are chosen, the weaker the discriminative power of DEA. Every additional input or 

output adds a constraint to the minimization problem (3). Therefore the efficiency scores are inevitably 

greater or equal with the inclusion of an additional input or output. Dyson et al. (2001) advise to be 

parsimonious with the number of inputs and outputs and to use at least 2 ⋅ (𝑚𝑚 ⋅ 𝑠𝑠) DMUs, where 𝑚𝑚 is the 

number of inputs and 𝑠𝑠 the number of outputs. 

 

 Results 

i)  

In the first stage, DEA is used to create a single quality indicator out of the seven quality indices of the 

data sample. Both, the CCR and SBM model are used to calculate this Helmsman measure. The results are 

displayed in Table 8. As the Vincentinum Augsburg was identified as an outlier, it will be excluded in the 

main analysis. Therefore it can be excluded from the Helmsman approach as well. However, as it is no 
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outlier with regard to the quality indicators, the hospital can as well remain in the sample on this stage to 

strengthen the data basis. 

 
DMU Hospital CCR SBM DMU Hospital CCR SBM 

1 Agaplesion BathildisKrh. Bad Pyrmont 0.96 0.64 36 Klinikum Oberlausitzer Bergland g GmbH 0.98 0.94 

2 Asklepios Klinik Lich GmbH  1.00 1.00 37 Helios Klinik Cuxhaven 0.98 0.86 

3 Borromäus-Hospital Leehr gGmbH 0.96 0.42 38 Helios Klinik Jerichower Land  0.99 0.93 

4 DIAKOMED Chemnitzer Land  1.00 1.00 39 Krh. St. Josef Schweinfurt 1.00 0.95 

5 DiakonieKrh. Halle 1.00 1.00 40 Krh. St. Joseph-Stift Dresden 1.00 1.00 

6 DiakonissenKrh. Dresden 1.00 1.00 41 Krh. St. Marienwörth 0.98 0.91 

7 Dominikus Krh. GmbH Berlin 1.00 0.99 42 Krh.-Spital Waldshut-Tiengen 0.98 0.56 

8 Donau-Ries-Klinik Donauwörth 0.99 0.88 43 RHÖN-Kreisklinik gGmbH Bad Neustadt 0.91 0.70 

9 DRK Krh. Luckenwalde 0.99 0.89 44 KreisKrh. Emmendingen 1.00 0.66 

10 Elbe Klinikum Buxtehude 0.96 0.88 45 KreisKrh. Winsen 0.97 0.57 

11 Ev. DiakonissenKrh. Leipzig 0.98 0.82 46 Lahn-Dill-Kliniken Dillenburg-Herborn  1.00 0.91 

12 Ev. Krh. Ludwigsfelde-Teltow 0.97 0.85 47 Malteser Krh. St. Johannes-Stift Duisburg 1.00 0.53 

13 Ev. Krh. Mettmann GmbH 0.99 0.67 48 Maria-Hilf-Krh. Bergheim 0.98 0.66 

14 Ev. Krh. Bethanien Iserlohn gGmbH 1.00 1.00 49 MarienKrh. Soest  1.00 0.91 

15 Gemeinschaftsklinikum Mittelrhein 0.92 0.00 50 Helios Kliniken Mittelweser 0.92 0.78 

16 Gesundheitszentrum Tuttlingen 1.00 1.00 51 Paracelsus Klinik Adorf 1.00 1.00 

17 Heilig Geist Krh. Köln 1.00 0.95 52 Paracelsus Klinik Schöneck 0.97 0.00 

18 Helios Albert-Schweitzer-Kl. Northeim 0.98 0.64 53 Pleißental-Klinik 1.00 1.00 

19 Helios Klinik Lutherstadt Eisleben 0.98 0.89 54 Sankt Marien-Hospital-Buer 0.98 0.93 

20 Helios Klinik Köthen 0.98 0.85 55 Segeberger Kliniken GmbH 1.00 0.78 

21 Helios Klinik Rottweil 0.97 0.73 56 Helios St. Elisabeth-Krh. Bad Kissingen 0.98 0.86 

22 Helios St. Marienberg Klinik Helmstedt  0.96 0.82 57 St. Elisabeth-Stift Damme 1.00 0.72 

23 Hospital Zum Heiligen Geist Kempen 1.00 1.00 58 St. Josef -Krh. Engelskirchen 0.99 0.84 

24 Josephs-Hospital Warendorf 0.99 0.84 59 St. Josef-Hospital GFO Kliniken Bonn 0.99 0.57 

25 Katholische Kliniken Ruhrhalbinsel 0.99 0.79 60 St. Josef-Krh. Haan 1.00 0.59 

26 St. Marien-Hospital Oberhausen 0.99 0.91 61 St. Josefs-Hospital Cloppenburg gGmbH 1.00 1.00 

27 Katholisches Krh. Dortmund-West 0.98 0.85 62 St. JosefsKrh. Heidelberg 1.00 0.97 

28 AMEOS Klinik Bremerhaven 0.99 0.73 63 St. Marien-Krh. Lankwitz 0.99 0.95 

29 Klinik Vincentinum Augsburg 1.00 0.96 64 St. Nikolaus Stiftshospital Andernach 1.00 1.00 

30 Helios Klinik Herzberg/Osterode 0.98 0.83 65 St. Theresien-Krh. Nürnberg 0.98 0.86 

31 Kliniken Hochfranken Münchberg 1.00 0.98 66 St. Walburga-Krh. Meschede  0.99 0.77 

32 Kliniken Kreis Mühldorf a. Inn 0.97 0.77 67 Vinzenz-Pallotti-Hospital 1.00 0.85 

33 Helios Klinik Erlenbach 1.00 1.00 68 WaldKrh. St. Marien Erlangen 0.95 0.78 

34 Kl. in den Pfeifferschen Stiftungen gGmbH  0.98 0.94 69 Westpfalz-Klinikum Kusel 0.98 0.86 

35 Klinikum Mittelbaden Rastatt-Forbach 0.98 0.74 70 Wilhelm Anton Hospital Goch 0.98 0.68 

     Average 0.98 0.82 

     Std Dev. 0.02 0.20 

 
Table 8: Single quality indicators based on a CCR and SBM Helmsman approach 
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The CCR results contain little information. With a minimum of 0.9057, the first quartile at 0.9787, and a 

standard deviation of 0.02, the discriminative power of the CCR model is extremely limited in this setting. 

