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Abstract: The monitoring of soil freezing and thawing states over large areas is very 

challenging on ground. In order to investigate the potential and the limitations of  

space-borne SAR polarimetry at C-band for soil state survey, analyses were conducted on an 

entire winter time series of fully polarimetric RADARSAT-2 data from 2011/2012 to 

identify freezing as well as thawing states within the soil. The polarimetric data were 

acquired over the Sodankylä test site in Finland together with in situ measurements of the 

soil and the snow cover. The analyses indicate clearly that the dynamics of the polarimetric 

entropy and mean scattering alpha angle are directly correlated to soil freezing and thawing 

states, even under distinct dry snow cover. First modeling attempts using the Extended 

Bragg soil scattering model justify the observed trends, which indicate surface-like 

scattering during frozen soil conditions and multiple/volume scattering for thawed soils. 

Hence, these first investigations at C-band foster motivation to work towards a robust 

polarimetric detection of soil freezing and thawing states as well as their transition phase. 

Keywords: soil freezing; soil thawing; SAR polarimetry; polarimetric eigen-based 

decomposition; RADARSAT-2; C-band 
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1. Introduction 

Monitoring of soil freezing and thawing states on large scales with high spatial and temporal 

resolution is especially important in high latitude ecosystems, as they affect the length of the growth 

season, the net primary production of organic matter, the carbon balance as well as frost damage on 

plants [1–5]. This requires an effective monitoring system, which is able to map the phase transitions 

within the soil and to monitor the extent as well as the temporal dynamics of the active layer in 

permafrost regions [6]. 

Investigations on soil states and its transitions started with the availability of ERS-1 C-band images in 

the early Nineties [7,8] and continued with the ENVISAT-mission [9], where the temporal behavior of 

single-polarization backscattering intensities were analyzed with respect to soil state changes [10]. 

Rignot et al. discovered a 3dB decrease in early winter, when the soil and vegetation freezes [5,8]. 

Wegmueller et al. report that frozen bare soil can be treated like dry soils due to the minimum in liquid 

water content [7]. However, Park et al. state that only distinct thaw and freeze-up periods could be 

monitored by intensity analysis. In addition, scatterometer data in two frequencies (Ku- and C-band) 

have been used to implement a probabilistic approach for freeze/thaw state determination of the soil with 

accuracies exceeding 90% for Siberian tundra (excluding rocky regions and areas with high  

soil moisture dynamics) [11]. In addition, Naemi et al. developed a Surface State Flag (SSF) from 

single-polarization ASCAT scatterometer data using an empirical threshold approach together with soil 

temperature data from the ECMWF reanalysis model as auxiliary information [12]. 

The availability of (fully) polarimetric information increases the ability to interpret and analyze 

different soil states and relates to the physical properties of the scatterers on ground (e.g., dielectric 

content of the soil) [13]. Concerning SAR polarimetry, first experimental studies have been undertaken 

to understand polarimetric SAR scattering signatures of (snow covered) soils for mapping freeze/thaw 

states of the soil [14,15]. Khaldoune et al. could allocate volume-type scattering mechanisms to thawed 

soil conditions, while surface-like scattering could be assigned to frozen soil conditions using airborne 

C-band data over the Bras d’Henri watershed, Canada [15]. Additional investigations proposed dual 

frequency, fully polarimeric SAR data, using PALSAR L-band [16] and RADARSAT-2 C-band [17] 

data, to investigate frozen and thawed soil conditions. In [17] a preliminary analysis of the canonical 

Freeman-Durden decomposition indicates dominant surface scattering over frozen soils for three 

agricultural test sites (Saskatchewan, Ontario, Quebec) in Canada. However, detailed scattering analyses 

of fully polarimetric data are still missing in order to assess the potential of polarimetric measurements 

for soil state monitoring.  

