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ABSTRACT
Various methods s/mz èmtndary dermfon have dee/i /m o/w edand c/fomed h? pez/brm re/fo/dv. Although
the de/ecrfon a /  edits ri/Mmfamenml tu any h n d  of video ana/ysis rince d segments a video inro bs ferric components,
foe s/mzs. on/y Jhv comparante rmTsZ/gafow on eariy sfoor tew iJary dezecrfon a/gorir/ws /w e  öeen /nfoZ/shed.
7>ese investigations mainly concen/ra/e on measuring foe ediz de/ecffon perfonna/zce, however do nor consider r/ze
algorithms' afefory tu e/asri/v r/ze rypes und zu /orare the boundaries o f the edits correctly This paper extends these
comparative investigations. More recent algorithms designed explicitly to detect specific complex editing operations
such as fades and dissolves are taken into account, and their ability to classify the types and locale the boundaries o f
such edits are examined. The algorithms ' performance is measured in terms o f hit rate, number o f  false hits, and miss
rate fo r  hard cuts, fades, and dissolves over a large and diverse set o f  video sequences. The experiments show that
while hard cuts and fades can be detected reliably, dissolves are still an open research issue. The false hit rate for dis*
solves is usually nnaccepraWy high, rang ing /kw  50% «p tu over 400%. Moreover; a // a/gorifonis seem rofad ander
roughly foe same conditions.

Keywords: video content analysis, shot boundary detection, hard cut detection, fade detection, dissolve detection

1 Introduction
The detection of edits is fundamental to any kind of video analysis and video application since it enables segmenta­
tion of a video into its basic components: the shots. Various automatic shot boundary detection algorithms have been
proposed (see [2,7,11,12,13,14,15,16] and the references therein). Usually, their performance was measured only on a
(very) small and limited set of test videos which commonly suggested that the proposed algorithms perform reliably.
Despite the importance of reliable shot boundary detection few comparative investigations have been published [3,5 j.
They assess the performance of early shot boundary detection algorithms with respect to edit detection in general, but
not with respect to their ability to classify correctly the type of edit and its temporal extent.
OUR CONTRIBUTION. This paper extends these comparative investigations in two different respects: On the one hand,
newer algorithms designed explicitly to detect more complex editing operations such as fades and dissolves are taken
into account; on the other hand, besides the algorithms' ability to delect edits as such, also their ability to classify the
types of edits and locate their boundaries are examined. Both aspects distinguish this research from existing publica­
tions [3,5,6].

2 Segmentation Methods
The number of possible edits is quite large. Well-known video editing programs such as Adobe Premiere or Ulead
MediaStudio provide more than 100 different and parameterized types of edits. In practice, however, 99% of all edits
fall into one of the following three categories:

* hard cuts,
® fades, or
* dissolves.

Therefore, in the following, we concentrate on these three types of edits. They capture more than 99.9% of all edits in
our video test set.
Four shot boundary detection algorithms will be investigated: the best and most balanced "older' algorithm based on
color histogram differences [3], the recently proposed algorithm based on the edge change ratio [15], and two algo­
rithms specialized on fades [9] and dissolves [8] exclusively. The matrix in Table 1 summarizes which type of edit is
delected by what algorithm.
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Table 1 : Matrix showing which type of edit is detected by what algorithm

Feature \ Type of Edit Hard Cuts Fades Dissolve

Color Histogram Differences X

Edge Change Ratio % X X

Standard Deviation of Pixel Intensities X

Contrast X

2.1 Color Histogram Differences
The color histogram-based shot boundary detection algorithm is one of the most reliable variants of histogram-based
detection algorithms. Its basic idea is that the color content does not change rapidly within but across shots. Thus,
hard cuts and other short-lasting transitions can be detected as single peaks in the time series of the differences
between color histograms of contiguous frames or of frames a certain distance k apart.
Let p /r , g, b) be the number of pixels of color (r,g,b) in frame /,• of N  pixels. Each color component is discretized to
2s  different values, resulting in r. g, b e [0 ,1B -  1]. Usually B is set to 2 or 3 in order to reduce sensitivity to noise and
slight light, object as well as view changes. Then, the color histogram difference CHDj between two color frame
and Z( is given by