The situation changes with the SBM model. The standard deviation of the results is ten times higher than 

those of the CCR model. However, a different issue becomes apparent as the SBM model is not able to 

handle output values of 0. The approach of Kuosmanen (2009) to include DMUs with missing output data 

is therefore not applicable. When replacing the missing values by a marginal value, these DMUs receive 

an SBM score of 0. Even a replacement with the minimum value of the respective input among all DMUs 

is resulting in very low SBM scores of 0.28 for DMU 15 and 0.29 for DMU 52. To prevent these DMUs 

from misjudgment, they should be excluded from further evaluation. 

The differences in the mechanics of the two models become apparent, when looking at the weights, they 

are assigning. Therefore, the weights of the first ten DMUs are displayed in Table 9.  

 
 CCR SBM 

DMU 𝑢𝑢1 𝑢𝑢2 𝑢𝑢3 𝑢𝑢4 𝑢𝑢5 𝑢𝑢6 𝑢𝑢7 𝑢𝑢1 𝑢𝑢2 𝑢𝑢3 𝑢𝑢4 𝑢𝑢5 𝑢𝑢6 𝑢𝑢7 

1 0.010 0 0 0 0 0 0 0.029 0.001 0.022 0.118 0.119 0.678 0.124 

2 0.002 0.004 0 0 0.414 0 0 0.028 0.051 0.015 0.172 0.196 0.174 0.188 

3 0.005 0 0.002 0 0.593 0 0 0.001 0.006 0.004 0.070 0.070 0.071 0.075 

4 0.004 0 0.006 0 0 0 0.559 0.011 0.001 0.010 0.164 0.166 0.166 0.698 

5 0 0 0.050 0 0 0 0 0.002 0.001 0.007 0.161 0.161 0.162 0.172 

6 0.003 0 0 0.199 0 0.574 0 0.072 0.002 0.019 0.159 0.162 16.975 0.166 

7 0.007 0 0.005 0.044 0.201 0 0 0.021 0.001 0.016 0.171 0.169 0.173 0.179 

8 0.002 0.007 0 0 0 0 0.087 0.018 0.001 0.015 0.158 0.156 0.154 0.160 

9 0 0.010 0 0 0 0 0 0.001 0.001 0.010 0.161 0.159 0.157 0.159 

10 0.003 0.006 0.002 0 0 0.106 0 0.014 0.001 0.011 0.158 0.154 0.154 0.166 

 
𝑢𝑢1 = weight for QI 2009 𝑢𝑢2 = weight for QI 50722 𝑢𝑢3 = weight for QI 11880 𝑢𝑢4 = weight for Recommendation 

𝑢𝑢5 = weight for Satisfaction 
with medical care 

𝑢𝑢6 = weight for Satisfaction 
with nursing care 

𝑢𝑢7 = weight for Satisfaction 
with organization and service 

 

 

Table 9: Comparison of the CCR and SBM weights for the Helmsman approach 

 

It should be noted that these DMUs are in large parts representing the findings of the whole data sample, 

although they are just a random selection. Stunning is the usage of zero weights of the CCR model. 44 of 

70 weights are zero for the CCR results in Table 9. For every DMU, at least three weights are zero. DMU 

1 is receiving a CCR score of 0.96, although six out of seven weights are zero, and therefore the associated 

quality indicators are excluded from the evaluation. For the whole data set, 70% of the weights are zeros. 

For 34 of the 70 DMUs, the CCR model is only taking one single quality indicator into account and 
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weighing the remaining six with zero. Furthermore, the CCR model is assigning, at least for two inputs of 

every DMU, a weight of zero. It can be concluded that the multidimensionality of quality is therefore not 

considered in the single quality indicator if the CCR model is applied. The excessive allocation of zero 

weights is often mentioned as one of the main drawbacks of the CCR model. The SBM model, on the other 

hand, is reluctant to assigning weights of zero. This fact explains the higher discriminative power of the 

SBM model. However, considerable differences still occur and allow emphasizing excellent performance 

in a specific input. Looking at the weights assigned to QI 50722 (=� 𝑢𝑢2) in Table 9, the differences are 

obvious. DMU 2 got a weight assigned, which is more than 50 times higher than the weight of most other 

DMUs. This seems reasonable for DMU 2, as it has the best possible value in QI 50722.  

 

ii)  

The main study compares the results from the CCR and SBM model. The single quality indicator and the 

CMI are used as multiplicative factors for both outputs (e.g. adjusted inpatients = CMI ⋅

single quality indicator ⋅ inpatient cases). As DMU 29 was identified as an outlier, it is excluded from 

the analysis. Furthermore, the DMUs 15 and 52 are excluded from the analysis, because they receive no 

relevant single quality indicator score, due to missing data. Therefore, they have no values for the adjusted 

inpatients and outpatients and cannot receive a meaningful score in any of the models. The results of the 

two studies are displayed in Table 10, sorted by SBM scores. 

