

CDW instability in the 2:l organic conductor (FA)2PF6

V. Ilakovac, S. Ravy, J. P. Pouget, Walter Rieβ, Wolfgang Brütting, M. Schwoerer

Angaben zur Veröffentlichung / Publication details:

Ilakovac, V., S. Ravy, J. P. Pouget, Walter Rieβ, Wolfgang Brütting, and M. Schwoerer. 1993. "CDW instability in the 2:l organic conductor (FA)2PF6." *Le Journal de Physique IV* 3 (C2): 137–40. https://doi.org/10.1051/jp4:1993227.

The state of the s

CDW instability in the 2:1 organic conductor (FA)₂PF₆

V. ILAKOVAC*, $^{(1)}$, S. RAVY*, J.P. POUGET*, W. RIESS**, W. BRÜTTING** and M. SCHWOERER**

* Laboratoire de Physique des Solides, URA CNRS 02, Université Paris-Sud, 91405 Orsay, France

Abstract

We present an X-ray diffuse scattering study of the fluoranthene radical cation salt $(FA)_2PF_6$, where FA is the fluoranthene molecule, $C_{16}H_{10}$. Below room temperature this salt undergoes two successive structural phase transitions. The upper one, at $T_c \approx 200 K$, breaks the face center Bravais lattice symmetry. The lower one, of the Peierls type, corresponds to the 3D ordering of quasi-1D $2k_F$ charge density waves (CDW) at $T_P \approx 180 K$, temperature below which collective transport phenomena are observed. We compare this material to the Bechgaard salts $(TMTS(T)F)_2X$, of very similar stack structure but where a Peierls CDW ground state is not stabilized.

Introduction

Fluoranthene radical cation salts $(FA)_2X$, belong to a larger familly of arene salts $(Ar)_2^+X^-$, where Ar is an aromatic molecule and X is a monovalent anion like PF_6^- . $(FA)_2PF_6$ is composed of slightly dimerized donor stacks of fluoranthene molecules piled in a zig-zag manner along the **a** direction [1] and whose structure strongly resembles to that of Bechgaard salts $(TMTS(T)F)_2X$. Columns of anions X separate molecular stacks in the **b** and **c** directions. Stoichiometry 2:1 and full charge transfer to the anion X lead to an average charge of 0.5 hole per FA and thus to $2k_F = 0.75a^*$ or $0.5a^*$ depending whether the average molecular periodicity $a' = (d_1 + d_2)/2$ or the true crystallographic periodicity (a = 2a') is considered.

Electrical [2] and polarized reflectance [3] measurements prove that $(FA)_2PF_6$ is a very anisotropic 1D metal. Transport [2,4] and magnetic [5] measurements show the existence of a metal-insulator phase transition at $T_P \approx 180 K$. Below this temperature collective transport phenomena are observed and interpreted as due to the sliding of CDW [4]. The main purpose of this paper is to present structural evidences of such a CDW transition and to clarify its relationship with the $A2/m \rightarrow P2_1/c$ structural transition previously reported by Enkelmann et al. [1].

Experimental results

We studied two crystals coming from different preparations and grown at the University of Bayreuth.

The first crystal was studied by the fixed film - fixed crystal method in order to have a general survey of the structural properties of $(FA)_2PF_6$. One observes (fig. 1):

- quasi 1D fluctuations giving rise to $2k_F = 0.5a^*$ diffuse lines at room temperature (RT) (\blacktriangleright)

^{**} Phys. Inst. and BIMF, Universität Bayreuth, 8580 Bayreuth, Germany

⁽¹⁾ On leave from: R. Boskovic Institute, Bijenicka 56, P.O. Box 1016, 41000 Zagreb, Groatia

- on the diffuse lines broad superstructure satellite reflections at the reduced wave vector $\mathbf{q}_P = (0.5,0,0)$ below $T_P = (179\pm1)K$ (\blacktriangleright
- new sharp reflections at ${\bf q}_A=(0,1,1)$, which break the face center symmetry of the RT structure below $T_C=(201\pm1)K$ (

 $2k_F$ quasi-1D fluctuations are observed from 300 to 30K (the lowest temperature reached was 15K). Fig. 2 shows the temperature dependence of $T/I(2k_F)$, where $I(2k_F)$ is the $2k_F$ peak intensity. This quantity, proportional to the inverse CDW susceptibility, χ_{ρ}^{-1} , decreases linearly with T. However, in this first sample χ_{ρ}^{-1} does not vanish at T_P in agreement with the observation of only a CDW short range order below T_P . (The Scherrer formulae applied to the half width at half maximum (HWHM) of the q_P reflection gives a domain length $L \approx 45 \text{Å}$).

