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It has been shown recently that the dc conductivity {along the highly conducting axis) of fluoranthene
radical cation salts exhibits the behavior of a quasi-one-dimensional conductor with a Peierls transition
at about 180 K to a charge-density-wave ground state. In the high-temperature range fluctuations of the
order parameter lead to a pseudogap in the electronic density of states, whereas below the phase transi-
tion the energy gap is BCS-like. To analyze the conductivity data, a simple band-structure model is used
and related to optical data. In spite of the occurrence of the Peierls transition, it is assumed that three-
dimensional effects and fluctuations are strong enough for the conduction to be essentially due to
electron-hole transport in bands and not polaronlike. Therefore the conductivity is determined simply
by the Boltzmann equation with deformation-potential scattering. (a) This model yields a good At of ex-
perimental data using the BCS-like gap below the transition and the pseudogap as determined from
paramagnetic spin susceptibility above the transition. (b) It is possible to obtain the temperature depen-
dence of the concentration, the mobility, the relaxation time, and the mean free path of carriers. (c) One
can check a fundamental criterion for the applicability of the model. (d) We obtain from the fit parame-
ters reasonable estimates of the quantities determining the deformation-potential scattering. Moreover,
it is demonstrated that the theory can be used to determine the full temperature dependence of the
gap/pseudogap directly from conductivity data.

I. INTRODUCTION

Depending on the dominating interaction (electron-
phonon or electron-electron interaction) quasi-one-
dimensional electron systems show instabilities leading to
ground states with attracting properties such as e.g.,
bound order waves, charge-density waves (CDW's) or
spin-density waves (SDW's). ' Originally observed in
inorganic systems such as linear chain platinum com-
pounds, several transition metal compounds, and the blue
molybdenum bronzes, the Peierls transition to a CDW
ground state has also been found in organic materials like
tetra6uoro-tetracyanoquinodimethane (TTF-TCNQ).

A detailed analysis of the Peierls instability in the
quasi-one-dimensional organic CDW conductor
(fluoranthene)z X(X =PF6, AsF6, and SbF6 ) has been
presented recently, with special attention to the dc con-
ductivity. The conductivity data were analyzed using the
Boltzmann description in the relaxation-time approxima-
tion. The expression for the conductivity used in Ref. [4]
involves some further approximations: the velocity and
relaxation time are independent of the energy of carriers,
and a phenomenological T (B= 1) temperature depen-
dence of the relaxation time is used. The gap below the
Peierls transition is assumed to have a BCS-like tempera-
ture dependence, whereas above the transition—
according to measurements of the paramagnetic spin
susceptibility —a weakly temperature-dependent pseu-
dogap is used. In spite of the remarkable fit of conduc-
tivity data achieved in this way, there arise some new
questions closely connected to one another.

At first, in a one-dimensional coupled electron-phonon
system undergoing a Peierls transition, the lowest excita-
tion will not be a purely electronic band-to-band excita-
tion but a polaronic coupled electron-lattice distortion
excitation. Although only little details have been worked
out for the transport behavior of such excitations, it is
clear that it can hardly be described by a quasiclassical
kinetic equation such as the Boltzmann equation. Actu-
ally, the Peierls transition itself is already modified due to
three-dimensional effects and fluctuations of the order pa-
rameter: one observes a lowering of the transition
temperature and a modified temperature dependence of
the gap below the transition, and there occurs a Auctuat-

ing pseudogap above the transition. It is trivial that
these modifications are accompanied by a decrease of the
energetic difference between coupled electron-lattice exci-
tations and the simple electronic band-to-band excita-
tions. Using the Boltzmann equation for the description
of transport in such systems is implicitly based on the as-
sumption that three-dimensional efFects and fluctuations
are not strong enough to prevent the occurrence of the
transition, but at the same time are of such magnitude
that the excitations determining the transport can be de-
scribed efFectively as simple single-particle excitations
from the valence to the conduction band. It is just this
assumption which will be examined here.

Further, it is not sufficient that experimental data can
be well fitted by a given theoretical temperature depen-
dence. The parameters following from the fit also must
be in reasonable quantitative agreement with the assumed
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model. Also, basic conditions for the validity of the
theory used must be fulfilled.

