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ABSTRACT

Recently Viola et al. [5] have introduced a rapid object detection.

scheme based on a boosted cascade of simple feature classiflers. In
this paper we introduce a novel set of rotated haar-like features.
These novel features significantly enrich the simple features of [5]
and can also be calculated efficiently. With these new rofated
features our sample face detector shows off on average a 10% lower
false alarm rate at a given hit rate. We also present a2 novel post
optimization procedure for a given boosted cascade improving on
average the false alarm rate further by 12.5%.

1 Introduction

Recently Viola et al. have proposed a multi-stage classification
procedure that reduces the processing time substantially while
achieving almost the same accuracy as compared to a much slower
and more complex single stage classifier [5]. This paper extends
their rapid object detection framework in two important ways:
Firstly, their basic and over-complete set of haar-like feature is
extended by an efficlent set of 45° rotated features, which add
additional domain-knowledge to the learning framework and which
is otherwise hard to learn. These novel features can be computed
rapidly at all scales in constant time, Secondly, we derive anew post-
optimization procedure for a given boosted classifier that improves
its performance significantly.

2 Features

The main purpose of using features instead of raw pixel values as the
input to a learning algorithm is to reducefincrease the in-class/out-
of-class variability compared ta the raw input data, and thus making
classification easier. Features usually encode knowledge about the
domain, which is difficult to tearn from a raw finite set of input data.

The complexity of feature evaluation is also a very important aspect
since almost all object detection algorithms slide a fixed-size
window at all scales over the input image. As we will see, our
features can be computed at any position and any scale in the same
constant time. Only 8 table lookups are needed.

2.1 Feature Pool

Our feature pool was inspired by the over-complete haar-like
features used by Papageorgiou et al. in [4,3] and their very fast
computation scheme proposed by Viola et 2l in [5], and is a
generalization of their work. )

Let us assume that the basic unit for testing for presence of an object
is a window of WxH pixels. Also assume that we have a very fast
way of camputing the sum of pixels of any upright and 45° rotated
rectangle inside the window. A rectangle is specified by the tuple
r={xy,who) with 0SxxerwsW, 0SSy peisH, xy20, w0,
and e {0°,45°} and its pixel sum is denoted by RecSum{r). Two
examples of such rectangles are given in Figure 1.

Qur raw feature set is then the set of all possible features of the form

feature= Y,
i€ I={1,...,N}

where the weights @g R, the rectangles r;, and Nare arbitrarily

Wy RecSum(r)) .
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Fig. 1. Exampie of an upright and 45° rotated reangie.

upright rectangle

chosen.

This raw feature set is {almost) infinitely large. For practical reasons,
it is reduced as follows:

1. Only weighted combinations of pixel sums of two rectangles are
considered {i.e.. N=2).

2. The weights have opposite signs, and are used to compensate for
the difference in area size between the two rectangles. Thus, for
non-overlapping rectangles we have
~Wy-Area(ry)=w,-Area(r)) . Without restrictions we can set
wp=~1 and get w,=Area(rg)/Area(r;) .

3. The features mimic haar-like features and early features of the
human visual pathway such as center-surround and directional
responses.

These restrictions lead us to the 14 feature prototypes shown in
Figure 2:

« Four edge features,

* Eight line features, and

* Two center-surround features.

These prototypes are scaled independently in vertical and horizontal
direction in order to generate a rich, over complete set of features.
Note that the line features can be calculated by two rectangles only.
Hereto it is assumed that the first rectangle ry encompasses the
black and white rectangle and the second rectangle r; represents the
black area. For instance, line feature {2a) with total height of 2 and
width of 6 at the top left corner (5,3) can be written as

featurey=-1- RecSum(3,3,6,2,0°)+3. RecSum(7,3,2,2,0°) .

Only features (1a). (Ib), (2a), (2} and (4a) of Figure 2 have been
used by [3.4.5]. In our experiments the additional features
significantly enhanced the expressional power of the learning
system and consequently improved the performance of the object
detection system. Feature {4a} was not used since it is well
approximated by feature (2g) and (2e).

