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2.1 Introduction
As the global population ages, several disorders, diseases, and impairments are 
becoming prevalent with significant financial and social implications. The preven­
tion and appropriate handling of such conditions will benefit both individuals and 
national healthcare systems. Smart information and communications technology 
(ICT) solutions can provide benefits such as improving the quality of life and sup­
porting independent living of the elderly and other groups with chronic or acute 
conditions.

Biosensors are complete analytical devices composed of a receptor, an active 
biological factor that can be an enzyme, antibody or similar, coupled with a trans­
ducer and are able to detect the existence of a particular analyte. They are continu­
ous sources of biological data and when integrated in a smart analytics framework, 
they can provide useful information about a person’s condition. Smart biosensors in 
health capitalize on recent advances in microtechnology and wireless communica­
tion in order to collect and transmit information and, in conjunction with actuators, 
are able to provide better monitoring and treatment. For example, wearable biosen­
sors provide vital signs monitoring for everyone, including patients, children, and 
the elderly, and are very effective in health risk prevention and control.

The use of smart biosensors can benefit people that require medical support or 
care, as well as for older adults, who face a gradual degradation of their motor, cog­
nitive, and other skills due to aging. Smart biosensors can also help individuals 
exposed to harsh working environments, or who perform stressful tasks or tasks 
that induce health risks. The continuous monitoring of biosignals in combination 
with environmental sensing allows smart systems to promote a reactive living and 
working environment that provides appropriate and timely recommendations, acts 
preventively, and mitigates health risks.

The long list of biosensor applications [1,2] includes, among others, helmets for 
treating depression through electrical pulses and smart clothes (e.g., socks, shoes, 
t-shirts, and smart vests) that noninvasively collect and transmit vital signs and inte­
grate well with the concept of a smart house or a smart working environment.

Several technological and societal challenges pose barriers to the widespread 
adoption and deployment of smart biosensor applications. These barriers relate 
primarily to the interoperability and expandability of the overall solution. 
Moreover, the ability to collect and process large amounts of data from heteroge­
neous sensors, as well as the ability to provide high-level data analytics and 
extract knowledge, ought to overcome all technological barriers. This ability to
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collect and analyze data will support the development of solutions and provide 
evidence supporting the effectiveness of personalized interventions and recom­
mendations that will promote user trust. This chapter aims to highlight challenges 
and opportunities pertaining to the application of smart biosensors in healthcare 
and to present the main building blocks required for such applications. Finally, 
three state of the art solutions leveraging smart sensors in this context are 
presented.

The chapter is further structured as follows. Section 2.2 highlights health chal­
lenges faced by the elderly, older workers, and infants, as well as the social and 
financial implications associated with these challenges. Section 2.3 presents the 
main challenges and opportunities for technology-enabled care (TEC). Section 2.4 
describes the building blocks for the Internet of Things (loT) and the Internet of 
Medical Things (loMT) in health and well-being applications, which are smart 
environment enablers, back end enablers for personalized recommendations, plus 
security and privacy enablers. Section 2.5 presents three state of the art smart 
healthcare applications to address challenges in living and working environments.

2.2 Health challenges for the elderly, older workers, 
and infants

According to HelpAge International,1 by the year 2050, one in five people will be 
over 60. Among the 10 most prevalent health challenges that lead elderly people 
to physical injuries and affect their ability to have a healthy and independent life 
[3] are the following:

• Hearing loss (HL): HL is one of the most prevalent chronic conditions in 
older adults [4] and affects one-third of people ages 65—74, as well as nearly 
half of those older than 75. HL increases the risk of cognitive decline and 
depression and can lead to social isolation.

♦ Cardiovascular diseases (CVDs): Hypertension, ischemic heart disease, and 
heart failure are the primary causes of death globally (31% in 2016, 85% of 
which were from ischemic heart disease and stroke) [5]. CVDs affect many 
aspects of life for elderly adults including their physical, social, and emotional 
status.

• Cognitive impairments (Cis): Cis affect the ability of people to think, learn, 
and remember. Dementia is the most common issue with approximately 47.5 
million cases worldwide and a prediction to triple by 2050. Dementia has high 
comorbidity with heart failure among the elderly and affects several cognitive 
domains including executive and motor function [6].

• Mental health (MH) issues: MH issues affect a significant proportion of the 
older population (e.g., depression at 7%, anxiety disorders at 3.8%, substance

www.helpage.org/resources/ageing-data/global-ageing-statistics/
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use problems at nearly 1%, self-harm attempts underlie 25% of elderly deaths) 
and in some cases have an impact on physical health. Adults with other health 
conditions (e.g., heart disease) have a higher risk for MH issues.

• Balance disorders (BDs): BDs are disturbances in coordination that make 
someone feel unsteady, dizzy, or have a sensation of movement. This 
progressive, age-related loss of sensory functions and inability to control body 
movements frequently lead to falls, physical injury, and death (one elderly 
person dies from falling every 29 minutes [7]). Frailty is quite prevalent 
among elderly people. The prevalence ranges from 33% to 88% depending on 
how frailty is defined and steadily increases with age. Frailty and other 
progressive disorders increase the risk for the elderly and negatively affect 
their quality of life [8].

Because health problems increase with age and the age limits for retirement 
continue to increase, more employees are likely to develop health problems while 
still at work. Changes in physical abilities (e.g., balance, mobility, dexterity, stat­
ure, strength, and aerobic power) can result in a reduced tolerance of physical 
work and declines in motor skills (e.g., difficulty maintaining coordination, loss 
of flexibility), rendering tasks that require fine manipulation harder for older 
workers. Finally, changes in cognitive abilities (e.g., declines in episodic memory, 
executive functioning, and attentional control) reduce task performance and affect 
work capacity [9]. Conversely, cumulative exposure to demanding work can have 
a significant impact on health and functional abilities, wellness at work, and pro­
ductivity. Arduous working conditions (e.g., exposure to extreme temperatures, 
dangerous substances, or noise) have a major influence on the risk of developing 
work-related ill-health (e.g., illness, stress, fatigue). When work environments 
require workers to exert intense physical effort, even occasionally, it is important 
to keep workers safe and healthy so as to increase their resilience and avoid injury 
risks [10].

On the opposite end of the age scale, various pathological conditions can arise 
during the first year of life in infants, which call for immediate detection and 
intervention. Parents cannot always identify the signs of pathology that specific 
movements and sounds of an infant indicate. According to the World Health 
Organization2 a child is at the highest risk of dying in the first 28 days of life, 
while at home. This risk is especially high when neonates are discharged early 
from the hospital. Current countermeasures include postnatal care plans built 
around home visits by healthcare professionals. Many pathological situations can 
occur during an infant’s sleep that can potentially be harmful to the infant’s 
health if not detected promptly: breathing disorders, vomiting, arrhythmias, epi­
leptic and febrile convulsions, high fever, and sleep disorders including sudden 
infant death syndrome (ranked in order of life-threatening risk).