In this paper we describe the dc transport data of
Auoranthene radical cation salts consistently within the
above-mentioned quasiclassical picture. A model for the
band structure containing a minimum of assumptions is
used, and its main parameter is determined from optical
data. First a temperature dependence of the gap is used,
as determined in Ref. 4. The corresponding energy and
temperature dependence of the velocity of charge car-
riers, and the correctly described energy and temperature
dependence of the relaxation time due to deformation-
potential scattering are used in the conductivity. In this
way not only is a remarkable description of the experi-
mental temperature dependence achieved, but the param-
eters also lie within a reasonable range; temperature
dependences of the concentration, mobility, relaxation
time, and mean free path of carriers can be determined,
and a fundamental condition for the applicability of the
Boltzmann description can be tested. Finally, we propose
and test the possibility to determine directly the tempera-
ture dependence of the Peierls gap (below the transition)
and the pseudogap (above the transition) from conduc-
tivity data. This is important insofar as the actual tem-

perature dependence is more involved than, e.g., de-

scribed by existing simple theoretical models such as the
scaled mean-field dependence below the transition.

II. CRYSTAL STRUCTURE, CONDUCTIVITY
AND ENERGY GAP IN (FA)2X

Fluoranthene radical cation salts (FA)2X are highly
conducting crystals whose simple crystalline and molecu-
lar strpctures make them model systems for quasi-one-
dimensional organic conductors. The crystal structure'
is characterized by the presence of slightly dimerized
donor stacks of planar fluoranthene molecules (FA =
C,6H, O) piled in a zigzag manner along the crystallo-
graphic a axis. Columns of monovalent anions X such
as PF6, AsF6, or SbF6 separate the donor stacks in b
and c directions perpendicular to the m.-electron system of
the molecule. The strong ~-electron overlap along the
stack axis together with the average charge transfer of
0.5 electrons per FA molecule allow the formation of a
partly filled quasi-one-dimensional conduction band in
the a direction. The large average distance between the
FA stacks and the directed ~ orbitals are responsible for
the strong anisotropy of many physical properties, for ex-
ample the optical reAectivity" and electrical conductivi-
ty parallel and perpendicular to the a axis.

Transport and magnetic measurements show the ex-
istence of a metal-insulator phase transition (a Peierls
transition) at a transition temperature Tz--180 K, de-

pending on the size of the counterion. Figure 1 shows the
temperature dependence of the dc conductivity o.

~~

of a
(FA)z PF6 crystal parallel to the a axis. The phase transi-
tion can be clearly identified from the singularity in the
derivative.

Meanwhile, it is well established by x-ray investigations
that this phase transition is driven by the electron-
phonon interaction leading to a 2kF instability. ' Conse-
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FIG. 1. Measured dc conductivity o~~(T) vs the reciprocal
temperature and logarithmic derivative, showing clearly the
transition (from Ref. 4). Below about 100 K the thermally ac-
tivated conductivity is measured with activation energies
5(0)=60-90 meV on different crystals.

quently the ground state is a CDW state. Indeed, in the
temperature range below the transition, (FA)zX shows

several collective transport properties such as nonlinear
conductivity above a small sample-dependent threshold
field, conduction noise in the nonlinear state, frequency-
dependent conductivity, and metastability phenome-
na. ' ' Contrary to the simple strictly one-dimensional
mean-field picture, the Peierls gap does not vanish at the
transition temperature, but above Tp (180& T & 300 K)
there exists a weakly temperature-dependent so-called
pseudogap, as indicated by the nonmetallic temperature
dependence of the conductivity in this temperature range,
and by magnetic measurements. ' The pseudogap is at-
tributed to pretransitional fluctuations and residual
effects of the three dimensionality. '

Using a simplified description it has been shown that
due to its high one dimensionality (FA)zX behaves over
the entire temperature range investigated like a one-
dimensional semiconductor with a temperature depen-
dent gap. As shown in Fig. 2, there is scaled BCS-like
temperature dependence below the transition and, above
it, a pseudogap which is consistent with magnetic mea-
surements (for details, see Appendix A).

III. THEORETICAL MODEL FOR BAND TRANSPORT
IN THE QUASI-ONE DIMENSIONAL

CONDUCTOR (FA)~X

According to the experimental findings, it is assumed
that three-dimensional effects and fluctuations are not
strong enough to prevent the Peierls transition from
occurring at TI, = 180 K, which is considerably below the
mean field value T "=400-600 K. Here we will test the
hypothesis that both effects can be sufficiently large at the
same time, so that the electronic transport is essentially
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FIG. 2. Temperature dependence of the Peierls gap used to
describe the conductivity data: Below Tp, the scaled theoretical
mean-field dependence is used. Above T~ it is the effective gap
deduced from the paramagnetic spin susceptibility (from Ref. 4).

that of a highly anisotropic conventional three-
dimensional system, i.e., transport of thermally excited
carries rather than a polaronlike transport.

