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It has been shown in a recent analysis of the temperature dependence of the dc conductivity of the
quasi-one-dimensional conductor (8uoranthene)2PFs that in spite of the occurrence of the Peierls
transition to a charge-density-wave ground state (formally implicating polarons as excitations),
the dc conduction is essentially due to electron-hole transport in bands and acoustical phonon
scattering of the carriers. The theory allows for the determination of the temperature dependence
of the Peierls gap below and the Huctuating pseudogap above the transition temperature. Our
dc-conductivity measurements con6rm that a common temperature dependence occurs in organic
radical cation salts and in inorganic materials from the groups of the blue bronzes and the transition
metal tetrachalcohalogenides. These materials are rather di8'erent especially with respect to the
nature of the states forming the conduction band and the filling of the latter. Here we reduce the
needed information on the band structure to a minimum connected with optical data and extend the
theory to the case of a gap small compared to k&T. The theory is applied to (Fa)2PFs, Kp, spMo03,
and (TaSe4)2I as representatives of the above-mentioned groups of materials. From the measured
conductivity data the temperature dependence of the Peierls gap below and the pseudogap above the
transition temperature are determined as well as several conductivity-related quantities. Similarities
and difFerences of the investigated materials are discussed.

I. INTRODUCTION

A variety of quasi-one-dimensional (Q1D) systems
show instabilities due to electron-phonon and electron-
electron interactions leading to numerous interesting
properties such as bond-order waves, charge-density
waves (CDW's), ' and spin-density waves. The Peierls
instability against lattice distortions leads to the open-
ing of the Peierls gap below the transition tempera-
ture and to a CDW ground state in different inor-
ganic systems such as linear-chain platinum compounds,
several transition-metal compounds, the blue molyb-
denum bronzes, and also organic radical-cation salts
such as (fluoranthene) 2X (X = PFs, AsFs, SbFs),"
(perylene) 2X, and (perylene) 2M(mnt) 2 (M=Ni, Cu,
Pd, Pt, Au, Fe,Co; mnt=maleonitriledithiolate). s

A central feature of the Peierls transition is the ap-
pearance of fluctuation effects. In a strictly 1D sys-
tem fluctuations of the order parameter would prevent a
phase transition at a finite temperature. However, in a
real Q1D system residual three-dimensional interactions
partially suppress the effect of such fluctuations, so that
a Peierls transition can take place at a finite temper-
ature TI . The temperature dependence of the Peierls
gap below TI is usually described as a scaled mean-Geld
dependence for a system with a half-filled undisturbed
conduction band~ (the dependence on the band fllling

is considered in Ref. 12). Above the transition temper-
ature TI there remains a fluctuating pseudogap which
finally vanishes at some higher temperature of the or-
der of the mean-field transition temperature TI, , how-
ever, the theoretically determined density of states of the
fluctuating gap has not been seen directly in experi-
ments. On the other hand, various experiments such as
x-ray and neutron scattering, ' magnetic susceptibility
measurements, ' and optical investigations ' have
given evidence for the presence of CDW fluctuations in
Q1D conductors. Thus the independent determination of
the temperature dependence of the gap below and above
the transition temperature directly &om dc-conductivity
data can provide additional information about fluctua-
tion efl'ects in QlD CDW conductors.

The occurrence of the Peierls gap implies that the ex-
citations of the system are polaronic coupled electron-
lattice excitations. On the other hand, we have shown
in a recent analysis of the dc conductivity of (Fa)2PFs
that the transport is adequately described by simple elec-
tronic band-to-band excitations. This implies that the
combination of three-dimensional effects and fluctuations
is still of such a magnitude that the Peierls state occurs,
but that the excitations determining transport can be de-
scribed effectively as single-particle excitations from the
valence to the conduction band with acoustical defor-
mation potential scattering as the dominating scattering
process. It has also been shown that one can determine
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the temperature dependence of the gap with this descrip-
tion by using experimental dc-conductivity data.

Published conductivity data indicate a similar temper-
ature dependence of the dc conductivity in fluoranthene
radical cation salts, the blue molybdenum bronzes,
and some transition-metal tetrachalcohalogenides.
These groups of substances are rather difFerent since wave
functions of difFerent states form the @ID system leading
to the Peierls instability and also the band filling in the
metallic state above the transition is difFerent. The aim
of the present paper is at first to confirm this similarity of
the dc conductivity by our measurements and. second to
compare these substances by applying basically our theo-
retical description. This requires several modifications of
the theory. In Ref. 19 we used a special band structure
model for a half-filled conduction band in the metallic
state. The formulation given here reduces the needed in-
formation on the band structure and is independent of
the band filling by relating the band structure parameter
to optical data. Further, contrary to the previous for-
mulation, the nonparabolicity of the bands is considered,
which becomes important if the gap is less than k~T.
Also the possibility is taken into account that scatter-
ing at higher energetic nonpolar optical phonons must be
considered. Finally, to obtain &om the measured conduc-
tivity not only the temperature-dependent gap but also
related quantities such as the mean relaxation time, the
mean &ee path, the mobility, and the velocity of sound,
appropriate formulations must be introduced considering
both the nonparabolicity of the bands and an arbitrary
degree of degeneration.

II. MATERIALS
AND THEIR dc CONDUCTIVITY

The materials investigated here are linear-chain com-
pounds, where the basic structural units are organic or
inorganic groups forming chains with strongly overlap-
ping electronic wave functions along the chains and weak
overlap in the perpendicular direction. This leads to a
Q1D electronic band structure with relatively wide bands
in the chain direction and only little dispersion perpen-
dicular to it. Consequently, the resulting Fermi surface
shows nesting properties, which are the prerequisite for
the Peierls transition to a CDW ground state.