 
DMU Hospital CCR SBM DMU Hospital CCR SBM 

2 Asklepios Klinik Lich GmbH  1.00 1.00 20 Helios Klinik Köthen 0.75 0.46 

40 Krh. St. Joseph-Stift Dresden 1.00 1.00 5 DiakonieKrh. Halle 0.74 0.44 

46 Lahn-Dill-Kliniken Dillenburg-Herborn  1.00 1.00 59 St. Josef-Hospital GFO Kliniken Bonn 0.58 0.44 

61 St. Josefs-Hospital Cloppenburg gGmbH 1.00 1.00 45 KreisKrh. Winsen 0.58 0.44 

10 Elbe Klinikum Buxtehude 0.84 0.78 69 Westpfalz-Klinikum Kusel 0.64 0.44 

64 St. Nikolaus Stiftshospital Andernach 0.88 0.78 34 Kl. in den Pfeifferschen Stiftungen gGmbH  0.81 0.40 

37 Helios Klinik Cuxhaven 0.90 0.78 26 St. Marien-Hospital Oberhausen 0.54 0.39 

17 Heilig Geist Krh. Köln 0.90 0.76 18 Helios Albert-Schweitzer-Kl. Northeim 0.73 0.39 

58 St. Josef -Krh. Engelskirchen 0.87 0.73 13 Ev. Krh. Mettmann GmbH 0.53 0.36 

67 Vinzenz-Pallotti-Hospital 0.81 0.72 68 WaldKrh. St. Marien Erlangen 0.78 0.36 

41 Krh. St. Marienwörth 0.88 0.72 44 KreisKrh. Emmendingen 0.59 0.35 

33 Helios Klinik Erlenbach 0.93 0.71 66 St. Walburga-Krh. Meschede  0.61 0.35 

63 St. Marien-Krh. Lankwitz 0.84 0.70 32 Kliniken Kreis Mühldorf a. Inn 0.81 0.35 

31 Kliniken Hochfranken Münchberg 0.98 0.69 56 Helios St. Elisabeth-Krh. Bad Kissingen 0.71 0.33 

7 Dominikus Krh. GmbH Berlin 0.84 0.69 36 Klinikum Oberlausitzer Bergland g GmbH 0.61 0.32 

57 St. Elisabeth-Stift Damme 0.74 0.67 42 Krh.-Spital Waldshut-Tiengen 0.45 0.32 

51 Paracelsus Klinik Adorf 1.00 0.66 14 Ev. Krh. Bethanien Iserlohn gGmbH 0.87 0.32 

62 St. JosefsKrh. Heidelberg 0.82 0.65 19 Helios Klinik Lutherstadt Eisleben 0.76 0.32 

9 DRK Krh. Luckenwalde 0.76 0.62 3 Borromäus-Hospital Leehr gGmbH 0.39 0.31 
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22 Helios St. Marienberg Klinik Helmstedt  0.96 0.61 55 Segeberger Kliniken GmbH 0.88 0.30 

50 Helios Kliniken Mittelweser 0.90 0.61 70 Wilhelm Anton Hospital Goch 0.50 0.29 

39 Krh. St. Josef Schweinfurt 0.82 0.60 35 Klinikum Mittelbaden Rastatt-Forbach 0.67 0.29 

38 Helios Klinik Jerichower Land  0.99 0.59 48 Maria-Hilf-Krh. Bergheim 0.44 0.28 

4 DIAKOMED Chemnitzer Land  0.73 0.58 60 St. Josef-Krh. Haan 0.50 0.27 

23 Hospital Zum Heiligen Geist Kempen 0.71 0.58 1 Agaplesion BathildisKrh. Bad Pyrmont 0.56 0.24 

25 Katholische Kliniken Ruhrhalbinsel 0.82 0.57 47 Malteser Krh. St. Johannes-Stift Duisburg 0.33 0.17 

27 Katholisches Krh. Dortmund-West 0.76 0.55 11 Ev. DiakonissenKrh. Leipzig 0.88 0.05 

30 Helios Klinik Herzberg/Osterode 0.72 0.54 54 Sankt Marien-Hospital-Buer 0.33 0.02 

24 Josephs-Hospital Warendorf 0.73 0.52 49 MarienKrh. Soest  0.96 0.00 

8 Donau-Ries-Klinik Donauwörth 0.68 0.50 16 Gesundheitszentrum Tuttlingen 0.94 0.00 

21 Helios Klinik Rottweil 0.75 0.49 28 AMEOS Klinik Bremerhaven 0.68 0.00 

53 Pleißental-Klinik 0.73 0.49 65 St. Theresien-Krh. Nürnberg 0.65 0.00 

12 Ev. Krh. Ludwigsfelde-Teltow 0.65 0.48 43 RHÖN-Kreisklinik gGmbH Bad Neustadt 0.58 0.00 

6 DiakonissenKrh. Dresden 0.97 0.48     

     Average 0.73 0.46 

     Std Dev. 0.21 0.26 

 

Table 10: CCR and SBM results 

 

Five out of the 67 DMUs reach a CCR score of 1. However, it should be noted that DMU 51 (Paracelsus 

Klinik Adorf) reaches a value of 1.00 only due to rounding to two decimals. Independent from the rounding, 

DMU 51 cannot be deemed efficient as it, other than the four remaining units, contains input and output 

slacks. By definition, a unit is only CCR efficient if it reaches a score of one, and no slacks are existing 

(Charnes et al. 1978). As a consequence, the CCR scores of units containing slacks should not be 

interpreted. This fact raises questions about the validity of the model, considering that only ten DMUs in 

the whole study do not report slacks. With a look at the SBM scores, it becomes apparent that all CCR 

efficient DMUs are as well SBM efficient. Furthermore, the CCR score is always at least as big as the 

SBM score. Both observations are generally valid (Tone 2001). 

For receiving an efficiency score of 1, it is not crucial to have the best value in an input or output. This 

becomes obvious when looking at the top ten DMUs with regard to the SBM rating, provided in Table 11.  
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DMU CCR SBM 

Rank 

Beds 

Rank 

Phy. 

Rank 

Nur. 

Rank 

A.Inp. 

Rank 

A.Outp. 

Rank 

A.Inp./Beds 

Rank 

A.Inp./Phy. 

Rank 

A.Inp./Nur. 

Rank 

A.Outp./Beds 

Rank 

A.Outp./Phy. 

Rank 

A.Outp./Nur. 

2 1.00 1.00 23 59 24 7 5 2 22 1 4 9 2 

40 1.00 1.00 20 62 67 5 14 1 25 31 11 30 32 

46 1.00 1.00 47 13 45 6 18 8 1 8 20 8 21 

61 1.00 1.00 43 56 69 4 1 3 13 43 1 1 1 

10 0.84 0.78 61 67 65 10 2 15 43 35 2 3 4 

64 0.88 0.78 43 32 48 20 6 20 8 28 6 2 9 

37 0.90 0.78 4 53 5 35 11 21 51 5 8 20 3 

17 0.90 0.76 70 66 61 2 4 10 28 12 7 13 10 

58 0.87 0.73 26 11 6 53 12 52 32 25 10 4 5 

67 0.81 0.72 9 33 36 37 7 29 37 34 5 5 6 

 

 

Table 11: Absolute and relative ranking regarding inputs and outputs of the top ten DMUs in the SBM rating 

 

The table shows the absolute ranks for all inputs and outputs. These ranks are scaled in the sense of 

efficiency analysis, meaning that few inputs and many outputs are positive. As an example, DMU 2 has 

rank 59 concerning the input “physicians”. This implies that 58 DMUs need fewer physicians than DMU 

2. Among the top ten DMUs, only once a DMU receives an absolute rank of 1 for an input or output. DMU 

61 is treating the most adjusted outpatients. More important than the absolute performance in inputs and 

outputs is the relative performance in input/output ratios. All four efficient DMUs are characterized by at 

least one efficient relation between one input and one output (Table 11). DMU 2 has the best ratio of nurses 

to inpatients, DMU 40 presents the best ratio between beds and inpatients, DMU 46 the best ratio of 

physicians to inpatients, and DMU 61 has the best ratio between every input and the output outpatients. 