A. Band structure

E~=&2tll "(/1+2(All/tll ) =V'2tll+O((hll/tll) ) (2)

Since there is practically no direct experimental or
theoretical model of the band structure, we use a simple
reasonable tight-binding (TB) model (other TB models'
have also been tested; though essentially different after
determination of the main parameter from optical data,
the numerical results for the conductivity are compara-
ble). The overlap of the total ir-electron system of the FA
molecules occurs in the chain direction perpendicular to
the molecular plane, and is characterized by the nearest-
neighbor matrix element t

L~.
Neglecting dimerization, the

simplest TB band is Ek '= —2tllcos(ka/2) for
~k~ ~2m. /a, ' where a =6.61 A is the lattice constant of
the dimerized lattice. This band would have a —, filling

since there are two molecules in the elementary cell, four
states (spin), and one charge is transfered to the anion.
Actually there is already dimerization at room tempera-
ture. ~ith dimerization (parameter 2b,

ll
for convenience,

as introduced in Ref. 18), one has a lower completely
filled and an upper half filled subband (Fig. 3):

Ei,+ =+")/ (Ekl ') +(2b, ) ~k~ ~n/a, .

with

Ek '= —2tllcos(ka/2) .

The two new subbands Ek+ are separated by an energy
gap of 46I~ at ~/a. The upper subband is occupied from
m/2a to m. /a, and the Fermi energy is

FIG. 3. Band-structure model of (FA)&X with a gap 4k~~ due
to dimerization, and a gap 2h (Peierls gap/pseudogap) due to
the 2kF instability.

and c,z —=Ez —
26~~ is the Fermi energy relative to the bot-

tom of the subband Ek"+.
Following Ref. 11, we use the plasma frequency deter-

mined from optical data, fico~ll = 1.5 eV (small damping
irilr~=0. 1 eV) to obtain tll. Contrary to Ref. 11, the
correct connection

e N/a
all

~omopt.

1 2a dE

dkm,„,
(3)

where

(d d) =0, ~k~
~ vr/2a,

k+
(4)

Ek+"' =21/ (&l~lcos(ka/2)) +All

E„'+ '=2+(tllsin ka/2)) +b, ll,

follows from folding Ek+.
According to Sec. II and Fig. 2, for the temperature-

dependent gap b, (T) in (4) for T( Tp we use a scaled
Peierls gap depending BCS-like on T. On the other
hand, above Tp at least up to room temperature there

is used (N is the number of FA chains per unit area,
N=2/bc, b =12.57 A, and c =14.77 A). Considering
only the term linear in b

~~,
one obtains

Ez =eF +26~~ = v'2tll =0.55 eV and accidentally
m ppt m o . The distance from the top of the band Ek"+ to
the Fermi energy —the Fermi energy of holes —is 0.23
eV. If a gap exists at the temperature at which the opti-
cal measurements were made —contrary to the assump-
tion leading to (3)—one arrives at essentially the same re-
sult with m

p mo. "
The occurrence of the Peierls gap or pseudogap 2A at

kz=m. /2a can be included, leading to E=E(k) as the
solution of

E'""'—Ek+
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2
M()'

1 1

m, ~ 5 2A

(5)

All three quantities contain only EF, which (contrary to
eF=EF—2b,

~~) up to linear order in hl is determined
directly from fin~~~. Thus the knowledge of h~~ itself is not
necessary. With E+=0.55 eV and 0.02&6, /eV &0.09
(Fig. 2), the effective band mass near the gap follows from
(5} as m, t=r02. . . 0. 5m 0. This quantity will be of in-
terest below in discussing the mobility.

B. dc conductivity and related quantities

The approximation cr (T)-T [exp(h/ks T)+1]
used by several authors ' ' to describe the conductivity
in CDW systems is based essentially upon the following
assumptions: (a) transport by electrons and holes in the
conduction and valence bands, respectively [correspond-
ing to our E (k)]; (b) applicability of the Boltzmann equa-
tion within (c} the relaxation-time approximation, (d}
constant carrier velocity, (e) energy-independent relaxa-
tion time, and (I) a phenomenological T s (B= 1) depen-
dence of the relaxation time (the citation of this temper-
ature dependence does not correspond to the semicon-
ducting state of the material). Since approximations
(d) —(f) are not generally valid, we will replace them by
appropriate relations. In addition, parameters obtained
from fitting experimental data will be used to check to
some extent the basic assumptions (a)—(c).

