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Abstract—Pain sensation is essential for survival, since it draws attention to physical threat to the body. Pain assessment is usually
done through self-reports. However, self-assessment of pain is not available in the case of noncommunicative patients, and therefore,
observer reports should be relied upon. Observer reports of pain could be prone to errors due to subjective biases of observers.
Moreover, continuous monitoring by humans is impractical. Therefore, automatic pain detection technology could be deployed to assist
human caregivers and complement their service, thereby improving the quality of pain management, especially for noncommunicative
patients. Facial expressions are a reliable indicator of pain, and are used in all observer-based pain assessment tools. Following the
advancements in automatic facial expression analysis, computer vision researchers have tried to use this technology for developing
approaches for automatically detecting pain from facial expressions. This paper surveys the literature published in this field over the
past decade, categorizes it, and identifies future research directions. The survey covers the pain datasets used in the reviewed
literature, the learning tasks targeted by the approaches, the features extracted from images and image sequences to represent
pain-related information, and finally, the machine learning methods used.

Index Terms—automatic pain detection, facial expressions of pain, pain datasets, pain feature representation, facial expression
analysis, machine learning, survey.
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1 INTRODUCTION

The International Association for the Study of Pain
(IASP) [1, p. 209] defines pain as “an unpleasant sensory
and emotional experience associated with actual or potential
tissue damage, or described in terms of such damage.”
Pain has the function of increasing attention, and initial-
izing and maintaining mechanisms such as self-protection,
recovery, and healing [2]. Without pain, human life would
be significantly shorter [3]. The expression of pain triggers
social reactions such as empathy, care, and nursing [2].
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However, untreated pain is known to be a major contributor
to reduced quality of life [4], to a progressive decline of func-
tional and mental capacity [5], loss of appetite [6], reduced
sleep [7], and behavioral disturbances including agitation,
depression, and anxiety [8]. Therefore, timely detection and
adequate treatment of pain is important.

Reliable assessment of pain is necessary for determining
appropriate analgesics (pain-relieving medication) and their
dosage. Self-reports or observational scales are used to as-
sess pain. Self-reporting methods include rating scales (e.g.,
Visual Analogue Scale for Pain (VAS) [9], Numeric Rating
Scale (NRS) [10]), pain diaries [11], or verbal descriptions
(e.g., [12]). Patients who are noncommunicative due to a
critical illness, narcotic medication, cognitive impairment,
or infancy, cannot use self-reporting methods to communi-
cate the pain they are experiencing. Therefore, assessment
by other people, especially caregivers and nursing staff,
is necessary. For this, different observational pain scales
such as Behavioral Pain Scale (BPS) [13], Pain Assessment
in Advanced Dementia (PAINAD) [14], or Neonatal Infant
Pain Scale (NIPS) [15], are used in clinical settings. Facial
expressions, body movements, and vocalizations are part of
such observational pain scales. In research settings, other
assessment tools are also used to study these observable
dimensions of pain expression in greater detail. For exam-
ple, the Prkachin-Solomon-Pain-Intensity (PSPI) scale [16]
is used quite frequently by human coders (cf. [17]) as well
as by computer scientists (cf. [18]) to annotate intensities of
facial expressions of pain.

Pain assessment through observation is very challeng-
ing, and is affected by the subjective biases and errors
in beliefs of the observer [19]. Studies such as [20] and
[21] have found that pain is underestimated by nursing
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staff. In addition, it is not possible for human caregivers to
continuously monitor a patient. All these factors lead to in-
appropriate pain management. Undertreatment of pain can
be life-threatening for critically-ill patients [22]. Therefore,
technical solutions to support caregivers and nursing staff
to ensure continuous pain monitoring could promote better
pain management. Automatic recognition of pain would
enable individualised, patient-centered care, and help care-
givers to provide timely and appropriate care to the pain
felt by patients. By adding diagnostic decision explanation
capabilities to such technical solutions (e.g. [23]), they could
be used to train caregivers, medical practitioners, and nurs-
ing staff to improve their ability to correctly assess pain.

Facial expression is one of the valid indicators of pain
[24] [25], and it appears in the observational scales for pain
assessment. The advancements in the field of automatic
facial image analysis inspired computer vision researchers
to apply these techniques to detect pain from facial ex-
pressions. In [26], we discuss the challenges and present
an interdisciplinary roadmap for developing a practically
useful facial video-based pain detection system.

Apart from facial expressions, attempts have been made
to use other modalities either individually or in combination
for automatic pain detection. For example, Aung et al. [27]
examined the use of body posture, body motion, and muscle
activity for detecting patterns in body movements that could
be indicative of pain during physical exercise; Tsai et al. [28]
combined facial expressions and acoustic features to detect
pain intensities in emergency cases; Werner et al. [29] inves-
tigated the use of facial expressions, electromyogram (EMG)
recorded from trapezius muscles, and autonomic signals
such as skin conductance and electrocardiogram (ECG) to
automatically detect the different heat pain stimulus levels.
Attempts have also been made to investigate the use of
brain activation–acquired via either electroencephalography
(EEG) [30] [31] or functional imaging [32]–for automatic
pain assessment. However, brain activation based methods
are often limited to experimental pain conditions, are very
expensive (especially functional imaging), and require long
and careful preparations (especially for EEG). Additionally,
the amount of explained variance is often quite low [30].

The recording of brain activation or other physiological
signals such as EMG, ECG, and skin conductance mostly
requires sensors that are in contact with the body/skin1,
and this could become an additional cause of distress. In
contrast, facial expressions of pain can be recorded in a
contactless and nonintrusive manner. Facial expressions do
not differ fundamentally between clinical and experimental
pain [35]. The coding of facial expressions is well defined
within the Facial Action Coding System (FACS) [36]. A
similar, standard or widely used coding framework is not
yet available for other modalities such as body move-
ments2. Given the prominence of facial expressions in the
assessment of pain across different age groups and health
conditions (cf. [35], [15], [13], [14]), this survey focuses on
automatic detection of pain from facial expressions.

1. Video-based, contactless measurement of physiological signals (cf.
[33], [34]) could offer a promising alternative in the future.

2. Some efforts have been made to develop a coding system for body
movements, posture, and muscle activity (cf. [37], [38], [27]).

Fig. 1. General steps involved in developing an automatic pain detection
system based on facial expressions. The boxes marked in gray highlight
the elements that are covered in detail in this survey.

In this survey, we aim to review, consolidate, and struc-
ture the extensive work that has been done over the last
decade to automatically detect pain from facial expressions,
to identify the challenges, and define future research di-
rections. In this work, the term “detection” is used more
generally to cover both the detection of presence of pain and
estimation of its intensity. This paper first surveys the pain
datasets and then the automatic pain detection approaches.
The general steps involved in automatic detection of pain
from facial expression images or videos are shown in Fig-
ure 1. In this survey, we focus on the key elements that have
close semantic relevance to pain, namely the learning task,
representation (i.e. extracted features), and learning method. A
survey of the methods used for input preprocessing and fea-
ture postprocessing (e.g. feature selection for dimensionality
reduction) is not included. Due to the heterogeneity in the
datasets, performance metrics, crossvalidation schemes, and
training-validation-test splits used for performance evalua-
tion, the results reported in the reviewed literature cannot
be compared with each other. Therefore, a summary of the
performance of the approaches is excluded from this survey.