In the following, the structural and electronic prop-
erties of the three systems will be briefly discussed; for
details we refer to Ref. 19 in the case of (Fa)2PFs and
Refs. 23 and 6 for (TaSe4) 2I and Ko soMoOs, respectively.
(Fa)2PFs belongs to the class of arene radical cation salts
(Ar)2%, where Ar is an aromatic hydrocarbon such as
Quoranthene (CisHio) or perylene (C20Hi2) and A is a
monovalent anion (A = PFs, AsFs, SbFs ). The
orbitals forming the bands are the vr orbitals of the aro-
matic molecule, but it must be mentioned that the 1D
chain is formed by a O.-type binding perpendicular to the
molecular in-plane vr-electron system. Due to a charge
transfer of 0.5 electrons per Fa molecule and a slight
dimerization within the Fa stack, the unit cell contains
two Fa molecules and the conduction band is half filled.

(TaSe4)2I is a member of the halogenated transition-

metal chalcogens (MX ) Y, where M stands for the
transition metal Ta or Nb, X for the chalcogen S or Se,
and Y can be the halogen I, Br, or Cl. Here the bands are
formed from the Ta d orbitals in the TaSe4 chains, which
are separated by I ions. The charge transfer is again
0.5 electrons per Ta, but because of a tetramerization of
the chain the band filling is 1/4.

Another group of linear-chain compounds with a CDW
ground state, of which Ko 30Mo03 is the prjme example,
are the blue molybdenum bronzes Ao 30Mo03 with A =
K, Rb, or Tl. The structure can be viewed as infinite
chains of Mo06 octahedra sharing corners along the chain
direction. Band structure calculations show that the
conduction band consists of two almost parallel bands
with each of them three-quarters filled.

Meanwhile the Peierls transition to a CDW ground
state has been detected via x-ray investigations in all
three compounds by the appearance of satellite reflec-
tions below TI . While in the case of (TaSe4)2I and
Ko 30MOO3 the wave vector of the superlattice spots is in-
commensurate with the reciprocal lattice, in (Fa)2PFs
it has been shown recently that qs ——2a*, which means
that the CDW is pinned by commensurability with the
lattice.

In past years the materials have been characterized
by a variety of methods; most important in this context
are dc-conductivity and magnetic susceptibility measure-
ments together with polarized optical reflectance spec-
tra, from which band structure parameters are derived.
In order to compare the three substances, the tempera-
ture dependence of the electrical conductivity of the in-
organic CDW conductors (TaSe4)2I and Ko soMoOs has
been reinvestigated with the same experimental setup as
described earlier for (Fa)2PFs. The data for (TaSe4)2I
and Ko 3oMo03 are in good agreement with the results
achieved by other groups ' and indicate a similarity of
the underlying conduction mechanism in all three sub-
stances.

Figure l(a) shows the temperature dependence of the
dc conductivity of the three systems between room tem-
perature and about 25 K. All curves show qualitatively
the same behavior; however, there are characteristic dif-
ferences in the Peierls transition temperature Tp, the
room temperature conductivity, and the ground-state en-
ergy gap 24(0) (see Table I). At room temperature the
systems show relatively high conductivities of typically
10 (0 cm); however, apart from the blue bronze no
increase of conductivity with decreasing temperature is
observed, as should be expected for a Q1D metal. At
the Peierls transition the slope of o(T) changes abruptly
and, for temperatures below T~, the conductivity rapidly
decreases due to the opening of a BCS-like energy gap at
the Fermi level. At even lower temperatures the conduc-
tivity follows approximately a thermally activated law
with o(T) oc exp[ —A(0)/k'~T]. From the Arrhenius plot
in Fig. 1(b) the characteristic energy gap 2E(0) for each
system can be determined. At temperatures below about
50 K deviations from the Arrhenius law are observed due
to defects contributing to the conductivity, which will not
be considered here.

Remarkable is the temperature dependence of the con-
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ductivity in the range above Tp. Although there are
relatively high conductivities, (Fa)2PFs and (TaSe4)21
show no metallic behavior. This is due to pretransi-
tional Huctuations of the CDW ground state, which lead
to a pseudogap in the electronic density of states. In
the case of the blue bronze, however, an increase of the
conductivity with decreasing temperature is observed.
A detailed analysis (Fig. 2) shows that above approxi-
mately 225 K the resistivity p = 1/o is proportional to
the temperature, which is the behavior of a conventional
metal at higher temperatures. Thus we have to expect a
very small gap above Tp, which should vanish completely
above 225 K.

Following the above explanations the overall temper-
ature dependence of cr(T) can be described qualitatively
with a temperature-dependent energy gap as shown in
Fig. 3 and discussed previously in Ref. 19. For T
T~ the Peierls gap 2AMF (T) shows a scaled mean-
ie]d behavior; however, in the BCS relation 2A(0) =
3.5k~T&, in the case of the real Peierls transition tem-
perature Tp, a constant of the order of 4 —11 must be
used instead of 3.5. Above Tp the pseudogap A, fr(T) is

TABLE I. Parameters characterizing the three CDW sys-
tems. For the low temperature activation energy A(0) and
the room temperature conductivity cr(300 K), the values can
vary from crystal to crystal. The typical intervals of the
values found in our experiments are given. The mean-field
transition temperature is calculated from the BCS relation
2&(0) = 3 GkaT. r

" and varies with the values of A(0).

