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Abstract
The INTERSPEECH 2015 Computational Paralinguistics Chal-
lenge addresses three different problems for the first time in
research competition under well-defined conditions: the estima-
tion of the degree of nativeness, the neurological state of patients
with Parkinson’s condition, and the eating conditions of speakers,
i. e., whether and which food type they are eating in a seven-class
problem. In this paper, we describe these sub-challenges, their
conditions, and the baseline feature extraction and classifiers, as
provided to the participants.
Index Terms: Computational Paralinguistics, Challenge, De-
gree of Nativeness, Parkinson’s Condition, Eating Condition

1. Introduction
In this INTERSPEECH 2015 COMPUTATIONAL PARALIN-
GUISTICS CHALLENGE (COMPARE) – the seventh since 2009
[1], we address, for the first time within a challenge setting, four
problems within the field of Computational Paralinguistics [2]:

In the Brave New Approach (BNA) Sub-Challenge, the pro-
nunciation quality of non-native utterances has to be assessed,
based on prosodic annotations, and using regression as mea-
sure. This is an ‘open’ challenge with known test labels; the
task is not to obtain the highest performance for unknown test
data but to come up with new ideas and interesting ‘alterna-
tive’ approaches spanning the spectrum from ‘good old pho-
netic/linguistic approaches’ to innovative ideas and paradigm
shifts in paralinguistic methods for this rather new and difficult
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problem of addressing degree of nativeness within a speaker-
and item-independent cross-corpus setting. Generally, it is well
known that non-native pronunciations and prosody can be recog-
nised automatically [3]; previous works targeting in particular
the ‘degree of nativeness’ include, e. g., [4, 5, 6].

In the Degree of Nativeness (DN) Sub-Challenge, the train-
ing set from the BNA Sub-Challenge is used as training, and the
test data from BNA as development set. In addition, a new test
set with unknown labels is provided.

In the Parkinson’s Condition (PC) Sub-Challenge, the neuro-
logical state of Parkinson patients has to be estimated according
to the Unified Parkinson’s Disease Rating Scale, motor subscale:
UPDRS-III [7], within a regression task. PC is a neurological
disorder affecting functions of the basal ganglia; it is charac-
terised by the progressive loss of dopaminergic neurons in the
substantia nigra of the midbrain [8]. PC leads to vocal impair-
ment for approximately 90 % of the patients [9]. Telemonitoring
of the mostly elderly patients by vocal features has been shown
to be feasible to some degree [10, 11, 12].

In the Eating Condition (EC) Sub-Challenge, the eating
condition of a speaker has to be classified: whether s/he is eating
or not, and if so, which type of food (six food types). So far,
there have been only a few studies investigating speaking whilst
speakers bite on a block [13] or considering muscle movements
under speaking and eating [14]. In addition, chewing sounds
(without speaking) have been recognised automatically in [15],
and with special hardware in [16, 17].

Due to space limitations, we cannot elaborate in-depth on
state-of-the-art and importance of the tasks: the assessment of
non-native speech plays a pivotal role in language teaching, the
same way as the assessment of the severity of Parkinson’s condi-
tion does in speech therapy; in both fields, automatic approaches
are promising and worth any effort. Speech under eating is not
yet an established field; however, we can imagine several promis-
ing applications such as adapting automatic speech recognition
(for instance, for dictation under eating [18]) to EC, health (in-
gestive behaviour) and security (when eating is not allowed)
monitoring, forensics, or ethnography of communication [19]
(analysing speaking and/under eating as essential communicative
systems) [20].

For all tasks, the target value/class has to be predicted per
speech file. Contributors can employ their own features and
machine learning algorithm; however, a standard feature set is
provided that may be used. Participants will have to stick to the
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pre-defined training/development/test splits. They may report
development results obtained from the training set (preferably
with the supplied evaluation setups), but have only a limited
number of trials to upload their results on the test sets for the
DN, PC (ten, each) and EC (five) Sub-Challenges, whose labels
are unknown to them. Each participation must be accompanied
by a paper presenting the results, which undergoes peer-review
and has to be accepted for the conference in order to partic-
ipate in the Challenge. The organisers preserve the right to
re-evaluate the findings, but will not participate themselves in
the Challenge. As evaluation measures, for the BNA, DN, and
PC Sub-Challenges, we use Spearman’s Correlation Coefficient
(ρ) as the more ‘conservative’ and robust alternative to Pearson’s
correlation coefficient. For the EC task, we employ Unweighted
Average Recall (UAR) as used since the first Challenge held in
2009 [1], especially because it is more adequate for (more or less
unbalanced) multi-class classifications than Weighted Average
Recall (i. e., accuracy).

