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Abstract In this chapter, we focus on the automatic recognition of emotional states
using acoustic and linguistic parameters as features, and classifiers as tools to pre-
dict the ‘correct’ emotional states. We first sketch history and state-of-the art in
this field; then we describe the process of ‘corpus engineering’, i.e. the design and
recording of databases, the annotation of emotional states, and further processing
such as manual or automatic segmentation. Next we present an overview of acous-
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tic and linguistic features that are extracted automatically or manually. In the section
on classifiers, we deal with topics such as the curse of dimensionality and the sparse
data problem, classifiers, and evaluation. At the end of each section, we point out
important aspects that should be taken into account for the planning or the assess-
ment of studies. The subject area of this chapter is not emotions in some narrow
sense but in a wider sense encompassing emotion-related states such as moods, atti-
tudes, or interpersonal stances as well. We do not aim at an in-depth treatise of some
specific aspects or algorithms but at an overview of approaches and strategies that
have been used or should be used.

1 Introduction

The study of speech and emotion can be traced back to the first decades of the
last century, cf. [100, 103, 41]. Whereas such studies were not very frequent dur-
ing the following decades, but cf. [116], the topic began to attract researchers more
and more during the eighties. Until the nineties most of these studies could be sub-
sumed under the heading ‘basic research in psychology and phonetics/linguistics’;
an overview is given, for example, in [91]. In the nineties, the automatic processing
of speech started to address topics beyond pure word recognition. First, higher lin-
guistic levels, for instance dialogue acts, and then topics beyond pure information
transmission, i.e. paralinguistic phenomena, e.g. emotions and attitudes conveyed
via the speech channel, were addressed in studies such as [36]. At that time, how-
ever, almost all data used were ‘prompted’ and acted, cf. below, modelling the pro-
totypical ‘big’ n emotionsn being a figure greater or equal 2 and up to 4, 6, or even
more classes. Maybe the first paper dealing with ‘natural(istic)’ speech and emotions
was [104]. At the turn of the century, researchers began to use non-acted databases
from, generally speaking, interactions of humans with information offices/systems,
i.e. human-human or human-machine interaction - the role of the machine some-
times played by a human Wizard-of-Oz (WoZ) - such as appointment scheduling or
call-center dialogues, cf. [10, 62, 4].

Nowadays, it is widely acknowledged that acted data cannot model naturalistic
data sufficiently [10, 117, 110], especially because the emotions produced that way
are too pronounced and will rather seldom be encountered as such in more realistic
data. Thus a (direct) transfer from acted data onto data encountered in realistic ap-
plications is not feasible. However, acted data is still used to a large extent, e.g. in
[111], because non-acted data is still sparse, and most often not available freely. In
this chapter, we will concentrate on the genuine approach of automatically recogniz-
ing/classifying emotional user states signalled in naturalistic, (spontaneous) speech.
We will deal with acted speech only in order to illustrate specific approaches or
methodologies. Nonetheless, the basic requirements of automatic processing are the
same for both acted and naturalistic data: size of the database, balanced distribution
of classes, large number of speakers, recording quality, class assignment as unequiv-
ocal as possible, etc. However, using realistic data requires us to face some more
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challenges: sparse and very un-balanced data, less pronounced emotions, and defi-
nitely the need to explicitly annotate the data, assigning emotion classes. Moreover,
the data should be representative for the envisioned application.

In the field of emotion in speech, two lines of research came together with
their own standards and methods which have not converged yet: basic (psy-
chological, clinic, phonetic) research, dealing mostly with acted data, and ap-
plied engineering - so far, too often dealing with acted data as wellieNa
conceptualizations of the respective other line of research should be replaced
by a mutual understanding of innate constraints and benefits. However, it is
beneficial to conceive the study and esp. the automatic processing of non-
acted, non-prompted emotional states as a topic sui generis.

2 Corpus Engineering

We conceive the term ‘corpus engineering’ as encompassing all the steps necessary
before feature extraction and automatic classification can take place: (1) the design
of an application-oriented scenario, (2) the recruiting of the necessary personnel
such as subjects, supervisors (Wizard-of-Oz), and the experimental setting or the
real-life scenario, (3) the recordings and - if necessary - subsequent transfer onto
storage media with/without re-sampling of the audio signal, (4) the transliteration,
i.e. the orthographic transcription of the data, sometimes including the annotation
of extra- or non-linguistic events such as breathing or noise, (5) the definition and
extraction of appropriate units of analysis such as words, chunks, turns, dialogue
moves with appropriate criteria (intuitive or based on prosodic, linguistic, or prag-
matic criteria), (6) the annotation of emotional states, possibly with subsequent map-
ping onto fewer cover classes, (7) evaluating the quality of these annotations by ap-
plying some measures of correlation/correspondence, (8) some other pre-processing
steps like manual processing or correction of automatically processed feature val-
ues, and (9) defining and applying exchange formats. We will sketch (1) to (4),
mention (8) to (9), and concentrate on (5) to (7).

2.1 Databases

A common breakdown of emotion databases is the one into acted/non-acted, in-
duced, and naturalistic databases [39]. This is a gross taxonomy which does not yet
capture pertinent differences: the settings, i.e. the scenarios, are defined and created
by the researcher; the outcome is the data that we have to deal with. Here we want to
tell apart acted/non-acted and prompted/non-prompted [93] settings: if the subject
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acts, he/she is doing as if they were in this specific situation - no matter whether
it is about being emotional or not. If emotions are prompted themselves the sub-
jects have been told that they should produce specific emotions. The subjects can be
volunteering or recorded in real-life situations. Inducing emotions means to arrange
situations where the subjects are more likely to produce the desired emotional states.
Strictly speaking, all these different conditions do not tell us whether our subjects
will produced ‘natural’, realistic emotion-related states or not. It is just more likely
that the outcome, i.e. the emotional database, is less natural if acted; induced data
for instance can be more or less spontaneous, or fully spontaneous. All these dif-
ferences can be evaluated by applying a perceptive evaluation - either Wwith na
listeners in a perception experiment, or with a more intuitive assessment.

This is a representative but not necessarily exhaustive list of scenarios where
non-acted, non-prompted data have been collected, recorded and used for the au-
tomatic classification of emotions in speech in the last decade: mother-child inter-
action [104], human-robot interaction [16], tutoring dialogues [2], stress detection
in a driving scenario [42], human-human multi-party interaction [71], interaction
human-information kiosk [21], appointment scheduling dialogues [10, 11], call-
center applications (volunteering or real users, WoZ or real systems) [62, 4, 13,
106, 38]. Some more references to databases, mostly with acted data can be found
in [32]. Multi-modal databases are dealt with in Cowie et al., this volume.