NUMBER OF FEATURES. The number of features derived from each
prototype is quite large and differs from prototype to prototype and
can be calculated as follows, Let X={ Ww| and Y={ H/h] be the
maximum scaling factors in xand y direction. A upright feature of
size wxh then generates



1. Edge features
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3. Center-surround features
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Fig. 2. Feature prototypes of simple haar-ike and certer-surmound
features. Black areas have negative and white areas posiive
weights.
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features for an image of size WxH, while a 45° rotated feature
generates

XYv(W{» 1—22%i (H+l —z%) with z=w+4.

Table 1 lists the number of features for a window size of 24x24.
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Table 1: Number of features inside of a 24x24 window for
each prototype.
2.2 Fast Feature Computation

All our features can be computed very fast in constant time for any
size by means of two auxiliary images, For upright rectangles the
auxiliary image is the Sumnmed Area Table SAT(xy) . SAT x5 is
defined as the sum of the pixels of the upright rectangle ranging
from the top left corner at {0,0) to the bottom right comer at {x,3}
(see Figure 3a) [5]:

SATxp= 3, K4y).
¥ExySy

It can be calculated with ane pass over all pixels from left (o right
and top to bottom by means of

SATIx, yy=SAT % y-1)+ SAT - 1,3)+ Kx, )~ SAT x-1,y~1)
with
SAT-1,)=SATlx-1)=0
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Fig. 3. (8) Upright Summed Area Table (SAT) and (b) Rotated
Surrmed Area Table (RSAT); calculation scheme of
the pixel sum of upright {c) and rotated {d) rectangles.

From this the pixel sum of any upright reclangle 7=(x,y,w; 4,0} can
be determined by four table lookups {see also Figure 3{c):

RecSum(ry=SATx-1,y-13+ SAT x+ w1, p+ 5-1)
~SAT -1,y A- 13- SA T x4 w-1,y- 1)
This insight was first published in [5].

For 45° rotated rectangles the auxiliary image is defined as the
Rotated Summed Area Table RSAT(x,y) . It gives the sum of the
pixels of the rectangie rotated by 45° with the right most corner at
{x.) and extending till the boundaries of the image (see Figure 3b):

RSATx,y)= 3 4,5 .
XExXsx-y-y

It can be calculated with two passes over all pixels. The first pass
from left to right and top to bottom determines

RSATx, )= RSAT(x-1,y- 1)+ RSAT x-1, )+ K2, y)~RSAT x-2,y- 1)
with
RSAT(-1,1)= RSAT(-2,5)=RSATtx,-1) =0,

whereas the second pass from the right to left and bottom to top
calculates

RSAT(x, 3= RSAR x5+ RSAR a1, y+ 1 )-RSAT(x-2, %)

From this the pixel sum of any rotated rectangle r=(xy, w;1,45%)
can be determined by four table Tookups (see also Figure 3{d) and
Figure 4):
RecSum(ry= RSAT x+w,y+ Wi+ RSAT x-h,y+ B}
~RSAT(x, )~ RSAT x+ w—b,yr we B}

2.3 Fast Lighting Correction

The special properties of the haar-like features also enable fast
contrast stretching of the form

?(x,y)=g£2%:£’, ce R,

1 can easily be determined by means of SAT(x.y). Computing o,
however, involves the sum of squared pixels. It can easily be
derived by lc!alculating a second set of SAT and RSAT auxiliary
images for I'(x,y}. Then, calculating ¢ for any window requires
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Fig. 4. Calculation scheme for rotated areas.

only 4 additional table lookups. In our experiments ¢ was set to 2.
3 Cascade of Classifiers

A cascade of classifiers is a degenerated decision tree where at each
stage a classifier is trained to detect almost all objects of interest
(frontal faces in our example] while rejecting a certain fraction of
the non-object patterns [5] (see Figure 5). For instance, in our case
each stage was trained to eliminated 50% of the non-face patterns
while falsely eliminating only 0.2% of the frontal face patterns; 13
stages were trained. Assuming that our test set is representative for

the Jearning task, we can expect a f{alse alarm rate about
0.5""=1.2¢~-04 and a hit rate about 0.998 "=0.97 .