The rest of the paper is organized as follows: Section 2
describes the methodology followed to collect and review
the literature; Section 3 summarizes the findings from psy-
chological studies on facial expressions associated with
pain; Section 4 presents the results of the survey of datasets
containing facial expressions of pain that have been used
in the reviewed literature; Section 5 presents the results of
the survey of automatic pain detection approaches based on
facial expressions, with a special focus on the learning tasks,
extracted features, and machine learning methods used;
Section 6 discusses the open challenges and identifies fu-
ture research directions necessary to address the challenges;
Section 7 concludes the paper.

2 REVIEW METHODOLOGY

Peer-reviewed papers were collected mainly by searching
online digital libraries such as IEEE Xplore3, ACM4, and
ScienceDirect5. Additionally, publication lists on the web-
pages of research groups known to be working on automatic
pain/facial expression analysis were examined. Research
projects related to automatic pain detection also served as
a source for finding relevant papers. The Google Scholar
search engine6 was also used to search for relevant papers.

3. https://ieeexplore.ieee.org
4. https://www.acm.org
5. https://www.sciencedirect.com
6. https://scholar.google.de
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The search keywords used included: ’automatic pain recog-
nition’, ’facial expressions of pain’, ’automatic pain detec-
tion’, and ’pain intensity estimation’. Only papers that used
video or image-based facial expression information were
considered7. In cases where the facial expression modality
was combined with other modalities, only the processing of
the facial expression modality was studied in detail.

The papers that were collected for review8 appeared dur-
ing the period from 2006 to 2018. The field of automatic pain
detection from facial expressions started receiving attention
since 2006, closely following the success of face detection
[39] and automatic facial image analysis [40] [41]. Since 2015,
the focus is shifting towards the use of deep learning meth-
ods for automatic pain detection. This has been prompted
by the recent success of Convolutional Neural Networks
(CNN) in image classification tasks [42] [43] in general, and
in face analysis tasks [44] in specific.

The following items were focused on during the litera-
ture review:

• Objective of the paper (learning task);
• Dataset(s) used, along with the pain induction

method, the demographics and health condition of
participants, the size of the material, and the pro-
vided annotations;

• Visual input type (single images or image se-
quences);

• Feature representations extracted directly or indi-
rectly from the visual input;

• Learning strategies (supervised, semi-supervised,
weakly supervised, or unsupervised), and learning
methods used.

3 FACIAL EXPRESSIONS OF PAIN

Facial expression during the experience of pain is not unspe-
cific grimacing, but conveys pain specific information. Stud-
ies investigating facial expressions of pain have most often
used FACS [36], the gold-standard for facial expression re-
search. FACS is a fine-grained, objective, and anatomically-
based coding system that differentiates between 44 facial
movements known as Action Units (AU). Coders are trained
to apply specific operational criteria to determine the onset
and offset as well as the intensity of the AUs. Using FACS,
it was shown that facial expressions of pain are composed
of a small subset of facial activities, namely lowering the
brows (AU4), cheek raise/lid tightening (AUs 6 7), nose
wrinkling/raising the upper lip (AUs 9 10), opening the
mouth (AUs 25 26 27), and eye closure longer than 0.5s
(AU 43) [35] [45] [16]. These facial activities are displayed
during the experience of experimental pain as well as in
clinical pain conditions, and seem to be largely inborn [46]
[2]. Nevertheless, this does not mean that there is only one
uniform facial expression of pain that can be observed at
all times and in each individual [47]. Rather, individuals
often display only parts of this subset or combine this
subset of facial activities differently. Using cluster analyses,
it was shown that facial expressions of pain can indeed be
clustered into four distinct facial activity patterns of pain

7. The use of facial EMG information is not reviewed in this survey.
8. We have included all relevant papers, to the best of our knowledge.

[48]. Besides a stoic expression, the most stable patterns are:
“narrowed eyes” combined with either (I) “raising the upper
lip/nose wrinkling” and “furrowed brows”; (II) “furrowed
brows” or (III) “opening of the mouth”. The fourth cluster
“raised eyebrows” was less stable and less frequent, and in a
recent review article [35] on facial expressions of pain, it was
found that this type of response occurs more frequently in
response to experimentally induced pain and could reflect
a kind of novelty/surprise response. These different facial
activity patterns seem to represent behavioral synonyms for
the internal state “pain”. Training individuals to recognize
these distinct facial activity patterns of pain was shown to
improve recognition of pain significantly compared to only
focusing on one prototypical expression of pain [49]. Thus,
embracing the idea of some variability in facial expressions
of pain holds the potential to improve the communication
of pain.

4 DATASETS OF FACIAL EXPRESSIONS OF PAIN

Data forms the basis for developing machine learning mod-
els for automatic pain detection. Tables 1 and 2 summarize
the datasets that were used in the reviewed literature. The
methods used to induce pain, the demographics of the
participants, the available annotations, and the size of the
available video or image material, were examined closely.

Most of the works on automatic pain detection used one
or more of the publicly available datasets listed in Table 1.
In the remaining works, the researchers collected their own
pain datasets. These are listed in Table 2. The availability of
these datasets for research purposes is not clearly known. It
can be noted from both these tables that the datasets contain
the visual material for facial expressions of pain in the form
of either single images (e.g. [50], [51]), videos (e.g. [52], [53]),
or sequence of images extracted from videos or video clips
(e.g. [18], [54]). The UNBC McMaster Shoulder Pain Archive
Database [18] is the most widely used publicly available
dataset for automatic pain detection from facial expressions.
The BioVid9 Heat Pain Database [52] is yet another large
publicly available database consisting of facial expressions
and physiological signals recorded during administration of
painful heat stimuli. The Infant COPE dataset [50] [55] is a
relatively small dataset containing images of facial expres-
sions of neonates experiencing pain during heel lancing.

It is clear from Tables 1 and 2 that a variety of pain
inducing methods have been used for creating pain datasets
by different researchers. Under laboratory settings, acute
pain was usually induced using cold stimuli (cf. [56]), heat
stimuli (cf. [52], [57]), or mechanical pressure (cf. [53]). In
datasets where participants were already suffering from
pain, physical movements (cf. [18], [27]), activities of daily
living (cf. [58]), or manual pressure (cf. [59], [60]) were used
to induce acute pain.

It can also be seen from Tables 1 and 2 that different
annotation methods were used in the different datasets
for describing the facial expressions and the experienced
pain or emotion. In general, self-reports, observer reports,
stimulus type, stimulus level, or AU based scores were used
to annotate pain. Annotations were done either at frame level,

9. http://www.iikt.ovgu.de/BioVid.print
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sequence level, or segment level. Sequence-level annotation
refers to annotation given to the entire video. Segment-
level annotation refers to annotation of a chosen snippet
or session within the video. It is noted that self-reports
were provided at sequence or segment level. AU-based
annotation of facial expressions was provided at frame
level or segment level. Some datasets provided multiple
forms of annotations. For example, the UNBC McMaster
Shoulder Pain Archive Database [18] provides frame-level
AU annotations as well as sequence-level self and observer
reports.

Pain management is challenging, especially in non-
communicative subjects [61] [62]. The ageing population
[63] and forecasts of increasing incidence of dementia in
the coming years [64], raise the need for investigating pain
in older adults, and developing and testing automatic pain
detection systems specifically for the older old. Facial ex-
pression analysis systems that are developed for a young
age-group would not generalise well to older age-groups
[65]. However, very few datasets [53] [66] have included
participants above 67 years of age.

Based on the analysis of the existing datasets and inter-
disciplinary consultations between psychologists and com-
puter scientists, the following recommendations are made:

• We need datasets covering a larger age-range, includ-
ing also the oldest old.