In section 2, the challenge corpora, and in section 3, the
baseline experiments are introduced. Novelties of this year’s
challenge are in the BNA, DN, and PC Sub-Challenges the use
of multiple databases in cross-corpus settings within a highly
realistic mis-match of recording conditions between train (devel-
opment) and test sets.

2. Challenge Corpora
2.1. Brave New Approach (BNA)

For the training set of the BNA Sub-Challenge, we employ data
from the AUWL [21] and ISLE [22] corpora. In AUWL, learners
of English as a second language practised pre-scripted dialogues.
These data are more natural and contain less reading-related hes-
itations than read non-native speech. Microphones and recording
hardware were heterogeneous and partly low-quality since learn-
ers were using their own equipment. The material used here
comprises 31 speakers (13 f, 18 m; 36.5± 15.3 years; native
languages: 16 German, 4 Italian, 3 Chinese, 3 Japanese, 5 other),
5.5 hours, 3 732 speech files (423 distinct sentences/phrases).
Each speech file was annotated by five phoneticians with respect
to its prosody (sentence melody and rhythm) on a five-point
scale ranging from (1) for normal to (5) for very unusual. With
the (simplifying) assumption of an interval scale, we took the
arithmetic average of the five labellers to obtain inter-subjective
prosody scores [23], with an average of 1.7 and a standard devi-
ation of 0.5 (range 1.0–3.8). From ISLE, we used material com-
prising 36 speakers (11 f, 25 m; native languages: 20 German,
16 Italian), 0.3 hours, 158 speech files (5 distinct sentences);
prosody scores were collected in a similar manner (2.1± 0.5,
range 1.3–3.4). These few sentences were included to take ad-
vantage of the fact that the speakers of the ISLE database are
disjoint from the speakers of our databases. For the test set with
known labels, we use a subset of the C-AuDiT database [24]
which contains read non-native English (sentences from short
stories; sentences containing different types of phenomena such
as intonation or position of phrase accent, tongue twisters, etc.).
Heterogeneous microphones and recording hardware were used
for recording. The material is disjunct from the training set
with respect to both speakers and sentences. It comprises 58
speakers (31 f, 27 m; native languages: 26 German, 10 French,
10 Spanish, 10 Italian, 2 Hindi), 2.7 hours, and 999 speech files
(19 distinct sentences). Prosodic scores were collected similarly,
except for using a 3-point scale from 0 for good to 2 for bad
(0.5± 0.3, range 0.0–1.6). Additional material that may but need

not be used comprises: (a) the word sequence the learners were
supposed to produce, which can be used as a transcription since
recordings with word errors were excluded; (b) a pronunciation
dictionary with syllable boundaries and word accent positions;
(c) an approximate phoneme segmentation automatically gener-
ated from (a) and (b); (d) speaker identities; and (e) the corpus
each file came from. All recordings are given with a sampling
rate of 16 kHz.

2.2. Degree of Nativeness (DN)

The training set is the same as for the BNA Sub-Challenge, and
the development set is the test set of the BNA Sub-Challenge.
The DN test set was created at TUM. The recordings were made
in a quiet office room with a single microphone/hardware setup.
The participants were asked to read aloud sentences of two
short stories in English: “The North Wind and the Sun” (widely
used within phonetics, speech pathology, and alike), and “The
Rainbow” (standard reading passage used in speech/language
pathology). The speech material comprises 54 speakers (28 f,
26 m; 31.3± 8.9 years; native languages: 23 German, 12 Chi-
nese, 19 other; 1.4 hours, 594 speech files, 11 distinct sentences).
Prosodic scores were collected in the same manner as for AUWL,
using 16–23 annotaters. Labels range from 1.1 to 5.0, with an
average of 2.9 and a standard deviation of 0.7. Additional in-
formation that may but need not be used comprises the target
texts (can be used as transcription since recordings with word
errors were excluded) and the respective entries in the pronunci-
ation dictionary. The sampling rate was 16 kHz. The material is
disjunct from the training and development sets with respect to
both speakers and sentences.