2 https://www.who.int/news-room/fact-sheets/detail/newboms-reducing-mortality
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2.3 Challenges and opportunities for technology-enabled 
care

2.3.1 Low-cost technology
The explosive growth of loT [11] and associated technologies has placed down­
ward pressure on the cost of associated hardware and software [2]. Building suc­
cessful low-cost TEC solutions depends on a number of factors related to sensors 
or the network itself. Sensors must have: (1) low power consumption for prolong­
ing battery life; (2) physical characteristics that provide unobtrusiveness; (3) 
robustness to minimize maintenance; (4) wireless connectivity to facilitate net­
working using widely accepted standards; and (5) data preprocessing capabilities 
to reduce computational load on gateways and the cloud. The network itself must 
support: (1) the deployment and management of a large number of low-cost sen­
sors and (2) high processing speed and portability to enable better care at lower 
cost.

2.3.2 Modular, interoperable, expandable solutions
The integration of a large number of heterogeneous smart objects that use differ­
ent communication technologies (e.g., Bluetooth, RFID, Zigbee, 802.11, 
802.15.4), run a variety of often proprietary protocols and applications, and have 
limited exposed interfaces, requires careful engineering actions that will intercon­
nect loT devices in a network and will build realistic and useful novel loT solu­
tions [12]. Many surveys highlight that vendor lock-in and complicated security 
and management processes hinder the broader adoption of loT technologies [13]. 
Aiming to alleviate the interoperability issues, various emerging loT platforms 
are either domain-specific (e.g., Uni vers A AL3) or general purpose (e.g., FI- 
WARE,4 GoogleApp engine5). Thus, developers rely on existing platforms and 
their services, and future platforms must be interoperable with the existing ones. 
Moreover, various standardized “loT communication protocols” have been pro­
posed, aiming to address the interoperability and fragmentation issues. The MQ 
Telemetry Transport (MQTT6) is one such machine-to-machine (M2M) connec­
tivity protocol, which was recently standardized by OASIS (also standardized as 
ISO/IEC 20922), and already applied in various domains including eHealth [14] 
and smart homes [15]. The OASIS standard devices profile for web services 
(DPWS) [16] supports the interaction with resource-constrained devices and has 
been studied extensively in many areas, including eHealth and smart homes [17]. 
The IETF standard constrained application protocol (CoAP) [18] offers an

3 http://www.universaal.info
4 http://www.fi-ware.org
5 https://cloud.google.com/appengine/
6 https://docs.oasis-open.Org/mqtt/mqtt/v5.0/mqtt-v5.0.html
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alternative web transfer protocol that allows the integration of constrained loT 
nodes through lightweight interactions.

2.3.3 Big data and machine learning
With environmental sensors and wearable devices, smart healthcare platforms can 
continuously monitor the health status and activities of patients and the elderly, as 
well as the safety and security of the environment [19,20]. This continuous flow 
of data in combination with individual’s medical histories, can support personal­
ized diagnosis and assistance and can automate important tasks, such as medical 
data archiving and evaluation of the effectiveness of medical interventions. 
Recent advances in artificial intelligence (AI) and big data processing technolo­
gies have allowed the implementation of highly reliable, accurate, and robust 
infrastructures for data recording and processing [21].

The analysis of data from wearable devices is led by decision-making process 
requirements, which define the data to be collected and extracted in support of 
intelligent decision-making. To support intelligent decision-making, the following 
requirements must be considered: (1) modular and interoperable data ingestion in 
which devices from different manufacturers contribute to a common data model, 
(2) parallelization and data stream processing in all steps from data acquisition to 
storage and processing, (3) use of data analytics and AI to support automatic 
monitoring and decision-making, (4) privacy-aware data processing to ensure con­
sistent data encryption, database security, as well as secured communication 
channels.

2.3.4 Security and privacy
Two main issues regarding security and privacy of relevant applications are the 
complex interaction schemes that take place during typical, everyday use of smart 
healthcare solutions (e.g., patients/users with their caregivers/medical profes­
sionals), along with the private/sensitive nature of the handled data. These factors 
necessitate the integration of strong security and privacy provisions, including 
seamless authentication and authorization services, for the protection of the fra­
mework’s M2M and machine-to-human (M2H) interactions [21]. loT devices 
have been designed mainly considering low-cost, low-energy usage, ease of setup 
and use, and interconnection, but not security. Since health monitoring systems or 
even smart homes and workplaces may include sensitive assets, it is important to 
protect them from malicious attackers.

The below define a set of security and privacy risks and considerations:

• Small, low-cost, interconnected devices have immature security functions.
• Low processing capabilities of the network require computationally intensive 

real-time tasks (e.g., condition reasoning) to be moved to the cloud.
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• Secure communication within the smart home uses a range of protocols (WiFi, 
Bluetooth, NFC, ZigBee, and others) that may open various exploits.

• Privacy protection systems (e.g., smart home sensors) generate a large amount 
of highly personal data and metadata.

• Consent for secure sharing of anonymized information is necessary.
• The physical security of a smart home is linked to the safety of sensitive 

systems for the occupants’ healthcare.
• Communications with the back end processing systems must be secure.
• Secure and privacy-preserving interactions (communication, processing, 

storage) with third parties (hospitals, clinics, etc.), their data and metadata.
• Authentication, authorization, and accounting mechanisms must be tailored to 

all actors (from elderly and clinical experts to sensors and back end systems).
• Reliability and availability of information from back end databases and real­

time data streams must be guaranteed.

The information sources to be protected encompass data from smart devices, 
including raw data, logs, metadata (headers, content type, dates, etc.), events 
(alerts, warnings, errors, etc.), rules, settings and preferences (which may disclose 
information about the end user’s conditions), updates to and from smart devices, 
postprocessed data, and interactions of the smart home with the back end cloud, 
as well as interactions of the back end cloud with various healthcare service pro­
viders. All adopted security and privacy mechanisms must be tailored to the 
above requirements. A key characteristic of these mechanisms will be their capa­
bility to adapt in real time to a variety of usage requirements (e.g., context, 
privacy preferences, risk profile, and other parameters).

2.4 Internet of Things and Internet of Medical Things 
building blocks for health and well-being applications

2.4.1 Smart environment enablers
2.4.1 . /  Wearable and assistive medical devices
A basic component of a smart solution for health is a wireless sensor network 
that obtains automated, continuous, and real-time measurements of physiological 
signals and performs limited data processing and functions. Vital signs, such as 
heart rate, heart rate variability, body temperature, skin conductance, respiration 
rate, blood pressure, blood glucose, oxygen saturation, as well as activity related 
signals can be captured and analyzed using appropriately selected sensors that can 
be placed over clothes or directly on the body. Another physiological measure­
ments that can be recorded is the hearing response, which is supported by hearing 
aids. Current state of the art technology in the aforementioned sensors lacks mul­
tiparameter systems for the concurrent monitoring of multiple physiological
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Table 2.1 Physiological measurement solutions in the Internet of Things era.
Physiological measurement Sensor type Data provided

Heart rate PPG Raw
Blood pressure Pressure sensor Raw
Blood glucose POC Raw
Respiration rate Sensitive stretch sensor Raw
Oxygen saturation PPG Raw
Body temperature Thermocouple Raw
Skin conductance and temperature GSR Raw
Activity IMU Raw, aggregated
Sympathetic nervous system activity GSR Raw
Hearing response — Raw, aggregated

GSR, Galvanic skin response; PPG, photoplethysmography; POC, point-of-care; IMU, Inertial 
measurement unit.

measurements. On the other hand, the utilization of separate sensors is not practi­
cal and may cause inconvenience and obtrusive operation for the end users.