In the following, a unique time series of RADARSAT-2 acquisitions along an entire winter period 

(2011/2012), supplemented by manifold in situ measurements, are investigated to evaluate the potential 

of SAR polarimetry at C-band (5.4 GHz) to identify soil freezing and thawing states. The test site and the 

experimental data from in situ measurements and SAR acquisitions of RADARSAT-2 are introduced in 

Section 2. The methodology for identification of soil freezing and thawing states is described in detail in 

Section 3 together with investigations on the behavior of the dielectric constant under freezing 

conditions. Results for soil state monitoring at C-band with fully polarimetric RADARSAT-2 data are 

shown in Section 4 followed by a summary in Section 5 and conclusions in Section 6. 
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2. Test Site and Experimental Data 

A test site near the city of Sodankylä, northern Finland, at the location of the Finnish Meteorological 

Institute-ARC was selected, as indicated in Figure 1 [18,19]. The site is located 120 km north of the 

Arctic Circle and lies in the boreal/subarctic zone, exposed to continental climate. Two main land cover 

types are present for analysis of snow covered ground: Boreal forest and peatland/bog.  

Figure 1. Test site location (red box) near the city of Sodankylä, Finland, and C-band RGB 

image of a Pauli decomposition showing the surroundings of the test site (R: Double bounce 

scattering, G: Volume scattering, B: Surface soil scattering) as well as a zoom into a 

modified aerial image of the local measurement locations (green circles) around the  

FMI-ARC within the test site (AWS, IOA, RefIOA, Forest, Peatland, Bog1, Bog2, Bog2G, 

Bog3); SWE = Snow Water Equivalent [18]. 

 

Figure 1 shows the seven ground locations for reference measurements (green circles within the 

figure: AWS, IOA, RefIOA, Forest, Peatland, Bog1, Bog2, Bog2G, Bog3). For the locations AWS 

(Automatic Weather Station) and IOA (Intensive Observation Area), automatic recording stations 

enabled the acquisition of several geo-physical parameters, as for example snow density, soil 

temperature, air temperature, wind and snow fall [18,19]. Figure 2 shows, exemplarily for the IOA, the 

temporal evolution of the snow parameters within the entire winter period 2011/2012 (beginning of 

November 2011 until middle of June 2012) together with the acquired fine quad-polarimetric 

RADARSAT-2 data indicated as blue, vertical lines. A distinct snow cover of maximum 100 cm depth 

developed in the respective winter. The soil started to freeze in the middle of December 2011  

(~15 December 2011, air and soil temperature < 0 °C) and thawed in the beginning of June 2012  

(~18 May 2012, air and soil temperature > 0 °C) (see red and golden lines in Figure 2). 
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Figure 2. Snow depth (blue), air (red) and soil (orange) temperature curves recorded at the 

IOA measurement site (a forest clearing, where the ground vegetation consists of low lichen, 

moss and heather) for the entire winter period from snow accumulation starting in November 

2011 until snow free periods in June 2012. The blue, vertical, dashed lines indicate the 

acquisition dates of RADARSAT-2: 8.11.11, 2.12.11, 26.12.11, 19.1.12, 12.2.12, 7.3.12, 

31.3.12, 24.4.12, 18.5.12, 11.6.12 [19]. 

 

 

The air temperature reached down to −30 °C at some days in this winter. This indicates the 

development of a dry snow cover and a frozen upper soil, which can be characterized by in situ and SAR 

remote sensing techniques. 

For the Sodankylä test site the RADARSAT-2 instrument acquired quad-polarimetric data with a 

spatial resolution of 5.2 m × 7.6 m (slant range × azimuth) starting from 8th of November 2011. With a 

repeat cycle of 24 days, a time series of ten fully polarimetric RADARSAT-2 C-band data at 33.2° 

incidence enabled an investigation of the complete winter period 2011/2012 from snow accumulation to 

snow melt. The RADARSAT-2 C-band data are complemented with in situ ground measurements of 

snow water equivalent (SWE), snow depth, soil moisture, soil and air temperature for analysis  

and validation [19]. 

3. Methodology of Identifying Soil Freezing and Thawing States 

The identification of freezing and thawing soil states implies the knowledge of the change in soil 

moisture and dielectric constant, which can be tracked by polarimetric SAR [20]. For the change in soil 

dielectric constant, the phase transition from liquid to frozen water (and back) has to be modeled in order 

to understand its effect on the polarimetric observables. 