2.3. Parkinson’s Condition (PC)

Recordings of the training and development sets were done at
UdeA [25] in a sound proof booth (dynamic omnidirectional
microphone, professional audio card, sampling at 44.1 kHz) with
a total of 50 patients with Parkinson’s disease (25 f, 25 m). 35 of
the patients are included in the training set, and the remaining 15
comprise the development set. Each speaker performed a total of
42 speech tasks including 24 isolated words, 10 sentences, one
reading text, one monologue, and the rapid repetition of the syl-
lables /pa-ta-ka/, /pa-ka-ta/, and /pe-ta-ka/. The test set consists
of the same 42 tasks produced by 11 patients (5 f, 6 m), recorded
with the same microphone, sound card, resolution bits, and sam-
pling frequency as the training and development sets – yet not in
a sound proof booth but in quiet office environments. The total
duration of recordings included in the training, development,
and test sets are 81, 33, and 43 minutes. Reading texts comprise
a total of 36 words. The average duration of monologues per
speaker in the training, development, and test sets are 48± 26,
42± 19, and 112± 21 seconds. The mean age of the participants
included in the train, development, and test sets are 61.3± 10,
62± 6.5, and 63± 7. All of the patients were diagnosed and
labelled by a neurologist according to the UPDRS-III scale, with
a mean of 38.5 and a standard deviation of 19.1 (range 5 to 92).
The speech samples were recorded with the patients in ON-state,
i. e., no more than 3 hours after the morning medication. All
speakers were evaluated by a phoniatrician; if they showed any
speech atypicality different from those due to PC, they were
excluded from the database. For training and development, we
provide additional material that may but need not be used: (a)
speaker identity; (b) task type; and (c) the target sentences, where
applicable (not necessarily usable as transcription due to reading
errors).
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Table 1: The iHEARu-EAT database: Number of instances per
class in the CV-train/test split used for the Challenge.

# Train Test Σ
No Food 140 70 210
Apple 140 56 196
Nectarine 133 63 196
Banana 140 70 210
Crisp 140 70 210
Biscuit 133 70 203
Gummi bear 119 70 189
Σ 945 469 1 414

2.4. Eating Condition (EC)

For the EC Sub-Challenge, the audio tracks of the audio-visual
iHEARu-EAT database are used [20]. 30 subjects (15 f, 15 m;
26.1±2.7 years) were recorded in a quiet, low reverberant office
room at TUM (27 German; 1 Chinese, 1 Indian, 1 Tunisian ori-
gin, all of them having a close-to-native competence in German;
no speaker displayed significant speech impediments.). Prior
to the actual recording, subjects performed practice trials to
familiarise themselves with the procedure. Food classes were
chosen with partly similar consistency (for instance, crisps and
biscuits) and partly dissimilar consistency (for instance, nec-
tarine vs crisps). These food classes represent snacks which
are likely to be encountered in practical scenarios and enable
the subjects to speak while eating. In order to control for the
amount of food being consumed, and in particular to encourage
subjects to actually eat while speaking, an assistant provided the
subjects with a serving of fixed size prior to the recording of
each utterance. The serving size was chosen such as to enable
a significant effect on the subjects’ speech. For read speech,
the German version of the phonetically balanced standard story
(cf. also the DN test partition) “The North Wind and the Sun”
(“Der Nordwind und die Sonne”) was chosen (71 word types
with 108 tokens, 172 syllables [26]). The subjects had to read
the whole text with each sort of food. Spontaneous narrative
speech was elicited by prompting subjects to briefly comment on,
e. g., their favourite travel destination, genre of music, or sports
activity. A typical session of one subject lasted about one hour.
The narratives were segmented into units whose length roughly
equals the length of the six pre-defined units in the read story.
The speech files were segmented manually, in order to remove
non-speech parts at the beginning and the end with only ‘eating
noise’, which could make the classification task too easy. All
in all, 1 414 turns and 2.9 hours of speech (sampled at 16 kHz)
were recorded. By construction, 1/7 of the speech files contain
spontaneous speech. Note that there is a slight difference in the
amount of utterances per class, because some subjects chose not
to eat all types of food.

For the Challenge, the data were split speaker-independently
into a training set (20 speakers) and test set (10 speakers), strati-
fied by age and gender. The resulting numbers of instances per
class and set are shown in Table 1.