Physiological signals from the human body can be measured with various sen­
sor technologies [22], some of which are depicted in Table 2.1. The heart rate, 
which has become a routine measurement, can be easily extracted from photo­
plethysmography (PPG) signals. Blood pressure derives from inflatable cuffs 
accompanied with a stethoscope. The evolution of this medical device resulted in 
an integrated smart pressure sensor [23]. Moreover, blood oxygen saturation, a 
valuable vital parameter, can now be easily measured through the exploitation of 
PPG technology. PPG is a biophotonic technology using two different light wave­
lengths [24]. The basic type of sensors in skin sweat monitoring is epidermal gal­
vanic skin response (GSR) sensor. Respiration rate is used to detect stress and 
potential hypoxia [25].

More recently, wearable devices that can infer the human physical activity 
have gained popularity. Such devices often incorporate inertial measurement unit 
(IMU), global positioning systems (GPS), PPG sensors, ECG leads, and sophisti­
cated firmware capable of high quality and continuous biosignal monitoring [26]. 
Finally, sympathetic nervous system activity can be captured using electrodermal 
activity sensors, which offer information about alterations in the central nervous 
system. Assessment of these alterations leads to indicators of the emotional condi­
tion of the subject [27]. The abovementioned sensors can be integrated into wear­
able devices specifically designed to extract raw, aggregated, or both types of 
data and collectively compose a smart loT ecosystem.

Considering the above landscape, a smart healthcare solution must be able to 
integrate physiological measurements, such as those reported above, aggregate 
(and preprocess, if necessary), and transmit them to a back end cloud platform. 
There, huge amounts of raw and aggregated data can be analyzed through
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advanced big data analytics in order to understand behavioral activity, detect 
probable risks, and provide adequate interventions.

2.4.1.2 Mobile devices
Mobile devices are an integral part of smart healthcare solutions. They are the 
near perfect interface to actively gather self-reported data from individuals. 
Additionally, they contain a vast array of embedded sensors and features for col­
lecting a large variety of data, both actively and passively, which can be used to 
infer information regarding a subject’s current health or mental state. Behavioral 
signals such as speech, facial expression, and gaze can also be collected through 
the cameras and microphones embedded in all consumer smartphones and tablets. 
Furthermore, mobile devices offer temporary storage and the means to remotely 
transmit this information. They also represent a straightforward solution for the 
intermediate storage of health and wellness data collected from wearable and 
other loT devices before transmission to a back end cloud platform for analysis 
[28]. However, as already pointed out in the previous section, this transmission 
represents a potential security risk and can quickly drain the limited power avail­
able to these devices. In addition to functioning as storage, transmission, and 
potentially processing devices, smartphones represent a new source of health 
and wellness information. In particular, the shift to mobile devices, smartphones, 
and tablets as core communication platforms, has resulted in a new source of data 
known as digital-trace information. This data stream is generated implicitly 
through smartphone usage and can be collected passively and unobtrusively (with­
out specific user interaction) by the use of specially designed apps. One such app 
is RADAR-BASE, which runs as a background process and automatically collects 
and transmits this information for analysis and predictive monitoring [29]. 
Implicit trace information gathered from smartphones includes social activities as 
monitored via call and message logs, social media usage, or Bluetooth connectiv­
ity, and activity levels as inferred from embedded sensors or GPS data. Ambient 
noise and light levels, screen time, and application usage can also be easily 
collected.

A growing area of research in smart healthcare solutions is the embedding of 
AI technologies directly into mobile devices. However, considering that a modem 
deep neural network can have millions of hyperparameters to tune, the computa­
tional demands associated with these technologies are very high, potentially 
requiring hundreds of megabytes. In several cases they also need substantial data 
movement to support their operation, thus constituing a highly nontrivial process. 
One growing research direction within neural networks is the development of 
approaches that can import large networks and optimize them until they are 
executable on a low resource smart device [30]. Other methods are aimed at low­
ering the memory footprint and computational complexity of AI technologies 
while maintaining reasonable accuracy. Developing low resource networks 
increases the likelihood of smart systems being able to run offline, increasing 
user privacy and reducing energy consumption concerns associated with
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transmission bandwidth, all of which are core considerations for a robust smart 
healthcare solution.

2.4.1.3 Environmental monitoring and Internet of Things platforms 
Environmental monitoring encompasses a broad variety of loT applications that 
involve online monitoring of environmental parameters such as temperature, 
humidity, noise levels, air pollutant concentrations, etc., which affect people’s 
safety and well-being [31]. The measured parameters are collected through dedi­
cated gateways by an loT platform for monitoring and analytics.

The most popular loT platforms for use as secure gateways are AGILE loT, 
Eclipse Kura, and HomeAssistant.7 They are open source, feature ready-to-use field 
protocols, and support wireless and wired loT networking technologies such as WiFi, 
Bluetooth Low Energy (BLE), ZigBee, Z-Wave. Technology advancements in 
Bluetooth low energy, make BLE devices suitable for the development of loT net­
works, combined with power harvesting elements and mobile gateways [32]. For 
publishing data and events to loT cloud platforms, MQTT connectivity is an option 
available to all platforms. Every platform uses its own authentication system 
(OAuth2, multi factor authentication, etc.). For secure access, HTTP SSL/TLS proto­
cols and MQTT connectivity ensure the privacy of established connections.

7 http://agile-iot.eu, https://www.eclipse.org/kura and https://www.home-assistant.io

AGILE loT builds a modular and adaptive gateway for loT devices that sup­
ports interoperability of devices and data. Modular hardware solutions that adopt 
all communication protocols in combination with the appropriate software compo­
nents that offer smart services (data management on the gateway, intuitive inter­
face for device management, etc.) allow fast prototyping of extensible solutions. 
Eclipse Kura is an extensible open source loT Edge Framework that offers appli­
cation programming interface (API) access to the loT gateways (I2C, GPS, 
GPIOs, serial ports, etc.). HomeAssistant is an open source loT platform with 
hundreds of built-in components for connectivity with off-the-shelf sensors, pro­
viding an easy framework for importing more devices and a mobile-friendly inter­
face for setting up automation rules and monitoring devices.