3.1. Impact of Phase Transitions on the Dielectric Constant of Soils  

For studying the impact of phase transitions on the dielectric constant of soils the well-known 

semi-empirical dielectric mixing model of Dobson was extended by Zhang et al. to include freezing 

conditions (T < 0 °C) [21,22]. New terms mvi and mvu are introduced in [22] to account for the ice and 

unfrozen moisture contribution to the soil dielectric constant. For the range of 1.4 to 18 GHz, 
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the dielectric mixing model for the real ε'mf and imaginary part ε"mf of the relative complex dielectric 

constant εmf are derived from [21–23] including also negative soil temperatures: 

   
'

1/

' '1 1b
mf s vu fw vu vi i

s

m m m




  

   


  
        

  

 (1) 

'''' / ''

mf vu fwm  

 

(2) 

where ρb is the bulk density, ρs is the soil density, α and β are empirical coefficients defined in [21,22]. 

The dielectric constant of ice εi is set to 3.15. The dielectric constant of soil solids εs is set to 4.7 and εfw is 

the dielectric constant of free water. mvu is the unfrozen volumetric moisture content and mvi is the 

volumetric ice content. The real and imaginary parts of the dielectric constant of free water εfw in 

Equations (1) and (2) are defined in [23]. mvu and mvi are given by [22]: 

273.2
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with A and B being empirical soil texture parameters (see Table 1) and T is the absolute soil temperature 

in Kelvin steering the amount of liquid to frozen water in the soil. For the specific density of water ρw a 

value of 1.0 g/cm
3
 and for the specific density of ice ρi a value of 0.9175 g/cm

3
 are assumed. 

Figure 3 displays modeled phase transitions for different soils from silty clay to sandy loam as well as 

for different frequencies from C- to Ku-band. As soon as the soil temperature falls below zero degree 

Celsius, a distinct drop of ε'mf occurs for all soil types and all frequencies, which keeps the dielectric level 

close to the lower physical limit for all freezing states. Hence, this sharp decrease is expected to have an 

effect on the polarimetric observables to distinguish freezing and thawing states of the soil. 
 

Figure 3. Modeling of soil phase transition (freezing-thawing) with the 

Dobson/Zhang-dielectric mixing model as function of soil temperature steering the amount 

of liquid to frozen water in the soil; (a): ε'mf for different soil types at C-band (5 GHz); 

(b): ε'mf of different frequencies from C- (5 GHz), X- (10.6 GHz) to Ku- (23.8 GHz) band for 

soil of sandy loam. 

  

(a) (b) 
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Table 1. Empirically derived soil texture parameters for the dielectric mixing model of [22]. 

Soil Type Sand (%) Silt (%) Clay (%) ρb ρs A B 

Silty clay 6.83 45.76 47.41 1.62 2.60 11.3301 0.6166 

Silt loam 28.58 51.46 19.96 1.58 2.58 5.2752 0.5675 

Sandy loam 50.73 39.61 9.66 1.59 2.63 2.6945 0.6104 

3.2. Polarimetric Eigen-Based Decomposition 

In order to investigate and reveal the freezing or thawing state of the soil a polarimetric eigen-based 

decomposition of the fully polarimetric SAR data is performed. Therefore the coherency matrix [T]  

of the fully polarimetric RADARSAT-2 data is formed with an averaging of 9 × 9 pixels resulting  

in 81 looks and is decomposed afterwards as follows [24,25]: 

  * * *

1 1 1 2 2 2 3 3 3

T T TT e e e e e e              (5) 

where λi are the positive, real-valued eigenvalues and ei the corresponding, complex-valued, normalized 

eigenvectors. T* denotes the transpose conjugate.  

The mean polarimetric scattering alpha angle α is derived from the normalized eigenvectors of 

Equation (5), indicating an intrinsic scattering type ranging from surface scattering (α = 0) to volume 

scattering (α = π/4) until dihedral scattering (α = π/2) and is calculated as follows [24,25]: 

 
(6) 

Therefore α relates directly to the dominant physical scattering mechanism of the scatterers in the 

resolution cell, which is visualized in Figure 4. 

Figure 4. Physical meaning of the dominating intrinsic scattering mechanism expressed by 

the mean alpha scattering angle (ranging from surface scattering α = 0 to dihedral scattering 

α = π/2). 

 

In order to evaluate the statistical disorder and thereby the diversity of scattering mechanisms 

occurring in the resolution cell, the scattering entropy H is investigated [24,25]. 