3. Challenge Baselines
For the baseline feature set, we use the same COMPARE set
of supra-segmental (utterance-level) acoustic features as in the
previous two editions of Interspeech ComParE [27, 28]. None
of the additional material supplied for BNA, DN, and PC is
used. The COMPARE feature set contains 6 373 static features as

functionals of low-level descriptor (LLD) contours. The configu-
ration file is the IS13 ComParE.conf, which is included in the
2.1 public release of openSMILE [29, 30]. A pre-release version
of openSMILE 2.1 was used, resulting in slightly different base-
line features for some descriptors in comparison to the features
extracted with the latest 2.1 version. As evaluation measure for
the EC Sub-Challenge, we use UAR; given the ordinal-scaled
annotations of the BNA, DN, and PC Sub-Challenges, we use
ρ as the official competition measure for these sub-challenges
as outlined above. For transparency and reproducibility, we
use open-source implementations from the Weka 3 data mining
toolkit [31]. We apply linear kernel Support Vector Machines
(SVM) / linear Support Vector Regression (SVR) with epsilon-
insensitive loss, which are known to be robust against overfitting.
As training algorithm, we use Sequential Minimal Optimisation
(SMO). We scale all features to a standard deviation of 1 (option
-N 1 for Weka’s SMO/SMOreg). For SVR, a fixed ε of 1.0
is used. As a novelty, we introduce CV in all sub-challenges:
4-fold speaker-independent CV for BNA, DN, and PC, and leave-
one-speaker-out cross-validation (LOSO-CV) for EC. By that, it
is hoped that the results obtained on the training set are more rep-
resentative and hence the benefits of CV outweigh the increased
computational cost. Performance is computed as a single ρ or
UAR value over the combined results of all CV folds (i. e., not
averaged over the results in the individual folds). For DN and
PC, an alternative evaluation scheme for development is given
by train vs BNA test (DN) and train vs development (PC). The
complexity parameter C was optimised up to a power of ten
through CV on train; however, this did not always result in opti-
mal values for test (see below). For all sub-challenges, a baseline
recipe is provided to the participants that performs CV on the
training set in a reproducible and automatic way, including pre-
processing, model training, model evaluation, and scoring by the
competition and further measures. A novelty of this year’s BNA
Sub-Challenge is the provision of a recipe for re-producing the
baseline regression results on the test set with known labels. In
the following, we will briefly summarise the baseline results as
displayed in Table 3.

3.1. Brave New Approach and Degree of Nativeness

The two sub-challenges on degree of nativeness are cross-corpus
tasks, with different text material and different recording condi-
tions. This should be accounted for during development, other-
wise the system might overfit to matched data during develop-
ment and perform poorly on the mismatched data in test. We can
account for the text mismatch in a straightforward way by train-
ing and evaluating on disjoint text material during development.
Therefore, we use a double nested loop (K=2) over speakers and
texts for the cross-validation on train. As we have a sufficient
number of recordings in the training set, we limit computation
time by using just N=2 speaker and text folds, resulting in a total
of NK=4 folds. Thus, per fold about (N−1

N
)K = 25% of the

data is used for training, and similarly about ( 1
N

)K = 25% of
the data for testing (see Table 2).

For BNA, the best result in CV is obtained for the complexity
C=10−5 with ρ=.403. This complexity is optimal on test, too,
and yields ρ=.415 here. Given the nature of this Sub-Challenge,
this is, however, merely a rough guide line rather than a real
baseline – the spirit here is to generally compare interesting
brave new approaches rather than optimise to beat a number.

For DN, things are a bit more complicated: while optimal
complexity is C=10−5 for both provided development schemes
(CV on train; train vs development), with ρ=.403 and ρ=.415,
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Table 2: Double nested speaker-and text-independent cross-
validation for BNA/DN. Speakers are partitioned into to sets S1

and S2, text material into T1 and T2. Note that with our N=2,
train and test swap roles in folds 1/4 and 2/3.

Fold Speaker Fold Text Fold Train Test
1 1 1 S1∧T1 S2∧T2

2 1 2 S1∧T2 S2∧T1

3 2 1 S2∧T1 S1∧T2

4 2 2 S2∧T2 S1∧T1

respectively, it is better to use a higher complexity for train vs
test: With C=10−4, we get ρ=.425 on test. This can be explained
by the fact that unlike DN-train and DN-development, DN-test
has been recorded under homogeneous recording conditions.
Thus, allowing a model with some more complexity pays off.
Note that we use only train for building the final system, since
train+development cannot simply be combined due to the differ-
ent scales used for annotation. However, participants are allowed
to combine both sets with suitable measures for handling the
different scales.