Here, the effect of the outstanding performance of DMU 61 with regards to outpatients is getting visible. 

Overall, excellent performance in one relative ratio is sufficient, to be deemed efficient. 

With a look at DMUs that perform extremely poor in the SBM evaluation, DMU 54 (Sankt Marien-

Hospital-Buer) comes into view. It is the worst unit with outpatient data available. In contrast to DMU 11, 

which is ranked second to last, both DEA models are on the same page about DMU 54. It is the DMU 

performing worst in both outputs, although needing a considerable amount of inputs. Therefore it is evident 

to rate this DMU poorly. 

Remarkable is the considerable difference in the evaluation of the two models for many DMUs (Table 12). 

Especially the DMUs having a replacement value because of missing data are significant. These five 

DMUs (marked with an asterisk in Table 12) are among the top ten with the most significant difference 

between CCR and SBM score. 
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DMU Name CCR SBM CCR – SBM 

49* MarienKrh. Soest  0.96 0.00 0.96 

16* Gesundheitszentrum Tuttlingen 0.94 0.00 0.94 

11 Ev. DiakonissenKrh. Leipzig 0.88 0.05 0.83 

28* AMEOS Klinik Bremerhaven 0.68 0.00 0.68 

65* St. Theresien-Krh. Nürnberg 0.65 0.00 0.65 

43* Rhön-Kreisklinik gGmbH Bad Neustadt 0.58 0.00 0.58 

55 Segeberger Kliniken GmbH 0.88 0.30 0.58 

14 Ev. Krh. Bethanien Iserlohn gGmbH 0.87 0.32 0.55 

6 DiakonissenKrh. Dresden 0.97 0.48 0.49 

32 Kliniken Kreis Mühldorf a. Inn 0.81 0.35 0.46 

 

Table 12: DMUs with the highest difference between CCR and SBM score 

These results reveal that the procedure of Kuosmanen (2009) for the treatment of missing values is on the 

one hand not suitable for the evaluation with the SBM model. On the other hand, it is dubious if a unit 

failing entirely in a dimension is still receiving excellent results (see DMU 49 in the CCR evaluation). 

Eye-catching is the result of DMU 11. While it receives a satisfying score of 0.88 in the CCR evaluation, 

the SBM score of 0.05 is deficient. The main reason behind this observation is a weight of zero in the CCR 

model for the ‘outpatient’ output. Along with the zero weight comes by far the highest slack value among 

all DMUs without a replacement value. This slack value does not influence the CCR score. As no DMU 

contains a slack for the output ‘inpatient’ and the input slacks are significantly smaller in proportion to the 

input values, the SBM score on the opposite, is remarkably affected. 

 

iii)  

The Helios Klinik Köthen (DMU 20) receives a CCR score of 0.75 and an SBM score of 0.46. Both scores 

stand for the 35th rank of the 67 DMUs and mediocre performance. They imply significant room for 

improvement. Especially the SBM score of 0.46 sounds alarming. The procedure to identify the shortfalls 

of a DMU and create an optimal production plan is called projection, as the DMU is projected to the 

frontier. In an input-oriented CCR model, the input and output values of the projection can be calculated 

by (12): 

𝑥𝑥𝑖𝑖𝑟𝑟 ← θo𝑥𝑥𝑖𝑖𝑟𝑟 − 𝑠𝑠𝑖𝑖𝑟𝑟−      ∀𝑖𝑖 (12a) 

𝑦𝑦𝑟𝑟𝑟𝑟 ← 𝑦𝑦𝑟𝑟𝑟𝑟 + 𝑠𝑠𝑟𝑟𝑟𝑟+         ∀𝑟𝑟  (12b) 

The projection of SBM-inefficient DMUs works according to the rules of (13): 
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𝑥𝑥𝑖𝑖𝑟𝑟 ← 𝑥𝑥𝑖𝑖𝑟𝑟 − 𝑠𝑠𝑖𝑖𝑟𝑟−      ∀𝑖𝑖  (13a) 

𝑦𝑦𝑟𝑟𝑟𝑟 ← 𝑦𝑦𝑟𝑟𝑟𝑟 + 𝑠𝑠𝑟𝑟𝑟𝑟+     ∀𝑟𝑟  (13b) 

Note that a retransformation of the slacks from the SBM model (4) is necessary for the interpretation of 

the slacks in terms of (13a) and (13b). 𝑠𝑠𝑖𝑖𝑟𝑟− = 𝑆𝑆𝑖𝑖𝑟𝑟−/𝑡𝑡 and 𝑠𝑠𝑖𝑖𝑟𝑟+ = 𝑆𝑆𝑖𝑖𝑟𝑟+/𝑡𝑡 have to be calculated. 

All values that are necessary to conduct the projection analysis for DMU 20 are listed in Table 13: 

 
𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠 𝑥𝑥𝑝𝑝ℎ𝑦𝑦. 𝑥𝑥𝑛𝑛𝑛𝑛𝑟𝑟. 𝑦𝑦𝐴𝐴.𝐼𝐼𝑛𝑛𝑝𝑝. 𝑦𝑦𝐴𝐴.𝑂𝑂𝑛𝑛𝑂𝑂𝑝𝑝.   𝜃𝜃 𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠−  𝑠𝑠𝑝𝑝ℎ𝑦𝑦.

−  𝑠𝑠𝑛𝑛𝑛𝑛𝑟𝑟.
−  𝑠𝑠𝐴𝐴.𝐼𝐼𝑛𝑛𝑝𝑝.