 
(7) 

where Pi is a pseudo-probability and n equals three (for the monostatic RADARSAT-2 system). 
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The entropy H indicates the depolarization of the acquired microwave signal. An entropy close to 

zero indicates one (almost deterministic) non-depolarizing scattering process, while an entropy near one 

represents fully depolarizing, random scattering with several scattering mechanisms involved. 

During freezing of the soil, the dielectric constant of the soil decreases distinctively (see Figure 3). 

Hence, the polarimetric entropy and the mean scattering alpha angle should tend to lower values 

indicating a less complex, surface-like scattering due to the low dielectric contrast in all scattering 

components of the resolution cell.  

In contrast, soil thawing will increase the dielectric contrast among the scattering component in the 

resolution cell, and increase the polarimetric entropy and the mean scattering alpha angle to more 

complex scattering scenarios of multiple scattering mechanisms. These behaviors will be modelled in a 

first attempt by the surface scattering model in Section 3.3. 

In order to understand the different scattering mechanisms in more detail, Cloude and Pottier 

developed the following segmentation scheme of the so-called entropy-alpha plane for L-band  

(see Figure 5) [26,27], which is applied to C-band RADARSAT-2 data in Section 4. It is expected that 

surface scattering located in the lower left corner for L-band in Figure 5 will shift to higher entropy 

values located in the ‘random surface’ segment for C-band. 

Figure 5. Scattering plane of polarimetric entropy and mean scattering alpha angle with the 

segmentation scheme of Cloude and Pottier indicating different scattering types (originally 

developed for L-band) [26,27]. 

 

3.3. Modeling of Soil Surface Scattering from Frozen and Thawed Soils 

In order to simulate the surface scattering from freezing and thawing soils, the distinct  

drop/rise in dielectric constant, when the soil freezes/thaws is included in a first modeling attempt with 

the extended Bragg (X-Bragg) model. This surface scattering model for bare soils was developed in [28] 

and accounts for changes in soil moisture/dielectric constant ε’mf and in soil roughness by a 

depolarization angle δ [20]: 
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(8) 

This scattering model [TXB] for rough surfaces consists of a surface scattering intensity fS and a 

surface scattering mechanism β. Both components are modeled by means of the Bragg scattering 

coefficients (RH, RV), which are function of ε'mf and the local incidence angle θ [20]: 

,  
(9) 

Hence, this surface scattering model can be driven in a forward sense for a range of reasonable soil 

moisture (as function of ε'mf from 2 to 41) and soil roughness values (as function of δ from 0° to 90°). 

Afterwards, the polarimetric eigen-based decomposition can be applied to the modelled [TXB] and  

the resulting polarimetric entropy and mean scattering alpha angles of the surface scattering can be 

analyzed and compared with the data-derived counterparts of the two polarimetric parameters. It is 

important to note that the modelled surface scattering does not include any contribution from a possible 

vegetation cover. 

4. Results for Identification of Different Soil States 

On each of the ten fine quad-polarimetric RADARSAT-2 scenes the polarimetric, eigen-based 

decomposition was applied for the entire winter period from beginning of November 2011 until middle 

of June 2012. The scattering entropy H and mean scattering alpha angle α have been calculated and are 

shown in Figure 6. The red bars indicate the transition periods for the soil towards freezing in the 

beginning of the winter (end of November/beginning of December 2011) and towards thawing in the end 

of the winter (April 2012).  

Concurrently, a decreasing trend of the eigen-based decomposition parameters during soil phase 

transition towards freezing (H→0.4–0.7, α→15°–30°) and an increasing trend for transition towards 

thawing (H→0.7–1.0, α→30°–50°) is apparent. The white circle in Figure 6 indicates the Sodankylä test 

site with similar dynamics. 

In order to investigate the sensitivity of C-band to state transitions of the soil on the local scale,  

Figure 7 reveals the trends of the respective eigen-based parameters for all investigated measurement 

locations within the test site taking an area of 11 × 11 pixels around each measurement location for 

analysis. Also the soil moisture measurements at 2 cm depth from two continuously recording moisture 

sensors of the IOA (at location A and B) are displayed as in situ reference. Congruent dynamics and 

trends, compared to Figure 6, are recognizable for the single locations including areas of different land 

use (bog, peat, boreal forest). Hence, the comparison of the eigen-based parameters with soil moisture  

in situ measurements in Figure 8 and with the soil and air temperature in Figure 2 state the connection to 

the soil freezing and thawing states rather clearly. However, the spatial variation of the polarimetric 

entropy and mean scattering alpha values at a given date (under either frozen or unfrozen conditions) 

also exhibit a distinct variation, which can be attributed to the spatially heterogeneous land cover and 
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most probably also to soil types. Unfortunately, only land use information and no detailed soil map or 

soil profiles are available for the test site area. 