• Since pain is often confused with negative emotions
[67], we need more datasets with genuine pain and
emotions as control condition in order to develop
reliable pain detection systems.

• Since pain is experienced not only during rest, more
datasets that are ecologically more valid are needed.
That is, participants should also be filmed while in
motion and not only while sitting or lying down.

• In order to provide a good comparison between
manual and automatic pain detection, the datasets
should always provide manual FACS codes as well
as self-report or observer-report (especially in cases
where self-report is not possible).

• For the development, validation, and benchmarking
of different automatic pain detection approaches, it
is important to have annotations at a granularity
finer than the sequence level, along with a precise
temporal alignment of these annotations with the
video.

5 AUTOMATIC PAIN DETECTION

This section summarizes the results of the survey of au-
tomatic pain detection approaches based on facial expres-
sions. It is organized into three subsections. Subsection 5.1
provides an overview of the approaches by categorizing
them based on the learning task. Subsection 5.2 consolidates
the features used for learning, and Subsection 5.3 lists and
categorizes the different machine learning strategies and
methods used.

5.1 Overview of Approaches
We categorize the approaches adopted by the research com-
munity for automatic pain recognition from facial expres-
sions into one-step and two-step approaches. The one-step

approaches predict pain or pain intensity based on geo-
metric, textural and/or temporal features extracted directly
from the input image or image sequence. The two-step
approaches use or require an intermediate learning stage
for describing the facial expression in terms of AUs or AU
intensities. While the one-step approaches correspond to the
classical way of learning the target from the input features,
the two-step approaches are motivated by the way in which
human observers detect and code pain [74]–on the basis of
specific facial expression elements (cf. [13]).

Table 3 summarizes the approaches used in the liter-
ature reviewed in this paper. As can be seen, (i) most
works employed a one-step approach; (ii) the predominant
learning task was the detection of presence or absence of
pain in single images; (iii) other learning tasks include
distinguishing pain from other emotions or states, detecting
discrete pain intensity levels, estimating continuous-valued
pain intensities, distinguishing genuine pain from posed
expression of pain, and detecting/localizing pain events in
image sequences; (iv) very few works have so far investi-
gated the task of distinguishing pain from other emotions.

It can also be seen that many of the approaches were
developed for single images, and did not consider temporal
information about pain. In Table 3, temporal information is
considered to be included when the temporal dimension is
considered for feature extraction (cf. [75]) or when dynamic
models, for example the latent-dynamic conditional random
field method in [76], are used for learning. Temporal infor-
mation is also considered to be included when frame-level
features are aggregated–for example, the statistical features
in [59]–or when sequence-level events are considered for the
corresponding learning task(s)–for example, the sequence-
level AU events in [77] and [78].

5.2 Feature Extraction

Features are extracted from facial images and image se-
quences to describe the facial shape and appearance, or
their changes, that are caused by facial expressions. The
terminology used in [132] for categorizing feature represen-
tations for facial affect analysis has been generally adopted
in this survey. Tables 4 and 5 summarize the features that
have been extracted directly from single images or image
sequences for automatic detection of pain in the reviewed
literature10. These features are mainly categorised into spa-
tial and spatiotemporal features. Spatial features provide a
static description of what is visible in an image: facial
shape and facial texture. Spatiotemporal features encode the
changes in facial shape and appearance that are visible over
time in a sequence of images. In one-step approaches, spatial
or spatiotemporal features were used for pain detection.
In two-step approaches, these features were used for AU
detection. It can be noted from Tables 4 and 5 that spatial
features were most widely used for pain or AU detection.
A good number of works extracted spatiotemporal features
from the visual input, and a few works (e.g. [75], [116])
used a mixture of spatial and spatiotemporal features for
the detection task.

10. References, in which the extracted features are not stated clearly,
have been excluded from Tables 4 and 5.
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TABLE 1
Summary of datasets containing facial expressions of pain that are available upon request via email to first author or through a website.

Reference Diagnostic
Status

Pain
Stimulus Demographics Sample Size Annotation

Granularity
Annotation
(Labels)

Infant COPE [50]
[55] healthy heel lancing

26 neonates (18–72
hours); 13 male, 13 fe-
male; Caucasian

204 facial images
(pain images: 60) frame-level pain, crying, heel friction, nasal air

stimulus, rest

UNBC-McMaster
Shoulder Pain
Expression
Archive
Database [18]

shoulder
pain

range of mo-
tion tests on
shoulders

129 adults; 63 male,
66 female

200 image sequences
(total frames: 48,398;
pain frames: 8369)

frame-level 12 AUs and their intensities (A–E),
66 facial landmarks, PSPI score

sequence-level

self-report via VAS, sensory scale,
affective-motivational scale;
observer report via Observer Rated
Pain Intensity (OPI)

BioVid Heat Pain
Database [52] healthy heat

Part A: 87 adults (18–
65 years); 44 male, 43
female

8700 videos
(pain videos: 6960) sequence-level baseline (no pain), 4 pain stimulus

intensity levels

Part B: 86 adults (18–
65 years); 42 male, 44
female

8600 videos
(pain videos: 6880;
partial facial occlusion
due to facial EMG elec-
trodes)

sequence-level baseline (no pain), 4 pain stimulus
intensity levels

Part C: 87 adults (18–
65 years); 44 male, 43
female

87 videos
(long version of Part A
with one video per sub-
ject)

segment-level pain stimulus

case vignette
Part D: 90 adults (18–
65 years); 45 male, 45
female

630 videos
(posed pain videos: 90) sequence-level 7 posed expressions: neutral, pain,

anger, disgust, fear, happy, sad

Hi4D-ADSIP [68] healthy none

80 adults (18–60
years); 32 male,
48 female; diverse
ethnicities

3360 3D sequences
(pain sequences: 240) sequence-level

posed pain, 6 posed emotions
(anger, disgust, surprise, fear, sad-
ness, happiness), and 7 other facial
articulations at 3 intensity levels
each: mild, normal, extreme

BP4D-
Spontaneous
[69]

healthy cold

41 adults (18–29
years); 18 male, 23
female; 20 Euro-
American, 11 Asian,
6 African-American,
4 Hispanic

328 2D and 328 3D
videos
(pain videos: 41 2D, 41
3D)

frame-level
27 AUs (max. 20 sec segments), 3D
head rotation angles, facial land-
marks (83 for 3D, 49 for 2D)

sequence-level pain, anger, startle, fear, sadness,
disgust, embarrassment, happiness

Spatial features consist of geometric or textural features.
Geometric features describe the shape of the face in terms of
point-based shape description schemes. These define point
placements on facial features such as eyes, eyebrows, cheek,
nose, lips, chin, and/or facial boundary. The locations of
these facial feature points or higher-order features such as
distances and angles between the facial feature points, are
used as geometric features. Textural features describe the
appearance of the face and facial features. Textural features
include a description of the edges of facial features, and the
wrinkles or folds that appear on or around them. Textural
features used in literature range from raw pixel intensities
to hand-crafted or self-learned features. The commonly
used hand-crafted textural feature descriptors are Gabor
filters [133], Local Binary Patterns (LBP) [134] [135], and
Histogram of Oriented Gradients (HOG) [136]. Geometric
features were rarely used alone. Textural features, either
alone or in combination with geometric features, are the
most widely used features in automatic pain detection. The
combination of geometric and textural features are denoted
in Tables 4 and 5 as hybrid features.