Although we assume a sufficient effect of three dimen-
sionality and fluctuations, the transport is essentially a
highly anisotropic electron-hole transport in bands. The
conductivity in the chain direction is then determined
mainly by the quasi-one-dimensional band structure dis-
cussed above. It is given by

remains a pseudogap due to three dimensionality and
fluctuations, with a magnitude larger than k~T. Then
only the band structure in the vicinity of the gap (at
k =kF } is of interest. In the parabolic approximation Eq.
(4) yields the velocity of carriers u(E) [e is relative to the
band extremum at m. /2a: E =E—(E—F+b, )], the density
of states 2)(s ), and the effective mass m, tr [from
v =Pi(k n—/2a. ) /m, fr]:

1/2
a 2E,

v(e) = Ez

perature dependence of the relaxation time. Scattering
by charged counterions will make a negligible contribu-
tion due to their arrangement in columns between the FA
chains, as shown in Ref. 20. According to our basic as-
sumption there remains the scattering by acoustic and
nonpolar optical phonons. Due to the large number of
phonon branches which have been neither measured nor
calculated, we prefer here to use the deformation-
potential method. The one-dimensional version of the
textbook expressions ' is obtained easily. The resulting
energy and temperature dependence is given [using the
density of states (5)] by

with

2)(E)T ' (7)

&Pa, 0 Mcka&= & pa= & po=
2ma E2

Mco,

E2

As usual, both processes yield the same dependence. In
(7), M is the molecular mass (of the FA molecule), c the
velocity of sound, e, the nonpolar optical-phonon fre-

quency, E, the acoustic deformation potential, and E,
the optical deformation potential. Using (5) and (7), one
can evaluate (6) analytically to obtain

cr(T)=C
h(T} '

h
C=— aNEFpa, o ~

(8)

Of course, using the full expression for E(k) from (4) one
obtains 2)(E), u(E), and r(E) without the parabolic ap-
proximation, and (6) can be integrated numerically.
Though this procedure is possible, it provides only minor
corrections in fitting the data as far as the condition
6 & k~T is fulfilled. Thus we prefer the clear analytical
dependence of (8).

The quantity which is actually measured is the resis-
tivity of a sample of length l and cross section S. The
data will then be fitted with

h(T) l hR (T)=r r=-
ln(1+e ~(T)/"BT) ' S e2NaEF2p. .

(9)

For the carrier density n =2N fdE2)(E)f (E), the one-

dimensional case yields [5=6( T)]

N Qks TA
n =2 — — F,/2( Elks T), (10—)

B'
cr =2e N f dE2)(E)r(E)u (E)

BE

including both electron and hole contributions by assum-
ing the two bands are near the gap symmetric with
respect to the Fermi energy. Due to the factor
( Bf /BE), this is th—e case for 6 ~ ks T, and the bands
can be approximated parabolically leading to expressions
(5) for the velocity and density of states (and to the upper
limit of the integral for the same reason}.

The evaluate (6) one needs finally the energy and tem-

with

- dxxF ()=1/2 y + fo 1+ ~ —y

—6/k~ T
a EF ln(1+ e )

eN ~&ak, T F i/2( ~/ksT)
/ 1

p

(12)

Together with (8) and (9), the electron and hole mobilities
@=o. j2en can be calculated as

1/2
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Further, the mean relaxation time ~=pm, ff/e is, with the
effe'ctive mass (5),

1/2 ', 2 —6/k8 T
I n fi I I ln(1+e )

Sr 2 e Na EF+bksT F )~2(
—b, /keT)

exp. data

and the mean free path k = v, h ~ is given by
' 1/2 —6/k~ T

t I n fi ln(1+e )

Sr 2 2 e2NE F )y2( —~/kgT)

with U,h =Qk~ T/m, s also containing the effective mass.
Finally, a fundamental condition for the applicability of
the Boltzmann equation in the relaxation-time approxi-
mation is

~
t

I

I

I

p L

With (13), one has (see also Appendix B)
' 1/2

l m A l
k~T—=

Sr 2 e REF

(15)
6 8 lp

3/meV
I» (--- ————--—--- )In(1+exp{—3//k T))

FIG. 4. Linear regression according to Eq (18), using the
gap shown in Fig. 2 (for T ( Tp ) for 6( T).