Figure 6. Polarimetric scattering entropy and mean scattering alpha angle for the 

RADARSAT-2 time series at C-band covering the entire winter period 2011/2012; White 

circle indicates the Sodankylä test site; The red bars indicate the beginning and the end of the 

soil frost period with always one scene in the phase transition period of the soil [18]. 
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Figure 7. Analysis of polarimetric entropy and mean scattering alpha angle for different 

measurement locations (colors of curves) compared with soil moisture measurements at  

2 cm depth from two continuously recording moisture sensors at location A and B within the 

IOA (bottom plot); Red vertical bars indicate the soil frost period.  

 

Figure 8. 2D-Histograms of polarimetric entropy vs. mean scattering alpha angle from the 

peatland measurement site (see Figure 1 for localization) covering the entire winter period 

2011/2012; Red bars indicate the phase transitions of the soil; The color inside the plots 

indicate the number of counts from low (gray-blue) to high (orange-red). 
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Focusing further on the peatland measurement site assuring no forest or distinct vegetation 

disturbance Figure 8 presents two dimensional (2D)-histograms of the polarimetric entropy and the 

mean scattering alpha angle for the entire time span covering the winter period 2011/2012 (see Figure 5 for 

introduction of physical meaning of the 2D-histogram). The majority of H-α value couples indicated by 

the red zone (high counts within the 2D-histogram) confirm the observed dynamics again. The 

polarimetric entropy and mean scattering alpha values decrease significantly with the occurrence of soil 

freezing and rise again as soon as thawing conditions occur in the end of the winter in Sodankylä. 

Moreover the absolute difference of polarimetric entropy (delta entropy) and of mean scattering alpha 

(delta mean alpha angle) values of the entire RADARSAT-2 scene and the peatland measurement site 

(see Figure 1 for measurement point) are depicted as three combinations of frozen and unfrozen soil 

states in Figure 9: 

1. ΔH/Δα-Case: Comparison of frozen state (19.1.2012) with frozen state (12.2.2012); Absolute 

differences are small and mainly centered around zero. 

2. ΔH/Δα-Case: Comparison of frozen state (12.2.2012) with unfrozen state (18.5.2012); Absolute 

differences are large and centered around 0.2/15° for ΔH/Δα. 

3. ΔH/Δα-Case: Comparison of unfrozen state (18.5.2012) with unfrozen state (11.6.2012); 

Absolute differences are small and mainly centered around zero. 

Figure 9. Comparison between the absolute difference of polarimetric entropy (delta entropy) 

and of mean scattering alpha (delta mean alpha angle) values of the entire RADARSAT-2 

scene (a,b,c) and the peatland measurement site (d,e,f) for two soil states; (a,d): Frozen state 

(19.1.)–frozen state (12.2.); (b,e): Frozen state (12.2.)–unfrozen state (18.5.); (c,f): Unfrozen 

state (18.5.)–Unfrozen state (11.6.); The color inside the plots indicate the number of counts 

from low (gray-blue) to high (orange-red). 

 

(a) (b) (c) 

(d) (e) (f) 
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In addition, the analysis with the scattering mechanism classification for these H-α planes (dashed 

lines in Figures 8 and 10), proposed in [26] for L-band and shown in Figure 5, suggests a transition from 

volume-like scattering to surface-like scattering, when the soil freezes, and back under thawing 

conditions in April 2012. This confirms the model predictions in the methodology section. But as we are 

dealing with C-band data, this classification (developed originally for L-band wavelength) should give a 

first indication of possible physical scattering mechanisms and is still under investigation. 

Figure 10. Comparison between data-derived RADARSAT-2 at the peatland measurement 

site and model-derived X-Bragg polarimetric entropy and mean scattering alpha values; The 

color in the data plots indicate the number of counts from low (gray-blue) to high (orange-red); 

Red arrows indicate major dynamics of data and modeled values (only soil scattering).  