Spatiotemporal features describe changes in spatial fea-
tures over time, and can be categorized in a similar fash-
ion as spatial features into geometric, textural, and hy-

brid categories. In other words, spatiotemporal geometric
and textural features were used either independently or in
combination (hybrid). Geometric features extracted from a
sequence of images were summarized using mathematical
and statistical operators. Spatiotemporal textural features
such as LBP-TOP [137] and HOG-TOP [138] were extracted
from Three Orthogonal Planes (TOP), one of which covers
the temporal dimension that spans a temporally ordered
sequence of images. Yang et al. [104] compared the perfor-
mance of several spatiotemporal textural features, such as
LBP-TOP, LPQ-TOP11, BSIF-TOP12, and their combinations.

In cases where hybrid, mixed, or multiple features of the
same type were used, the fusion of features was performed
either before the learning step (cf. [75], [123]), or by fusing
the decisions of classifiers trained separately for each feature
(cf. [107], [116]). The former is commonly referred to as
“early fusion”, and the latter is commonly referred to as
“late fusion”.

In two-step approaches, pain detection is done based
on an intermediate representation of the face in terms of

11. LPQ-TOP is the spatiotemporal variant of Local Phase Quantiza-
tion (LPQ) [139]

12. BSIF-TOP is the spatiotemporal variant of Binarized Statistical
Image Features (BSIF) [140]
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TABLE 2
Summary of datasets whose availability is unknown at the time of writing this survey. The authors of the respective papers might be contacted for

potential access. Note: ‘elderly’ denotes adults aged over 65 years.

Reference Diagnostic
Status

Pain
Stimulus Demographics Sample Size Annotation

Granularity
Annotation
(Labels)

Wilkie [58] lung can-
cer

Activities of
Daily Living
(ADL)

43 adults; 27 male, 16
female; 31 Caucasian,
12 others

43 videos segment-level 9 AUs (20 sec segments)

sequence-level self-report via VAS and State-Trait
Anxiety Inventory (STAI)

Roy et al. [70] healthy none 34 adults 1088 videos
(pain videos: 136) sequence-level

pain, neutral, 6 basic emotions
(anger, sadness, happiness, dis-
gust, fear, surprise)

Kunz et al. [53] demented mechanical
pressure

42 elderly (mean: 76.7
years); 20 male, 22 fe-
male

42 videos
(pain stimulus sessions:
840)

segment-level

for each 5 sec stimulus session: 44
AUs and their intensities (A–E),
self-report of pain level via verbal
category scale

healthy
54 elderly (mean: 74.2
years); 11 male, 43 fe-
male

54 videos
(pain stimulus sessions:
1080)

Lu et al. [51] healthy heel lancing 57 neonates; 30 male,
27 female

510 images
(pain images: 160) frame-level pain, cry, calm

Hammal et al.
[71] healthy heat 20 adults

20 videos
(pain stimulus sessions:
40)

segment-level for each 5 sec stimulus session: 44
AUs and their intensities (A–E)

Kunz et al. [57] healthy heat
44 young adults (18–
30 years); 22 male, 22
female

44 videos
(pain stimulus sessions:
352)

segment-level

for each 5 sec segment after stim-
ulus reached peak: 44 AUs and
their intensities (A–E), self-report
via VAS

Littlewort et al.
[56] [72] healthy cold 26 adults; 6 male, 20

female

78 one-minute videos
(real pain videos: 26;
faked pain videos: 26)

sequence-level baseline (no pain), real pain, faked
pain

Niese et al. [54] healthy

hand
movements
with
tourniquet
attached

21 adults (20–30
years); 10 male, 11
female

21 image sequences
(total frames: 966000;
pain frames: 31500)

segment-level self-report of pain intensity via
NRS

EmoPain [27]
chronic
lower
back pain

physical ex-
ercises

22 adults (19–67
years); 7 male, 15
female; 18 Caucasian,
4 others

44 videos
(total frames: 585,487;
pain frames: 50,071)

frame-level pain, no pain

segment-level self-report of pain and anxiety on
1–10 scale

healthy

28 adults (mean age:
37.1 years); 14 male,
14 female; 26 Cau-
casian, 2 Asian

– – no pain

Irani et al. [66] healthy mechanical
pressure

12 elderly females
(66–90 years)

96 videos
(total frames: 2388;
pain frames: 1631)

sequence-level self-report of pain intensity via
NRS

Pediatric Pain
Dataset [59] [73]

after
appen-
dectomy

endogenous
and
exogenous
(manual
pressure at
surgical site)

50 youth (5–18 years);
27 male, 23 female;
35 Hispanic, 9 non-
Hispanic white, 5
Asian, 1 Native
American

300 videos
(endogenous pain: 150
exogenous pain: 150)

sequence-level self and observer reports of pain
intensity via NRS

Singh [60] back/neck/
knee pain

manual pres-
sure on af-
fected area

21 adults; 12 male, 9
female

21 image sequences
(total frames: 336) frame-level 7 AUs and their intensities

Tsai et al. [28]

emergency
cases with
pain or
headache

endogenous 117 adults 205 videos sequence-level self-report via NRS
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TABLE 3
Summary of the learning approaches that have been developed and tested for automatic pain detection from facial expressions.

Learning Task Temporal References
Information

One-Step Approaches

pain and no-pain no

Brahnam et al. [79], Monwar and Rezaei [80], Brahnam et al. [81], Lu et al. [51], Ashraf et al. [82],
Lucey et al. [83], Siebers et al. [84], Nanni et al. [85], Gholami et al. [86], Monwar and Rezaei [87],
Wei and Li-min [88], Lucey et al. [18], Lucey et al. [89], Werner et al. [90], Chen et al. [91], Khan
et al. [92], Pedersen [93], Neshov and Manolova [94], Rathee and Ganotra [95], Aung et al. [27],
Kharghanian et al. [96], Roy et al. [97], Rupenga and Vadapalli [98], Meawad et al. [99], Alphonse
and Dharma [100]

yes Werner et al. [101], Meng and Bianchi-Berthouze [102], Werner et al. [29], Kächele et al. [103], Yang
et al. [104]

pain and emotions no Niese et al. [54]

yes Hammal et al. [71], Hammal and Kunz [105]
pain and states (crying,
calm/rest) no Brahnam et al. [79], Lu et al. [51], Yuan et al. [106]

pain and distress (via heel
friction or air stimulus on
nose)

no Brahnam et al. [79]

pain intensity (continuous) no Werner et al. [90], Kaltwang et al. [107], Romera-Paredes et al. [108], Neshov and Manolova [94],
Wang et al. [109], Liu et al. [110]

yes
Kächele et al. [103], Florea et al. [111], Zhou et al. [112], Kaltwang et al. [113], Zhao et al. [114],
Rodriguez et al. [115], Egede et al. [116], Egede and Valstar [117], Lopez-Martinez et al. [118],
Tavakolian and Hadid [119]

pain intensity (discrete) no Gholami et al. [86], Lucey et al. [89], Hammal and Cohn [120], Singh [60], Rathee and Ganotra
[95], Roy et al. [97], Alphonse and Dharma [100]

yes Rudovic et al. [121], Irani et al. [122], Irani et al. [66], Werner et al. [123], Tsai et al. [28], Lopez-
Martinez et al. [118]

pain event in sequence yes with localization: Sikka et al. [124], Sikka et al. [125], Lo Presti and La Cascia [126], Lo Presti and
La Cascia [127]
without localization: Chen et al. [75]