+  𝑠𝑠𝐴𝐴.𝑂𝑂𝑛𝑛𝑂𝑂𝑝𝑝.
+  

264 72.90 161.40 9'472 11'679  CCR 0.75 17.55 0.00 0.00 0.00 6'873.14 

      SBM 0.46 84.80 12.64 0.00 0.00 19'193.59 

 
Table 13: Data and results of DMU 20 

 

To realize the CCR results, DMU 20 should use 0.75 ⋅ 264− 17.55 = 180.45 beds, 0.75 ⋅ 72.90 = 54.68 

physicians, and 0.75 ⋅ 161.40 = 121.05 nurses to treat 9′472 inpatients and 11′679 + 6′873.14 =

18′552.14 outpatients. This means a reduction of 83.76 beds, 18.22 physicians, and 40.35 nurses, while 

the level of adjusted inpatients needs to be held constant and a significant increase in adjusted outpatients 

is necessary. The reduction in inputs that is necessary to become SBM efficient can be learned directly 

from the slacks in Table 13. A direct implementation of this guidance into the hospital's processes is 

obviously not possible. The Helios Klinik Köthen will not be able to treat a similar or even higher number 

of patients after reducing their inputs in such a significant manner. However, it can have a closer look at 

the parameters that seem especially affected by inefficiency. Beds on the input side and adjusted 

outpatients on the output side are sticking out in this regard. Beds are the only input parameter, which 

reports an additional slack in the CCR model. In the SBM analysis, beds are as well the input with the 

highest need for adjustment. Beds are not only in absolute terms the input with the highest deficiency. The 

SBM model suggests a reduction in beds by almost one third, while physicians need only a reduction of 

around 17%. On the output side, the necessary increase in adjusted outpatients is exceptional and hardly 

viable. With a CMI of 1.005 and a single quality indicator of 0.85, the adjustment factors of the outpatients 

are not particularly bad. Although there is as well room for improvement in quality, the mere number of 

outpatient cases is indeed the main problem. Therefore, raising the number of outpatient cases should be 

high on the agenda. A comparison with the reference units might explain the vast gap in adjusted 

outpatients and reveal further interesting management insights. The reference units are those DMUs, with 

a positive 𝜆𝜆𝑖𝑖 value and suitable best practice examples for DMU 20. A linear combination of the reference 

units, weighted with the 𝜆𝜆𝑖𝑖-values, is as well another way to calculate the projection for the Helios Klinik 

Köthen. Reference units for the Helios Klinik Köthen are Asklepios Klinik Lich GmbH (𝜆𝜆2 = 0.5779) and 
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the Lahn-Dill-Kliniken Dillenburg-Herborn (𝜆𝜆46 = 0.1561). A more detailed look at the structure and 

processes of both hospitals should be of high value for the decision makers of the Helios Klinik Köthen.  

No implications should be drawn by comparing the results with those of other studies. An increased 

efficiency score can indicate a risen performance. On the other hand, a higher score can also be triggered 

by a decreasing performance of reference units. To compare the performance of a DMU over several years, 

special procedures like the Malmquist index (Färe et al. 1994) are necessary. 

 

iv)  

DEA estimates are known to be biased upwards (Bogetoft & Otto 2011). Besides the possibility to create 

confidence intervals for DEA estimates, the bootstrapping procedure allows for bias correction. These 

bootstrapped results show significantly lower estimates compared to the initial CCR scores (Table 14). 

 
DMU Hospital CCR Boot DMU Hospital CCR Boot 

40 Krh. St. Joseph-Stift Dresden 1.00 0.94 20 Helios Klinik Köthen 0.75 0.70 

46 Lahn-Dill-Kliniken Dillenburg-Herborn  1.00 0.85 21 Helios Klinik Rottweil 0.75 0.67 

2 Asklepios Klinik Lich GmbH  1.00 0.80 5 DiakonieKrh. Halle 0.74 0.70 

61 St. Josefs-Hospital Cloppenburg gGmbH 1.00 0.66 57 St. Elisabeth-Stift Damme 0.74 0.61 

51 Paracelsus Klinik Adorf 1.00 0.90 4 DIAKOMED Chemnitzer Land  0.73 0.65 

38 Helios Klinik Jerichower Land  0.99 0.92 24 Josephs-Hospital Warendorf 0.73 0.67 

31 Kliniken Hochfranken Münchberg 0.98 0.87 53 Pleißental-Klinik 0.73 0.67 

6 DiakonissenKrh. Dresden 0.97 0.91 18 Helios Albert-Schweitzer-Kl. Northeim 0.73 0.71 

49 MarienKrh. Soest  0.96 0.92 30 Helios Klinik Herzberg/Osterode 0.72 0.67 

22 Helios St. Marienberg Klinik Helmstedt  0.96 0.90 56 Helios St. Elisabeth-Krh. Bad Kissingen 0.71 0.67 

16 Gesundheitszentrum Tuttlingen 0.94 0.87 23 Hospital Zum Heiligen Geist Kempen 0.71 0.65 

33 Helios Klinik Erlenbach 0.93 0.86 28 AMEOS Klinik Bremerhaven 0.68 0.65 

37 Helios Klinik Cuxhaven 0.90 0.76 8 Donau-Ries-Klinik Donauwörth 0.68 0.63 

50 Helios Kliniken Mittelweser 0.90 0.85 35 Klinikum Mittelbaden Rastatt-Forbach 0.67 0.63 

17 Heilig Geist Krh. Köln 0.90 0.83 65 St. Theresien-Krh. Nürnberg 0.65 0.61 

55 Segeberger Kliniken GmbH 0.88 0.84 12 Ev. Krh. Ludwigsfelde-Teltow 0.65 0.61 

11 Ev. DiakonissenKrh. Leipzig 0.88 0.81 69 Westpfalz-Klinikum Kusel 0.64 0.60 

64 St. Nikolaus Stiftshospital Andernach 0.88 0.78 36 Klinikum Oberlausitzer Bergland g GmbH 0.61 0.54 

41 Krh. St. Marienwörth 0.88 0.81 66 St. Walburga-Krh. Meschede  0.61 0.55 

14 Ev. Krh. Bethanien Iserlohn gGmbH 0.87 0.82 44 KreisKrh. Emmendingen 0.59 0.55 

58 St. Josef -Krh. Engelskirchen 0.87 0.78 43 RHÖN-Kreisklinik gGmbH Bad Neustadt 0.58 0.53 

7 Dominikus Krh. GmbH Berlin 0.84 0.79 45 KreisKrh. Winsen 0.58 0.53 

10 Elbe Klinikum Buxtehude 0.84 0.69 59 St. Josef-Hospital GFO Kliniken Bonn 0.58 0.53 

63 St. Marien-Krh. Lankwitz 0.84 0.76 1 Agaplesion BathildisKrh. Bad Pyrmont 0.56 0.52 

62 St. JosefsKrh. Heidelberg 0.82 0.76 26 St. Marien-Hospital Oberhausen 0.54 0.49 

39 Krh. St. Josef Schweinfurt 0.82 0.73 13 Ev. Krh. Mettmann GmbH 0.53 0.50 

25 Katholische Kliniken Ruhrhalbinsel 0.82 0.78 60 St. Josef-Krh. Haan 0.50 0.47 

67 Vinzenz-Pallotti-Hospital 0.81 0.71 70 Wilhelm Anton Hospital Goch 0.50 0.47 
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32 Kliniken Kreis Mühldorf a. Inn 0.81 0.77 42 Krh.-Spital Waldshut-Tiengen 0.45 0.40 