stagel 2 3 .. N
hitrate= 1"
h
1-

3
h h h h
I 1-f l i-f x 1-f l £ falsealarms=f"

input pattern classified as a non-object

Fig. 5. Cascade of dassfiers with N stages. Ateach stage a classifier
is frained to achieve a ht rate of h1 and a false alarm rate of £,

Fach stage was trained using the Discrete AdaBoost algorithm [1].
Discrete Adaboost is a powerful machine learning algorithm. [t can
learn a strong classifier based on a {large) set of weak classifiers by
re-weighting the training samples. Weak classifiers are only
required to be slightly better than chance. Our set of weak
classifiers are all classifiers which use one feature from our feature
pool in combination with a simple binary thresholding decision. At
each round of boosting, the feature-based classifier is added that
best classifies the weighted training samples. With increasing stage
number the number of weak classifiers, which are needed to achieve
the desired false alarm rate at the given hit rate, increases {for more
detait see [5]).

4 Stage Post-Optimization
Given a discrete AdaBoost stage classifier
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we can easily construct a non-optimal ROC (Receiver Operating
Characteristic) by smoothly varying offset b {ses Figure 5). While
this stage classifiers is designed to yield a low etror rate {misses +
false alarms) on the training data, it in general performs unfavorable
for b0, specially in our case where we want to achieve a miss rate
close to zero.

However, any given stage classifier can be post-optimized for a
given hit rate. The free parameters are the ¢, s, while the &, ‘s must
be chosen according to the AdaBoost loss function to preserve the
properties of AdaBoost. We use the iterative procedure shown in
Figure 7 for optimization, where step 4.2.1. is implemented In a
gradient decent-like manner: Starting with the original t, value,
is first slowly increased then decreased as long as the performance
does not degrade. A true gadiem decent cannot be implemented
since c{x) is not continuos®.
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Fig. 6. Comparison of the ROCs of a discrete Adaboost classifier
with 11 features at stage O without and with stage post-opt-
mization.

5 Experimental Results
5.1 Basic vs. Extended Haar-like Features

Two face detection systems were trained: One with the basic and
one with the extended haar-like feature set. On average the false
alarm rate was about 10% lower for the extended haar-like feature
set at comparable hit rates. Figure 7 shows the ROC for both
classifiers using 12 stages. At the same time the computational
complexity was comparable. The average number of features
evaluation per patch was about 31.

These results suggest that although the larger haar-Hke feature set
usually complicates learning, it was more than paid of by the added
domain knowledge. In principle, the center surround feature would
have been sufficient to approximate all other features, however, itis
in general hard for any machine learning algorithm to learn joint
behavior in a reliable way.

5.2 Stage Post-Optimization

A third face detection system was trained using the extended feature
set as well as our novel post-optimization procedure for each

1. Note that any change in the threshold £, requires recom-
pulationof &, w;, , for 2n.
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Fig. 7. Post-optimization procedure of a given boosted classifier fora
gven target hitrate.
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Fig. 7. Basic versus exterded feature set: On average the false alarm
rate of the face detector exploiting the extended feature setwas
about 1% betier atthe same hitrate.
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completed stage classifier. On average the false alarm rate was
about 12.5% lower for the post-optimized classifier at comparable
hit rates. Figure 8 shows the ROC for both classifiers using 9 stages.
At the same time the computational complexity was also
comparable. The average number of features evaluation per patch
was about 28,
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Fig. 8. Stage post-optimization improves performance of the boosted
delection cascade by about 12.5%.

Frontal faces are detected in CIF images (320x240) at 5fps on a
Pentium™-4 2Ghz while searching at all scales with a rescaling
factor of 1.2 using a pure C+-+-based implementation. An improved,
optimized and multi-threaded version of the face detector is
available as an integral part of OpenCV at hitp://sourceforge.net/
projects/opencvlibrary/,

6 Conclusion

The paper introduced an novel and fast to compute set of rotated
haar-like features as well as a novel post-optimization procedure for
boosted classifiers. It was shown that the overall pecformance could
be improved by about 23.8% of which 10% could be constributed
to the rotated features and 12.5% 1o the stage post-optimization
scheme,
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