 

In order to turn to a more quantitative analysis the Extended Bragg scattering model of Equation (8) 

was taken and fed with two different real parts of the dielectric constant simulating freezing (ε'mf = 2) and 

thawing (ε'mf = 13) upper soil conditions according to the Dobson/Zhang model output in Figure 3. In 

addition the soil roughness, represented by the depolarization angle δ, was varied over the whole range 

of physically possible roughness states from smooth (δ = 0°) until very rough (δ = 90°). Afterwards the 

polarimetric entropy and mean scattering alpha angle values were calculated for all simulated states. 

Figure 10 reports the results of the X-Bragg-modeled and the SAR-derived dynamics of polarimetric 

entropy and mean scattering alpha angles. Hence, the trend of the shift for both eigen-based parameters 

(H, α) is the same and links the changes in soil state with the behavior of the respective polarimetric 

parameters. However, a direct inversion of the dielectric content of frozen/unfrozen soils cannot be 

established for the RADARSAT-2 C-band data, as the applied surface scattering model was initially 

developed for longer wavelengths and only reproduces the general trends. In addition, the scattering 

scenario is here modeled in a first attempt neglecting any contributions from the vegetation cover, which 

is most likely causing the higher entropy-regime in the SAR data-derived values. Hence, a further step 

will be the inclusion of a bog-like vegetation disturbance in the modeling of the scattering scenario in 

order to better represent the observed scattering mechanisms. This could be realized by a polarimetric 

particle scattering model representing the main plant constituents of the bog vegetation cover as 

introduced in [25] and investigated in detail for agricultural vegetation in [27]. 
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5. Summary 

A time series consisting of ten fine quad-polarimetric RADARSAT-2 scenes over the Sodankylä test 

site in Northern Finland were analyzed for sensitivity to soil freezing and thawing states using SAR 

polarimetry. The comparison of in situ measurements of the FMI-ARC for soil moisture as well as soil 

temperature with the polarimetric entropy and mean scattering alpha angle from an eigen-based 

decomposition revealed a strong relation between the drop (H→0.4–0.7, α→15°–30) of the polarimetric 

parameters with soil freezing (frozen state) and the rise (H→0.7–1.0, α→30°–50°) of the latter, when the 

soil thaws again (unfrozen state). Modeling of the observed eigen-based dynamics with the polarimetric 

surface scattering model X-Bragg and the dielectric mixing model of Dobson/Zhang for the change in 

soil dielectric constant resulted in similar trends compared to the shift observed for the SAR-based 

counter parts. However, these first modeling attempts just consider a basic scattering scenario and need 

to be extended to a more sophisticated case in future investigations. 

6. Conclusions 

The presented results in Section 4 state that C-band exhibits sensitivity to soil freezing/thawing states, 

even under distinct dry snow cover (up to 100 cm), which can be traced by a fully polarimetric, time 

series analysis using an eigen-based decomposition technique. The different soil states can be clearly 

detected and also the transition phase can be identified to a first extend (in terms of weeks), as the soil 

freezing and thawing states directly affect the dynamics of the polarimetric entropy and mean scattering 

alpha angle.  

However, for a precise detection of the beginning and the end of the transition phase (in terms of 

days), longer time series including several freezing thawing cycles are needed to obtain a broader basis 

set for a robust statistical analysis of appropriate thresholds. This indicates the need of a short  

SAR temporal coverage to conveniently identify the start and the length of the transition phase. 

Fortunately, this will be met by the installation of the RADARSAT constellation to further improve the 

temporal coverage. 

In addition, first modeling attempts using the Extended Bragg soil scattering model justify the 

observed trends, which indicate surface-like scattering during frozen soil conditions and multiple/volume 

scattering for thawed soils. However, a direct inversion of the dielectric constant from frozen/thawed 

soil is not yet possible, as adaptions/extensions of the soil scattering model are necessary. If this can be 

established, it should be possible to polarimetrically decompose different scattering components coming 

from the soil and the vegetation as well as directly track the soil dielectric constant for phase transitions 

and soil states. Hence, these first investigations at C-band foster motivation to work towards a robust 

polarimetric detection of soil freezing and thawing states as well as their transition phase. 
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