34 Kl. in den Pfeifferschen Stiftungen gGmbH  0.81 0.77 48 Maria-Hilf-Krh. Bergheim 0.44 0.41 

68 WaldKrh. St. Marien Erlangen 0.78 0.73 3 Borromäus-Hospital Leehr gGmbH 0.39 0.36 

19 Helios Klinik Lutherstadt Eisleben 0.76 0.72 47 Malteser Krh. St. Johannes-Stift Duisburg 0.33 0.31 

9 DRK Krh. Luckenwalde 0.76 0.69 54 Sankt Marien-Hospital-Buer 0.33 0.30 

27 Katholisches Krh. Dortmund-West 0.76 0.67     

     Average 0.73 0.46 

     Std Dev. 0.21 0.26 

 

Table 14: Bootstrap results 

 

The average drops from 0.73 to 0.68. Interesting is the correlation between the CCR and the bootstrapped 

CCR scores. Although still high, a Pearson index of 0.86 indicates a significant difference from perfect 

correlation. This shows that the bootstrapping procedure does more than merely reducing every estimate 

by a certain amount. Looking at the difference between the CCR and the bootstrapped CCR scores more 

closely, differences from -0.02 up to -0.34 arise (Figure 6).  

 

 

 

Figure 6: Effect of the bootstrapping procedure on CCR scores (Effect = CCR – Bootstrapped CCR score) 

 

Furthermore, the CCR top performer does not necessarily stay on top after the bootstrapping procedure. 

While DMU 40 (Krh. St. Joseph-Stift Dresden) is still rated best, DMU 61 (St. Josefs-Hospital 

Cloppenburg gGmbH) only receives a bias-corrected score of 0.66 and is the unit with the highest drop. A 

comparison of the SBM and bootstrapped CCR results shows that the correlation between the SBM and 

initial CCR scores (0.62) is significantly higher than between the SBM and bootstrapped scores (0.44). 

The average difference between the SBM and bootstrapped CCR scores (0.23) is slightly smaller than the 

difference between the SBM and the initial CCR results (0.26). As the bootstrapped CCR scores can be 
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both, smaller or bigger than the SBM scores, the average absolute differences have been observed as well. 

The implication, however, does not change. Bootstrapping is a useful addition to the DEA methodology. 

However, the bootstrap methodology, as a subsequent technique, does not replace the choice of an 

advanced DEA model. 

 

Notes: 

The Bandwidth parameter is calculated by Puenpatom & Rosenman (2008) as 

ℎ = 0.9 �min �
𝜎𝜎𝜃𝜃

𝑅𝑅13/1.34�𝑛𝑛
−1/5 , where 𝑅𝑅13 is the inter-quartile range of the original DEA estimates and 

𝜎𝜎𝜃𝜃 denotes the standard deviation of the original DEA estimates. 

State of the art is the conduction of 2000 bootstrap iterations. However, to understand the procedure and 

receive some results, the conduction of 100 bootstrap iterations is sufficient. The conduction of further 

bootstrap iterations is not providing additional insights and only increases the computational burden.   

4 Appendix 

4.1 Grading System 

The following grading system is suggested for the case study: 

 
Section A 35 Points Section B 25 Points Section C 40 Points 

i) 8 i) 8 i) 8 

ii) 4 ii) 4 ii) 12 

iii) 4 iii) 6 iii) 6 

iv) 3 iv) 4 iv) 14 

v) 6 v) 3   

vi) 10     

     100 

 

Table 15: Grading suggestion for the case study 

Note: If the case study is too extensive, the omission of the bootstrapping procedure with the tasks A.vi) 

and C.iv) is an easy way to reduce its scope. Further modifications are due to the supervisor of the case 

study. 
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4.2 Bootstrapping algorithm of Bogetoft & Otto (2011): 

(1) Compute 𝜃𝜃𝑖𝑖 as solution to min�𝜃𝜃��𝜃𝜃𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖� ∈ 𝑇𝑇�� for 𝑗𝑗 = 1, … ,𝑛𝑛 

(2) Use bootstrap via smooth sampling from 𝜃𝜃1, … ,𝜃𝜃𝑛𝑛 to obtain a bootstrap replica 𝜃𝜃1⋆, … ,𝜃𝜃𝑛𝑛⋆. This is 

done as follows 

(2.1) Bootstrap, sample with replacement from 𝜃𝜃1, … ,𝜃𝜃𝑛𝑛, and call the results 𝛽𝛽1, … ,𝛽𝛽𝑛𝑛 

(2.2)  Simulate standard normal independent random variables 𝜀𝜀1, … , 𝜀𝜀𝑛𝑛 

(2.3)  Calculate 

  𝜃𝜃�𝑖𝑖 = �
𝛽𝛽𝑖𝑖 + ℎ𝜀𝜀𝑖𝑖           if  𝛽𝛽𝑖𝑖 + ℎ𝜀𝜀𝑖𝑖 ≤ 1 
2 − 𝛽𝛽𝑖𝑖 − ℎ𝜀𝜀𝑖𝑖  otherwise           

 Note that by construction, 𝜃𝜃�𝑖𝑖 ≤ 1. 