2.2 Annotations

Annotations can be automatic or manual, or both (first automatic, and then edited
manually). The first annotation pass is normally the transliteration of what has been
said. Even if automatic Speech Recognition (ASR) can be applied, a manual edit-
ing of its results is mandatory if correct transliterations are aimed at. Translitera-
tion conventions are either implicit or following standards put forth, e.g., by LDC
(http://www.ldc.upenn.edu/) cf. [38], or within the Verbmobil project [89], cf. [13].
Apart from the ‘normal linguistic events’, i.e. the words produced by the speakers,
several other para-/extra-linguistic (breathing, sighing, laughter) or non-linguistic
(technical noise) events can be annotated. Moreover, there are specific conventions
for the annotation of typical spontaneous phenomena such as hesitations, filled or
unfilled pauses, false starts, repetitions, etc.

The next step should be to define the units of emotion annotation — which, in
turn, is constitutive for the units of analysis used in the classification phase. So far,
this has been done mostly on a trivial or on an intuitive basis: the unit is given
trivially if simply utterances/dialogue moves/turns are taken — which can be an
easy endeavour in a dialogue where the partners alternate as speakers/listeners. If
the turns are longer, however, chances are that it is not one and the same emotion
throughout this turn. This is of course descriptively less adequate and diminishes
the discriminative power of automatic classification. Sometimes, longer turns are
segmented on an intuitive notion [35, 38] of prosodic, syntactic or pragmatic seg-
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mentation. In [11] an objective approach towards defining units based on syntactic-
prosodic segmentation has been put forth. Another possibility is to segment auto-
matically at prosodic boundaries, using either only pause information or more com-
plex information on intonational/prosodic units. Although there is a high correspon-
dence between such prosodic units and higher syntactic/pragmatic units [15] it is not
perfect and thus sub-optimal if it comes to the processing of emotion recognition in
a full end-to-end system [14] because there will be the additional task to time-align
the syntactically/semantically ‘blind’ prosodic units with the units processed by the
higher module.

The impact of choosing the appropriate unit of analysis has been underestimated
so far. However, the most important initial step is, of course, to find the adequate
(number of) emotion labels. To start with, this can be done top-down or data-driven:
in the first case, the basis is normally a catalogue of theoretically derived or empir-
ically obtained categories, cf. the 55 terms used by [38] or the scheme proposed by
[33]. Theoretically derived dimensional terms can be more or less elaborated [87].
The data-driven approach has often been employed by more ‘application-minded’
studies, cf. below.

The biggest issue in this phase concerns the two questions ‘What to annotate’
and ‘How to annotate’. In the case of naturalistic data, a catalogue of prototypi-
cal (basic) emotion categories or dimensions falls short of the phenomena one can
find; and what cannot be found cannot be annotated. Of course, different granu-
larities can be chosen for a first annotation pass. In the short history of annotating
naturalistic databases, the first studies were normally restricted to modelling a map-
ping onto a two-way distinction negative (encompassing user states such as anger,
annoyance, or frustration) vs. the complement, i.e. neutral, even if at the begin-
ning, more classes were annotated such as in [4] neutral, annoyed, frustrated, tired,
amused, other, not applicable. The minor reason for this mapping onto negative va-
lence vs. neutral/positive valence was that in the intended application, it is most
important to detect ‘trouble in communication’ . The major reason is simply that
for statistical modelling, enough items per class are needed. The default, ‘neutral’,
un-marked state dominates and accounts for up 8% of the cases. The situation
has not changed much recently, cf. [38]. [71] model, label and recognize a three-
way distinction neutral, emphatic and negative for one database (voice controlled
telephone service), and for another (multi-party meetings), a three-way emotional
valence negative, neutral, and positive. [2] use a three-way distinction for student
emotion in spoken tutoring dialogs: mixed/uncertain, certain, and neutral. [38] es-
tablished an annotation scheme with the possibility to have a mixture of emotions
(two labels per segment) and to use a coarse level (8 classes) and a fine-grained
level (20 classes) plus neutral for annotation; a coarse label is, for example, anger
with the fine-grained sub-classes anger, annoyance, impatience, cold anger, and hot
anger. In some few studies, up to seven different emotional user states are classified
[21, 16]; however, this 7-class problem cannot be used for real applications because
classification performance is simply too low.

There are basically two different strategies answering the question ‘How to an-
notate’: we can start with a detailed catalogue of labels and reduce them in a more
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or less systematic manner to fewer labels to be used in annotation - those that re-
ally denote states that can be observed in the data - and to an even smaller set of
labels to be used in automatic classification. The catalogue can be obtained from
other basic studies or be based on free annotation, cf. the 176 classes, reduced to
14 classes in experiments by [1]. Alternatively, we can skip this step and establish
in a data-driven way a set of labels suited for the intended application; for instance,
in a call-center application, we might only want to find out whether the user is get-
ting angry/annoyed, etc., i.e., whether something is going wrong. This would be a
task-dependent emotion annotation with the goal of emotion detection in a real sys-
tem. In the studies conducted so far, the set of labels chosen was mostly intended to
be suited for the data, although aiming at the general issue of emotional behaviour
annotation. However, emotional states that cannot be observed often enough were
skipped in an earlier or later stage of the annotation process. Moreover, there is a
certain trade-off between the number of the labellers, their expertise, and the effort
to be spent; from theoretical-methodological reasons, it might be desirable to em-
ploy > 10 ndve labellers or> 5 expert labellers to annotate on a fine-grained scale.
This is, however, almost never feasible. Normally, more than one labellers are em-
ployed. This makes it possible to establish measures of agreement, cf. below, and to
establish different levels of agreement: apart from the method to allow each labeller
to give more than one label per unit, cf. the major and minor label in [38], for more
labellers, either a correspondence or a majority decision can be defined [105, 16],
or a soft vector with percentages can be created. For some scenarios, there can be
some ‘external ground truth’, e.g. the intensity of stress inducing tasks, a worse per-
formance of the system, physiological measures as indicators of stress (levels), etc.
Such an external evidence can either be taken as means for assigning labels, or later
on, as additional feature in the classification phase.