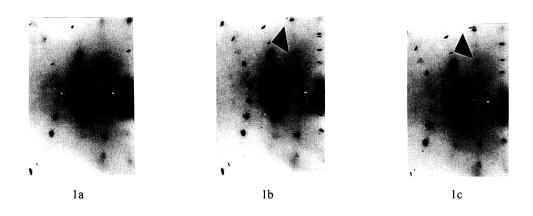


Fig. 1. X-ray patterns of (FA)₂PF₆ at 300K (a), 190K (b) and 175K (c). The chain axis a is horizontal

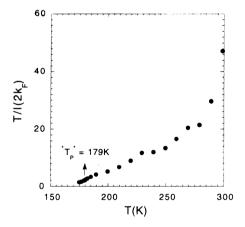
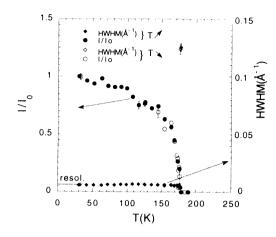



Fig. 2. Temperature dependence $\chi_0^{-1} \sim T/I(2k_F)$.

An accurate study of the two structural transitions was performed by a counter method on the second crystal. Figs. 3 and 4 show respectively the temperature dependence of the intensity of the \mathbf{q}_P and \mathbf{q}_A superlattice reflections, $I(\mathbf{q}_P)$ and $I(\mathbf{q}_A)$ respectively, as well as their HWHM; at $T=30K:I(\mathbf{q}_A)\approx I(Bragg)\approx 100\ I(\mathbf{q}_P)$. Note that the width of the \mathbf{q}_P reflection amounts to that of the main Bragg reflections (i.e. the experimental resolution) which means that the sample has achieved a CDW long range

order. Surprisingly, the ${\bf q}_A$ reflections seem to have a width slightly larger than the experimental resolution. $I({\bf q}_P)$ increases sharply below T_P without a detectable hysteresis. $I({\bf q}_A)$ increases linearly below T_C but does not saturate at low temperature. The second crystal has slightly lower critical temperatures $[T_C=(194\pm1)K,\,T_P=(176.7\pm0.3)K]$ than the first one.

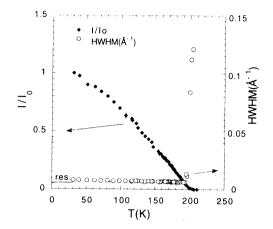


Fig. 3. Temperature dependence of the normalized integrated intensity and HWHM of the **q**_P reflection upon cooling and heating.

Fig. 4. Temperature dependence of the normalized integrated intensity and HWHM of the **q**_A reflection.

Discussion

(FA)₂PF₆ undergoes two structural transitions which are apparently decoupled because the linear dependences of χ_{ρ}^{-1} (fig. 2) and of I(\mathbf{q}_A) (fig. 4) are not modified at T_c and T_P respectively. The upper transition corresponds to the A2/m \rightarrow P2₁/c structural change previously ascribed to an interstack staggered rotation of the FA molecules (fig. 5b) [1]. The lower one is a Peierls transition. It is announced by an important regime of $2k_F$ quasi-1D fluctuations causing the opening of a pseudogap in the density of state which affects the thermal dependence of the conductivity [2] and magnetic susceptibility [5] above T_P. The linear decrease of $\chi_{\rho}^{-1}(2k_F) \approx T$ -T_P recalls that measured in the blue bronze [6] where the Peierls instability is driven by an important electron-phonon coupling. The interchain zero wave vector components of \mathbf{q}_P imply that the CDWs are in-phase along the 2nd neighbouring stacks in \mathbf{b} and \mathbf{c} directions. In principle a structural refinement is necessary in order to determine the phase shift ϕ between the 1st neighbouring CDWs (fig. 5c) (a phase $\phi = \pi$ is expected for equal Coulomb interactions between them). Finally, our investigation shows that the spatial extent of the CDW order in (FA)₂PF₆ is very sensitive to the crystal quality (i.e. to chemical damage of the FA molecule).