(2.4) Adjust 𝜃𝜃�𝑖𝑖 to obtain parameters with asymptotically correct variance, and then estimate the 

variance  

 𝜎𝜎�2 = 1
𝑛𝑛
∑ �𝜃𝜃𝑖𝑖 − �̅�𝜃𝑖𝑖�

2𝑛𝑛
𝑖𝑖=1  and calculate  

𝜃𝜃𝑖𝑖⋆ = �̅�𝛽 +
1

�1 + ℎ2/𝜎𝜎�2 
�𝜃𝜃�𝑖𝑖 − �̅�𝛽�  

 Where �̅�𝛽 = 1
𝑛𝑛
∑ 𝛽𝛽𝑖𝑖𝑛𝑛
𝑖𝑖=1 . 

(3) Calculate bootstrapped input based on bootstrap efficiency 𝑥𝑥𝑖𝑖𝑏𝑏 = 𝜃𝜃𝑗𝑗
𝜃𝜃𝑗𝑗
⋆ 𝑥𝑥𝑖𝑖. 

(4) Solve the DEA program to estimate 𝜃𝜃𝑖𝑖𝑏𝑏 as 

𝜃𝜃𝑖𝑖𝑏𝑏 = min{𝜃𝜃 ≥ 0|𝑦𝑦𝑖𝑖 ≤�𝜆𝜆𝑖𝑖𝑦𝑦𝑖𝑖 ,𝜃𝜃𝑥𝑥𝑖𝑖 ≥�𝜆𝜆𝑖𝑖𝑥𝑥𝑖𝑖𝑏𝑏 ,𝜆𝜆𝑖𝑖 ≥ 0,�𝜆𝜆𝑖𝑖 = 1
𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

𝑛𝑛

𝑖𝑖=1

}         (𝑗𝑗 = 1, … ,𝑛𝑛) 

(5) Repeat the steps from (2.1) to obtain the bootstrap estimates 

�𝜃𝜃1𝑏𝑏, … ,𝜃𝜃𝑛𝑛𝑏𝑏�          (𝑏𝑏 = 1, … ,𝐵𝐵) 

(6) Calculate the mean and variance of �𝜃𝜃1𝑏𝑏, … ,𝜃𝜃𝑛𝑛𝑏𝑏� to get the bootstrap estimate 𝜃𝜃𝑖𝑖⋆ , the bias-

corrected estimate 𝜃𝜃�𝑖𝑖
⋆, and the variance. 

 

Note that the notation has been adapted slightly to fit the rest of this manuscript. Furthermore, Bogetoft & 

Otto (2011) use a BCC model (Banker et al. 1984) instead of the CCR model. This results in the additional 

constraint ∑ 𝜆𝜆𝑖𝑖 = 1𝑛𝑛
𝑖𝑖=1  in (4). 

 

 

 

 

 



 

98 

 

5 References 
Afzali, H. H. A., J. R. Moss, M. A. Mahmood (2009). A conceptual framework for selecting the most 

appropriate variables for measuring hospital efficiency with a focus on Iranian public hospitals. 

Health Services Management Research 22(2) 81–91. 

Andersen, P., N. C. Petersen (1993). A Procedure for Ranking Efficient Units in Data Envelopment 

Analysis. Management Science 39(10) 1261-1264. 

Bahari, A., A. Emrouznejad (2014). Influential DMUs and outlier detection in data envelopment analysis 

with an application to health care. Annals of Operations Research 223(1) 95–108. 

Banker, R. D., H. Chang (2006). The super-efficiency procedure for outlier identification, not for ranking 

efficient units. European Journal of Operational Research 175(2) 1311–1320. 

Banker, R. D., A. Charnes, W. W. Cooper (1984). Some Models for Estimating Technical and Scale 

Inefficiencies in Data Envelopment Analysis. Management Science 30(9) 1078-1092. 

Bogetoft, P., L. Otto. Benchmarking with DEA, SFA, and R. Springer New York, New York, NY. 

Capelastegui, A., P. P. España, J. M. Quintana, I. Gorordo, M. Ortega, I. Idoiaga, A. Bilbao (2004). 

Improvement of process-of-care and outcomes after implementing a guideline for the management 

of community-acquired pneumonia: a controlled before-and-after design study. Clinical infectious 

diseases 39(7) 955–963. 

Charnes, A., W. W. Cooper, E. Rhodes (1978). Measuring the efficiency of decision making units. 

European Journal of Operational Research 2(6) 429–444. 

Chilingerian, J., H.D. Sherman (2011). Health-Care Applications: From Hospitals to Physicians, from 

Productive Efficiency to Quality Frontiers. In Handbook on Data Envelopment Analysis, Cooper, 

Seiford and Zhu (eds.), Springer US. 

Cooper, W. W., L. M. Seiford, K. Tone. Data envelopment analysis: a comprehensive text with models, 

applications, references and DEA-solver software. Springer Science & Business Media. 

Daraio, C., L. Simar. Advanced robust and nonparametric methods in efficiency analysis: Methodology 

and applications. Springer Science & Business Media. 

Donabedian, A. (1988). The quality of care: how can it be assessed? Journal of American Medical 

Association 260(12) 1743–1748. 

Dyson, R. G., R. Allen, A. S. Camanho, V. V. Podinovski, C. S. Sarrico, E. A. Shale (2001). Pitfalls and 

protocols in DEA. European Journal of Operational Research 132(2) 245–259. 

Färe, R., S. Grosskopf, B. Lindgren, P. Roos (1994). Productivity Developments in Swedish Hospitals: A 

Malmquist Output Index Approach. In Data Envelopment Analysis: Theory, Methodology, and 

Applications, Springer Netherlands. 

Federal Statistical Office of Germany (2018). Grunddaten der Krankenhäuser, 2017. Fachserie 12 Reihe 

6.1.1. 



 

99 

 

Ferrier, G. D., J. G. Hirschberg (1999). Can we bootstrap DEA scores? Journal of Productivity Analysis 

11(1) 81–92. 

Ferrier, G. D., J. S. Trivitt (2013). Incorporating quality into the measurement of hospital efficiency: a 

double DEA approach. Journal of Productivity Analysis 40(3) 337–355. 

Geissler, A., D. Scheller-Kreinsen, W. Quentin, R. Busse (2011). Germany: Understanding G-DRGs. In 

Diagnosis-related groups in Europe. Moving towards transparency, efficiency and quality in 

hospitals, Busse, Alexander Geissler, Wilm Quentin and Miriam Wiley (eds.), Maidenhead, 

England, Open University Press. 