There are two classic criteria for assessing the quality of such labels: validity
and reliability. Ecological validity is most important but not easy to measure; thus
normally, reliability measures are aimed at such as measures of correlation, corre-
spondence, (weighted) kappa, or (weighted) alpha [44, 85]. The use of ‘quantized’
score ranges, based on such measures, e.g., for kappahad’, between .2 and .4
‘moderate’, between .4, and .6 ‘good’, between .6, and .8 ‘very goed3 ‘excel-
lent’ (there are other scalings), seems to be a convenient way of assessing the quality
of annotations. As far as we can see, however, it has almost never been used for any
decision to be made — for some reasons: a lower kappa score can — apart from
being caused by deficiencies in the very score itself — mean that inter- or intra-rater
reliability is low because of spurious factors or because there simply are different
— and valid — criteria and thresholds for annotation, and/or simply that the task
is difficult, etc. Too high scores can be rather suspicious because it can be doubted
that they can be obtained when dealing with naturalistic data. Moreover, the ultimate
measure (of validity) is on the one hand the performance of the classifier - which can
itself be compared with the performance of the annotators by using measures such
as proposed in [105] - within a running system, and on the other hand, the impact
on the users of such systems, cf. Sec. 5.
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2.3 Further Processing

State-of-the-art and ultimate goal in ASR is fully automatic processing although im-
portant steps such as building a lexicon or transliterating the training data are still
mostly done manually. Matters are different in the research of emotion in speech:
here it is not yet considered to be very important whether processing is manual
or not; thus we often observe a mixture of manual and automatic processing. A
typical approach is, e.g. to extract acoustic features automatically and linguistic
features such as non-verbals or part-of-speech classes semi-automatically or fully
based on manual processing. Sometimes, automatically extracted acoustic features
are corrected manually, cf. [20] where the manual correction of word segmenta-
tion and pitch values is described. Segmentation of higher units into lower ones can
be ‘blind’, i.e. automatic, e.g. by defining fixed length segments or by partitioning
each turn into a fixed number of segments, or it can be ‘intelligent’, e.g. by seg-
menting into words or other smaller units using other higher level information. A
‘blind’ segmentation is normally automatic, an ‘intelligent’ one so far mostly man-
ual. The choice of segmentation strategies is of course conditioned by the type of
data used, and by the effort needed: turns produced by one speaker taking part in a
bi-directional dialogue can be segmented by hand, whereas the effort needed for a
more fine-grained (word- or syllable based) segmentation is considerably higher.

A last and decisive step is the selection of units out of the whole database for
feature extraction and classification. Two easy and automatic strategies are almost
never employed: simply using all the data, or using a randomly chosen sub-sample.
This is due to the sparse data problem: the overwhelming majority of the cases be-
long to the ‘un-interesting’ default class neutral, cf. Sec. 4.1. Non-neutral cases can
often not unequivocally be attributed to one of the ‘interesting’ classes because they
are mixed; often, more prototypical cases are chosen. This is permissible - after
all, we can imagine an application looking only for very pronounced cases - but
the selection criteria have to be documented clearly: simply to select more proto-
typical cases by sharpening the threshold criterion can yield a marked performance
improvement, e.g. in [17] from 59.2% recognition rate up to 77.5% for four classes.

It should be mandatory for writing a paper on recognizing emotions in speech,
and it is advisable for readers of such papers, to point out explicitly and to find
out the strategies used at different stages: what is automatic, what manual,
which criteria were intuitive, which objective and which criteria for selecting
the final sample were applied. Intuitive and/or selection criteria as such should
not necessarily be forbidden, if stated explicitly. They simply introduce some
fuzziness at a certain stage of processing. Their impact on the final results -
and it is mostly recognition performance that is remembered by the readers
of such studies - can be decisive, or small. It would be good practice if the
authors themselves pointed out the presumable impact.
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3 Features

Feature extraction is a crucial phase in automated emotion recognition. As yet there
has not been a large-scale, comprehensive comparison of different feature types;
as for preliminary efforts in this direction cf. [19, 94]. Presenting a comprehensive
overview of feature types and feature extraction methods requires some kind of
division of features into classes, though there is more than one way to do so. We will
present several - alternative and complementing - approaches to grouping features.
The most basic distinction to be made is between acoustic vs. linguistic features,
as extraction methods for these two types are extremely different. Their relative
contribution can also vary greatly, depending on the database being analyzed: For
acted data, based on scripted speech, linguistic features are of no value. On the other
hand, as we come closer to spontaneous real-life speech, these features can gain
considerably in importance. Acoustic features are the more ‘classic’ features which
have been in use since the inception of studies in this field, though researchers are far
from agreeing which are most important, or whether this can even be determined. In
the following subsections we discuss these two feature types separately. There are
several survey papers on prosodic features in automatic speech processing [53, 73]
and on their use in emotion modelling [45, 92, 57].

3.1 Acoustic Features

Segmentdieatures are mainly short term spectra and derived features: MFCC, LPC,
PLP, etc. [51], and Wavelets [42, 94], TEO (Teager Energy operator) [42, 123],
LFPC, LPPC [74]. These features are classically used for ASR where they are nor-
mally used for modelling segments such as phones and by that, words, rather than in
emotion recognition where they are used for modelling longer units of analysis such
as utterances/turns, dialogue moves, etc. To this aim the features are extracted frame-
wise and combined by appropriate measures such as averaging and computing delta
coefficients. Although originally intended to model segments, these features have
been used successfully for supra-segmental units or for dynamic classification such
as HMMs.

Supra-segmentétatures model the classic prosodic types: pitch, intensity, dura-
tion, then voice quality and long term spectra. Prosodic features involve two steps:
extracting raw prosodibasicfeatures, then calculatirgiructuredfeatures based on
this data [53]. The raw prosodic data is the FO contour, the intensity contour, and
durational data on different levels (lengths of chunks, words, voiced segments, syl-
lables, phonemes). Various errors can creep into the calculations at this stage. The
second step involves extracting structured features from the basic prosodic features
using various statistics such as mean, standard deviation, percentiles, ranges, peaks,
slopes, regressions etc. Voice quality is a complicated issue in itself, since there
are many different measures of voice quality, mostly clinical in origin, though once
again standardization in this area is lacking. Other, less well known voice quality
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features were intended towards normal speech from the outset, e.g. those modelling
‘irregular phonation’ [18].

Features can be low level vs. high level, i.e. statistic features vs. those based on
pitch models such as MoMel [54], the Fujisaki model [46], and others. Features
can be represented by raw values, i.e. they can be non-perceptual, or they can be
based on perception modetmyrmalization taking into account pitch range, speech
tempo, etc., — a straightforward way is to subtract some reference value - is used
for modelling perception as well.