3.2. Parkinson’s Condition

For PC, we provide two development schemes: CV on train, and
train vs development. To reflect the fact that the system is going
to be applied on unknown speakers, each fold is constructed
to partition the training set with respect to the speakers (single
nested CV: K=1). Since we use N=4 folds, within each fold,
about 75 % of the data is used for training, and 25 % for testing.
The development set is disjunct from the training set with respect
to speakers. The two development schemes provided lead to dif-
ferent optimal values for C: for CV on train, C=10−2 is optimal,
with ρ=.434, while for train vs development, C=10−3 is best,
with ρ=.492. However, the results for C=10−2 and C=10−3 are
very similar within each of the development schemes, differing
only after the fifth and fourth decimal, (when not rounded). For
this sub-challenge there are two options to build the final system:
(1) training just with train, or (2) merging train and development
for training. In Table 3 we consider only the first of these two
options. The second option led to a downgrade rather than an
upgrade, likely due to a too large mismatch between the devel-
opment and test partitions: The highest result was obtained with
C=10−5 as ρ=.390 when training only on train, but drops to
ρ=.354 if using train and development data for training with the
same C. However, participants are free to decide what option
they choose for the final system, e. g., by considering suited
domain adaptation or data and/or feature transfer learning meth-
ods to reduce the differences between the partitions [32, 33]. In
fact, also the optimal value C=10−5 considering the test data is
unexpected, as it is quite lower than for the development scheme.
This difference can likely be explained because the test data
were recorded in non-controlled noise conditions, so a lower
complexity can prevent the system from overfitting to the very
clean acoustic conditions in the train and development data.

3.3. Eating condition

For EC, we again employ CV (single nested CV: K=1); since we
use N=20 folds, within each fold, about 95 % of the data is used
for training, and 5 % for testing. The optimal complexity for CV
on train is C=10−3 with 61.3 % UAR. The same complexity is
optimal for test, with an UAR of 65.9 %. Note that these results

Table 3: Challenge Baselines. C: Complexity parameter of
SVM/SVR. Column (a): results of cross-validation on train. Col-
umn (b): results of train vs development. Column (c): results of
train vs test. The official challenge baselines are highlighted by
frames.

(a) (b) (c)
C CV train train/dev train/test

Degree of Nativeness (ρ)
10−6 .333 .311 .223
10−5 .403 .415 .359
10−4 .399 .411 .425
10−3 .368 .347 .354
10−2 .368 .338 .355

Parkinson’s Condition (ρ)
10−5 .238 .368 .390
10−4 .433 .467 .300
10−3 .434 .492 .236
10−2 .434 .491 .237

Eating Condition (UAR [%])
10−5 51.1 – 48.0
10−4 59.7 – 60.6
10−3 61.3 – 65.9
10−2 60.9 – 65.9
10−1 60.9 – 65.9

cannot be directly compared to those in [20] because of different
evaluation and classifier setups. We cannot provide meaningful
estimates of mean / standard deviation of accuracy or UAR in
LOSO-CV, since not all classes are present for all speakers.

4. Conclusion
The tasks in this year’s challenge are new in several ways: with
EC, we introduce a new field of research; for BNA, DN, and PC
– all being representative for established fields, namely assess-
ment of non-native and pathological speech – we have to face a
sometimes severe acoustic mismatch due to different recording
conditions between training/development and test sets. More-
over, for BNA and DN, the task is speaker- and item-independent,
as well as cross-corpus. The acoustic mismatches caused in turn
mismatches in performance between optimal complexity set-
tings for CV train and/or development on the one hand, and the
optimal complexity settings for the test sets. As baselines, we
established the results with the optimal complexity parameters
obtained for the test set. We report five attempts on test used
for their determination – the participants have either five (EC)
or ten (DN, PC) attempts per Sub-Challenge. Ten attempts are
allowed in the cross-corpus Sub-Challenges given the higher
complexity due to acoustic and further mismatches. Yet, feature
sets and learning procedures are standard – competitive but not
optimised and kept generic across the tasks, despite their obvi-
ous differences. We hope that the meta-information that was
not used in the baselines by intention for the sake of simplicity
will make it possible for the participants to come up with both
competitive and interesting new approaches towards the general
challenge we all will face when ‘going real-life’, by that shifting
from well-designed lab constellations to more realism.
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