Houck, P. M., D. W. Bratzler, W. Nsa, A. Ma, J. G. Bartlett (2004). Antibiotic administration in 

community-acquired pneumonia. Chest 126(1) 320–322. 

Institute for quality assurance and transparency in health care (IQTIG). . Ambulant erworbene 

Pneumonie. Beschreibung der Qualitätsindikatoren für das Jahr 2017. Retrieved from 

https://iqtig.org/qs-verfahren/pneu/. 

Jacobs, R., P. C. Smith, A. Street. Measuring efficiency in health care: analytic techniques and health 

policy. Cambridge University Press. 

Johnson, A. L., L. F. McGinnis (2008). Outlier detection in two-stage semiparametric DEA models. 

European Journal of Operational Research 187(2) 629–635. 

Klauber, J., M. Geraedts, J. Friedrich, J. Wasem (eds.). Krankenhaus-Report 2019. Das digitale 

Krankenhaus, 1st edition. Springer Berlin; Springer, Berlin. 

Kohl, S., J. Schoenfelder, A. Fügener, J. O. Brunner (2019). The use of Data Envelopment Analysis 

(DEA) in healthcare with a focus on hospitals. Health Care Management Science, 22(2), 245-286. 

Kuosmanen, T. (2009). Data envelopment analysis with missing data. Journal of the Operational 

Research Society 60(12) 1767–1774. 

Löthgren, M. (1998). How to bootstrap DEA estimators: a Monte Carlo comparison. Working paper 

series in Economics and Finance (223). 

Lovell, C. K. (1995). Measuring the macroeconomic performance of the Taiwanese economy. 

International Journal of Production Economics 39(1-2) 165–178. 

Mandell, L. A., R. G. Wunderink, A. Anzueto, J. G. Bartlett, G. D. Campbell, N. C. Dean, S. F. Dowell, 

T. M. File Jr, D. M. Musher, M. S. Niederman (2007). Infectious Diseases Society of 

America/American Thoracic Society consensus guidelines on the management of community-

acquired pneumonia in adults. Clinical infectious diseases 44(Supplement_2) S27-S72. 

Mitropoulos, P., N. Mastrogiannis, I. Mitropoulos (2014). Seeking interactions between patient 

satisfaction and efficiency in primary healthcare: cluster and DEA analysis. International Journal of 

Multicriteria Decision Making 4(3) 234–251. 

Nedelea, I. C., J. M. Fannin (2013). Technical efficiency of Critical Access Hospitals: an application of 

the two-stage approach with double bootstrap. Health Care Management Science 16(1) 27–36. 



 

100 

 

Nuti, S., C. Daraio, C. Speroni, M. Vainieri (2011). Relationships between technical efficiency and the 

quality and costs of health care in Italy. International Journal for Quality in Health Care 23(3) 324–

330. 

Ozcan, Y. A. Health care benchmarking and performance evaluation: an assessment using Data 

Envelopment Analysis (DEA). Springer Berlin. 

Puenpatom, R., R. Rosenman (2008). Efficiency of Thai provincial public hospitals during the 

introduction of universal health coverage using capitation. Health Care Management Science 11(4) 

319–338. 

Silverman, B. W. Density estimation for statistics and data analysis. Routledge. 

Simar, L. (2003). Detecting outliers in frontier models: A simple approach. Journal of Productivity 

Analysis 20(3) 391–424. 

Simar, L., P. W. Wilson (1998). Sensitivity Analysis of Efficiency Scores: How to Bootstrap in 

Nonparametric Frontier Models. Management Science 44(1) 49–61. 

Simar, L., P. W. Wilson (1999a). Of Course We Can Bootstrap DEA Scores! But Does It Mean 

Anything? Logic Trumps Wishful Thinking. Journal of Productivity Analysis 11(1) 93–97. 

Simar, L., P. W. Wilson (1999b). Some Problems with the Ferrier/Hirschberg Bootstrap Idea. Journal of 

Productivity Analysis 11(1) 67–80. 

Simar, L., P. W. Wilson (2000a). A general methodology for bootstrapping in non-parametric frontier 

models. Journal of Applied Statistics 27(6) 779–802. 

Simar, L., P. W. Wilson (2000b). Statistical Inference in Nonparametric Frontier Models: The State of 

the Art. Journal of Productivity Analysis 13(1) 49–78. 

Simar, L., P. W. Wilson (2011). Performance of the bootstrap for DEA estimators and iterating the 

principle. In Handbook on data envelopment analysis, Springer. 

Tiemann, O., J. Schreyögg, R. Busse (2012). Hospital ownership and efficiency: a review of studies with 

particular focus on Germany. Health Policy 104(2) 163–171. 

Tone, K. (2001). A slacks-based measure of efficiency in data envelopment analysis. European Journal 

of Operational Research 130(3) 498–509. 

Wilson, P. W. (1993). Detecting outliers in deterministic nonparametric frontier models with multiple 

outputs. Journal of Business & Economic Statistics 11(3) 319–323. 

 


	1 Introduction and motivation
	2 Summary of the contributions
	2.1 The use of Data Envelopment Analysis (DEA) in healthcare with a focus on hospitals
	2.2 Benchmarking the Benchmarks – Comparing the accuracy of Data Envelopment Analysis models in constant returns to scale settings.
	2.3 Using Data Envelopment to Estimate Hospital Efficiencies – A Teaching Case

	3 Discussion of the contributions
	4 Conclusion
	5 References
	A. Appendix
	A1. The use of Data Envelopment Analysis (DEA) in healthcare with a focus on hospitals
	A2. Benchmarking the Benchmarks – Comparing the accuracy of Data Envelopment Analysis models in constant returns to scale settings

	Abstract
	1 Introduction
	2  Performance indicators & benchmarking procedure
	3 Data generation process for one DMU
	4 Study design
	5 Evaluated DEA models
	6 Results
	6.1 Examples
	6.2 Computational study
	6.3 A guideline for the proper use of the DMU quantity in DEA studies

	7 Conclusion
	8 Appendix
	8.1 Derivation of unequal substitution distribution
	8.2 Pre-study on input ranges

	9 References
	A3. Using Data Envelopment to Estimate Hospital Efficiencies – A Teaching Case

	Abstract
	1 Introduction
	2 Tasks
	3 Solutions
	4 Appendix
	4.1 Grading System
	4.2 Bootstrapping algorithm of Bogetoft & Otto (2011):

	5 References