Two-Step Approaches

pain and no-pain no Lucey et al. [83], Lucey et al. [128], Zafar and Khan [129]
yes Schmid et al. [77], Sikka et al. [59], Siebers et al. [78]

pain intensity (continuous) yes Sikka [73], Sikka et al. [59], Zhang et al. [76], Lopez-Martinez et al. [130]
pain intensity (discrete) no Zafar and Khan [129]

yes Ghasemi et al. [74]
posed and genuine pain yes Littlewort et al. [72], Littlewort et al. [56], Bartlett et al. [131]

AUs. Features used for learning pain-related targets were
therefore extracted from the AU labels or AU scores13 pro-
vided by the first step. We categorize these features that
are indirect representations of the input image or image
sequence into non-temporal and temporal features. Table 6
provides an overview of the indirect features that have been
used for automatic pain detection. Non-temporal features
refer to the AU representations for a single image or a
single timestep in an image sequence. In this case, the AU
labels or scores for the image are used as features for pain
detection (e.g. [77], [78], [83]). Temporal features refer to AU
representations for a sequence of images spanning multiple
timesteps. In this case, AU scores provided by the first
learning stage are aggregated using statistical operators (cf.
[59]) or dynamic features are extracted using temporal filters
(cf. [131]). Note that the categorization into non-temporal
and temporal features is based purely on whether the pain
detection in the second step used AU detection outputs for a
single image/timestep or for multiple timesteps. It does not

13. The term “scores” is used in this paper to broadly refer to
scores/probabilities/intensities of AUs.

take into account whether temporal information was used
in the first step for AU detection. It was noted that the two-
step approach followed by Lopez-Martinez et al. [130] used
a combination of direct and indirect features for continuous
pain intensity estimation (see Table 6).

The extracted features are often post-processed to in-
crease their discriminative power or to extract the most im-
portant information. Principal Component Analysis (PCA)
is a commonly used method to select the most important
feature dimensions and thereby transform the features into
a lower-dimensional space (cf. [76], [79], [114]). Rathee and
Ganotra [95] proposed multiview distance metric learning
to fuse LBP, HOG, and Gabor features, and to increase the
discriminative power of the new set of features. Florea et
al. [111] used a semi-supervised transfer learning method
based on spectral regression to learn the most discrimi-
native feature dimensions of the extracted Histogram of
Topological (HoT) features and to reduce the dimensionality
of the feature space. An exhaustive survey of the feature
post-processing methods is outside the scope of this paper.
The reader is advised to refer to other surveys on facial
expression analysis (e.g. [132]) to obtain an overview about
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TABLE 4
Summary of spatial representations extracted directly from facial images for automatic pain detection.

Feature Sub-Type Features References

geometric facial landmark positions Meng and Bianchi-Berthouze [102], Ghasemi et al. [74], Aung et al. [27],
Rupenga and Vadapalli [98], Liu et al. [110], Lopez-Martinez et al. [118]

facial landmark distances Romera-Paredes et al. [108], Meawad et al. [99]
facial landmark distances and angles Niese et al. [54], Siebers et al. [84]
facial landmark positions, distances, angles Zafar and Khan [129]

textural pixel intensities Brahnam et al. [79], Gholami et al. [86], Ghasemi et al. [74]

Gabor filters Littlewort et al. [72], Lu et al. [51], Yuan et al. [106], Littlewort et al. [56],
Sikka [73], Bartlett et al. [131], Sikka et al. [59], Roy et al. [97]

Discrete Cosine Transform (DCT) Brahnam et al. [81], Aung et al. [27]
Local Binary Pattern (LBP) or its variant Nanni et al. [85], Chen et al. [91], Rudovic et al. [121], Aung et al. [27]
Local Ternary Pattern (LTP) or its variant Nanni et al. [85]
histogram of quantized edge directions Monwar and Rezaei [80]
Histogram of Oriented Gradients (HOG)
around facial landmarks Chen et al. [75]

Histogram of Topological (HoT) features Florea et al. [111]
variants of Local Directional Pattern (LDP) Alphonse and Dharma [100]
Scale-Invariant Feature Transform (SIFT) Neshov and Manolova [94], Singh [60]
Speeded-Up Robust Features (SURF) Singh [60]
pyramid HOG and pyramid LBP Khan et al. [92]
supervised locality preserving projection Wei and Li-min [88]
log-normal filters Hammal and Cohn [120]
Gabor filters, HOG, and LBP Rathee and Ganotra [95]
3D binary edges Zhang et al. [76]
features learned by semi-supervised au-
toencoder Pedersen [93]

deep learned features Kharghanian et al. [96], Rodriguez et al. [115], Wang et al. [109]
hybrid (geometric +
textural)

facial landmark distances, nasal root wrin-
kles, context variable Hammal et al. [71], Hammal and Kunz [105]

facial landmark distances, histogram of
quantized edge directions Monwar and Rezaei [87]

facial landmark positions, LBP, Gabor filters Zhao et al. [114]
facial landmark distances, mean gradient
magnitude in facial regions Werner et al. [90]

facial landmark positions, DCT, LBP Kaltwang et al. [107]
facial landmark positions, pixel intensities Ashraf et al. [82], Lucey et al. [128], Lucey et al. [18], Lucey et al. [89]
facial landmark positions, DCT Lucey et al. [83]
facial landmark positions, distances, angles,
HOG Egede et al. [116]

commonly used feature post-processing or feature selection
methods.

5.3 Learning Methods

The different learning tasks examined by the existing au-
tomatic pain detection approaches were discussed in Sec-
tion 5.1 and listed in Table 3. The majority of the learning
tasks were either binary or multiclass classification tasks
such as pain versus no-pain, genuine versus posed pain,
discrete pain intensity levels, and pain versus emotions.
The other type of learning tasks were regression tasks for
estimating pain intensity as a continuous-valued function.
Table 7 lists the machine learning methods that have been
used in the reviewed literature for pain-related classifi-
cation and regression tasks. Two-step approaches involve
two learning tasks: AU detection and pain detection. AU
detection tasks include binary or multiclass classification for
detecting the presence of different AUs, and regression for

estimating intensities of different AUs. The machine learn-
ing methods used for AU detection in two-step approaches
are also listed in Table 7. Certain one-step approaches did
not use machine learning methods for pain detection. Irani
et al. [122] [66] used experimentally determined thresholds
on spatiotemporal features to determine three discrete levels
of pain. Meawad et al [99] defined a mapping between
facial landmark distances and pain-related AUs. Based on
this mapping, the PSPI scale was modified. Sequence-level
pain detection was then performed by checking whether a
predefined number of consecutive frames showed the pres-
ence of pain according to the modified PSPI scale. Certain
two-step approaches did not use machine learning methods
in the second step. Zafar and Khan [129] applied the PSPI
scale on the discrete AU intensities predicted by a set of k-
nearest neighbor classifiers. Zhang et al. [76] averaged the
probabilities of selected pain-related AUs to calculate the
pain intensity estimate.
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TABLE 5
Summary of spatiotemporal and mixed representations extracted directly from facial images for automatic pain detection.