2.4.1.4 Camera-based monitoring of humans
Despite not yet being widely adopted in loT frameworks, visual sensing using 
cameras has several attractive advantages over other sensing modalities. These 
advantages stem from the fact that visual sensing can support the extraction of 
detailed context information from a scene, while being passive, low cost, and 
nonintrusive. Context awareness facilitates a better understanding of the activi- 
ties/actions, health, and risks faced by a subject being monitored by detecting 
behavior patterns and supporting more precise inferences about the subject’s 
situation and environment. Many systems rely by design on the extraction of 
low-level context information, such as the location of users, derived by nonvisual 
sensors and technologies. However, in cases with more elaborate monitoring



2.4 Internet of Things and Internet of Medical Things 35

requirements, for example, when one needs to extract higher level information 
such as behavioral patterns and the subject’s activity, or when the environment is 
occupied by multiple persons or contains certain materials such as metal parts 
that may interfere with localization radio signals, visual information from camera 
sensors can provide richer and more precise information. However, in an loT 
camera-based monitoring system, there are security and privacy risks that relate 
to the transmission of images away from the imaging sensor for processing. 
Therefore it is preferable to move the application of security and privacy protec­
tion closer to the sensor, enhancing control of data privacy and simultaneously 
accommodating key concerns among users regarding privacy violations.

Beyond privacy issues, considering that human behavior in daily activities is 
complex and highly diverse, monitoring such activities presents significant chal­
lenges. As outlined in [33] these challenges are: (1) recognizing concurrent activi­
ties (i.e., individuals performing several activities simultaneously), (2) 
recognizing interleaved activities (i.e., activities that are overlapped with others), 
(3) ambiguity of interpretation (i.e., similar actions may be interpreted differently 
depending on the context), and (4) support of multiple users (i.e., recognize activ­
ities performed in parallel by many users in a group). Human behavior is charac­
terized by varying time frames and levels of semantics [34]. In addition to the 
above, robustness to variations in real-world indoor and outdoor environments is 
affected by scene- and image-dependent factors, such as variations in the perfor­
mance of actions, background clutter, occlusions, lighting conditions, and camera 
sensor selection and placement [35].

With the advent of low-cost, real-time dense depth cameras such as the 
Kinect,8 numerous important approaches to action recognition and tracking pro­
blems have emerged, pushing the state of the art significantly forward [36]. 
Nevertheless, and despite the fairly accurate performance of state of the art algo­
rithms in controlled or semicontrolled settings, coping with complex, realistic sce­
narios exposes the limits of these algorithms, particularly effective handling of 
longer duration occlusions, which remains an unsolved problem in most current 
approaches [37]. Lastly, such approaches suffer from natural light interference 
and limited range, and hence are restricted to indoor environments. On the other 
hand, passive stereo cameras have a wider range of application, as they can oper­
ate in sunlight and their field of view can be adjusted by using different cameras, 
lenses, or baselines.

8 https://www.xbox.com/en-US/kinect

Apart from spatial ambiguities related to human body segmentation in com­
plex scenes, ambiguities in the temporal domain may also affect action recogni­
tion. These are easily resolved with repetitive actions, but they may greatly affect 
the detection of nonrepetitive actions such as pulling, pushing, or lifting an object. 
Moreover, performance may degrade in case of domain shift problems, for 
instance when the scale and shape of the human action are inconsistent with those 
of training data. Empirical results suggest [38] that convolutional neural network
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(CNN)-based algorithms are able to learn similar features between different actors 
performing the same action (i.e., performance nuance). However, in many real- 
world problems (e.g., surveillance scenarios), it is not possible to provide massive 
amounts of training data nor avail enough time for training. Thus, there is a need 
for algorithms that can work reliably in real time with moderate amounts of data 
and progressively improve their confidence as more data is learned, ideally in an 
unsupervised fashion.

2 .4 .2  B a c k  en d  en a b le rs  fo r  p e rs o n a l i ze d  re c o m m en d a t io n s

2.4.2.1 Knowledge abstraction for user profiling and temporal reasoning
In order to reduce predictable acute health episodes, a system should focus on 
eliminating complications, preventive disease management, and timely detection 
of anomalies based on past events. However, a characteristic of ordinary comput­
erized healthcare systems is the limitation of user participation in the decisions of 
the system. User-centered design has been recently adopted as a methodological tool 
to inform the development of modem health technology systems. Capitalizing on the 
use of loT technologies and analytics, modem systems are able to infer hidden 
patient information and their own risk-related parameters. Constant monitoring of 
incoming data can be used to trigger warnings based on the identification or predic­
tion of user-independent abnormal parameter values or the identification of crucial 
deviations from a patient’s data profile, which may indicate the increase of a risk. 
Moreover, exploitation of past data is important for the delivery of personalized treat­
ment based on predictive modeling techniques that will determine the expected treat­
ment response for a certain patient. Still, the comparison between past and current 
data, which are frequently stored in the form of time series, is not straightforward. 
Accordingly, it is often necessary to develop abstracted pictures of current and past 
events, which are contrasted to reveal abnormalities. Dimensionality reduction is 
commonly used as an approach to develop simplified representations of the different 
cases (data sequences) and similarity-based comparisons between them to support 
time series retrieval and decision-making [39]. In recent years, temporal abstraction 
(TA) has been used as a method to derive high-level concepts from time stamped 
data [40]. The idea behind TA is to move from a point-based to an interval-based 
representation of data, which effectively summarizes the data into meaningful parts 
that are interpretable by the users of the system [41]. The evidence arising from the 
comparison of different cases is fed into decision models to identify and suggest 
interventions that either prevent the occurrence of risks or reduce their effect on 
patient health.

The use of big data analytics and the ease of aggregating and synthesizing 
anonymous patient clinical records facilitates the creation of custom cohorts and 
metrics to extract knowledge that can be transferred and applied across different 
patients and can be a valuable service to third parties [42]. Interestingly, besides 
building accurate models of disease progression and providing personalized
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medicine in clinical practice, big data analytics facilitates the integration of medi­
cal data with wearable devices and loT smart sensors. These devices provide 
information on supplementary behavioral determinants of health and may cru­
cially support the analysis of potential public health policies regarding such inter­
ventions at the regional, national, and international levels [43].