Parameter
T~ (K)
A(0) (meV)
TMF (K)
o(300 K) [(0 cm) ']
o)(/cr~ (300 K)
Band filling

(Fa)2PF6
182

60 —90
400 —600
10 —10

10'
1/2

(TaSe4) 2I
263

130 —140
860 —920

10
10
1/4

Kp 3pMo03'
183

30 —40
200 —260
10 —10
100 10 1

3/4

Compare with Ref. 20.
Compare with Ref. 5.

'Compare with Ref. 6.

III. THEORY

In this section we generalize the description given in
Ref. 19 for the dc transport in (Fa)2PFs. We consider a
QID system with a partially filled conduction band un-
dergoing a Peierls transition. The system is then charac-
terized by the occurrence of an energy gap with a quali-

slowly decreasing with increasing temperature. Figure 3
shows the behavior of A,fr(T) as derived from param-
agnetic susceptibility by Johnston et a/. However, the
gap derived from yp, , which is an equilibrium quan-
tity, and the transport gap relevant for o (T) can differ
considerably.

Therefore, in the following, a theory will be developed
that allows a direct determination of the gap from con-
ductivity data. From the application of the theory to the
three systems differences and common features will be
elaborated. Other related transport quantities also will
be discussed.

10

10" ~

10

10

10

10

10

10
0.005 0.010

f [K "]

a(0)

I

0.015 0.020

1.5

1.4—
0

E
1.2—

C)

1.1

0
Op
po0

1.3 —o
T

Kp 3pMOO3

~a)(Q
p p O 0

~o y)~~p
~+~p~ (~) p

o ~~a'

FIG. 1. (a) Temperature dependence of the dc conductivity
(measured along the highly conducting 1D crystal axis) for
the three CDW systems investigated. The respective Peierls
transitions are indicated by arrows. Typical parameters for
the systems are given in Table I. (b) In the Arrhenius plot the
energy gap 2&(0) in the CDW ground state can be determined
from the thermally activated behavior indicated by arrows.
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FIG. 2. Temperature dependence of the resistivity in the
blue bronze above the Peierls transition. The dashed line
indicates a linear temperature dependence above 225 K, which
is known from conventional metals at high temperatures.
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'1.0
the midgap energy EJ; .Relative to the band edge (of
the upper band) Ep ——E~ + A, this is written as

0.8—

0.6—

~ 0.4—

0.2—

e~ = Eq —Ep ———A + QA2 + (hv~ q) 2,

ge'+ 2Ae
a+4v(e) = v~

with the velocity required in calculating the conductiv-
ity [Eq. (1)j. For energies e (( (~2 —1)A, this means
for k~T (( 0.44, one can use for Eq. (3) the parabolic
approximation as before

0.0
0.0 0.5 1.0 1.5

h q
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FIG. 3. Schematic temperature dependence of the energy
gap in QlD conductors with a Peierls transition to a CDW
ground state. Below T~ the gap follows a scaled mean-field
dependence (Ref. 25); above T~ a pseudogap (often called an
efFective gap) (Ref. 26) is used.

1 BG' 2

n Bk' (2)

respectively. Near the Fermi energy EF of the unstable
metallic band with an arbitrary band 6lling the 1D band
structure Eq ——EF + hvF q is approximated as a linear
function of q = k —k~ (with the Fermi wave number k~).
This leads, in the lowest order of perturbation theory, to
the band structure E~ = E~ 6 gA2 + (hv~ q) 2 with a
gap 2A = 26(T), which is symmetric with respect to

tative temperature dependence as described above. How-
ever, the exact temperature dependence of the gap 2A(T)
below and above the transition is unknown and should
be determined by analyzing the conductivity data. The
description of the conductivity is based on the follow-
ing assumptions. (a) The thermally activated electrons
and holes in the bands above and below the Peierls gap
or pseudogap are dominant. (b) Counterions give rise
to the partial filling of the unstable metallic conduction
band, but due to their spatial separation from the 1D
chains they do not create additional states in the Peierls
gap or pseudogap. Also, their contribution to scatter-
ing is negligible. 2r (c) There is quasiclassical transport
described by the Boltzmann equation. (d) Further, the
relaxation time approximation is used with an energy and
temperature-dependent relaxation time r(e, T). The va-
lidity of the Boltzmann description implies the condition

)) h/e for the averaged relaxation time w and energy
E at the temperature T. The conductivity due to both
electrons and holes (for a band structure symmetric with
respect to the midgap energy; see below) is then given
by

( Bfol
~ = 2e'W de+(e) r(e) v'(e)

~

— ~. (1)
0 B )

Here A is the number of @ID chains per unit area, the
energy zero is the band edge, and fp is the Fermi-Dirac
distribution. The quasiclassical velocity and the 1D den-
sity of states 'D (spin degeneration included) are

(RrJp) 7I e~ep

in the band structure expressions (3) and (4). The neces-
sary parameters for the three systems are given in Table
II.