Feature Sub-Type Features References

Spatiotemporal Features

geometric Hankel matrices based on facial landmark positions and/or dis-
tances Lo Presti and La Cascia [126]

statistical features from sequence of facial landmark distances and
quadratic polynomial coefficients of mouth shape Tsai et al. [28]

bag of words from k-means based clusters of sequence of geomet-
ric features (facial landmark distances and quadratic polynomial
coefficients of mouth shape)

Tsai et al. [28]

textural HOG from Three Orthogonal Planes (HOG-TOP) Chen et al. [75]
LBP from Three Orthogonal Planes (LBP-TOP) Kaltwang et al. [113]
combinations of LBP-TOP, LPQ-TOP, BSIF-TOP Yang et al. [104]
energy from optical flow Ghasemi et al. [74]
time-integral of histogram of oriented energies Irani et al. [122], Irani et al. [66]
Hankel matrices from time series of Haar and/or Gabor features Lo Presti and La Cascia [127]

deep learned spatiotemporal features Zhou et al. [112], Egede et al. [116], Tavakolian and
Hadid [119]

max temporal pooling on sequence of SIFT based features Sikka et al. [124], Sikka et al. [125]
hybrid (geometric +
textural)

statistical features from sequence of head pose, facial landmark
distances, mean gradient magnitudes Werner et al. [101], Werner et al. [29]

statistical and time features from sequence of head pose, facial
landmark distances, mean gradient magnitudes Werner et al. [123]

LBP-TOP, statistical features from facial distances Kächele et al. [103]

Mixed (Spatial + Spatiotemporal) Features

texture HOG around facial landmarks, HOG-TOP Chen et al. [75]
hybrid (geometric +
textural)

facial landmark positions, distances, angles, HOG, deep learned
features from image sequence Egede et al. [116], Egede and Valstar [117]

TABLE 6
Summary of indirect representations of facial images and image

sequences used in two-step automatic pain detection approaches
either alone or in combination with direct representations.

Feature Category Features References

Indirect Features

non-temporal or
single timestep AU scores

Lucey et al. [83],
Lucey et al. [128], Za-
far and Khan [129],
Zhang et al. [76]

AU labels Schmid et al. [77],
Siebers et al. [78]

temporal or multi-
ple timesteps

statistical features
from AU scores

Littlewort et al. [72],
Sikka [73], Sikka et
al. [59]

temporal filters on
AU scores

Littlewort et al. [56],
Bartlett et al. [131]

histogram of AUs Ghasemi et al. [74]

Combined (Direct + Indirect) Features

temporal or multi-
ple timesteps

statistical features
from sequence
of AU scores,
facial landmark
distances, eye gaze
coordinates, and
head pose

Lopez-Martinez et al.
[130]

Almost all classification and regression tasks were su-
pervised. Ground truth in the form of pain or AU labels,
and discrete or continuous-valued pain or AU intensities,
were used to train the machine learning models. Support

Vector Machines (SVM) and its variants such as multiple
kernel SVM and Support Vector Regressors (SVR), are the
most widely used supervised machine learning methods.
Probabilistic methods such as Relevance Vector Machines
(RVM) and different variants of conditional random fields,
have been used for supervised classification tasks. Random
forests have been used for both supervised classification
and supervised regression tasks in automatic pain detection.
Less commonly used methods for supervised learning in-
clude decision trees and classical regression methods such as
linear and logistic regression. More recently, deep learning
methods such as Convolutional Neural Networks (CNN),
Recurrent CNN, and Long Short-Term Memory (LSTM)
recurrent neural networks, are increasingly being used for
end-to-end learning of pain intensities from single images
(e.g. [109]) or image sequences (e.g. [115], [112]).

Very few works explored machine learning strategies
other than supervised learning. For example, an unsuper-
vised comparative learning method was used by Werner
et al. in [90] for estimating continuous-valued pain inten-
sity; Sikka et al. [124], [125] employed weakly supervised
learning with the help of a multiple-instance variant of
boosting algorithms for pain event localization in an image
sequence. Semi-supervised learning strategies have not yet
been explored in the context of automatic pain detection
from facial expressions.

The metrics used to quantify the performance of au-
tomatic pain detection from facial expressions depend on
the learning task. For classification tasks, metrics such as
accuracy, F1 score, and area under Receiver Operating
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TABLE 7
Summary of machine learning methods used in the automatic pain detection approaches.

Prediction Task Approach Machine Learning Method References

Supervised Methods

classification one-step Support Vector Machine (SVM)

Brahnam et al. [79], Brahnam et al. [81], Lu et al. [51], Monwar and
Rezaei [87], Lucey et al. [83], Ashraf et al. [82], Niese et al. [54], Siebers
et al. [84], Nanni et al. [85], Gholami et al. [86], Lucey et al. [18], Lucey et
al. [89], Hammal and Cohn [120], Werner et al. [90], Werner et al. [101],
Khan et al. [92], Pedersen [93], Neshov and Manolova [94], Lo Presti and
La Cascia [126], Singh [60], Chen et al. [75], Aung et al. [27], Rathee and
Ganotra [95], Kharghanian et al. [96], Roy et al. [97], Werner et al. [123],
Yang et al. [104], Rupenga and Vadapalli [98], Tsai et al. [28]

Relevance Vector Machine (RVM) Gholami et al. [86]
random forest Khan et al. [92], Werner et al. [29], Kächele et al. [103], Werner et al. [123]
multiple kernel SVM Wei and Li-Min [88], Chen et al. [75]
Neural Network (NN) Monwar and Rezaei [80]
Neural Network Simultaneous Opti-
mization Algorithm (NNSOA) Brahnam et al. [81]

extreme learning machine Rupenga and Vadapalli [98], Alphonse and Dharma [100]
decision tree Khan et al. [92]
k-nearest neighbors Siebers et al. [84], Khan et al. [92], Lo Presti and La Cascia [126]
k-nearest neighbors + hidden Markov
model Meng and Bianchi-Berthouze [102]

Adaboost or its variants Yuan et al. [106], Chen et al. [91], Lo Presti and La Cascia [127]
transferable belief model Hammal et al. [71], Hammal and Kunz [105]
heteroscedastic conditional ordinal ran-
dom field Rudovic et al. [121]

hidden conditional random field Lopez-Martinez et al. [118]
regularized multi-task learning Romera-Paredes et al. [108]

two-step SVM
step1-AU: Lucey et al. [83], Lucey et al. [128]
step2-pain: Bartlett et al. [131]
both steps: Littlewort et al. [72], Littlewort et al. [56], Ghasemi et al. [74]

logistical linear regression step2-pain: Lucey et al. [83], Lucey et al. [128]
k-nearest neighbors step1-AU: Zafar and Khan [129]
logistic regression step2-pain: Sikka et al. [59]
alignment-based learning step2-pain: Schmid et al. [77], Siebers et al. [78]
hidden conditional random field step2-pain: Ghasemi et al. [74]
latent-dynamic conditional random field step1-AU: Zhang et al. [76]

regression one-step support vector regression Florea et al. [111], Lopez-Martinez et al. [118]
ordinal support vector regression Zhao et al. [114]
relevance vector regression or its vari-
ants

Kaltwang et al. [107], Kaltwang et al. [113], Egede et al. [116], Egede and
Valstar [117]

random forest Kächele et al. [103]
linear regression Neshov and Manolova [94]
ordinal support vector regression Zhao et al. [114]
NN Lopez-Martinez et al. [118]
Convolutional Neural Network (CNN) Wang et al. [109]
3D CNN with kernels of varying tempo-
ral lengths Tavakolian and Hadid [119]

recurrent CNN Zhou et al. [112]
LSTM recurrent neural network Rodriguez et al. [115], Lopez-Martinez et al. [118]

two-step support vector regression step1-AU: Bartlett et al. [131], Sikka et al. [59]
both steps: Sikka [73]

linear regression step2-pain: Sikka et al. [59]
multi-task NN step2-pain: Lopez-Martinez et al. [130]

Weakly-Supervised Methods

classification one-step multiple instance learning-Boost Sikka et al. [124], Sikka et al. [125]
regression one-step ordinal support vector regression Zhao et al. [114]

NN + Gaussian process regression model Liu et al. [110]

Unsupervised Methods

regression one-step comparative learning Werner et al. [90]
ordinal support vector regression Zhao et al. [114]
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Characteristic (ROC) curves have been used to report the
performance. For regression tasks, correlation and mean ab-
solute error have been commonly used. Leave-one-subject-
out (LOSO) or person-independent 10-fold crossvalidation
is normally performed to evaluate the learning performance.
A detailed survey of the performance metrics and evalua-
tion strategies used is out of scope of this paper.