Using another terminology, we can speak adouw Level DescriptorgLLDs),

i.e. basic measures of feature types, amttionalssuch as mean, percentiles, etc.
LLDs account for base contours that usually are extracted by elaborating a fixed
number of samples contained in a sliding window. For example, pitch attributes de-
rive from the FO contour. Subsequently to the LLD extraction, a number of operators
and functionals are applied to obtain a certain feature vector out of each contours.
Functionals provide a normalization over time: base contours associated to words
have different lengths, depending on the duration of the words and on the magnitude
of the window step; with the usage of functionals, we obtain one feature vector per
word, with a constant number of elements.

To reduce the influence of noise and to model temporal variations of LLDs, base
contours are usually filtered, and first and second order derivation are extracted.
These functionals that can be applied to raw contours, range from simple statistics,
to curve fitting methods, or even methods based on perceptual criteria. The most
popular statistical functionals cover the first four moments (mean, standard devi-
ation, skewness, and curtosis). Other functionals are positions of extremes values
within a certain temporal context, quartiles, amplitude ranges, zero-crossing rates,
roll-on/-off, on-/off-set and higher level analysis. Curve fitting methods produce re-
gression coefficients, such as slope of polynomial regressions, and regression errors
(such as the mean square error between the regression and the original contour).
Maybe the most comprehensive list of functionals is given in [94].

We now characterize shortly the different types of acoustic features:

Durationfeatures model temporal aspects; the basic unit is milliseconds (ms) for
the ‘raw’ values. Different types of normalization can be applied. Note that relative
positions on the time axis of base contours like energy and pitch such as maxima
or on-/off-set positions do not strictly represent energy and pitch but duration - sim-
ply because they are measured in ms, and because they are often highly correlated
with duration features [8]. In other words, duration attributes can be distinguished
according to their extraction nature: those that represent temporal aspects of other
acoustic base contours, and those that exclusively represent the parameter ‘duration’
of higher phonological units, like phonemes, syllables, words, pauses, utterances.
Duration values are usually correlated with the linguistic features described below:
for instance, function words are shorter on average, content words are longer. These
two main word classes are not equally distributed across emotion types; this infor-
mation can be used for classification, no matter whether it is encoded in linguistic
or acoustic (i.e. duration) features.
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Energy (intensityjeatures usually model the loudness of a sound as perceived by
the human ear, based on the amplitude in different intervals; different types of nor-
malization are applied. Energy features can model intervals or characterising points.
As the intensity of a stimulus increases, the hearing sensation grows logarithmically
(decibel scale). It is also well known that sound perception also depends on the
spectral distribution and on its duration too. The loudness contour is the sequence
of short-term loudness values extracted on a frame base. So-called energy features
are finally obtained from the loudness contour by applying functionals.

The basics opitch extraction have largely remained the same; nearly all Pitch
Detection Algorithms (PDAS) are built using frame-based time or spectral analysis:
the speech signal is broken into overlapping frames and a pitch value is inferred from
each segment by either autocorrelation [83] or spectral analysis [72]. The acoustic
equivalent to the perceptual unit pitch is measured in Hz and often made percep-
tually more adequate by logarithmic transformation etc. Intervals, characterising
points, or contours are often modelled.

The spectrumis characterized by formants (spectral maxima) modelling spo-
ken content, esp. the lower ones. Higher ones also represent speaker characteristics.
Each one is fully represented by position, amplitude and bandwidth. The estimation
of formant frequencies and bandwidths can be based on Linear Prediction Coding
(LPC) [65] or on cepstral analysis [34]. LPC is a model of the human vocal tract.
Once the spectral envelope is estimated by using the LPC method, a number of spec-
tral features can be computed such as formant band-energies, roll-off, centroid and
flux. Furthermore, the long term average spectrum over a unit can be employed: this
averages out formant information, giving general spectral trends.

The cepstrumthe spectrum of the spectrum, emphasises changes or periodicity
in the spectrum, while being relatively robust against noise. Its basic unit is que-
frency which is related to time. Mel-Frequency-Cepstral-Coefficients (MFCCs) - as
homomorphic transform with equidistant band-pass-filters on the Mel-scale - tend
to strongly depend on the spoken content. Yet, they have been proven beneficial in
practically any speech processing task. PLP coefficients [51] and the MFCCs are
extremely similar, as they both correspond to a short-term spectrum smoothing - the
former through an ASR model, the latter trough the cepstrum - and to an approxi-
mation of the auditory system by filter-bank-based methods. At the same time, PLP
coefficients are also an improvement of LPC by using the perceptually based Bark
filter bank.

Voice qualityfeatures model jitter, shimmer, and other micro-prosodic events.
Noise-to-harmonic ratio (NHR) or Harmonic-to-Noise ratio (HNR) is another mea-
sure of the quality of the speech signal. Although they depend in part on other LLDs
such as pitch (jitter) and energy (NHR), they reflect peculiar voice quality properties
such as breathiness or harshness. Therefore they are usually dealt within a separate
feature class. Some of these have several variants, and even when their definitions
are agreed upon, different software can give different values, due for example to
difference in pitch extraction methods.
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Waveletsgive a short-term multi-resolution analysis of time, energy and fre-
quencies in a speech signal. Compared to similar parametric representations such
as MFCCs, they are superior in the modelling of temporal aspects.

Non-verbalsdentify non verbal phenomena such as breathing and laughter. Au-
tomatic detection of disfluencies and non-verbals normally requires that the vocab-
ulary used by the ASR engine includes both these entities. Thus they could be sub-
sumed under linguistic features as well.

Other acoustic features that have been used or can be used are TRAPs [52] Tea-
ger operator (esp. for stress detection) [123], and dynamic features for HMM, cf. be-
low. The standard acoustic feature types used in many emotion classification studies
might be — probably in this order of frequency but not necessarily importance -
pitch, energy, spectrum, cepstrum, voice quality, duration. Traditionally, pitch has
been conceived as being most important — this is not backed up by empirical re-
sults; note that the reason might not be extraction errors, cf. [20].