Finally, one needs an approximation for the relaxation
time in Eq. (1). Since scattering by charged counterions
is expected to give a negligible contribution, there re-
mains the scattering by phonons. Acoustical deformation
potential scattering gives, in the 1D case,

8
7(e) = hMc~

k~2vraE2 ' (6)

where M is the molecular mass, c, the velocity of sound, a
the lattice constant in chain direction, and E the acous-
tical deformation potential. The dependence (6) is valid
for phonon energies Lo « k~T. Its application at lower
temperatures is therefore only possible if the velocity of
sound is relatively small, which is the case for the mate-

The band structure and hence the velocity are both, in
Eqs. (3) and (4), determined by the two parameters 4
and v~ only. Already in the approximation (3) the band
filling and the magnitude of the Fermi wave number do
not occur explicitly. The parameter VF, the Fermi veloc-
ity of the corresponding metallic system, can be deter-
mined from optical data. This procedure requires some
comment. In the systems we consider here, the Peierls
gap or pseudogap is small (( 200 meV). Optically ob-
served interband transitions have an energy larger than
3 eV. But in spite of the existence of this small gap,
even in the temperature region below the Peierls transi-
tion, there occurs a well pronounced optical reflectivity
edge at about 1.5 eV, leading to a sharp plasmon peak
in the energy loss function. This plasmon peak is in-
fluenced only a little by the small pseudogap at room
temperature and thus one can describe the optical data
with a Drude model including several higher lying inter-
band transitions. Then one can connect the resulting
plasmon frequency wz with the Fermi velocity of the cor-
responding metallic system VF. For a 1D system one has
w„= (2e JV/e eph vr) (Be/Bk)~y (e = 1 if the inter-
band transitions are taken into account explicitly in the
fit of the optical data; otherwise e is the background
dielectric constant). Thus we use in the following
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Parameter
M„(eV)
&oo

a (A.)
w (A-')
v~ cm s
Ep (eV)

(Fa)2PFs
1.5

1
6.61
0.011

2.65 x 10
0.55

(TaSe4) gI
1.2'
7.6

12.76
0.022

6.59 x 10
0.6

Ko.3OMo03
2.7'

1
7.55

0.025
3.83 x 10

0.6

From Ref. 28.
bFrom Ref. 29.
'From Ref. 30.

rials we consider here. With Eqs. (6), (2), and (3) the
conductivity (1) becomes

TABLE II. Material parameters derived from optical re-
Qectivity measurements and crystal structure analysis, and
the Fermi velocity and energy calculated from them. The
lattice constant a represents in all three systems the lattice
constant along the highly conducting crystal axis (due to dif-
ferent crystallograhic space groups, a difFerent nomenclature
can be found in the literature for the inorganic systems).

So far only acoustical deformation potential scattering
has been taken into account. The approximation (6) re-
quires the phonon energy to be small compared to the
temperature. Indeed, in (Fa)2PFs our analysis led to an
estimation of some meV for the zone edge energy of the
involved acoustical phonons. For intermediate phonon
energies a detailed knowledge of the phonon spectrum
would be required. Nevertheless, one can estimate the
contribution of higher energetic nonpolar optical phonons
with ~ pt )) k+T. Similar to Ref. 27, one obtains

opt huo t/kBTopt

g(e) 4vran2

where a is the electron-phonon coupling constant (in the
case of organic 1D systems with a conjugated 7t-electron
system about 4 eV/A. ). The total relaxation time is then
determined by the smaller one according to 7t t = 7 +

t. To compare Eqs. (6) and (ll) they are conveniently
written in the following dimensionless form (with T
300 K):

C
a(T) =

2 QT (7)

with z = e/kgyT and y = A(T)/k~T, where the constant
C

2e2JVMc, ( hv y l
vrha ( E

]n(1 + e a(T)/k&T)—
cr(T) = c (9)

used in our previous work with a connection between
v~ in the constant C [Eq. (8)] and the Fermi energy (v~ =
aE~/25) in a special model for the band structure. We
further mention that for a vanishing gap 4:—0, Eq. (7)
yields

contains v~ from Eq. (5) and does not depend on the
detailed model for the band structure and the filling of
the band, which is difFerent in the three groups of ma-
terials investigated here. The equation for the conduc-
tivity [Eq. (7)] contains only the temperature-dependent
gap and one constant C. It is well suited to determine
the temperature dependence of the gap from the mea-
sured conductivity data. This is more easily done if the
parabolic approximation (4) can be applied. Then one
can evaluate Eq. (7) analytically and obtain the expres-
sion

T.,'D(e) —' = pe LAP Q p t / k ~ T

vr' t'k~T, 't (~»t, l (E )
2 ( Ru~c p 4 ~~ ) ko.a)

(12)

(13)

(14)

6—
E
c0
lgx 4—
GJ

L

3—
6)
N

E
2—

0c

where in the constant p the approximate acoustical
phonon zone edge frequency is u, = c, (vr/a). Due to
the exponential in Eq. (13), 7 ~t decreases much faster
with increasing temperature than 7 in Eq. (12). Thus
in the region between 50 and 300 K one has, e.g. , for
he@»t 3kIBT, and p ) 1 a much larger T &t than f (and
hence f ~t negligible), but w pt, becomes important near
room temperature for p ( 0.5, as shown in Fig. 4.

0 = e g'y P~v~e+.4k~T (10)
50 100 150

T [K]

200 250 300

This is the same linear temperature dependence as for
a conventional metal at higher temperatures caused by
deformation potential scattering. Moreover, similar to
Ref. 19 also for the more general expression (7), one can
express the mean mobility, the mean free path, and the
mean relaxation time through the measured values of the
conductivity as functions of T (see the Appendix).