I 2 - !  2 -1  2 -1
=  F  S  S  X

/>-0
(1.1)

A hard cut is detected if within a local environment of radius le of frame only C/JDl exceeds a certain threshold,
henceforth called 8f . Note that instead of using a global threshold, one may also use a local threshold as presented in
[13]. This option, however, was not considered our work. In order to cope with a very particular type of hard cut
which consists of one transitional frame, in a pre-processing stage double peaks (i.e. groups of 5C = 2 contiguous
CHDj exceeding ) were modified into single peaks at the higher CHDi .
Table 2 summarizes the parameters of the hard cut detection algorithm based on color histogram differences.

Table 2: Parameters ot the hard cut detection algorithm based on color histogram differences

Parameter Description

Threshold for cut detection
Maximal sequence length of contiguous CHD values exceeding which are transformed into a
single peak to enable hard cut detection

2.2 Edge Change Ratio
Hie edge change ratio (E Œ ) is defined as follows. Let be the number of edge pixels in frame n, X“  and
number of entering and exiting edge pixels in frames n and n-1, respectively. Then

£C7?„ = <L 2 >

gives the edge change ratio ECRn between frames n-1 and n. It ranges from 0 to 1. The edges are calculated by the
Canny edge detector [4]. In order to make the measure robust against small object motions, edge pixels in one image
which have edge pixels nearby in the other image (e.g. within 6 pixels’ distance) are not regarded as entering or exit­
ing edge pixels. Moreover, before calculation of the ECR a global motion compensation based on the Hausdorff dis­
tance is performed [15],
According to Zabih et. al. hard cuts, fades, dissolves and wipes exhibit a characteristic pattern in the ECR time series.
Hard cuts are recognized as isolated peaks; during fade-ins/fade-outs the number of incoming/outgoing edges pre­
dominates [15]; and during a dissolve, initially the outgoing edges of the first shot protrude before the incoming
edges of the second shot start to dominate the second half of a dissolve (see Figure 1).
In the following, many details of the detection algorithm are mentioned which were omitted in the original work [15].
They were extracted by a thorough analysis of the freely available implementation.
In a pre-processing step the ECR time series was smoothed by means of a gliding mean value of radius r, which, how­
ever, was computed only for those points in the ECR time series which exceeded the threshold sumregm in . All other
points were set to zero. Moreover, an ECR > I was assigned to the first and last frames in a monochrome frame
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sequence. This new ECR time series is called . Next, the local maxima were determined for this new time'
series. They were defined as the largest value within a radius 5. These local maxima were taken as the centers of edits
and expanded in each direction until the EC/? dropped below threshold or the maximal duration transradm ax of
edits was reached. Each edit was classified by the following rules:

• Isolated maxima are classified as hard cuts. Isolation is tested by means of the quotient
E C R /E C R im r„a for which it is required to exceed threshold .

• Start and Stop points of fades are identifies by local maxima of ECR > 1. By evaluation of ECR and
ECRo u t a fade-in is distinguished from a fade-out.

• All other maxima are automatically recognized as dissolves or wipes. Both edits are distinguished from
each other by looking at the spatial distribution of the ECR. If the change of edges is initially concen­
trated in one frame half and moves than on to the other frame half, a wipe is detected.

The parameters of this edit detection algorithm are summarized in Table 3.

Parameter Description

r Radius of the gliding mean value for smoothing
s u m r e &rnin Threshold for ECR values, in order to be smoothed and not set to 0
s Radius for determination of local maximum

Threshold for ECR values, which are considered to be part of an edit
transradmma„xr Half of the maximal allowed duration of edits
9 c Threshold for hard cut detection

Table 3: Parameters of the edit detection algorithm based on the edge change ratio

We have since recognized some drawbacks to the original implementation which are listed in the following. We also
present how they can be overcome:

• Abruptly entering and exiting lines of text are clearly visible within the ECR time series. Though these
peaks are not as high as those of hard cuts, they may result in false hits. These false hits can be elimi­
nated by looking at both ECR,n  and ECRo u t instead of only at ECR. For hard cuts both values should
exhibit the peak, while for entering and existing lines of text this should only be the case for either
ECR,n  or ECR0 * '. Exceptions to this are hard cuts from and to monochrome frames.
Therefore, the classification of hard cuts must be extended by the following rule: Either ECR,tt and
ECRo u t exhibit an isolated maximum or if only one of them does then ECR,n lECRo u t should be 0 and
the subsequent/preceding frame monochrome.