3.2 Linguistic Features

Spoken or written text also carries information about the underlying affective state
[5]. This is usually reflected in the usage of certain words or grammatical alter-
ations — which means in turn, in the usage of specific higher semantic and prag-
matic entities. A number of approaches exist for this analysis: key-word spotting
[40, 31], rule-based modelling [63], Semantic Trees [122], Latent Semantic Anal-
ysis [48], Transformation-based Learning [120], World-knowledge-Modelling [64],
Key-Phrase-Spotting [98], and Bayesian Networks [24]. Context/pragmatic infor-
mation has been modelled as well, e.g. type of system prompt [106], dialogue acts
[63, 11], or system and user performance [2]. Two methods seem to be predomi-
nant, presumably because they are shallow representations of linguistic knowledge
and have already been frequently employed in automatic speech procésisissy:
based) N-Gram§80, 4, 61, 37] andrector space modellin®6, 19]; these will be

dealt with in the following.

A first step will always be the pre-processing of the text. This seems an easy
task for written text, yet, Soft-String-Matching (e.g. by Levenshtein Distance) is
reported advantageous to overcome misspelling, or spelling variations, dialects, etc.
Considering analysis from spoken text, only few results for emotion recognition
rely on ASR output [96] rather than on manual annotation of data [19]. Secondly,
an inventory of term entities, known as vocabulary, needs to be constructed which
initially consists of all different words observed in the training corpus - usually
several thousand (as opposed to this, e.g. the Balanced Affective Wordlist [102]
consists of only roughly 300 words) — and has to be reduced somehow, by stopping
or by stemming.

Stoppingresembles elimination of irrelevant words. The traditional approach to
stopping is an expert-based list of words as function words. Yet, even for an expert
it seems hard to judge which words can be of importance in view of the affective
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context. Data-driven approaches as Salience or Information Gain-based reduction
(see below) are popular. The easiest, yet often effective way, is also stopping by
the general minimum frequency of occurrence within a training corfteanming
stands for clustering of morphological variants, i.e. flexions (e.g. by declination or
conjugation), of a word by its stem inlexeme This reduces the number of entries

in the vocabulary while at the same time providing more training instances per class.
Thereby also words that were not seen in the training can be mapped upon lexemes,
as e.g. by simple N-Gram Stemming, cf. below, or by (lterated) Lovins, Snowball,
Dawson, Porter, Paice and Husk, and Krovetz stemmers that base on suffix lists
and rules for their application. A very compact approach to stemming is the use of
so called Part-of-Speech (POS) classes, such as nouns, verbs, adjectives, particles
[7, 19]. Alsosememesd.e. semantic units represented by lexemes, can be clustered
into higher semantic concepts such as generally positive or negative terms [19]. In
addition, non-linguistic vocalizations like sighs and yawns [88], laughs [28, 108],
cries [76], and coughs [67] can easily be integrated into the vocabulary [19, 95].

Class-based back-off N-Granase commonly used for general language mod-
elling. Thereby the posterior probability of a word is given by its predecessors from
left to right within an utterance. For emotion recognition, class-based N-grams are
needed: given an emotion, this leads to the according posterior probability for an
emotion under the condition of the words of an utterance. Following Zipf’s principle
of least effort stating that irrelevant function words occur very frequently opposing
terms of interest, the number of considered words is reduced to N in order to prevent
over-modelling. Due to the typical data sparseness in emotion recognition, mostly
uni-grams (N=1) have been applied so far [61, 37], besides bi-grams (N=2) and tri-
grams (N=3) [4]. The actual emotion is calculated by the posterior probability of the
emotion given the actual word(s).

Bag-of-Words also known as vector space-modelling, is a well-known numer-
ical representation form of text in automatic document categorization [56]. It has
been successfully ported to recognize sentiments [77] or emotion [96, 95]. Thereby
each word in the vocabulary adds a dimension to a linguistic vector representing the
term frequency within the actual utterance. Note that thereby easily very large fea-
ture spaces may occur, which usually require stopping and stemming. To overcome
linearities, the logarithmic term frequency is often used, and the term frequency is
also often normalized by the utterance length, and with respect to the overall term
frequency of occurrence within the training corpus. Note that most vector elements
will resemble zero, as feature vectors are constructed for short utterances rather than
for longer texts, as in document retrieval, and only few words of the vocabulary will
be seen. Support Vector Machines (c.f. below) show high performance for this task.
The possibility of early fusion with acoustic features helped make this technique
very popular [95, 19].

The preponderance of acoustics in emotion modelling so far is conditioned
by the traditional focus on segmentally identical, acted utterances. For natu-
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ralistic data, both acoustic and linguistic features should be employed, both
for a deeper understanding and a better classification performance. Basic fea-
ture extraction and subsequent computation of structured features employing
(combinations of) functionals will certainly be the subject of much research

in the future, examined in different contexts. We are far from knowing which
feature (type) models best which emotional states in which context. Thus we
have to resort to the general advise to use a representative set of features of
different types rather than only one type of feature.

4 Classification

The data-driven way to evaluate extracted features and classification performance is
to rely on machine learning and/or pattern recognition techniques: we let the ma-
chine find and learn regularities in the data. In the past decades, a prolific amount
of methods have emerged for automatic modelling and extraction of informative
patterns of the data. The number of successive refinements and slight variations
of each machine learning algorithm is even bigger. One challenge to address in
emotion classification is how to prune into this depth of options and find a good
method for this specific task. A common claim in machine learning is: ‘any method

is as good provided a good feature vector'. Unfortunately emotion recognition from
speech has to deal with noisy, redundant, correlated features. Furthermore speech
feature vectors are often complex and large, contaminated with interferences, back-
ground noise, and overlapping signals; this is especially true for naturalistic emo-
tional speech. Thus different studies have shown that the same feature vector can
yield very different classification results using different algorithms.

4.1 The Curse of Dimensionality and the Sparse Data Problem

Realistic emotional speech databases are characterised by the following problems:
(1) small number of patterns, (2) potentially high number of features, (3) skewed
classes. Typically such databases comprise some hundreds of labelled utterances,
while the features for classifying them can be chosen within a high dimensional
space, usually up to some hundreds as well. As the amount of available data is usu-
ally fixed, any increase in the feature space rapidly (exponentially in the number
of features) leads to regions of the feature space where data is very sparse. This
problem is known as ‘curse of dimensionality’ [22], and it affects classifiers that
divide the feature space into cells. A good rule of thumb requires that the number
of patterns should never be lower than twice the number of features. Although some
classifiers implicitly and successfully cope with the curse of dimensionality, pre-
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processing methods such as ‘feature selection’ and ‘feature reduction’ are generally
applied to the input space. A favourable by-product of reducing the feature space
is the reduction of the computational burden and implementation complexity while
training the classifier. Both should not be underestimated: the former may lead to no
solution at all (in reasonable time), the latter can yield wrong results due to numer-
ical instabilities and overflows. Furthermore, feature reduction and selection meth-
ods selectively proceed to discard correlated and non-relevant features, resulting in
higher reliability of the results.