FIG. 4. Temperature dependence of the normalized relax-
ation times given in Eqs. (12)—(14). Dashed line, f following
from acoustical deformation potential scattering; dotted line,
7 pt following from higher energetic optical phonon scattering
with Acct p&: 3k&T„and p = 0.1; the resulting total relax-
ation time f is shown for p = 0.1 (full line) and for p = 1
(dash-dotted line). For p = 1, f ~q is so large that its contri-
bution is negligible.
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IV. RESULTS

In Ref. 19 we applied the theory to (Fa)2PFs using
the parabolic approximation (4) leading to the analytical
expression (9) for the conductivity. The experimental
data were described well with the gap shown in Fig. 3
and only one parameter, the constant C in Eq. (9) [apart
from A(0) and Tp]. Using this fit parameter and Eq. (8)
we estimated [with v~ ——aE~/2h and E = (2/3)E~]
the sound velocity (c, 310 m/s) and the zone edge
acoustical phonon energy (Ru, = 1 meV). Both values
were found to be in a reasonable range.

With the full theory [Eq. (7)] the experimental data
of the conductivity of all three systems are described al-
most perfectly using the energy gap as shown in Fig. 3.
In the logarithmic plot of Fig. 1 the deviations between
the experimental data and the fit are more or less within
the graphic linewidth. These results indicate that in-
deed the charge transport is dominated by thermally ac-
tivated electrons and holes in the bands above and below
the Peierls gap (or pseudogap above TI ) and by acousti-
cal deformation potential scattering. On the other hand,
such a fit of the conductivity data has some disadvan-
tages. At first, for a real system the Peierls gap below
the transition temperature will deviate from the simple
mean-field dependence used in Ref. 19 due to several ef-
fects such as three dimensionality, fluctuations, electron-
electron interactions, deviations from a free-electron-like
band structure, and band filling difFerent from 1/2. Fur-
ther, reliable values for the pseudogap above TI are not
generally available and, in addition, one has to expect
a difference between the fluctuating pseudogap as deter-
mined from the magnetic susceptibility as a static prop-
erty and a transport gap connected with mobility edges.

Thus, as proposed in Ref. 19, we will now proceed in
the inverse manner and use the theory to determine the
whole temperature dependence of the gap from the mea-
sured conductivities. But contrary to the previous work,
the formulation given in Sec. III does not depend on spe-
cial assumptions on the band structure of the unstable
metallic conduction band and on its filling. Moreover,
for the system with the gap the more general expression
for the velocity [Eq. (3)] is used leading to the expression
(7) for the conductivity and in this way the description
is also valid if the gap becomes comparable to or even
less than k~T Since both A.(T) and the constant C
have to be determined via Eq. (7) from the measured
conductivity data, one needs in addition the value of the
gap at one temperature. If available, such a value can
be taken, e.g. , from optical or paramagnetic spin sus-
ceptibility data. Here we use the fact that for all three
substances the conductivity shows, in the region 50 K( T ( 100 K, roughly a thermally activated behavior
with a constant activation energy. Indeed, for suKciently
small T, Eq. (7) is reduced to Eq. (9) and the latter to
o (T) = (C/A) exp( —A/k~T), allowing for the direct de-
termination of the ground-state energy gap, which will be
denoted here as 2A(0) (the deviation of the conductivity
from the activated behavior below 50 K was mentioned
already in Sec. II). The values of A(0) used for the
samples considered here are given in Table III. With the

TABLE III. Parameters following from the quantitative
analysis for the three representatives, which are shown in Figs.
1, and 5—7. For comparison, values of the sound velocity from
neutron scattering are given.

(TaSe4) 21

139
1.14 x 10

3.63
1390
181

3915

(Fa)2PFg
90
236
0.42
449
202

Parameter
A(0) (meV)
C (eV/0 cm)
Mc. (eV)
c, (m/s)
M (u)
c~~"~ (m/s)

Calculated from phonon spectra of Ref. 31.
Calculated from phonon spectra of Ref. 32.

Ko 30Mo03
41

72.1
0.035
188
96

7540

value of 4 one fixes also the constant t (Table III). Ob-
viously the assumption of suKciently low temperature is
fulfilled well. Only in the case of Ko 30MOO3 is there a
small uncertainty in the determination of K(0), which is
only four to five times larger than kIBT between 50 and
1oo K.

The results for the temperature dependence of the gap
in the entire temperature range are shown in Figs. 5(a)—
5(c). For (Fa)2PFs we compare in Fig. 5(a) three curves.
The first one (full line) (already shown in Fig. 3) was used
in Ref. 19 to fit the data and shows below TI the scaled
mean-field dependence and above TI the one following
from paramagnetic spin susceptibility. The second curve
(dashed line) was determined also in Ref. 19 from the
conductivity by using Eq. (9) and A(60 K) = 90 meV.
For the third one (dotted line) we used the improved
expression (7) and the same value for A(60 K). This
value is so large that the difference between both curves
is small for lower temperatures. However, with increas-
ing temperature and decreasing gap, the nonparabolicity
of the bands becomes important and the gap determined
with the full expression (7) decreases faster and is at
room temperature about 15 meV smaller than the gap
determined from Eq. (9). Also, it now coincides almost
exactly with the values from paramagnetic spin suscep-
tibility. is At the same time, with the full expression (7)
the transition from the Peierls gap to the pseudogap is
less pronounced. We want to mention also that the pro-
cedure depends sensitively on the value used for the gap
at low temperatures: reducing A(60 K) from 90 meV to
88 meV results at room temperature in a difFerence of 10
meV. The whole dependence obtained with Eq. (7) from
the conductivity agrees remarkably well with the scaled
mean-field gap below the transition and also yields the
existence of the pseudogap above the transition. Similar
results for the gap were obtained recently from optical
investigations. The analysis of these data leads to the
values L = 100, 89, and 45 meV for 10, 140, and 300
K, respectively. These values are about 10 meV larger
than in this work, but this can be due to crystals from
diferent batches, where also in the dc conductivity vari-
ations of the ground-state gap of this order are observed.
Nevertheless, the optical values demonstrate the decrease
of the Peierls gap with increasing temperature and the
existence of a pseudogap above the Peierls transition.