6 DISCUSSION

The survey of papers on automatic pain detection from
facial expressions–covered in Sections 4 and 5–shows sig-
nificant progress in the field since the first methods ap-
peared in 2006. The approaches followed two paradigms:
learning pain targets directly from input features (one-step
approaches); and learning an intermediate representation
of facial expressions in terms of AUs, based on which
pain detection was performed (two-step approaches). The
approaches performed pain detection at frame-level, or at
sequence-level. Dynamic information about facial expres-
sions of pain was considered in some of the approaches
either by extracting spatiotemporal features or by using
dynamic learning methods. Spatial and spatiotemporal in-
formation have been used for representing the shape and
appearance of facial expressions of pain, and its changes
over time, respectively. Shape information in the form of
geometric features has been rarely used alone for auto-
matic pain detection. Appearance information in the form
of texture descriptors has been used more successfully,
sometimes in combination with geometric features. A wide
variety of machine learning methods have been explored
(see Table 7) for classification as well as regression tasks.
Supervised machine learning methods dominate the field.
Classification tasks (such as distinguishing pain from non-
pain condition, other emotions or states, and detection of
discrete pain intensity levels) have received more focus than
the regression task of continuous pain intensity estimation.
The UNBC McMaster Shoulder Pain Archive Database [18]
is the most widely used dataset by researchers in this field.
Other datasets have appeared to address other diagnos-
tic conditions, to investigate other acute pain stimulation
methods, and to provide multimodal pain information (see
Section 4 and Tables 1 and 2). However, there are a number
of challenges that should be addressed in order to create
robust, real-time systems for inferring pain by analyzing
facial expressions. These challenges pertain to data as well
as approaches, and are interwined with each other. Future
research needs to address these challenges in order to
bring automatic pain detection systems closer to practical
usability. The following paragraphs highlight some of these
challenges, and propose future research directions.

One of the main challenges is the acquisition of appro-
priate training and testing data. When it comes to auto-
matic pain monitoring in infants, critically ill, elderly, or
cognitively impaired groups, data acquisition becomes even
harder. Due to the ethical challenges involved, the common
practice is to record videos of cognitively healthy indi-
viduals, mostly young adults, by experimentally inducing
acute pain and other distress states in controlled laboratory
settings. This is evident from the Tables 1 and 2, where
the diagnostic condition is mostly listed as ’healthy’, and

the demographic information show less coverage of the
older old and infants. It is known that systems trained only
on young faces do not generalise well to older faces [65]
due to the textural differences caused by skin ageing, and
the variations in facial muscle elasticity and facial motion
dynamics. In addition, systems trained only on cognitively
healthy cannot capture well the differences in pain expres-
sions and their underlying nuances that could possibly
be characteristic of persons with cognitive impairments.
Furthermore, a system trained only on facial expressions of
experimentally induced acute pain, cannot perform well in
the context of clinical acute pain. Although the facial expres-
sions of experimental pain and clinical pain are very similar,
a significant difference lies in the fact that experimental pain
induction is usually performed while a person is sitting still
(not moving), whereas clinical pain becomes more visible in
a person who is in motion (e.g. during morning care). More-
over, the temporal characteristics vary a lot between short
experimental stimulation and long lasting clinical pain. To
address the above-mentioned challenge, there is a need to
develop automatic pain detection methods that can first be
trained and tested on acute pain expression data of healthy
adults which is relatively easier to collect, and can later be
tuned with limited amout of clinical or experimental data
collected from different cohorts belonging to the vulnerable
categories.

The pain datasets have mostly been created under con-
trolled settings, and therefore, do not sufficiently cover the
variations that could occur due to environmental influences
in real application settings. For example, in an uncontrolled
monitoring situation, abrupt changes in head pose and
facial expressions could be caused by events such as a
person entering the patient’s room or an object falling down.
Moreover, head and body movements are part of daily
life activities. Another set of variations that can occur in
real-life settings is the variations in illumination conditions.
Such variations have not been systematically covered in
the existing pain datasets. In order to develop pain de-
tection approaches that are robust to such environmental
influences, there is a need for building datasets that cover
such variations in good proportions. Future research on
automatic pain detection needs to focus on developing so-
lutions that combine multiple tasks in order to identify and
isolate contextual and environmental influences. Head and
body pose detection, as well as motion tracking should be
integrated in automatic pain detection systems to improve
their robustness to sudden head and body movements that
may be unrelated to pain.

Pain can be experienced and expressed during rest as
well as during movement. However, most of the datasets
listed in Tables 1 and 2 have been gathered under the
condition that the person is sitting on a chair. In the Pediatric
Pain Dataset [59] [73], the monitored patients were lying on
a bed with raised head, and the camera was positioned such
that an almost frontal view of the face was obtained. More
pain datasets that systematically cover different mobility
modes such as sitting, standing, walking, and lying need
to be built. Future research should explore automatic pain
detection during these modes. This could require integration
of activity recognition and activity-specific pain detection
models.
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Another challenge is to obtain good quality annotations
for the collected data. Facial expressions of pain involve
high variability [48] and closely resemble facial expressions
associated with distress states [141]. Therefore, objective
coding standards like FACS need to be applied in order
to study the differences between different states. How-
ever, FACS coding is time-consuming and requires trained
coders. Self-reports and observer-reports are also used to
label pain sequences. In the case of noncommunicative
patients, self-report of pain cannot be obtained. Observer
reports may have biases or errors, especially if the observer
is not a trained expert. The reviewed literature used differ-
ent types of information as the ground truth for training
and testing the automatic pain detection approaches. For
example, Werner et al. [101] used pain stimulus level as
the segment-level ground truth; Liu et al. [110] used self-
report and observer report as the sequence-level ground
truth; Zhou et al. [112] used AU-based PSPI [16] as the
frame-level ground truth. The use of semi-supervised and
weakly supervised machine learning methods could reduce
the need for labeling of entire data at frame and sequence
levels by human experts. Instead, the experts could focus on
labeling the exemplary instances of different pain expression
patterns and on the challenging or ambiguous instances
that are present in the dataset. This would reduce the time
and costs involved in annotation of large pain datasets.
However, so far, semi-supervised methods have not been
explored for automatic pain detection, and very few weakly
supervised approaches have been reported. Future research
could focus more on semi-supervised and weakly super-
vised methods to overcome the practical challenge of anno-
tating large amounts of data.