• In principle all fades are recognized. Unfortunately, all hard cuts from monochrome frames are also
classified as such. This misclassification is caused by marking the border frames of monochrome frame
sequences as ECR > 1. The contiguous ECR value is always 1, independently of whether a fade or a
hard cut follows. From an edge-free frame to a frame with edges the ratio of in entering edges is always
1. Thus, the quotient ECR/ECR su m reg  of the local maximum is about 0.5, for both hard cuts and fades.
Depending on 6C , all these cases are consequently classified as hard cuts or fades.
This misclassification can be resolved by not marking the borders to/from monochrome frame
sequences as ECR > 1 but by applying a special processing to them: In the direction of the potential
fade, it is checked whether several frames have an ECR above 0C . If this is the case, a fade is detected,
otherwise, a hard cut.

(a) Hard cuts (b) Fades

Figure 1 : Typical ECR patterns for hard cuts, fades and dissolves

(c) Dissolves
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• If strong motion immediately before or after a hard cut cannot be compensated by the global motion
compensation, the strength of the local maximum is usually not sufficient to be judged as a hard cut.
Instead, the edit is classified as a dissolve. We have no solution to that problem.

Figure 2: Characteristic pattern of the stan­
dard deviation of pixel intensities
during a fade-in and fade-out.

During video production fades are produced by a monotone and
usually linear scaling of the pixel intensities over time. This inten­
sity scaling is clearly visible in the time series of the standard devi­
ation of pixel intensities as depicted in Figure 2. Its precise pattern
can be theoretically derived as follows:
Recall that a fade out E(x, y, r) of length d' from shot j starting
at time t ~ * 1 can be modeled by [7]

= j ( l - 1 /< /) 2 • p(52.  ^ x ,y, t + 4"1) ) - ( d -  t /d 1)2 ■ H2 (S,_ J(x, y, t + 4"1))) (1.6)

= (1 -  t/< 6 ■ j (x, y, t + 4 ’ 1 )) -  H2(S, _ ,U  y, t + te‘- 1 )) (1.7)

Under the reasonable assumption that the average frame intensity does not change significantly from frame to frame
within shots, the second multiplicand in (1.7) can be regarded as roughly constant over a short period of time. Hence,
the intensity scaling is directly displayed in the standard deviation of the pixel intensities. The scaling function used
during video production (here 1 -  t/d; ) and the standard deviation of the pixel intensities are identical except for a
constant factor.
Based on this characteristic pattern of fades in the standard deviation of pixel intensities a simple fade detector [8,9]
can be constructed as follows:

1. Search for all monochrome frame sequences R = {Äp  *n  v >deo. A sequence R( of monochrome
frames is identified by a sequence of frames whose standard deviation of pixel intensities is below am a x .

2. For each range = {fa, of monochrome frames do
2.1. // Search for fade in

2.1.1. Set n = 2 and calculate the line of regression over {o(/e ) , ..., a ( 4 + „)}
2.1.2. Increment n and re-compute the line of regression.
2.1.3. If the correlation decreases by more than 3% or the slope is more than halved

then if the minimum fade length lm in  is not reached go to 2.2, else go to 2.1.2
else add further points if they vary not more than 25% around the line of regression.

2.1.4. The sequence F,- = {fe, . . . , / e + „} is finally classified as a fade-in if the line of regression
has at least a correlation of pm in and a slope ym in  .

2.2. // Search for fade out
2.2.1. Set n = 2 and calculate the line of regression over {o(fa _ n ) , ..., o(fa )}
2.2.2. Increment n and re-compute the line of regression.
2.2.3. If the correlation decreases by more than 3% or the slope is more than halved

then if the minimum fade length lm in is not reached go to 2, else go to 2.2.2
else add further points if  they vary by not more than 25% around the line of regression.