Feature reductiorconsists in the mapping of the input space onto a less dimen-
sional one, without loosing as much information as possible. Common reduction
technigues used in the field of emotion recognition are Principal Component Anal-
ysis (PCA), Linear Discriminant Analysis (LDA), Independent Component Anal-
ysis (ICA), and more sophisticated derivations like Heteroscedastic Discriminant
Analysis [6]. PCA is the feature transformation that minimises the sum of square
error. Furthermore, the base of the new space is ortho-normal, which means that
PCA de-correlates the original features: new features are constructed so that the
first one explains the largest amount of total variance of the data while each sub-
sequent component explains the largest amount of the remaining variance while
remaining uncorrelated with previously constructed features. The use of PCA re-
quires the guess of the dimensionality of the target space. This can be done by the
Kaiser-Guttman test, Log-Eigenvalue (LEV) diagram, Cattell's scree test (broken
stick model), cross-validation, etc.

While PCA is an unsupervised feature reduction method (and thus maybe subop-
timal for specific problems), LDA is a supervised feature reduction method which
searches for the linear transformation that maximises the ratio of the determinants
of the between-class covariance matrix and the within-class covariance matrix [47].
LDA is less used as feature reduction, but it is widely adopted for direct classifica-
tion [60, 84, 58, 10]. Finally ICA is the transformation that maps the feature space
into an orthogonal space; furthermore, the target features are independent. Both the-
oretical and practical assumptions must hold, like the non-gaussianity of the input
features and the low dimensionality of the transformed space. There are already
some studies adopting ICA, where both the input space and the output space are
kept small.

Feature reduction is not appropriate for feature mining, as the original features
are not retained after the transformatidi@ature selectiordenotes a set of tech-
niques that remove features which are irrelevant for modelling. This is a combina-
torial optimization problem: the feature space is traversed and at each step of the
search a different feature combination is evaluated. Evaluation is usually done fol-
lowing two possible strategies: the closed-loop "wrapper” method, which trains and
re-evaluates a given classifier at each search step using accuracy as objective func-
tion, and the open-loop "filter” method, which maximises simpler objective func-
tions. While a wrapper can consist of any classifier, filter objective functions are
usually measures such as Information Gain Ratio []], or inter-feature and feature-
class correlation []], etc. As an exhaustive search through all possible feature com-
binations is unfeasible, faster but sub-optimal search functions are chosen. Most
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popular thereby is hill-climbing search or random injection as within random or ge-
netic search. Typical conservative hill-climbing procedures are Sequential Forward
(SFS) and Backward (SBS) Selection by adding (deleting) at each search step the
feature reporting the best performance according to the chosen wrapper or filter.
SFS and SBS are commonly used [62, 60, 58]. Sequential floating forward selection
SFFS [81, 55] is an improved SFS method in the sense that at each step, previously
selected features are considered for being discarded from the optimal group (SBS
steps) to overcome nesting effects. Experiments show SFFS to dominate over other
methods [55]. Note that a good feature selection should de-correlate the feature
space to optimize a set of features as opposed to sheer ranking of features. This is
in particular the case for wrapper-search, which at the same time usually demands
considerably higher computational effort. Some studies combine feature selection
with feature generation to find better representations and combinations of features
by simple mathematical operations such as addition, multiplication or reciprocal
value of features [19].

With the growing interest in spontaneous data, class skewness or the ‘sparse
data’ problem in the output (classes) space came to the fore: many classes are
characterised by few observations only. Normally, most cases belong to the neu-
tral class. The skewness of the output space can be addressed by considering proper
class weights, by resampling, i.e. (random) up- or down-sampling, or by introducing
cover classes (clustering similar classes under the same hat). The most frequent cou-
ples of cover classes are ‘neutral vs. non-neutral’ and ‘positive vs. negative’ emo-
tions modelling the ‘valence’ dimension, where neutral generally encompasses the
absence of any emotion while ‘positive’ emotions span from neutral to happiness.

4.2 Classifiers

A number of reasons speaks for considering diverse classifiers for different tasks:
mostly high recognition rates (e.g. ability to solve non-linear problems, learn dis-
criminatively, online adapt, generalize, tolerate high dimensionality), adequate mod-
elling (static or dynamic, data- or knowledge-based, model or instance-based, han-
dling of missing feature values and uncertainty, training stability), efficiency and
economical factors (real-time capability, low computational cost for training and
recognition, low memory requirement, need of only few exemplary instances, easy
implementation), and optimal integration in a system context (e.g. (class-wise) pro-
vision of confidences, handling of input confidence). These considerations, and the
simple availability of implementations such as WEKA ([118]) or HTK led to a
considerable band-width of variants being used in the recognition of emotion from
speech.

Very popular classifiers for emotion recognition are Linear Discriminant Classi-
fiers (LDCs) [47] and k-Nearest Neighbour (kNN) classifiers [30]: their implemen-
tation is easy, the time needed for training is short, unbalanced classes can be han-
dled, and the sensitivity to lack of data in general is small. kNN is a look-up method:



16 Batliner et al.

the training data is simply stored (‘lazy’ or instance-based learning, as opposed to
model building classifiers) and each new pattern is assigned by averaging its nearest
neighbour classes. They are widely used [36, 79], with good results for non acted
emotional speech as well [60, 101]. LDC (as a natural extension of LDA, see [47])
is basically a classifier with straight line decision surfaces (hyperplanes). LDA is
one possible method of estimating LDC hyperplane parameters by maximization
of class separability (see above). They have often been used [60, 84, 58, 63, 10],
with a competitive performance [19] in spite of some limitations: the data should
be linearly separable, and the method is sensitive to outliers. A natural extension
of LDCs are Support Vector Machines (SVMs): if the input data have previously
undergone a nonlinear transformation, which may have increased or decreased the
number of features, and if the linear classifier obeys a maximum-margin fitting cri-
terion, then we obtain an SVM [109]. SVM provide very good generalization prop-
erties [68, 61, 29, 121, 70], which positioned them among the number one choices
in recent works; note, however, that their performance is not always (way) better
than the one obtained by using alternative classifiers [69].