F,~2(
—b, /k~ T )

(16)

In the following, these expressions are applied to describe
the experimental data of the dc conductivity of (FA)2X.

It should be mentioned that (for quasi-one-dimensional
conductors such as TTF-TCNQ) Conwell derived an ex-
pression for p in the acoustic-phonon scattering case that
is also proportional to 5 ~ T ' like (12) but neglects
the remaining T dependence [In( )/F, z ( 2)]aris-

ing from averaging the relaxation time and from the car-
rier density. Also conditions (15) and (16) for the applica-
bility of the Boltzmann equation have not been con-
sidered in her work.

IV. RESULTS

A. Fit of the dc-conductivity data

VS

The description given in Sec. III will now be used to
analyze the measured resistivity of four (FA)zPF6 sam-
ples. Here we assume that the gap b, ( T) is given
sufficiently accurately by the temperature dependence
(Fig. 2) explained in Sec. II. Then the theoretical expres-
sion (9) contains merely one free parameter r. The relia-
bility of such a description can be checked by considering
the dependence (Fig. 4 for T & TJ, )

ln(R /0)

The example in Fig. 4 shows that there is indeed a linear
dependence with a B value near unity. Fit parameters for
four samples are given in Table I for T(T~. The small
deviation from B= 1 can either be due to the assumptions
and approximations made to obtain the dependence used
for b, ( T) or to the approximations needed to derive (9).
The experimental resistance values are then approximat-
ed by 10"X (X—= 10 ). A similar procedure is applied to
the temperature range above the Peierls transition. An
example for the resulting 6t is shown in Fig. 5. It can be
seen that Eq. (9) indeed contains all characteristics of the
measured temperature dependence of the electrical resis-
tance over more than eight orders of magnitude.

As mentioned above it is not sufficient for a formula
[like (9) in our case] to describe well the functional depen-
dence observed; the parameters determined from the fit
(here r) also must be of reasonable magnitude corre-
sponding to the model used. Though the deviation of B
from unity is small (Table I), it has to be taken into ac-
count in determining r. This is done on the following
way. Since (9) with (18) has the form R = rX = rX' sXs,
and the fit is achieved with 10"X, the deviation ( I B)—
of the exponent is averaged with respect to the tempera-
ture in the range considered. Then one obtains

(X' I X = I()"X
0/me V

r 10
0/meV (X t —s)

x =In[(b /meV)/In(1+exp[ —4/kz T])],
which will be approximated by linear regression as

(17)
TABLE I. Parameters 2 and B determined from fitting equa-

tion (18) for four di8'erent samples.

ln(R /0 ) = A +Bx . (18) SamPle

In the case where B = I, Eq. (9) [with the assumed b ( T)]
describes the observed temperature dependence exactly.

0.915
—1.996

0.991
—1.758

0.914
—1.324

0.938
—1.537
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FIG. 5. Temperature dependence of the electrical resistance

as calculated from Eq. (9), compared to the experimental data.
Good agreement is found over the whole temperature range
below and above the transition.

FIG. 6. The theoretical (intrinsic) electron density in the con-
duction band. The gap of Fig. 2 is used. The carrier concentra-
tion at room temperature is a factor of 50 lower than the car-
rier density n =2/(abc)=1. 6X10" cm ', following from sim-

ple chemical considerations.

The values for r are given in Table II. A typical value for
(X' ) is 3.4 (for the sample of Fig. 4). The main prob-
lem is that the length I and cross section S of the sample
entering the prefactor r are effective values, the deter-
mination of which is fraught with many uncertainties.
The geometry independent constant C in (8) is thus
affected by this uncertainty. The variation of C between
the samples (Table II) can be due partly to this effect.
However, in addition different crystal-growth conditions
and defects can be responsible for the variation of the ab-
solute conductivity values.

B. Calculation of related transport quantities

TABLE II. Length and cross section for the four samples
leading together with the quantity r (19) to the constant C in the
conductivity (8).