2.2.4. The sequence Ft = is finally classified as a fade-out if the line of regres­
sion has at least a correlation of pm jn and a slope ym /n .

E(x,y,t) = Sj . | (x,y,t + i‘' 1) ' ( l - l / d i ) , / 6  [0 ,? ] (1.3)

Substituting the right side of equation (1.3) by X and denoting the
expectation value operator of the pixel intensities of a frame by p ,
the following conversions can be performed:

o(E(x, y, 0 )  = G(X) = 7 m(X2 )-J12 (X) (1-4)

After back-substituting X by the right side of (1.3), it follows

= , (x, y, r + 4 ’ 1 ) • ( 1 - 1/4')2 ) -  p.2(S' _, (x, y, / + 4 ’ 1 ) • ( 1 -  t /d 1)) (1.5)
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Figure 3: Staircase-like pattern of the stan-
dard deviation of pixel intensities
during fades in TV spots.

This algorithm detects also a very special type of fade which we
observed during TV spots in our experiments: Instead of the scal­
ing factor is having been adjusted for every frame, it had been
altered only every second frame. This resulted in a staircase-like
pattem such as shown in Figure 3.
To reduce possible false hits, the actual algorithm calculates the
standard deviation individually for each of the three RGB color
channel. The same characteristic pattern holds for each of them
since the intensity can be viewed as a linear combination of the
RGB pixel values ( X = 0, 2125R + 0, 7154G * Ô.O721B ). Note,
however, that unlike all other requirements, the slope requirement
should only be applied to the color channel with the steepest
slope.
The parameters of the fade detection algorithm are summarized in
Table 4.

Table 4: Parameters of the fade detection algorithm based on the standard deviation of pixel intensities.

Parameter Description

minimum length of main linear segment

Pwirt minimum corrélation
minimum slope of the steepest linear segment
maximum standard deviation at the end of a fade-out or at the beginning of fade-in.

2,4 Edge-based Contrast
Dissolves are produced by fading out the outgoing
and fading in the incoming shot. Two types of dis­
solves are common: the cross-dissolve and the addi­
tive dissolve [1R Their respective scaling functions
for incoming and outgoing shots are shown in Figure
4. Independent of the type of scaling function a spec­
tator observes a loss of contrast and sharpness of the
images during a dissolve that generally reaches its
maximum in the middle of the dissolve. Hence, the
basic idea of the subsequently defined edge-based
contrast feature is to capture and emphasize the loss in
contrast and/or sharpness to enable dissolve detection.
The edge-based contrast feature captures and ampli­
fies the relation between stronger and weaker edges.
Given the edge map ,<(x, y? r) of frame (we use the
Canny edge detector [4]J and a lower threshold value
the strengths of strong and weak edge points are summed up by

Cross-Dissolve Additive Dissolve

H  intensity scaling function of the outgoing shot

intensity scaling function of the incoming shot

Figure 4: Typical intensity scaling function applied to
produce dissolves

for weak and a higher threshold value fo for strong edges,

with

WK (x,y) « I  V «H- ^ ( A .y ) < 8 ,  a n d  v )  =  I f e y )  if  e ^ f e ,  v)

I 0 e/se I 0 eDe

(1.8)

(1.9)

Then, the following formula defines the edge-èaserf co n tra t (EC)

EC(K) = 1 + 4  . ECU') e [0.2]
s(K) + w(K) + r  ' 1 '

It possesses the following features:
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* If an image lacks strong edges, the EC is 0. Examples are night scenes of little contrast and monochrome frames.
• If the number of weak edges clearly exceeds the number of strong edges, the EC  lies between 0 and 1.
* If the number of weak edges is roughly equivalent to the number of strong edges, the EC  is about 1.
• If the number of strong edges clearly exceeds the number of weak edges, the EC  lies between 1 and 2.
• If the image contains only strong edges, the EC approaches 2.
Note, that the EC is only little affected by slow local or global motion. However, rapid motion may influence it in a
manner similarly to that of a dissolve, since edges get blurred.
Figure 5 depicts some examples of how dissolves temporally influence (he EC. It can easily be recognized that a dis­
solve coincidences with places of distinct local minima, surrounded by steep flanks. The boundaries of a dissolve
occur in company with the abrupt end of the steep flanks. This characteristic EC pattern of dissolves can be qualita-