The most used non linear discriminative classifiers are Artificial Neural Networks
(ANNSs) and decision trees. Feed Forward ANNs, also known as Multi Layered Per-
ceptrons, are equivalent to fitting pre-defined non-linear functions to some given
data. Decision surfaces might become very complex and depend on the topology of
the network (number of neurons), on the learning algorithm (usually a derivation
of the well known Backpropagation algorithm [86]), and on the activity rules (how
the input patterns and the ANN weights are combined to obtain a decision output
class). ANNs are therefore not robust to overfitting, and require greater amounts of
data to be trained on. Therefore ANNSs are rarely used for acted data [79, 66], and
even less for non-acted, but cf. [10, 19]. Although they are also characterized by the
property of handling non-linearly separable data, decision trees are less of a ‘black
box’ compared to SVMs or neural networks, since they are based on simple recur-
sive splits of the data. These splits (yes/no questions usually ranked by Information
Gain) are very readable, especially if the tree has been adequately pruned, i.e. cut
off according to the ranking. Popular decision tree algorithms are C4.5 [82], and
CART [27]. Note, however, that accuracy degrades in case of irrelevant features or
noisy patterns. A solution are Random Forests (RF) [26], an ensemble of trees each
one accounting for a random subset of the input features and learned on variants of
the training set by sampling with replacement. They are practically insensitive to
the curse of dimensionality [94].

Stochastic classifiers are very popular. This probably also derives from their gen-
eral popularity in speech analysis tasks. Apart from the already named kNN, which
can be seen as very basic statistical classifier, one also basic representative of this
group is the Naive Bayes classifier [59, 49]. It is robust with respect to irrelevant
features but its performance may degrade quickly if correlated — even relevant —
features are added. Less fwa’ are Gaussian Mixture Models (GMM) that employ
a number of multivariate Gaussians to model the original densities in the feature
space. However, this of course also requires more training data, usually by Expec-
tation Maximization.
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Dynamic classifiers like Hidden Markov Models (HMM), Dynamic Bayesian
Networks (DBN) or simple Dynamic Time Warp (DTW) implicitly warp observed
feature sequences over time. No further processing of the raw feature contours on
a per-frame-basis as pitch or energy is needed (like the application of functionals,
to obtain the same number of features for different lengths of units such as turns or
words). Among dynamic classifiers, apparently only HMM were studied yet, proba-
bly mostly because of the presence of well elaborated tools such as HTK. For acted
emotion there are numerous references [23, 97]; for non-acted emotion fewer are
known [58, 114, 113]. The performance of static modelling is usually not reached
[23, 97], as emotion apparently is better modelled on a time-scale above frame-level;
note that a combination of static features such as minimum, maximum, onset, off-
set, duration, regression, etc. implicitly shape contour dynamics as well. Still, when
the spoken content is fixed, the combination of static and dynamic processing may
help improve overall accuracy [112]. However, it is not clear whether emotion can
be satisfyingly modelled using the simplifying Markov assumption that underlies
HMM modelling [23].

Ensembles of classifiers [96] combine their individual strengths, or overcome
training instability deriving from the sparseness of data. In the highly popagf
ging[25] method, several instances of the same classifier are trained on sub-samples
of the data-set, usually of the same size, obtained by sampling with replacement. The
final decision is then made by majority votingoostingdecides by weighted ma-
jority voting after iteratively assigning (high) weights for hardly separable instances
throughout learning. NexMultiBoostingcombines bias and variance reduction of
these two by their sequential application. Most powerful however is the combination
of diverse classifiers by either simpletingor introduction of a meta-classifier that
learns ‘which classifier to trust when’ and is trained only on the output of ‘base-
level’ classifiers, known aStacking[119]. If confidences are provided on lower
level, one speaks @tackingC Still, the gain over single strong classifiers as SVM
may not justify the extra computational need.

Regression — that is mapping on a continuum rather than on discrete classes
— is also used in emotion recognition to handle the dimensional approach. Usually
each axis, such as arousal, valence or dominance is thereby taken care of by one
regression model as Support Vector Regression [50] or less complex solutions as
Multiple Linear Regression.

Features belonging to different types, e.g. acoustic and linguistic features, can
be combined irearly fusionwithin the same classifier, or the class assignment with
or without confidence measures obtained with different classifiers using different
features can be combinedlate fusion cf. the ROVER approach [43] used in [19].

4.3 Evaluation

To assess the performance of a classifier, we have to split the data into train and test.
The easiest approach is a percentage split. However, data in emotion recognition is
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usually sparse, as mentioned. Therefore it seems desirable to test on all instances:
the training set is thereby usually kept as large as possible, the limit being a single
pattern at a time for testing; this is repeated j times changing the tested pattern each
time. Such a high number of trainings can be unfeasible. Splitting the data into
j=10 parts, training on 9 parts and testing on the remaining data is a good, popular
compromise, called j-fold cross validation. Throughout partitioning of the data the
distribution among classes should be kept, known as stratification. However, the
partitioning is usually not explicitly stated, thus not easily allowing for comparative
studies. Also, it is not speaker-independent, and recognition performance will thus
be too optimistic. Both these downsides can be overcome by leave-one-speaker-out,
meaning training with all but one speaker in each cycle, or leave a known group of
speakers out to spare computational effort.

Most of the studies report performance measures expressed by accuracy, i.e. Recog-
nition Rate (RR), the number of correctly recognised patterns divided by the total
number of patterns. Given the skewness of spontaneous emotional databases, this is
not always appropriate. A possibility is to measure both, Precision (P, the number of
true positives over all positive patterns), and Recall (R, the number of true positives
over the number of all reference patterns). When there are more than two classes,
it is useful to give a P- and an R-value for each class separately. In this sense R of
a class corresponds to the RR of this class. As a general measure over the entire
data is useful, we can introduce the mean of the accuracies (RR) over all classes
i.e. the Class-wisely averaged Classification rate (CL). Note that RR and CL for a
balanced multi-class recognition problem are always identical; the more the class
distribution is un-balanced, the higher the difference between RR and CL. The Re-
ceiver Operating Characteristic (ROC) curve is independent of the data distribution
but has the disadvantage that curves are not easy to compare. It is the plot of R over
1-Specificity (S, the false negative over all negative). ROC curves are constructed
by modifying a threshold during the training of the classifier. Different thresholds
correspond to different performance of the classifier (in terms of Recall and Speci-
ficity), and thus to different points on the ROC curve.

The complete source of information is the confusion matrix. The figures de-
scribed above all derive from it and try to highlight or smooth some aspects, esp. for
multiple classes when it might be difficult to interpret, or during the training of a
classifier when optimisation is achievable only w.r.t. few or one single parameter
such as accuracy, or F-measure as harmonic mean of recall and precision.