The gap for (TaSe4)2I is shown in Fig. 5(b). For the
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low temperature activation energy we obtained from the
measured conductivity A(80 K) = 139 meV. Both the
ground-state gap and the transition temperature are con-
siderably higher than in the other two substances. How-
ever, in spite of the large gap, a considerable difference
(almost 10 meV at 300 K) occurs when calculating the
gap from the measured data with the full expression (7)
(dashed line) or with the parabolic approximation (9)
(full line). Unexpectedly the resulting pseudogap above
the transition increases with temperature. This behavior
is probably an artifact arising &om the oversimplified as-
sumption about the scattering mechanism. As shown in
Sec. III, higher energetical phonons can lead to a reduc-
tion of the total relaxation time at higher temperatures if
the preexponential factor (14) in Eq. (13) becomes small.
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FIG. 5. Temperature dependence of the energy gap in
the three systems as derived from dc-conductivity data. (a)
(Fa)2PF6.. The full line shows the model dependence given in
Fig. 3, the dashed line was calculated with the parabolic band
structure approximation using Eq. (9) for the conductivity,
and the dotted line shows the gap following from the full the-
ory [Eq. (7)] for the conductivity; A(60 K) = 90 meV has been
used as the value for the low temperature activation energy.
(b) (TaSe4)&I: The full line is the gap derived from Eq. (9)
and the dashed line is the dependence from the full description
[Eq. (7)]; A(80 K) = 139 meV is used. (c) Ko.goMOO3. Both
curves are derived from the full expression (7); the full line was
calculated using the value A(60 K) = 41 meV, following from
the low temperature activated behavior, and the dashed line
with a value chosen a little larger, e.g. , as A(60 K) = 45 meV.

Although Eq. (14) contains several parameters that are
unknown or can be estimated only very roughly, the large
value of the lattice constant a in chain direction (due to
the 45 rotation of the adjacent Se4 unit) may be indica-
tive for a smaller value of p. Also the band structure is
more complicated especially due to interchain coupling
being responsible for a further splitting of the band and
the occurrence of an incommensurate Fermi wave num-
ber. Nevertheless, the existence of a pseudogap of such
a magnitude in (TaSe4)2I is confirmed by recent optical
conductivity measurements of several authors.

In the case of KQ 3QMoOs [Fig. 5(c)] the Peierls tran-
sition temperature is similar to the Buoranthene radical
cation salts near 180 K; the transition itself is more pro-
nounced. There is another difference that may be seen in
the conductivity (Fig. 1) above the transition. There the
conductivity decreases slightly with increasing tempera-
ture like in a metallic state. As shown in Fig. 2, there
is indeed a linear temperature dependence of the resis-
tivity above 225 K in accordance with Eq. (10). Thus
the existence of a residual Quctuating pseudogap above
the transition seems to be questionable. Indeed optical
investigations also seem to be consistent with a metallic
behavior above 225 K and an opening of the pseudogap
between 225 K and the transition at 183 K. Our con-
ductivity data lead from the activated low temperature
behavior to A(0) = 41 meV. With this value the mea-
sured conductivity yields with Eq. (7) above the transi-
tion temperature a vanishing gap [Fig. 5(c), full line]. On
the other hand, as already mentioned above, due to the
relatively small value of 6(0) its determination is not
suiiiciently exact. Thus, in Fig. 5(c) we show also the
curve that is obtained when the low temperature gap is
chosen a little higher, e.g. , as A(0) = 45 meV (dashed
line). In this case there remains a small pseudogap above
the transition. One should mention that the description
used here is less reliable in the case of the blue bronze
since, contrary to the simple band structure models with
a three-quarters filled band, more sophisticated models
lead to a partial occupation of two bands and the metal-
to-semiconductor transition is connected then with the
nesting properties of the two Fermi surfaces.

% ith the knowledge of the temperature-dependent gap
2A(T) (Fig. 5), the constant C (Table III), and the
Fermi velocity v~ (Table II) [and, approaching the de-
generate limit, the Fermi energy (Table II)] one can de-
termine several conductivity-related quantities using the
description given in the Appendix. At first, we deter-
mine the density n [Eq. (A4)], which coincides with the
actual electron and hole densities in the nondegenerate
case (A )) k~T), which is approximately fulfilled in
(Fa)2PFs and (TaSe4) 2I up to room temperature and for
the blue bronze only up to about 160 K since the gap
almost vanishes at T~. The density of electrons taking
part in the transport is in the degenerate limit propor-
tional to the applied field [see Eq. (All)] and cannot be
represented by an expression such as Eq. (A4). The re-
sulting density n shows the same general behavior as the
conductivity (Fig. 1) with an increase of eight to ten or-
ders of magnitude from 50 to 300 K and reaches values
at room temperature of almost 102o cm s for (Fa)2PFs
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and 2 x 10 s cm s for (TaSe4)2I [this value is smaller due
to a larger gap and also due to the larger v~ (JV differs
only slightly)]. For Ko soMoOs already at 160 K the den-
sity exceeds 5 x 10 cm since the gap is considerably
smaller.