Sample

I/mm
S/mm

0
eV

C/
Qcm

0.6
(0.125)

3.0

128.0

0.9
(0.2)

15.75

14.28

0.9
(0.16)

13.25

26.53

0.6
(0.15)

11.57

23.05

We are now able also to calculate the temperature
dependence of the other quantities related to the conduc-
tivity. At first, we mention that the variation of the con-
ductivity over eight orders of magnitude arises mainly
from the dependence of the carrier density (10) and (11)
shown in Fig. 6. Consequently the ratio
ln(. . . )lF,&z(. . . ) occurring in (12)—(14) and (16) varies
only between 1 at low temperatures and approximately
1.06 at 300 K, but it shows a very pronounced structure

at the transition temperature Tp, which also will be seen
in T, p, A, ,.and (16). Figures 7(a) —7(c) show the mean re-
laxation time, the mobility, and the mean free path, re-
spectively. The strong change in the slope of all three
quantities at the transition temperature Tp arising from
the change in the slope of the gap (Fig. 2) is remarkable.
This change is still finite, since the CDW gap does not
vanish at the transition temperature but leads into the
pseudogap. Further, since according to (12)—(14) all
three quantities have a common dependence on
ln(. . . )lF i&2(. . . ), the variation over nearly eight or-
ders of magnitude seen in the conductivity is canceled
out, and the temperature dependence of r, A, and p is
mainly determined by the dependence on 6 ( T)T~ with
different exponents a and P. This dependence is smallest
in the case of the relaxation time, where 5 (decreasing
with T) and T occur simply as the square root of the
product. But tM and A, also vary in the temperature range
considered, less than one order of magnitude. This small
dependence of all three quantities on temperature can be
explained as follows. The T ' dependence of the
deformation-potential scattering (7) is canceled in the
conductivity due to the energy integration in (6), leading
to the dependence (8). On the other hand, the T
dependence itself arises due to both the one dimensionali-

ty and the equipartition assumption for the phonons.
The latter is indeed justified in the case considered here,
since the temperature interval k& T is from 4.3 to 26 rneV,
whereas the relevant phonon energy is estimated to be
sufficiently smaller (about 2 meV; see below). The relia-
bility of the absolute numbers of all three quantities is
connected with condition (16) for the applicability of the
Boltzmann equation. (According to Appendix B, one
should be aware of the fact that the conditions for p and
the mean free path contain the effective mass, which is
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(20

100

80)

60

1 ! t small in our case). Quantity (16) has to obey condition

(15). Figure 8 shows that the variation again is small

over the entire temperature interval, but condition (15) is

not fulfilled; this must be attributed to uncertainties in

the absolute value of the conductivity, which is dificult
to determine for the samples investigated. In spite of the
uncertainties about condition (15), the good agreement

between the measured resistivities and those described by

(9) with the assumed temperature dependence of the gap

strongly supports the model presented here.
At the end of this section another consequence of the

fitted value r will be discussed. According to (7) and (9),
from the fit parameter r one obtains the quantity

20 I I I I I

Mc =
E
Ea Ih

rSe Na
(20)
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T (K)
6.0 f 1
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I

(b)

5.0

4 5

4 0

3.5

3.0

12

50 100 150 200 250 300

T (K)

characterizing the acoustic phonons. The difference from

the nonpolar optical phonons results essentially from

folding the phonon spectrum into the smaller Brillouin

zone. Due to the relation for the acoustic deformation

potential E, =(—', )EF (Ref. 23) (resulting from long-range

Coulomb screening), neither EF nor E, are needed explic-

itly. Using r =3 0/eV, as obtained above we get

Mc =0.2 eV, lying a little below the values typical for
usual inorganic materials. ' With the mass of the C&6H&0

molecule (202 u) this results in a sound velocity of c =310
m/s, and finally the highest longitudinal phonon frequen-

cy will be approximately Acoo=ficrr/a=1 meV. The

values estimated here can be a little too small for the fol-

lowing reasons. First, there is a considerable uncertainty

in the r values (see above), and also in the geometrical

factors samp1e length I and sample cross section S. Fur-

ther, it is not clear whether the relation (E, /Ez)= —,
' is

exactly valid for the system considered here. On the oth-

er hand, due to the high molecular mass one indeed has

to expect low-lying phonons (co&o-M ' ). Finally, the

intermolecular ~ overlap of the C atoms occurs in this

(c}
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FIG. 7. Electron mobility (a), mean relaxation time (b), and

mean free path (c) following from the fit of the experimental

conductivity data using the gap shown in Fig. 2.