Figure 5: Some examples of how dissolves temporally influence the EC

lively explained for cross-dissolves as follows: Commonly the content within a shot changes only gradually from
frame to frame, as does the EC. Consequently, the graph forms a plateau or an easy rise/descent During a dissolve,
however, the outgoing shot loses its contrast, leading to a reduction of the sum of the strength of strong edges in favor
of the sum of the strength of weak edges. As a result, the EC  decreases rapidly, reaching its minimum in the middle of
a dissolve, where the strong edges of the outgoing shot arc basically gone and the edges of the incoming shot are still
weak. From that point on, the incoming shot gains in contrast. The sum of the strength of strong edges increases to the
disadvantage of the sum of the strength of weak edges. Consequently, the EC increases rapidly.
The characteristic dissolve patterns in the graph of the EC  can be identified as follows:

Remove all small fluctuations by means of a median filter of size m. Fluctuations may be caused by slight
local and/or global motion. In order to preserve the local minima (i.e. the center of a dissolve) and steep
rims (i.e. the borders of a dissolve) apply the median filter only to those EC; values in the graph where
none of the following conditions are true:

* X £C'i ” EC< / or ”  P  X  + /- -  EC; + j „ J ) ■

2. Calculate the relative change gt from EC, to EC, + ( J .  e. g,- = ( EÇ + ä >/( EC; + e ) .
3. Find all local minima. Local minima are identified as points in the EC  time series of the properties

g,-> I.ye {/+ 1....... i + m} and l /g ? > I,J e  fi-w. .... i - 1}.
4. For each local minimum at frame /do:

295



4.1. // Determine left boundary:
4.1.1. Start at the local minimum, i.e. set I = i

4.1.2. While ( £  1 / g ^  > ) / -
j  = i

4.1.3. While ( 1/ g ? _ A. > 0S ) / —
4.1.4. Calculate the line of regression through { E C ^ , .... E C J . If (c o rre la tio n  then

discard the candidate dissolve and continue loop, i.e. select next local minimum and go
to 4.1, otherwise decrement I until ECZ deviates more than ±25% from the line of
regression or the correlation decreases.

4.2. Determine right boundary correspondingly. Let the right boundary be at frame r + k
4.3. If max{EC/ _4 -E C j,EC r + 1 . ” EC!.}>S and ( r  + 2 k - l ± ' l ) > d i s s l e n m j n  and if the frame

sequence { f ^ * ,  . . . J ' r + k } contains no fade, then the frame sequence represents a
candidate dissolve.

4.4. Experiments show, that for some, especially long lasting dissolves several nearby candidate dis­
solves may be found. Therefore, all candidate dissolves whose local distance is within a radius
of d h s le n m in  are integrated into one solution by choosing the longest candidate dissolve with
the highest correlation.

Table 5 summarized the parameters of the dissolve detection algorithm.

Table 5: Parameters of the dissolve detection algorithm based on the edge-based contrast feature.

Parameter. Description

m Size of median filter.

e*. e« Thresholds for determination of dissolve boundaries

Pm in Required minimal correlation for left-hand and right-hand flank around the dissolve center
8 Required minimal EC difference between the left/right borders and the center of a dissolve.

Required minimal length of a dissolve

Note that in some video genres such as commercials or music clips of love songs dissolves may occur in rapid succes­
sion. It therefore may happen that their determined boundaries overlap slightly.

3 Quality of Detection

3.1 Comparison Procedure
Given the total number of edits, their locations and types, the performance of the different algorithms are measured
by three basic numbers:

• hit rate h which is the ratio of correctly detected shot boundaries to its actual number
• miss rate m  which is the ratio of missed shot boundaries to the actual number of shot boundaries, i.e.