According to Eqs. (A3) and (A9) one obtains, from
the measured conductivity, the mobility p = o/2en (rea-
sonable for 4 ) I"~T), which is shown in Fig. 6. Due to
the similar behavior of the conductivity and the density n
this mean mobility varies only by about a factor of 2 over
the entire temperature interval. In the case of (Fa)2PFs
and (TaSe4) 2I the mobility at first increases with decreas-
ing temperature due to the freeze-out of phonons. How-
ever, at the phase transition the formation of the lattice
superstructure leads to an additional scattering mecha-
nism, which reduces the mobility abruptly. At tempera-
tures of about 30 K below the respective Peierls transi-
tion the mobility begins to increase again, because at low
enough temperatures the opening of the energy gap and
therefore the lattice distortion is practically complete and
there remains again the phonon contribution. In the case
of Ko 3oMo03 the definition of the mobility is applicable
only below about 160 K. The magnitude of the mobil-
ity shows moderate values in the cases of (Fa)2PFs and
the blue bronze and is rather large for (TaSe4)2I. These
medium to large values reBect especially the small efFec-

tive mass to be discussed below. On the other hand, they
arise &om the ineffectivity of scattering by charged coun-
terions due to their spatial separation from the 1D con-
duction channel of the chains. While the meaning of the
mobility and the density n is restricted to 4 )) k~T, this
is not the case for the mean relaxation time [Eq. (A2)].
It can be obtained from the measured conductivity via
Eq. (A3) by calculating additionally the effective trans-
port mass [Eq. (A5)]. The peculiarity of this mass is its
dependence on the energy-dependent relaxation time. As
before we include here only acoustical deformation poten-
tial scattering. The effective transport masses (Fig. 7) are
rather small due to the small gap (for the blue bronze)
or due to the high Fermi velocity [for (TaSe4) 2I with the
larger gap]. The temperature dependence of this mass
[Eq. (A5)] arises from the deviation of the band struc-
ture [Eq. (3)] from the parabolic behavior [Eq. (4)] near
the band edges, which becomes important for 4 ( kIBT.
But as seen in Fig. 7, at 50 K the efFective transport
mass deviates from the band edge value 6/v&, showing
that at these low temperatures, higher energies of the
carriers contribute to the mean value. Nevertheless, the
total variation of the efFective mass over the entire tem-
perature interval is less than 35'Fg of the low temperature
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FIG. 6. Temperature dependence of the carrier mobility
in the three systems as determined from the experimental
conductivity data and the carrier density [Eq. (A4)].

FIG. 7. Temperature dependence of the e8'ective transport
mass [Eq. (A5)] of the three systems using the gap derived
from conductivity data and Eqs. (2), (3), and (6). The values
of 4(0)/movz give the low temperature band edge value of
the effective transport mass.
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band edge value. Due to this small variation the tem-
perature dependence of the relaxation time [Eq. (A2)] is
qualitatively the same as the one of the mobility with
a total variation of about a factor of 2. In addition, the
maximum near the transition temperature T~ is less pro-
nounced than in the mobility. More important is that, in
spite of the large values of the mobility and due to the
small effective masses, the relaxation times are small with
values of 5—10 fs for (Fa)2PFs, 30—70 fs for (TaSe4)2I,
and 0.4—0.7 fs for Kp 3pMo03. Similarly, one can calcu-
late with Eq. (A13) the value of 7s/h, which should be
large compared to unity for the Boltzmann description to
be applicable. However, we obtain the following values:
0.04—0.14 for (Fa)2PFs, 0.3—0.7 for (TaSe4)2I, and 0.01—
0.025 for Kp 3pMo03. From these values the applicability
of the Boltzmann description seems to be questionable at
first sight. But we should mention that these values fol-
low from the experimental conductivities, ascribing the
temperature dependence to the dominance of acoustical
deformation potential scattering. Thus the numbers ob-
tained depend at Brst on the absolute values of the con-
ductivity, which in turn depend on geometrical factors
which can be determined only with some error. Further,
crystal imperfections are expected to prevent part of the
chains from eG'ectively contributing to the current. Thus
the real values for the constant C determining the contri-
bution of the considered scattering mechanism should be
larger, reducing the apparent violation of the condition
for the applicability of the Boltzmann equation. Further-
more, usually a formal criterion for the applicability of
an approximate theoretical description is much stronger
than the practical usage.

Finally, a rough estimate for the velocity of sound will
be presented using the fitted constant C (Table III). Ac-
cording to Eq. (8) we need at first the deformation po-
tential constant E . We use here the connection with
the Fermi energy E = (2/3)E~ (strictly valid only in
the 3D electron gas) and the values for the Fermi energy
given in Table II. Resulting values for Mc, are given in
Table III. To obtain the velocity of sound we addition-
ally need the molecular mass determining the acoustical
phonons, which are interacting with the electron system.
We assume M = 202 u (CisHip molecule) for (Fa)2PFs,
M = 181 u (Ta atom) for (TaSe4)2I, and M = 96 u
(Mo atom) for the blue bronze. The resulting velocity of
sound is compared in Table III with values from neutron
scattering data. ' Considering the already mentioned
uncertainties in the absolute values of the conductivity,
the values obtained for the velocity of sound seem to be
acceptable.