0.00
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T (K)
FIG, 8. The quantity k& T/(R/~) occurring in conditions (15)

and (16). For a comment on the absolute value, see the text.
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system perpendicular to the intramolecular n. overlap,
and therefore more closely resembles a 0. binding with a
large intramolecular spacing of 3.3 A, contrary to the in-
plane carbon-carbon distance of about 1.4 A leading, e.g.,
in (CH)„ to the high value ficoo=0. 1 eV. For the latter
two reasons small values of c and ~o must be expected.

C. Determination of the temperature dependence
of the gap from conductivity data

Up to now we used the temperature-dependent gap
2h( T) as described in Sec. II and Appendix A. However,
the actual T dependence has been neither determined ex-

perimentally nor calculated taking into account with
sufficient accuracy effects beyond the mean-field approxi-
mation. Below the transition temperature T, the scaled
BCS-like mean-field dependence is used. Above T pre-
transitional fluctuations lead to the formation of a pseu-
dogap at the Fermi energy. The pseudogap actually used
in fitting the conductivity in Refs. 4, 17, and 19, and ear-
lier in this paper, is an effective gap h,s(T) as determined
from paramagnetic spin susceptibility (cf. Appendix A),
which is an equilibrium quantity. Whether this is also
the transport gap is not clear for two reasons. First, lo-
calized and delocalized states near the band edge affect
the conductivity and the spin susceptibility differently.
Second —keeping in mind the origin of the pseudogap
from fluctuations —we must expect the ratio between the
mean free path and the correlation length of the fluctua-
tions to be important.

Due to these quite different uncertainties connected to
the temperature dependence of the Peierls gap below the
transition temperature, and the pseudogap/effective gap
above as used earlier in fitting the conductivity data, we
now propose to proceed in just the reverse manner:
There is the Peierls gap below Tp and above TI, the pseu-

dogap is replaced by an effective "transport" gap. The
total dependence h(T} is the quantity to be determined.
The theoretical description of the conductivity outlined
in Sec. III B must be regarded as sufficiently accurate to
be used for determining this unknown gap from the mea-
sured conductivity data under the following conditions.
(a} There is actually a dominance of single-particle trans-
port, which (b) can be described by the Boltzmann equa-
tion [condition of a sufficiently large relaxation time (Ap-
pendix B)]. (c) The transversal band width is negligible,
and (d) the condition h(T) ~k&T is fulfilled. Finally, (e)
phonon scattering will be the dominant process. Accord-
ing to the data given above, all these conditions seem to
be realized sufficiently well. It can then be seen from
Eqs. (8) and (9) that a given temperature dependence of
the conductivity (resistivity) allows the determination of
the temperature dependence 6(T), provided that one has
a reliable value for the gap at one temperature. We con-
sider two possibilities. (A) the conductivity itself yields
such information, with the activation energy following
from the strictly linear dependence of In(cr) vs T ' at
low temperatures (100—50 K); for even lower tempera-
tures the number of excited electrons and holes in the
bands becomes too sma11, and other mechanisms wi11
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FIG. 9. Temperature dependence of the gap as deduced from
the conductivity data with the two procedures (A) and (B) de-

scribed in the text. The difference between the two curves is less

than 5 meV. For comparison, the gap used earlier (Fig. 2) is

also shown (C).

dominate the transport. On the other hand (B) one can
also use the gap above T somewhere in the region
200—300 K, as determined from paramagnetic spin sus-

ceptibility, although its connection with the transport
gap is not quite clear. Figure 9 shows the temperature
dependence of the gap determined in these ways in com-
parison with that used before (the scaled mean field

behavior below TI and above the dependence from the

paramagnetic spin susceptibility). In case (A) the con-
stant in (9) is r =3 0/eV, and in case (B) it is
r=4. 5Q/eV. These values coincide with those used

above for some estimates which need not be repeated
here. Although the values of r arising from the two ap-
proaches differ (apparently) considerably, the correspond-
ing two gap functions differ over the entire temperature
range from 50 to 300 K by less than 5 meV, as seen in

Fig. 9. The decrease of the gap below 50 K in both cases
is not significant, since for this temperature the descrip-
tion of (8) and (9) is no longer valid, as already men-

tioned. Further, between 50 K and Tz the smooth de-

crease of the gap resembles the scaled mean-field depen-
dence, but the strongest decrease is shifted a little to
higher temperature. The transition from the Peierls gap
to the effective pseudogap is well pronounced but not
sharp. The dependence above 200 K exhibits some irre-
gularities arising from the conductivity data itself; it
should be mentioned that the crystals have been grown at
250 K, and there may be some aging effects in the con-
ductivity measured above this temperature.