Besides fluoranthene salts, a $2k_F$ CDW instability is also observed in 2:1 substituted perylene radical cation salts [7], but not in the Bechgaard salts. Table 1 compares more quantitatively $(FA)_2PF_6$ with the Bechgaard salts $(TMTSF)_2PF_6$ and $(TMTTF)_2PF_6$ which have the same charge transfer and stack structure. The electron-electron interactions (leading to a spin susceptibility enhancement proportional to $t_{\parallel}\chi_{spin}$) increase from FA to TMTSF then to TMTTF salts while the ground state evolves from $2k_F$ CDW to spin density wave (SDW) then to spin-Peierls (SP), respectively. Only in $(TMTTF)_2PF_6$ a true $4k_F$ charge localization is observed. Table 1 shows that the degree of dimerization δ of the stacks does not follow the strength of Coulomb interactions, probably because δ is mainly determined by the interactions between σ electrons on the donors and anions and not by the $4k_F$ response

of the π electron clouds. The efficient screening of Coulomb interactions in the FA salts can be simply understood by the strong polarizability of the Ar molecules composed of a large number of rings.

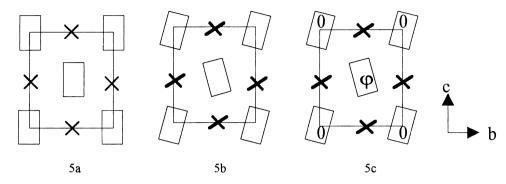


Fig. 5. Shematic representation of the projection along a direction of the structure of the (FA)₂PF₆ at RT (a), between T_C and T_P (b) and below T_P (c). φ is the phase shift between 1st neighbouring CDWs. The FA stacks are represented by open reclangles and the PF₆⁻ anions by crosses.

Table 1. Comparison between some physical properties of (FA)₂PF₆ and of the Bechgaard salts (TMTSF)₂PF₆ and (TMTTF)₂PF₆.

	donor molecule	RT structure	$\delta^{\text{RT}} = \frac{d_2 - d_1}{d_2 + d_1}$	$\sigma^{RT}_{ }$	$\frac{\sigma_{//}}{\sigma_{\perp}}$	t opt (eV)	χ ^{RT} spin (emu/mol)	4k _F charge localisation	ground state
FA ₂ PF ₆	800	A2/m	7.6x10 ⁻³	102-103	~ 104	0.35	1x10 ⁻⁴	NO	CDW (180K)
111/11 6	79.07				$\sigma_a/\sigma_b' \sim 10^2$				SDW
TMTSF2PF6	~ ~	Pl	4x10 ⁻³	540		0.25	2.5x10 ⁻⁴	NO	(12K)
TMTTF ₂ PF ₆	THI	ΡĪ	14x10 ⁻³	40	?	0.20	6x10 ⁻⁴	YES $T\rho \approx 230K$	SP (15K)

Conclusion

Below room temperature $(FA)_2PF_6$ undergoes two close but independent structural transitions. The upper one coresponds to that previously reported in ref. [1]. The lower one is a commensurate CDW Peierls transition which provides the structural proof of the collective transport phenomena observed below 180K [4]. However, it is interesting to remark that the treshold field measured in $(FA)_2PF_6$ (0.1-1V/cm [4]) is not so different from that observed in ~3/4 and ~1/4 filled band metals such as the blue bronzes (~50mV/cm) [8] and TaS₃ (200-300mV/cm) [6] whose CDW are incommensurate. This means either that $(FA)_2PF_6$ could be considered as a 3/4 filled band metal (i.e. $2k_F = 0.75a^{**}$) where the pinning effects due to commensurability are weak, or that the observed nonlinear conductivity is due to slight deviations from the ideal 2:1-stoichiometry, as pointed out elsewhere [9].

- [1] V.ENKELMANN, B.S.MORRA, Ch.KRÖNKE, G.WEGNER, Chemical Physics 6(1982)303
- [2] W.BRÜTTING, W.RIESS and M.SCHWOERER, Ann. Physik 1(1992)409
- [3] Th.SCHIMMEL, B.KOCH, H.P.GESERICH and M.SCHWOERER, Synth.Met. 33(1989)311
- [4] W.RIESS, W.SCHMID, J.GMEINER and M.SCHWOERER, Synth.Met. 41-43(1991)2261
- [5] U.KÖBLER, J.GMEINER and E.DORMAN, J.Magn.Magn.Mat. 69(1987)189
- [6] CHARGE DENSITY WAVES IN SOLIDS, Eds. L.P.GO'RKOV and G.GRÜNER (North Holland, 1989.)
- [7] P.PENVEN, D.JEROME, S.RAVY, P.A.ALBOUY and P.BATAIL, Synth.Met. 27(1988)B405
- [8] LOW DIM. ELECT. PROP. OF Mo BRONZES AND OXIDES, Ed. C.SCHLENKER (Kluwer Acad. Publ., 1989.)
- [9] W.RIESS, W.BRÜTTING, M.SCHWOERER, Synth.Met. 55-57(1993)2664