1.0  - h
» false hits f  which is the ratio of falsely detected shot boundaries to the actual number of shot bound­

aries

The assignment of detected hard cuts to one of these three cases is simple, since a hard cut does not have any duration
and thus occurs at an unambiguous time. However, this is not true of fades and dissolves. They also have an extent.
Since the main concern of any shot detection algorithm is to detect either edits in general or a certain type of edit, we
decided to count each detected edit as a hit if it temporally overlapped with an actual edit of that type. Multiple detec­
tions of the same edit were counted only once.
The hit and false hit rate of each algorithm is influenced by the setting of its parameters. Therefore, we will show how
the performance will change with the parameters and what good values are. For each algorithm we will also note
qualitatively how well the extent of the edits was determined.

3.2 Video Test Set
The shot boundary detection algorithms were applied to four videos with diverse features (see Table 6). The videos
were digitized at 25 fps in M-JPEG at a resolution of 360x270 and a compression of 1:15. A human observer deter­
mined for each video the precise locations and duration of the edits.
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The first video, named “Dissolves”, was selected especially for the measurement of the dissolve detection perfor­
mance. It therefore consists of 276 dissolves lasting from only 0.16 sec. (4 frames) up to over 5 sec. (>100 frames).
The first third was digitized from a live concert called “Night of the Proms *97” showing artists on stage, lighted by
headlights. This sequence is somewhat tricky given its dark background and the rapid lighting changes. The last two
thirds of that sequence were captured from TV commercials. In contrast to it, “Groundhog Day” is a very calm fea­
ture film. Its average duration of shots is much longer, and it exhibits some distinct camera operations. “Heute” is rep­
resentative of a typical newscast. Anchor person and reports are shown in turn. Within this video sample there exist
some spatially restricted edits. They were not classified as edits in our work. The final video sample contains one epi­
sode of “Baywatch”. It was recorded together with its commercials.

Table 6: The test video set.

Video Dissolves I Groundhog Day Heute (Newscast) Baywatch. £

duration (hh:mm) 00:17 01:34 00:11 00:51 02:53
# of cuts 140 773 78 976 1896
# of fades 12 7 1 19 39
# of dissolves 276 6 2 101 385
total # of shots 429 787 82 1097 2395
0  shot duration 2.36 7.19 7.56 2.77

3.3 Experimental Results

3.3.1 Color Histogram Differences
This hard cut detection algorithm is controlled by 3 parameters. The most important one is 8f . Its effects on hit, false
hit and miss rates at l t . = 5 and s£. = 2 are shown in Figure 6 for the four video sequences. False hits and misses are
mainly caused by action scenes and a several artistic edits. Figure 6 also shows a common problem. There is no glo­
bal threshold that gives best results for all types of videos. A local threshold such as that proposed in [13] may resolve
that problem.

3.3.2 Edge Change Ratio
Many parameters of this algorithm have to be chosen properly. In general, the following statements are true:
* The hit rate and the number of false hits decreases for hard cuts and increases for dissolves with increasing r.
• A high value of s u m r e g res ; lowers the hit and false hit rates since it reduces tire number of maxima found, Le. the

number of possible edit locations.
• A larger radius s for isolated local peaks reduces the hit and false hit rates.
• A higher threshold 6W also reduces the hit and false hit rates since some dissolves will fall short of the required

minimum length.
• An increase in 6C results in a shift from hard cuts to dissolves.
• The parameter t r a n s r a d m a i . helps to suppress long-lasting and thus difficult-to-detect edits. The higher its value,

the lower the false hit rate,
The following parameter setting yields the best experimental results (see Table 7)

Parameter r s eA* ec

Value 4 0.05 10 0.01 20 0.4

Table 7: Performance of the edge change ratio in detecting various edit types.

Video
Hard Cuts L,„ JBadesG u; Dissolves

h it rate false hits h it rate false hits h it rate . false hits

Dissolves 90.00% 17.86% 0.00% 27.27% 71.74% 48.91%
Groundhog Day 97.41% 13.71% 100.00% 657.14% 66.67% 37100.00%

Heute 9L03% 12.82% 0.00% iöo.Ö6% 0.00% 5500.00%
Bay watch 69.36% 9.32% 47.37% 526.32% 66.34%. 707.92%
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(a) Groundhog Day (b) Heure