The determination of the temperature dependence of
the gap —the Peierls gap (below T ) and the effective gap
describing the influence of the pseudogap on the trans-

port above the transition —directly from the conductivity
data, as demonstrated here, has the advantages that the
data used are relatively simple to obtain, and the result-
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ing gap contains all the effects which can hardly be de-
scribed theoretically with sufficient accuracy.

TMF

Tp
(A6)
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APPENDIX A

The temperature dependence of the gap (Fig. 2) used in
Sec. IV A to fit the experimental conductivity data is ob-
tained from rather different information about the system
above and below the transition temperature. In the
mean-field theory, the Peierls gap b,M&( T) below the tran-
sition temperature TP"[AM&(TP")=0] of a strictly one-
dimensional system is determined ' by the implicit
equation

which now contains two independent parameters b,(0)
and Tp. A(0) is determined from the slope of the strictly
linear dependence of ln(0.

~~)
vs T ' at low temperatures

(50 T 100 K) as seen in Fig. 1. To determine Tp one
also has to consider the pseudogap in the electronic den-
sity of states above the transition. The latter is a direct
consequence of the fluctuations for sufficiently weak in-
terchain coupling, as shown in Ref. 6. In the pseudogap
the density of states near the Fermi energy is small but
finite. To model the influence of this fluctuating pseudo-
gap, it was replaced in Ref. 9 by an effective uniform and
temperature-dependent energy gap 2b.,tr(T}, with corre-
sponding modification of the one-dimensional density of
states below and above the transition. The temperature-
dependence b,,z( T} is determined by the activation energy
b, (0), and, using the connection

1

y
& de v' E+~MF

tanh
0 QE2+ gz k~ T

(A 1)
(A7)

where A, is the dimensionless electron-phonon coupling
constant. For T=O and TP" (Al) implies

ks TP "=l. 14e~exp( —1/A, ),
b M„(0)= 1.76k' Tp "j1+—,

' [Q 1 +6 Mp(0) le~ —1]J .

(A2)

(A3)

Formally 2cz is the interval around the Fermi energy,
where for zero gap the dispersion relation can be linear-
ized. Usually one replaces cz with cz and assumes fur-
ther e~ ))AM&(0), leading to the connection

from the measured paramagnetic spin susceptibility
leading to the dependence shown in Fig. 2. Finally, one
can determine TI*, by requiring that at some temperature
Tz the scaled mean-field gap and the pseudogap are
equal: b, (TP)=h, t(TP). Then TJ, is the temperature of
the transition seen in the derivative of the conductivity
data. The resulting overall T dependence of the gap is
shown in Fig. 2.

APPENDIX B

A fundamental criterion for the applicability of kinetic
equations like the Boltzmann equation is '

AMp(0) = l.76k' TP" (A4} r»AIE =A'Ik~ T

and a dependence b Mz( T) as in the BCS theory. Howev-

er, the mean-field theory neglects thermodynamic fluc-
tuations, which for a strictly one-dimensional system
with short-range interactions would preclude the oc-
currence of a phase transition at finite temperature. Non-
vanishing interchain coupling as an effect of three dimen-
sionality in quasi-one-dimensional systems partly
suppresses the influence of fluctuations. The theory tak-
ing bath effects into account shows nevertheless that the
mean-field description gives at least qualitative insight.
At low temperatures fluctuations decrease, and quantum
effects become negligible due to the high mass of the
CD%' condensate. Therefore the Peierls gap of a real sys-
tem at zero temperature will be nearly the same as pre-
dicted by mean-field theory, but on the other hand the
transition occurs below the mean-field value:

5(0)=6M„(0) Tp (Tp" .

Following Ref. 4, it is assumed now from (A5) that the
actual dependence is a scaled mean-field dependence

300 K
T

cm 300 K m
p »45

Vs T mff

300 K m
k »1.7nm

meff

1 j2

which in the cases of the mobility and mean free path de-

pend also on the efFective mass. Fitting data with expres-
sions basically following from kinetic equations should be
accompanied by checking whether these conditions are
fulfilled.

(the second expression for nondegenerate systems), ex-
pressing simply that the energy uncertainty must be
sufficiently small for scattering to be elastic. It seems to
be worthwhile to express these conditions in the follow-
ing form:
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