2A .2 .2  Context-aware recommendations
The most interactive part of a smart medical care solution based on biosensors 
emerges when the system recommends actions to the end user based on the infor­
mation collected by the sensor ecosystem. When developing a recommendation 
system for a specific purpose, such as the improvement of physical or mental sta­
tus, it is important to consider what actions to recommend and at which moment 
they should be addressed to the user. This defines the concept of context-aware 
recommendation systems (CARS), which take into account the user spatiotempo­
ral environment, as well as other conditions such as the user status (standing, 
walking, driving) or physical (tired or energetic) and psychological (happy or sad) 
conditions. Sensors can be used to detect user context [44] and are the backbone 
of CARS that support health and medical care. For example, Casino et al. [45] 
propose a CARS that takes into account the health information of citizens and 
their preferences, combines them with the real-time information about weather 
and air conditions collected from smart city sensors, and recommends personal­
ized path alternatives that fit each end user profile. The “Motivate” CAR system 
[46] used several recommendations (e.g., take a break from work, stretch, walk, 
cycle to a park, go to a museum) that promote social, physical, and mental bal­
ance and considered various context parameters including location, user agenda, 
weather, user profile, and time. “Let’s exercise” [47] is another CARS that 
recommends physical activities. Additional approaches for motivating older 
people to engage in social and physical activities are presented in Ref. [48], which 
also proposes a CARS for suggesting social and other events that match user pro­
files. Biosensors can take CARS to the next level by introducing an additional 
context, the psychological. The detection of stress and arousal can improve the 
recommendation timing and increase their acceptance rate.

2 .4 .3  S e c u ri ty  a nd  p r i va c y  en a b le rs

Basic security tasks such as mutual authentication, encryption, and data integrity 
remain challenging in loT. Encryption using elliptic curves and signatures has 
been shown to be possible on embedded devices but may not be possible on every 
sensor or actuator [49]. Confidentiality and integrity protection mechanisms also 
require strong authentication and authorization mechanisms. This requires assign­
ing an identity to sensors and actuators (i.e., a sensor must store some secret to 
authenticate to a field device). In the past this was, for example, solved with a 
second channel and user involvement [50] or using certificates [51]. However, all 
these solutions lack scalability and support for dynamic, unobtrusive smart
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environments. Concerning security and privacy at the back end, because smart 
healthcare applications require distribution and processing of sensitive data, they 
will need to adopt new distributed and/or collaborative paradigms of cloud com­
puting. The obfuscation and anonymization of uploaded data [52] is a simple 
technique to prevent sensitive information leakage; however, this technique 
affects the data and makes it unusable for other applications. Fully homomorphic 
encryption [53], privacy-preserving encryption [54], and attribute-based encryp­
tion have been proposed for encrypting sensitive user data without limiting the 
functionality of cloud applications. However, cryptography alone cannot suffi­
ciently preserve user privacy and thus other forms of privacy enforcement must 
be employed [55], such as proper identity and authorization management by spec­
ifying and enforcing security, access control, and privacy policies. Indeed, an 
ENISA report (ENISA, 10) on security and resilience of e-health infrastructures 
and services identifies access control as a very significant priority in securing 
applications. Among the studied authorization schemes proposed for systems with 
different requirements and properties, a cross-platform solution that meets the 
requirements of all types of embedded systems and provides interoperability is 
the extensible Access Control Markup Language (XACML) [56]), the de facto 
standard for specifying and evaluating access control policies [57]. Also support­
ing XACML extension are its privacy-aware features [58].

Another important aspect related to the above and which raises significant 
concerns is the interplay between machine learning techniques and privacy. More 
specifically, there is a recent trend to design machine learning models that are 
trained from loT data, which raises many privacy concerns and ethical issues. 
When the data used to train the models is comprised of unfiltered data from the 
real world, there is the risk of learning the respective behaviors that exist in the 
data, which may result in strange or unethical behaviors. The research on security 
and privacy of big data analytics (BDA) models still devotes less attention to the 
impact of similar solutions that assume distributed architectures and BDA models 
for loT [59]. Several researchers agree that the best trade-off between utility and 
disclosure risk can be found at the time of model inference when there exist real 
data to evaluate the data utility and the impact of its disclosure, as opposed to 
estimating the risk a priori [60]. BDA pipeline modules are owned and managed 
by multiple operators, each with its own interests and agenda; therefore, we can­
not always postpone all disclosure control to the time of analytics computation. In 
this context, noninteractive randomization at the time of data acquisition, while 
decreasing utility, can provide maximum flexibility and best accommodate provi­
sions for compliance with regulations, ethics, and cultural factors.

Considering the above, to address the security and privacy concerns, a state of 
the art I0T/I0MT healthcare solution must combine novel and standardized tech­
nologies to provide lightweight and usable mechanisms for the authentication of 
its entities (devices, applications, users, etc.) [61] and the protection of their 
resources through strong, unambiguous, and fine-grained authorization services. 
The XACML authorization engine can form the basis of this endeavor,
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developing dynamic authorization services and providing the necessary variables 
(operational or situational context, as well as privacy requirements and other sce- 
nario/use case peculiarities). Privacy-aware features can be embedded into the 
policy definitions. Developed solutions for back end security must allow the crea­
tion of secure and privacy-preserving communications within and from the cloud 
infrastructure to the smart home and healthcare service providers in an end-to-end 
manner. The privacy controls implemented can also include differential privacy 
and selective data obfuscation and randomization, both for raw data and for out­
comes of the data analytics, learning, and evolution processes. The combination 
of the above guarantees visibility of the system’s status and consequent enhanced 
operator control and accountability. The platform must provide a significantly 
higher level of security and privacy than what is currently available in the domain 
to unambiguously alleviate the pertinent concerns.

2.5 Smart healthcare applications—state-of-the-art 
research efforts

Within the landscape sketched in the previous sections and motivated by the sig­
nificant benefits of loT/IoMT-enabled smart healthcare applications, there is a 
plethora of efforts driven by the research and industry communities that aim to 
overcome the associated challenges and realize the full potential of these technol­
ogies toward improving the health, well-being, and independent living of patients 
and the elderly [34,62,63]. In this context, the following subsections highlight 
some state of the art research efforts on the topic, presenting three research pro­
jects that have recently started or will soon start tackling said issues, each propos­
ing a novel approach and investigating different angles of the loT/IoMT-enabled 
smart healthcare landscape. More specifically, the presented projects include 
SMART BEAR, sustAGE and xVLEPSIS.

2.5.1 SMART BEAR—smart living solution platform for the elderly
The SMART BEAR project aims to provide an intelligent and personalized digital 
solution for sustaining and extending healthy and independent living by imple­
menting an affordable, accountably secure, and privacy-preserving innovative 
platform. This system boasts off-the-shelf smart and medical devices to support 
the healthy and independent living of elderly people with five prevalent health- 
related conditions: HL, CVDs, Cis, MH issues, and BDs, as well as frailty. This 
will be achieved through intelligent, evidenced-based interventions on lifestyle, 
medically significant risk factors, and chronic disease management. These inter­
ventions are enabled by the utilization of continuous and objective medical and 
environment sensing, assistive technologies, and big data analytics.
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In more detail, the SMART BEAR platform integrates heterogeneous sensors 
and assistive devices that collect and analyze data streams from the activities of 
the elderly with modules that extract the necessary evidence to design personal­
ized interventions to promote healthy and independent living. The platform will 
also be connected to hospital and other healthcare service systems to obtain data 
specific to the end users (e.g., medical history) that will need to be considered 
in making decisions for interventions. SMART BEAR will leverage big data 
analytics and learning capabilities, allowing for large scale analysis of the 
abovementioned collected data, to generate the evidence required for making 
decisions about personalized interventions. Privacy-preserving and secure by 
design data handling capabilities protect data at rest, in processing, and in transit 
and will comprehensively cover all the components and connections utilized by 
the SMART BEAR platform. An overview of the SMART BEAR platform is 
depicted in Fig. 2.1. To achieve the above, SMART BEAR will build on the 
platform developed within the H2020 project EVOTION (http://h2020evotion. 
eu/) to support evidence based public health policies formation and monitoring. 
The EVOTION platform supports: (1) the continuous collection of medical, 
physiological, and lifestyle data from heterogeneous resources including hospi­
tals, biosensors, advanced hearing aids, and mobile phones and (2) the analysis