(c) Bay watch (d) Dissolves

Figure 6: Performance of hard cut detection with color histogram differences in dependence of threshold
at /c = 5 and = 2

Some results are striking. Firstly, hard cut detection based on the edge change ratio does not outperform that based on
the color histogram differences, although the computational burden is much greater. For “Baywatch” it is even signif­
icantly lower. Also, the fade detection performs much worse than fade detection based on the standard deviation of
pixel intensities. Cuts from or to black frames were often misclassified as fades. Even more disappointing are the
results for dissolves. The false hit rate was so high that the algorithm can only be classified as “not useful” for this
task. Many dissolves did not show the characteristic behavior described by Zabih et.al. in the ECR time, series. This is
especially true for long dissolves in which the ECR change is so slight that it is hidden by noise. Despite the global
motion compensation it was nonetheless very sensitive to motion.
The algorithm cannot be used to determine the boundaries of fades and dissolves. At the borders of dissolves, the
ECR virtually fails to respond at all. The same is true for the left and right borders of a fade-out and fade-in, respec­
tively.

3,3.3 Standard Deviation of Pixel Intensities
The performance of the fade detector was always very high. On average, the parameter combination pmj/! = 0.9,
ym in  ~ ° '5 ’ ~ and lm in  = 10 yielded the best balanced performance (see Table 8). The hit rate varied between
83.3% and 100%, while there were 0 false hits for “Dissolves” and “Heute”. Ilie  false hit rates of 85% for “Ground­
hog Day” and 68.42% for “Baywatch” seem to suggest that the detector has difficulties with feature films and action
series, but this is not true. Instead, the false hit rate documents that various artistic edits have been used which are not
fades in the strict sense, though they have the same effect. In one example, the camera zooms in rapidly to an open,
but dark mouth. In another example, the camera was part of a fight between two people, and the video swiveled from
the clothing to the monochrome sand of the beach.
In most cases the fade detector was also able to determine the boundaries of a fade to within about ±1 frames towards
the fade’s monochrome frames and to within ±2 frames towards the fade's other boundary.
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Table 8: Performance of the fade detector using the standard deviation of pixel intensities.

035 /1 ,0 /10 /10 0.90/0,5/10/10 0,90/0,5/15/10

Video : » ç " false hits hits J i false hits hits false lifts
Dissolves 75.00% 8.33% 83.33% 0.00% 100.00% 0.00%
Groundhog Day 85.71% 57.14% 100.00% 85.71% 100.00% 242.86%
Heute 100.00% 0.00% 100.00% 0.00% 100.00% 0.00%
Baywatuh 94.74% 36.84% 94.74% 68.42% 94.74% 231.58%

3.3.4 Contrast Change

There is great diversity in the duration of dissolves. Some last only a fraction of a second, others last up to 5 seconds.
The required minimum duration of dissolves d/rr/en„ ;„ therefore orients itself to the shortest dissolves occurring in
our test videos in order not to lower the hit rate from the outset. It was set to 4 frames at 25 fps. The required correla­
tion p?m,. of a dissolve's flanks was determined experimentally to be between 0.85 and 0.9.
The parameters k, 0À and 0n have the strongest influence on the number and width of found dissolves. Setting k and

loo low will result in a high false hit rate; setting them too high, in particular the irregular dissolves will be lost.
Good results were achieved with k -  5 and BÄ. ~ 0.015 . 0n determines the final extension of the dissolves. We used
0  ̂ -  0.0075 in the experiments.
Parameter S has the deepest impact on the hit and false hit rates as shewn in Figure 7. The false hits decrease drasti­
cally with the increase of 6 .
The results of dissolve detection are shown in the second column of Table 9. The hit rate ranges from 73.3% to 100%
for "Dissolves'\ "Heule" and "Baywatch". Only "Groundhog Day" shows a very low hit rate of 16.67%. However,
the dissolves in "Groundhog Day" are not representative. For instance, the first dissolve blends from a cloudy sky
into another cloudy sky. Even the author did not recognize the dissolve the first time!

Figure 7: Dependence of the hit/false hit rates of dis­
solve detection from 6 (video-“ Dissolves”,
Æsx/en „ - 4 ,  pn^ 0 . 8 5 , fc5, 0,-0,015 and
e„ = 0.0075)

Figure 8: Text occurrences and their effects on the EC.