Studies eventually end up with the conclusion that a specific classifier is better
than another one - which is a conclusion that must not be generalized. Most of the
time no significance of the differences is reported. Actually, there are some reasons
to handle significance tests with care: the more experiments we do on a certain data-
set, the more probable it is that we accidentally run into some significant results.
Significance thresholds should be augmented whenever we increment the number
of experiments; in our field, this is not the rule but the exception. The Bonferroni
adjustment is a possible choice of a correction factor. For a cookbook on multi-
experiment studies see [90]. There are some drawbacks to the Bonferroni correction
as it is usually too conservative; these are outlined in [78].
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Also, when doing comparative evaluations, everything that is done to modify or
prepare the classifier must be done in advance before looking at the test data [90].
To our knowledge, only few studies in emotion recognition clearly explain what -
if any - part of the data has been used for parameter tuning: they describe how the
data has been divided into test and training but nothing is said about held-out data
for classifier tuning, which should be part of future investigations.

Finding, fine-tuning, and evaluating classifiers is a broad topic in its own; al-
though there might be preferences to use one or the other approach in specific
fields - such as emotion recognition - it generally suffers from too many de-
grees of freedom: a strict comparison across studies is practically never possi-
ble. Statements such as ‘it has been proved that classifier X is superior to clas-
sifier Y’, should never be generalized. Often it only means that there has been
more fine-tuning for X than for Y. In the long run, it might turn out that specific
models and classifiers based on them are - on the average - better suited for
emotion recognition. However, searching for an optimal classifier alone will
not be a panacea; it will not improve unsatisfying recognition rates to such an
extent that the intended application will be successful. Anyway, it should be
mandatory to document the steps explicitly, e.g., whether a cross-validation
has been done speaker-independently or in a speaker-dependent way. This
statement holds similarly for comparison across whole studies: what never
should be done is simply to compare recognition rates between two studies.
Such performance depends crucially on too many factors which have not been
standardized yet.

5 Applications

Apart from some ‘off-line’ applications such as data mining in movie archives or
screening call-center agents as for their behaviour against customers, the ultimate
goal of the whole endeavour described in this chapter is employing classified emo-
tional user states in an end-to-end system; by end-to-end system we mean ‘spon-
taneous speech, produced by human users in — generated system reaction such as
synthesised speech, produced by the system out, and vice versa’. Several systems
have been envisaged so far [9]. The contribution of automatic classification is rather
straightforward: each speech unit such as words/chunks/turns/dialogue moves is at-
tributed one out of a rather reduced set of emotion labels, maybe with some proba-
bility or confidence measure. This attribution can be correct or wrong - basically the
same way as human beings can be right or wrong or disagreeing when estimating
the emotions of other human beings. In both cases, some cost function has to be
established - is it costly, or does it not matter at all, whether | attribute the wrong
emotion or the right one? But it is not only an erroneous classification of emotion
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which can cause erroneous results: ASR is not perfect. We do not know yet whether
emotional speech causes more speech recognition errors because it is more difficult
than ‘normal’ speech, or because we simply do not have enough data of this variety
to train an ASR engine successfully [12, 99]. In real-life settings, chances are that a
worse signal-to-noise ratio will deteriorate ASR and by that, emotion classification;
esp. using linguistic features might not yield good recognition performance. If ASR
is erroneous, this will result in erroneous words and erroneous segmentation, so both
acoustic and linguistic features might be computed in a sub-optimal way, resulting
in lower classification performance. The impact of erroneous extraction might not
be too high, cf. [99], but we don’t know yet. Moreover, erroneous ASR is of course
not really helpful for processing the user’s semantic/pragmatic intentions within the
whole system.

ASR normally aims at speaker-independent modelling and recognition; this is
state-of-the art in our field as well. Speaker-dependent processing yields better
recognition performance; we want to point out that even if speaker-independency is,
of course, the ultimate goal, we can imagine applications where speaker-dependent
modelling is possible and makes sense. This will always be the case when the
speaker can be identified and is a frequent user of the system.

The exchange format with other modules within a full end-to-end system is
nowadays normally some XML dialect, cf. Séker et al. in this volume. However,
we do not know yet of any system where really speech and not written language
has been used as input into such a representation and subsequent use within a full
system - apart from the SmartKom system [107] where an implementation of the
OCC model [75] had to be restricted to some few so-called use cases. It could be
shown that the module was functional on a principled basis in the whole end-to-end
system; however, it has to await much more testing and more robust recognition
modules to be functional in any practical application.

In this section we want to point out that even if we solved somehow the prob-
lems we addressed in this chapter, this is not the end of the story because
most of the time, we will have to use ASR output within a ‘real system’ -
and this output inevitably can be erroneous which in turn can cause erroneous
processing of not only emotion attributions.

6 Concluding Remarks

In this chapter, we gave an overview of the state-of-the-art in the automatic recog-
nition of real-life, natural emotional user states, pointing out problems, pitfalls, and
to-do’s and not-to-do’s. We deliberately refrained from comparing classification per-
formance across studies in terms of recognition rates — this cannot be done in a
serious way and would be misleading. We dealt with the full sequence of process-
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ing, from conceptualization to recognition rates, although mostly not in an in-depth
manner. We hope to have introduced almost all of the pertinent topics; the references
can be used for more detailed information.

As for the future of our topic, the pivotal desideratum is databases; a compara-
ble albeit way easier problem that somehow has been ‘solved’ — i.e. a satisfying
recognition performance has been obtained — in recent time is the performance of
automatic dictation systems. Here, the break-through came with the use of training
material larger by some order of magnitude. However, already the basic unit is not
comparable: whereas there can be a fair agreement on what a word is and which
word has been produced, there is neither full agreement on what an emotion is, nor
on the way how to obtain the ground truth, i.e. the types and tokens we want to
recognize. Moreover, the creation of databases is expensive, and progress will be
slow. Even if the field is emerging — which can be seen from the growing number
of contributions to conferences and journal papers — the methodological problem
is that practically always, results cannot be compared across studies because too
many factors are not kept constant. A few studies have begun to addressed different
databases using the same approaches, cf. [101]. Initiatives such as CEICES [19],
combining thoroughly annotated data with the fusion of a plethora of different fea-
ture types, generated at different sites, might be one way of establishing ‘islands of
standardization’, i.e., making comparisons across classifiers and features easier and
more reliable.
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