FIGURE 2.1
The SMART BEAR concept.
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of these data, driven by high-level big data analytics and decision models to 
generate evidence useful for making public health policy level interventions 
[64-66]. The EVOTION platform is currently used in five hospitals in Greece 
and the United Kingdom, collecting real-time data from more than 1000 hearing 
aid users.

Key areas of innovation for SMART BEAR will include:

1. integration with loT enablers and platforms (e.g., FI-WARE, Copernicus, 
consumer smart ecosystems), in order for SMART BEAR to extend the 
connectivity of the EVOTION platform to support new medical devices, 
wearables, smart home/IoT sensors and actuators, and smart environment 
infrastructures;

2. development of new high-level data analytics and decision models to support 
the intelligent and personalized interventions required for enhancing the 
healthy and independent living of the elderly;

3. integration of the EVOTION platform with a continuous security and privacy 
assurance platform to provide the continuous auditability and transparency 
needed for ensuring the SMART BEAR platform’s trustworthiness by its end 
users, and

4. testing and validation of the above at a much greater scale, involving 5000 
participants across five countries.

In developing the above extensions, special consideration will be given to cre­
ating an extensible and sustainable platform, open for wider adoption in the con­
nected health ecosystem.

2.5. 1.1 Targeted p ilo t environments
The SMART BEAR platform will be tested and validated through five large scale 
pilots, involving 5000 elderly users living at home in Greece, Italy, France, 
Spain, and Romania. The pilots will enable the evaluation of the platform in the 
context of healthcare service delivery by private and public providers at the 
regional, state, and EU levels, and demonstrate its efficacy, extensibility, sustain­
ability, and cost effectiveness for the individual and the healthcare system. 
SMART BEAR will benefit from this diversity as data coming from all pilots will 
be collected and evaluated.

More specifically, the Greek pilot will run in two regions with different char­
acteristics in order to evaluate the efficiency of the SMART BEAR solution in 
different socioeconomic conditions. These will be the Municipality of Palaio 
Faliro (a metropolitan area with approximately 10,000 people over 65 years of 
age) and the Region of Peloponnese (a rural area with a significant portion of 
elderly population). The Italian pilot will cover both rural and urban territories in 
Lombardy, so as not to restrict the sampling of this pilot to a single geographical 
area. Two areas are covered by the pilot: the metropolitan area of Milan (8.2 mil­
lion inhabitants over an area of about 13,000 km2) and the District of Crema 
(150,000 inhabitants over an area of about 573 km2). The two areas are very
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different because of their extent, environmental conditions, urban services, and 
population. Concerning the French pilot, two regions are considered as possible 
and interesting experimentation areas: (1) Ile-de-France (the Paris region), the 
area with the largest number of elderly people (and thus, of dependent elderly 
people); (2) Nouvelle Aquitaine (particularly the “Creuse” department), the region 
where the population is the oldest and where many innovative eHealth programs 
and projects are developed for elderly people, and (3) Bretagne, where the elderly 
people are the healthiest and which is an innovative and dynamic region in the 
eHealth field. In the Spanish pilot, the focus will be on the Basque Country, span­
ning an area of about 7000 km2 with 2 million inhabitants, and one of the 
European regions most affected by the aging process. The pilot will cover inde­
pendent elderly users living at home, seniors living in rural areas, as well as those 
living in collective structures, such as senior residences. Finally, in the Romanian 
pilot, participants will come mainly from the capital Bucharest, with a population 
of about 2 million people, of which 17% are over 65 (359,182). Bucharest is the 
area with both the largest number of elderly people (three times higher than in 
any other administrative region of the country) and the largest number of depen­
dent elderly people.

2.5.1.2 The SMART BEAR consortium
SMART BEAR participants collectively constitute a consortium capable of 
achieving the project objectives, both well-suited and committed to the tasks 
assigned to them. The SMART BEAR consortium consists of 25 organizations, 
including four big industry partners in the ICT domain (ATOS Spain S.A. from 
Spain; Philips Electronics Nederland B.V. from the Netherlands; International 
Business Machines Corporation from Israel; and Lombardia Informática from 
Italy). Moreover, the SMART BEAR consortium includes five partners from the 
healthcare domain (Comunita’ Sociale Cremasca and the Fondazione Centro 
San Raffaele from Italy; CATEL from France; MUTUALIA from Spain; and 
Fundatia Ana Aslan International from Romania), as well as two local authori­
ties (Region of Peloponnese and Municipality of Palaio Faliro from Greece). 
Part of the consortium are also eight large academic/research organizations 
(CNR ICAR from Italy; Foundation for Research and Technology—Hellas, 
National Kapodistrian University of Athens, and University of loannina from 
Greece; Universitá degli Stu di di Milano from Italy; Universidad del Pais 
Vasco/Euskal Herriko Unibertsitatea from Spain; City, University of London 
from the United Kingdom, and Institute of Communication & Computer 
Systems from Greece) as well as six SMEs (Sphynx Technology Solutions AG 
from Switzerland, StreamVision from France, IT Support Solutions from 
Romania, Innovatec from Spain, Athens Technology Centre from Greece, and 
Bird and Bird from the United Kingdom). All these providers bring not only 
their technological expertise but also their entrepreneurial aspiration regarding 
their role in creative industries.
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2.5.2 sustAGE—smart environments for person-centered 
sustainable work and well-being

sustAGE9 is a person-centered smart solution that aims to promote the concept of 
“sustainable work” for EU industries, thus supporting the well-being, wellness at 
work, and productivity of aging employees through three main dimensions. The 
first dimension is directed toward improving occupational safety and health via 
risk assessment and prevention strategies based on workplace and person-centered 
health surveillance monitoring. The second dimension aims to promote the well­
being of employees via personalized recommendations for physical and MH 
improvement. The third dimension supports decision-making related to task/job 
role modifications and aims to optimize overall workforce productivity by asses­
sing the abilities of individual persons (e.g., physical, mental, social) in relation 
to work demands and risks. The sustAGE solution explores two industry domains 
with significant challenges and requirements, specifically (1) manufacturing and 
(2) transportation and logistics.

9  http://www.sustage.eu (accessed on June 8, 2019).