Not all dissolves exhibit such a characteristic pattern as in the illustration in Figure 5. There arc numerous situations
which degrade the characteristic pattern, such as very long dissolves. Furthermore, there are also effects which can
result in a similar EC pattern. One example is the superimposition of text (see Figure 8). Several steep flanks caused
by the fading in and out of the actors' names in the opening sequence of “Groundhog Day” are clearly visible. The
higher EC values belong to frames with text, the lower to text-free frames. At the transition the text is smoothly faded
inland out. If the fade-out of the previous actor’s name is followed immediately by the fade-in of the next actor’s
name, the EC pattern is identical to that of a dissolve and can only be ruled out by the proper choice of S

299



Enhancements
The main problem encountered by any dissolve detection method is that there exist many other events that may show
the same pattern in the feature graph. One way to reduce the false hits is to check for every candidate dissolve
whether its boundary frames still qualify for a hard cut after removal of the candidate dissolve. Table 9 summarizes
the results for various 0£. . It demonstrates clearly that this scheme drastically reduces the false hits, while the hit rate
decreases only slightly. With 6e  = 1.6 the false hits for “Groundhog Day” are reduced from 8500% to 400%, those
for “Heute” from 1150% to 150%, those for “Baywatch” from 558% to 182% and those for “Dissolves” from 35% to
10%. Note that at 0r  = 0.8 the contrast feature always with the exception of “Groundhog Day” shows a higher hit
rate at a much lower rate of false hits than does the ECR feature (see Table 9).

Table 9: Performance of dissolve detection at d is s le n .  = 4 , p . = 0.85 , k -  5, 0, = 0.015,6,. = 0.005, 8 = 0.1.
i  f l  * m H »  ' .& t i

test video
e, = 0 e„ = 0.8 0C = 1.6 ECR

bits false hits hits false hits hits false hits hits false hits

Dissolves % 81.5 34.8 77.90 20.3 56.2 10.2 71.7 48.9
# 255 96 215 56 155 28 198 135

Groundhog Dav % 16.7 8500 16.67 3100 16.7 400 66.7 37100
# 1 255 1 93 1 24 4 1113

Heute % 100 1150 100 700 100.0 150 0.0 5500
# 2 23 2 14 2 3 0 110

Bay watch % 73.3 558.4 71.3 313.9 54.5 182.2 66.4 707.9
# 74 564 72 317 55 184 67 715

4 Conclusion and Future Research Direction
The performance of various existing shot detection algorithms was tested on a diverse set of video sequences. The
evaluation focused on the detection, localization and recognition of the three most important types of edits. It turned
out that the performance of the universal shot detection boundary algorithm based on the edge change ratio cannot
justify the great computational burden. Its performance was always inferior to that of the specialized shot boundary
detectors based on color histogram differences, standard deviation of pixel intensities and edge-based contrast.
The recognition of hard cuts was very reliable in most cases. Hit rates of 95% at 5%> false hits are attainable. In
essence, the false hits are caused by dark or very dynamic scenes with strong object motion, blasts or fast camera
pans. Fade recognition not only worked extremely reliably but also very precisely. False hits were mostly caused by
artistic, fade-like edits. The performance of the dissolve detectors is more or less dissatisfying. Hit rates of 80% at a
false hit rate of 20% were achieved for the test video “Dissolves”, however, in real videos with only few dissolves,
these percentages are not attainable. Normally, the number of false hits exceeds the number of actual dissolves by far.
All detection algorithms are influenced negatively by global and local motion in the video. Therefore, future
approaches should concentrate particularly on identification of local and global motion. Several research groups have,
proposed use of the audio information to enhance shot boundary detection. In our experience, this will help only in
very specific domains such video conferences. Doubtless, a “perfect” shot boundary detection algorithm will only be
feasible once the video contents are understood better by computers.
The code for running the various shot boundary detection algorithms can be downloaded via ftp from the host
ftp.informatik.uni-mannheim.de or via WWW at http://www.informatik.uni-mannheim.de/~lienhart/MoCA/,
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