V. CONCLUSION

We have developed a model for the dc conductivity
in organic and inorganic CDW conductors, that allows
for the determination of the temperature dependence of
the energy gap in the entire temperature range below and
above the Peierls transition directly from dc-conductivity
data. Our measurements confirm that the same con-
duction mechanism is responsible for the temperature
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APPENDIX: CONDUCTIVITY-RELATED
QUANTITIES

The band structure [Eq. (3)] becomes parabolic
[Eq. (4)] for A )) kriT. On the other hand, Eq. (3)
contains, in the limit 4 —+ 0, the linear dispersion rela-
tion near the Fermi energy. At the same time one has,
from 4 )& k~T to 4 —+ 0, the transition from nondegen-
erate to degenerate statistics. The general expression (7)
for the conductivity contains both limits correctly. But
in order to determine conductivity-related quantities one
has to generalize the usual expressions appropriately.
Defining the weighted mean relaxation time as (integra-
tion over one of the two symmetric bands)

Jds V7s( 8fP/Oe). —
J'ds 17s( OfP/Oc) '—(Al)

one obtains correctly the nondegenerate and degenerate
limits

dependence of the conductivity in the organic radical
cation salt (Fa)2PFs, the blue bronze Kp spMOOs, and
the transition-metal compound (TaSe4)2I. In all three
cases the calculated temperature dependence of the en-

ergy gap shows the typical behavior of a @1D conductor
with a Peierls transition to a CDW ground state. Be-
low T~ the Peierls gap follows a scaled mean-Beld depen-
dence; above the Peierls transition up to the mean-Beld
transition temperature T& there remains a pseudogap
due to CDW fluctuations. However, due to difFerent de-
gree of one dimensionality and ground-state energy gaps
24(0) (resulting in different values for TPF), the mag-
nitude and the temperature dependence of the pseudo-
gap above T~ show considerable differences between the
three systems. In the case of (TaSe4)2I the pseudogap
above the transition increases apparently with tempera-
ture, which can be attributed to the neglect of nonpo-
lar optical phonon scattering. On the other hand, for
Kp 3p Mo03 the gap soon vanishes above the Peierls tran-
sition and the resistivity becomes proportional to T in
accordance with deformation potential scattering in a 1D
metal.

Our results for the temperature dependence and the
magnitude of the energy gap in these three types of CDW
systems are in good agreement with recent optical reHec-
tivity measurements in the far infrared by other groups.
Furthermore, these results demonstrate the importance
of Auctuation effects at the Peierls transition in Q1D con-
ductors.
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fds Dr'e f fds 'Dr(e/ s krr T)f
fde17ef fde'Df
F

(nondegener ate)
(degenerate)

(A2)

in this case the current density is

ej = CATE = 2enbv with bv = pE, p =
m* (A9)

e A'1
0 =2 (A3)

(the factor 2 is due to electron and hole contributions),
because of Eq. (Al) one has to define the density and the
weighted effective transport mass as

where 7F is the value of the relaxation time at the Fermi
energy for 4:—0. In order to express the conductivity
in the form common for the nondegenerate case

1: 21n2JV17F k~T, m*
1 vF

4ln2 kIBT'
(A10)

where 17p is given by Eq. (2) with v = v~. Indeed, in
this case the current density is then

where the mobility p is the mean excess (drift) velocity
per unit field of all carriers.

Formally one can calculate also Eqs. (A4), (A5), and
er/m* in the degenerate case, yielding

and

n=Nfde D2~( 'sf /s—c) (A4) j = crE = e Anv~ with An = JV'Dp Ae,

Ae = vp e r~E, (A11)

jde 17vv2( B.fo/—Be)
jde 'Dr2e( Bfo/B—e)

' (A5)

:A fd~ D, f '=N
fdic
Df'

2k~T
(A6)

Indeed, in the nondegenerate limit Eq. (A4) becomes the
usual density

where all carriers contributing to the current have the
Fermi velocity v~. Therefore it becomes meaningless
to define a mobility, since now it is the density bn of
the drift-current carriers, that is proportional to the ap-
plied Geld due to the shift bc of the Fermi distribution.
Thus Eq. (A3) is also valid in the degenerate case with
Eqs. (Al), (A4), and (A5). But for the transport in the
degenerate case only the mean relaxation time [Eqs. (Al)
and (A2)] and the combination

In the same limit Eq. (A5) becomes [using partial inte-
gration and the generally valid relation r(e) 17 i(e);
see Eq. (6) or (11)]

jde'Drv d" f
jde'Dr fo (A7)

Note that Eq. (A7) contains the quasiclassical mass ac-
cording to

1 0 E; 1 0 1 OE' &U &U——'U = = 'U—
h2 Oq~ AOq hOq Oe Oe

(A8)

The peculiarity of the transport mass [Eq. (A5)] is the
weight function r(e) in the mean value. Equation (A3)
is written formally as in the nondegenerate case. Indeed,

2ND~v F—'2 (A12)

one obtains then the mean free path A = &6 and finally
one can check whether or not the fundamental criterion
e7/Ii )) 1 for the applicability of the Boltzmann trans-
port description is fulfilled.

remain reasonable. For the given energy dependence of
the relaxation time one can calculate the effective mass
[Eq. (A5)] and hence one can determine both the mean
relaxation time and the mobility from the experimentally
determined conductivity data using Eqs. (A3) and (A9).
Further, with the mean velocity and the mean energy of
the carriers contributing to the current6=, e = (A13)

jde 17v( Ofo/Be—) jde'De( Bfo/Be)—

jde17( Of /Be) —' jde17( Bf'/Oe)—
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