2.5.2.1 The industry domains
2.5.2.1.1 The case of assembly line workers in the automotive industry 
There are hundreds of tasks in the manufacturing assembly process, which differ 
in terms of posture, workload, and complexity and require both manual labor as 
well as significant cognitive workload. In the automotive industry, assembly lines 
can produce two to three different models of a vehicle, each with dozens of possi­
ble variations. There is a small tolerance for errors in an often customizable pro­
duction unit; therefore, workers need to be constantly aware of the specific order 
and customizations needed to be made. Furthermore, to choose the best match 
between task and worker in both repetitive short-cycle task operations and com­
plex tasks, worker profiling on an individual and frequent basis is necessary to 
assess a worker’s physical abilities and mental skills. To further take into account 
age-related changes, it is important to monitor both the environmental conditions 
and the worker’s health state and actions to derive information on the individual’s 
workload that may further impact their physical and mental state. Actions to be 
monitored are user proximity to critical areas, repetitive movements, bend or 
twisted postures, or pushing/pulling/lifting an object, along with the temporal 
aspects of the action (e.g., time to complete the action, pace).

2.5.2.1.2 The case of port workers in the transportation and logistics 
industry
Port work activities involve loading and unloading procedures and transport and 
storage of goods (e.g., container movement and roll on/roll off). Pilotage, work­
boat and tug operation, ship repairs, vessel traffic management, and similar 
marine activities are also involved. Dock workers are usually exposed to stressful
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and dangerous working conditions. Commonly shift work (morning, afternoon, 
night) can result in sleep deprivation, misalignment of circadian rhythms, drowsi­
ness, and performance deficits. Noise, vibrations, dust, wind, and tide commonly 
occur in ports. Workers who perform handwork and require physical strength to 
carry out activities are prone to musculoskeletal disorders. Beyond the physical 
extent of port work, the mental demands of attention and concentration at work 
are important as workers need to be continuously alert. The main case of interest 
in sustAGE regards the loading/unloading procedures of containers, in which the 
system monitors the container crane operator and the workers involved in the 
loading/unloading procedures as well as other moving objects/humans in proxim­
ity to the crane during maneuvering. The actions to be detected in this case to 
support the analysis, profiling, and recommendations of the system are fatigue, as 
derived by tracked movements along with temporal properties, as well as physio­
logical measurements and proximity of workers to critical areas and moving 
objects.

2.5.2.2 Internet of Things ecosystem and system functionalities
The developed system functionalities build upon an loT ecosystem based on off- 
the-shelf sensors integrated in daily devices and in the work environment, consid­
ering both indoor (manufacturing) and outdoor (port) working conditions. The 
system gathers contextual information from the working environment and from 
users’ physiological signals, tasks, activities, and behavioral patterns, in order to 
support user profiling and provide personalized recommendations for better man­
aging health, wellness and safety. The sustAGE technology will consider 
information-rich micromoments10 (a highly investigated topic of leading technol­
ogy companies like Google, Microsoft, and Facebook, geared to be the “next big 
thing” in intelligent system design) to process the short- and long-term aspects of 
symbiotic interaction, to identify patterns of human behavior, draw correlations 
between actions, predict what humans do and do not want, improve user’s accep­
tance, and engage users in a successful long-term interaction. Therefore, the 
notion of time, the consideration of real-world phenomena, and interactions in 
association with the course of time is very important. Measurements collected 
from different devices and modules of the system support the definition of key 
micromoments for future user profile updates, recommendations, and notifica­
tions. Different micromoments related to the user daily schedule, work environ­
ment, workload, physical/emotional/mental state, and social activities are used 
(Table 2.2).

10 https://www.thinkwithgoogle.com/marketing-resources/micro-moments/

Indicative key features of the sustAGE solution are:

• Monitoring of user actions and behaviors in work environment and personal 
life. An loT ecosystem is exploited, comprised of smart sensors and mobile 
devices for locating and tracking users in real time and for the fine-grained
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Table 2.2 List of indicative micromoments.
Category
Work 
environment
Work/task

Indicative list of micromoments
High/low temperature, noise level, pollution, wet/dry weather

Work shift, task onset, task completion, task type (repetitive work, bent 
or twisted body posture), push/pull an object, lifting heavy load, task 
switch, pace, task break, injury from accident/body part

Daily schedule Arriving at-leaving from work, lunch/dinner, medication intake, wake-up, 
go to sleep, meet friends

Physical Health check, instance of pain, high/low pulse rate, body temperature, 
walking, resting, steps count during activity, fatigue

Mental Stress/frustration, depression sign, emotional state changes, state 
communication/verification by the system

HR Sick days, tasks increasing/d ecreasing productivity, employee requests 
for task changes

detection of user actions and states. By combining information from multiple 
sources, the system will be able to support user profiling in a privacy­
preserving manner and provide context-aware recommendations and analytics. 
Abstraction and episodic knowledge. Analyze users’ activities and memorize 
important episodes aiming to keep important information related to past 
human activities and states. Building on users’ micromoments, the system will 
memorize actions that users need to take and will better predict user reactions 
by considering their activity in similar past situations.
Multiaspect user profiling. The aggregation of past user-specific knowledge, 
comprised of user preferences, the results of user performance in work- and 
training-related activities, and long-term abstractions will allow a more 
complete physical, mental, and psychosocial user profiling. The collection and 
analysis of related information will be done transparently, without user 
intervention.
Multilevel personalized recommendations. Recommendations with respect to 
three different levels are provided, namely physical, mental, and workforce. 
Recommendations on the first two will be managed by the individual person 
measuring the impact on the work ability, health, and well-being, whereas the 
workforce recommendations will be managed by the management. The system 
will consider spatiotemporal aspects, taking into account the user’s activity, 
state, time and location, the daily and weekly schedule and will recommend 
an activity at the right moment.
Safe working environment. Continuously monitor both the environmental 
conditions in the working area (i.e., manufacturing floor or port dock) and 
workers’ health-related signs in order to detect critical cases and workload 
issues early and to provide alerts to specific workers, who must take short 
breaks or switch tasks for the rest of their shift or over longer intervals.
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The loT infrastructure comprises of the following devices/sensors:

• Environmental sensors measuring air temperature, humidity, air quality, 
pressure, dust concentration and noise based on Raspberry Pi/Arduino custom 
sensors that are open source, low cost, accurate, and durable.

• Cameras installed in key working areas. For the manufacturing indoor 
environment of the assembly line, passive stereo cameras are used to monitor 
postures and repetitive actions of users, whereas for the port outdoor 
environment, monocular cameras with varying focal lengths are used to 
monitor crane operators and workers involved in loading/unloading of 
containers and people/objects in the vicinity of the crane.

• For localization in indoor environments, beacons achieve a precision of up to 
10—20 cm within a range of up to 100 m, whereas for outdoor environments 
the GNSS receivers built-in smartphones are used.