Automatic pain detection systems based on facial expres-
sions need to be capable of adapting itself to the person-
specific facial morphology, facial texture, and pain expres-
sion. This adaption should preferably occur online, without
the need for manual intervention or cooperation from mon-
itored user. So far, offline methods have been explored for
person-specific adaption of learned pain models. Werner et
al. [101] explored person-specific models, where a separate,
customized model was developed for each subject. This
approach would require sufficiently large amount of data
from each person, and would not scale as a generic pain
detection solution that can be deployed widely. It would
be more advantageous to learn models for different cate-
gories of users. Liu et al. [110] explored the use of personal
information such as age, gender, and complexion as addi-
tional personalised features in order to take different cohort-
specific variations into consideration. Most approaches have
tried to learn generic, person-independent pain expres-
sion models, and have used LOSO or person-independent
crossvalidation methods to demonstrate the generalisation
capability of these approaches to unseen faces. In order
for these approaches to adapt well to new users, the pain
datasets should include a large number of subjects to cover
as much as possible, the identity-related variance in facial
morphology, facial texture, and facial expression of pain.
There is a need to develop validated benchmark datasets
that would enable the comparison of different automatic
pain detection approaches, especially their ability to gener-
alize or dynamically adapt to unseen faces. This benchmark

dataset could also be created by combining existing or new
datasets, after validation by psychologists. Evaluation on a
benchmark dataset should be promoted, since it is needed
to identify which approaches are most promising.

The features extracted from images and image sequences
were either simple features like facial landmark positions or
complex features like those learned by CNNs (see Tables 4
and 5). The feature representations learned by machine
learning methods are often not interpretable. In addition,
it is difficult for humans to interpret which features and
feature combinations affect the decision-making in which
way. Explainable Artificial Intelligence (AI) methods such
as Layer-wise Relevance Propagation [142] and Local Inter-
pretable Model-Agnostic Explanations (LIME) [143] could
be used to make decision-making transparent and compre-
hensible to humans [23]. Some approaches (e.g. [76]) used an
intermediate representation of facial expressions based on
FACS and used simple statistical operations to detect pain.
Such methods provide better interpretability of predictions.
Human diagnosis of pain using observational pain assess-
ment tools are based on rules. For human comprehensibility
and deployment in the area of care giving, it would be
beneficial to have a rule-based system that can explain the
decisions. Such rules might be learned with interpretable
machine learning methods such as grammar inference [78]
or inductive logic programming [144]. Experienced medical
staff can refer to explanations of the system’s decisions to
control the quality of automated decision making. Inexpe-
rienced persons can profit from explanations by gaining
deeper insight into facial cues for pain [145].

The decision boundaries/thresholds/strategies that are
learned for pain detection are sensitive to noise in observed
features. Probabilistic methods can be used to model the
observation-based and model-based uncertainties. Liu et al.
[110] used a Gaussian process model that predicts sequence-
level pain intensity rating and an associated uncertainty
estimate. Hammal and Kunz [105] used Transferable Belief
Model to model uncertainty in the features and to adjust
the certainty of its predictions accordingly. Future research
should focus more on integrating machine learning with
different AI methods such as symbolic inference, logic,
and reasoning with uncertainty, in order to leverage the
strengths of different methods.

As revealed by Table 3, there has been very limited
focus on the problem of distinguishing pain from emo-
tions, especially negative emotions. However, it is crucial
in clinical applications to differentiate the different distress
states such as pain, anger, fear, and disgust [26]. Future
research should investigate this problem more intensely. To
address the need for sufficient data on pain and emotions,
combination of existing pain datasets and emotion datasets
could be considered.

It would be interesting to study the long-term pain
expression dynamics and include this information in the
development of a continuous pain monitoring system. This
information could be used to choose or adapt the desired
temporal granularity for pain predictions, and to deter-
mine how this granularity changes over time. Adapting
the temporal granularity could help in making specific
facial expression patterns related to or involved in pain
to be more/less likely to be indicative of other distress
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states rather than pain itself. This could help in reducing
the occurrence of false alarms and missed detections. For
example, information about the duration for which pain
medication would be effective could be useful in adjusting
the pain detection thresholds as well as the window of
time that is examined for pain events, immediately after the
administration of the medication. It is highly likely, based
on earlier observations, that continuous subjective pain does
not result in a continuous facial expression of pain. Rather,
there are fluctuations in the form of a sporadic waxing and
waning of facial expression. Learning more about the timing
of these episodes would also help to improve the automatic
pain detection models.

The use of AUs defined in FACS for automatic fa-
cial expression analysis allows objective, reliable, and
anatomically-based coding of facial responses. They repre-
sent a common language that enables results to be easily
compared between studies. However, the coding of AUs is
limited by human observation capacities. That is, only visi-
ble movements are coded. Consequently, very subtle facial
expressions cannot be assessed. In order to assess visible
as well as previsible facial activity, the use of a sufficiently
sensitive EMG is necessary. However, although EMG can
pick up even subtle muscle activities, only a limited number
of facial muscles can be assessed simultaneously. Since EMG
electrodes have to be attached to the skin of the face, a
placement of more than 3 or 4 electrodes is not advis-
able, because it would otherwise become too obtrusive and
would interfere with the facial expression [146]. Moreover,
the ability of surface EMG to isolate a single facial muscle is
much poorer compared to FACS based analysis (due to EMG
crosstalk amongst neighboring muscles) [146]. In addition,
facial EMG electrodes would introduce facial occlusions
that would make a simultaneous video-based analysis of
facial expressions difficult. Therefore, within the realm of
pain assessment from the face, FACS based facial expression
analysis is the more practical option for continuous pain
monitoring.

In this survey, we focused on automatic detection of
pain from facial expressions. However, there have been
efforts to apply machine learning methods to combine facial
activity with other modalities such as vocalizations [28] or
ECG, EMG, and skin conductance [29]. Improvements in
pain recognition rates were reported when information from
multiple modalities were fused. Combining facial expres-
sions, vocalizations, body movements, brain activation, and
autonomic responses, would be important as well as useful
in order to get a holistic picture of the pain experienced,
as well as to improve the performance of automatic pain
detection systems through complementary and/or supple-
mentary evidence. Future research should investigate the
potential as well as the limits of such multimodal systems
for robust detection of pain in clinical settings. The develop-
ment of reliable, contactless or minimally obtrusive methods
for assessing physiological signals would also be necessary
for improving the practical usability of such multimodal
methods.

7 CONCLUSION

This paper surveys literature on automatic pain detection
from facial expressions. The reviewed literature is structured
and categorized based on the learning tasks, and the fea-
tures and machine learning methods used. Two main types
of approaches were identified. One detects pain directly
from the visual input, and the other learns an intermediate
representation of facial expression. The datasets consisting
of facial expressions of pain that have been used by the
reviewed literature have also been summarized, while high-
lighting important details such as the pain induction meth-
ods, demographic information, and available annotations.
Several challenges related to data acquisition and develop-
ment of learning methods have been discussed, and future
research directions have been identified. More datasets ful-
filling additional criteria are required, and there is a need to
build and designate a dataset or a combination of datasets
for benchmarking automatic pain detection approaches.
Semi-supervised and weakly supervised approaches should
be explored for automatic pain detection to reduce the
heavy dependence on labeled data. Future methods should
focus more on the task of distinguishing pain from other
emotions. Interpretability of features learned by AI meth-
ods and the explainability of the decisions made by them
is crucial for their applicability and acceptance in clinical
practice, as supporting systems for pain diagnosis and pain
monitoring. Using multimodal information about pain, and
integrating other tasks such as head pose, motion, and facial
occlusion detection could help in improving robustness and
performance of automatic pain detection systems. Proba-
bilistic information is also essential for ensuring robustness
and reliability in highly dynamic real-life conditions. Inter-
disciplinary research is needed to solve several challenges
involved in developing a robust, automatic pain detection
system. The temporal characteristics of pain episodes, and
the effect of pain medication could be useful for reducing
the occurrence of false alarms. The ability of automatic pain
detection systems to generalize across cohorts with different
diagnostic status should be investigated in the future.
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