• Wristwatch devices gather physiological measurements and are able to trigger 
notifications to users from the system. The selected device should offer 
software development kits (SDKs) and APIs to facilitate its programmability 
and access to the data.

• Smartphone devices able to support Galileo, offering centimeter accuracy and 
the ability to communicate with the wristwatch device.

The above set of devices/sensors can collaboratively provide information on 
different user activities/actions (e.g., walk, bend, stand/sit, push/pull object), state 
(e.g., fatigue, discomfort), temporal aspects, and specific events in the environ­
ment (e.g., user monitoring in specific areas, proximity to hazardous conditions). 
Moreover, the smartphone is the primary device for communication and multi­
modal interaction supporting natural language understanding and sentiment 
analysis. The adopted loT configuration exhibits the advantages of unobtrusive 
user-context interaction monitoring in a privacy-preserving way considering that 
in private life, outside the working environment, only the wristwatch and the 
mobile device are to be used. The system supports raw data processing near 
the end-devices to prevent potentially privacy-sensitive information from being 
sent to the upper layers of the platform in the cloud.

2.5.2.3 The sustAGE consortium
The sustAGE consortium comprises a unique blend of partners from disciplines 
that span a broad spectrum. The project brings together one of the largest 
European automotive industries (Centro Ricerche Fiat Sepa, Italy), one of 
Greece’s most important maritime ports (Heraklion Port Authority, Greece), a 
global leader in ICT products and services (Software AG, Germany), SMEs providing 
expertise in interactive technologies for e-health (Imaginary Srl., Italy) and distributed 
systems (AEGIS IT Research UG, Germany), three top European universities in the 
areas of embedded intelligence for health care and well-being (University of 
Augsburg, Germany), aging and neurodegenerative diseases (Universidad Nacional de 
Educación a Distancia, Spain), positioning and sensors (Aristotle University of
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Thessaloniki, Greece), two top European research centers in the areas of ergo­
nomics, working environments and human factors (Forschungsgesellschaft für 
Arbeitsphysiologie und Arbeitsschutz E.V.), and emerging ICT research 
(Foundation for Research and Technology—Hellas).

2.5.3 xVLEPSIS—an intelligent noninvasive biosignal 
recording system for infants

Over the last years there is a strong interest in improving patient monitoring in an 
attempt to facilitate clinicians providing error free decisions while saving time 
and improving the overall quality of patient care. Such approaches are particularly 
useful in time critical settings, such as the intensive care unit of the hospital. A 
stronger effort is required to provide high quality, multimodal, real-time neonate 
monitoring platforms that can be ubiquitous and unobstructive while at home.

xVLEPSIS11 is an advanced system for the prediction of potentially hazardous 
events related to infants. As many pathological situations can occur during an 
infant’s night sleep that can potentially be threatening to health if not detected 
promptly, there is an imperative for early detection of medical emergencies dur­
ing infant sleep through an unobtrusive and noninvasive detection system. 
Invasive devices and sensors could disrupt the infant’s sleeping phases that are 
extremely important for their development and degrade the quality of their rest.

11 https://xvlepsis.gr/en (accessed on June 8, 2019).

xVLEPSIS uses a scalable system comprising a “smart” bed mattress and a 
camera positioned to monitor the infant cradle. Without disturbing the infant’s 
sleep, the system can detect possible pathological conditions.

2.5.3 . / Integration of smart biosignal sensors in a detection system for 
hazardous conditions

The xVLEPSIS system will incorporate diverse user-friendly electronic smart sen­
sors, integrated under a “smart” mattress, in combination with a high-resolution 
baby monitor. In brief, the following biosignals will be recorded, analyzed, and 
investigated for their applicability as biomarkers for certain pathologies:

• video recording using a high-resolution camera and audio recording using a 
high definition microphone;

• ballistocardiogram [67] recording, which records sudden blood ejections into 
the great vessels with each heartbeat;

• pressure sensors under the bed mat record and plot repetitive body movements 
during sleep; and

• temperature and humidity detection using suitable sensors under the bed mat.
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The development of an intelligent system that will detect potentially hazardous 
pathological conditions with the use of sophisticated machine learning techniques 
will lead to:

1. A mobile or smart watch—based notification system, which will alert the 
parents in the case of emergency.

2. Continuous biosignal recording, throughout the infant’s sleep. The recorded 
data could be sent to the doctor or the hospital, in the case that an abnormality 
is detected, or they could be evaluated by the doctor during regular infant 
examination, in the case nothing critical is detected. Therefore, the 
pediatrician will be able to examine and evaluate all the available medical 
data and detect any incidents that may have occurred at night without having 
been perceived by the parents.

Many advantages arise from the development of a low-cost product with all 
the aforementioned features:

• Continuous recording of high definition video and audio will allow for a more 
effective monitoring of the infant, whereas the pathological situations 
detection system will lead to the discovery of incidents that would otherwise 
remain unnoticed.

• The proposed noninvasive monitoring system will aid the diagnosis and 
proper treatment of medical disorders that can occur while the parents are 
not present (e.g., febrile convulsions, epileptic seizures, or apnea).

• Pediatricians always face the challenge of evaluating medical incidents solely 
based on the information that parents provide, which is not objective and 
accurate, especially during the first year of infants life. The proposed 
integrated system offers the medical professionals in charge the opportunity to 
assess those incidents based on detailed recorded biosignals and, thus, form a 
better opinion on the diagnosis.

• The use of innovative machine learning algorithms performed on the 
multimodal medical signals will significantly aid the detection of new 
quantitative biomarkers of the relevant diseases.

• The medical database that will be implemented will significantly contribute to 
the research and study of early childhood disorders.

Such a system is expected to effectively notify the parents and enable doc­
tors to identify specific pathologies. The system will continuously and unob­
trusively record important biosignals and analyze them using sophisticated 
machine learning algorithms, suitable for pathology-specific pattern identifica­
tion and biomarker extraction. The software to be developed will act as a rec­
ommendation and alarming system to notify the parents and/or the physician, 
if needed, by means of a notification center hosted in a smartphone and/or a 
smartwatch. A dedicated repository will host raw signals for future reference 
or doctor’s referral.
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2.6C
The role of smart biosensors and loT is significant in modem medical care. 
Patients, care-providers and health professionals can strongly benefit from smart 
applications developed on top of such infrastructures. In this chapter, we pre­
sented the challenges and opportunities from the application of smart biosensors 
in healthcare and described three state of the art solutions that employ smart sen­
sors in this context. The applications demonstrate how smart living solutions can 
be developed on top of an ecosystem that combines loT and smart biosensors to 
record and analyze biosignals in a noninvasive way and allow the early detection 
and prevention of potentially hazardous pathological conditions. Since there are 
still many challenges concerning data privacy, data aggregation and integration, 
and intelligent decision-making to be overcome, this effort has to be intensified. 
Future efforts should focus on the use of data analysis and data mining techniques 
as well as the development of machine learning models that can efficiently handle 
biosignal data streams and effectively decide on the proper actions to take.
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