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1. INTRODUCTION

This survey strives to present the 
ore 
on
epts underlying the di�erent texture-

based approa
hes to automati
 dete
tion, segmentation and re
ognition of visual

text o

urren
es in 
omplex images and videos. It emphasizes the di�erent

approa
hes to atta
k the many issues in this spa
e. For ea
h kind of approa
h

only a few representative referen
es are given. This survey does not try to

give an exhaustive listing of all relevant work, but to help pra
titioners and

engineers new in the �eld to get a thorough overview of the state-of-the-art

prin
iples, methods, and systems in Video OCR. Hereto, the approa
hes of the

various resear
hers are broken up into its 
onstituents and presented as a design


hoi
e in a hypotheti
al image and video OCR system.

Sometimes video text dete
tion algorithms are 
lassi�ed by whether the orig-

inally proposed dete
tion algorithm was designed to operate on un
ompressed or


ompressed video streams. In this survey, we do not make this distin
tion, sin
e

almost all texture-based dete
tion algorithms 
an be applied to the 
ompressed

as well as to the un
ompressed domain. The issue of 
ompressed versus un
om-

pressed pro
essing is orthogonal to the task of Video OCR. It only determines

the spa
e in whi
h to perform the text texture dete
tion. Text segmentation is

usually performed in the un
ompressed domain.

From a bird's eye view, the task of dete
ting, segmenting and re
ognizing

text visually appearing in 
omplex images and/or video seems to be well de�ned.

However, many design de
isions have to be taken based on the overall goal.

Typi
al design 
hoi
es are:

� What kind of text o

urren
es should be 
onsidered?

Based on its origin there exist two di�erent kinds of text in videos and images

[13℄[14℄. S
ene text is text that was re
orded as part of s
ene su
h as street

names, shop names, and text on T-shirts. It mostly appears a

identally and is

seldom intended. Due to its in
idental and the thus resulting unlimited variety

of its appearan
e, it is hard to dete
t, extra
t and re
ognize. It 
an appear with

any slant, tilt, in any lighting and upon straight or wavy surfa
es. It may also

be partially o

luded.

In 
ontrast, the appearan
e of overlay text is 
arefully dire
ted. It is

often an important 
arrier of information and herewith suitable for indexing
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and retrieval. For instan
e, embedded 
aptions in TV programs represent a

highly 
ondensed form of key information on the 
ontent of the video [30℄; in


ommer
ials, the produ
t and 
ompany name are often part of the text shown.

Here, the produ
t name is often s
ene text but used like arti�
ial text. Most

resear
h work 
on
entrates on arti�
ial text o

urren
es, where it is impli
itly

implied that text lies in a plane roughly perpendi
ular to the opti
al axis of the


amera. Only little work 
an be found on s
ene text [20℄[21℄[3℄[4℄.

A di�erent 
lassi�
ation s
heme of text o

urren
es is based on the 
on-

straints in the pla
ement of planar text in the 3D spa
e. Typi
al 
lasses with

in
reasing degree of freedom are

1. horizontal overlay text in the plane parallel to the 
amera plane (� =

0; ' = 0; 
 = 0) (see Figure 1(a)),

2. planar overlay text in the plane parallel to the 
amera plane (� = any; ' =

0; 
 = 0) (see Figure 1(b)),

3. Un
onstrained planar 3D text (� = any; ' = any; 
 = any) (see Fig-

ure 1(
)), and

4. Un
onstrained 3D text (� = any; ' = any; 
 = any, text on any surfa
e).

� With what font attributes?

Text o

urren
es 
an di�er signi�
antly in font size, type, style, and 
olour.

Some resear
h work has been tailored to very spe
i�
 domains with limited

variations in these attributes. For instan
e, the Video OCR module in the

Informedia proje
t is tailored to CNN Headline News video en
oded in MPEG-1

[24℄[25℄. It expli
itly exploits the domain knowledge about the tight restri
tions

in font attributes su
h as font types and font sizes. Other Video OCR systems

avoid any attribute restri
tions [16℄[29℄. Text 
an be of any size, type, style and


olour.

� In what kind of media data?

Should the underlying text dete
tion, segmentation and re
ognition approa
h

be image-based (i.e., treating a video as a set of independent images) or should

it exploit the fa
t that the same text line o

urs in videos for some time and

that, therefore, the multiple instan
es of the same text line 
an be utilized to

a
hieve better dete
tion, segmentation and re
ognition performan
e.

� How will the output of the Video OCR system be used?

Di�erent usages have di�erent levels of toleran
e against errors. For instan
e,

if the Video OCR output is only used for image/video indexing based on the

trans
ribed text, pixel errors in the lo
alization and segmentation steps as well

as re
ognition errors 
an be tolerated and 
ompensated. If, however, the output

is used for obje
t-based video en
oding, the system must minimize the errors in
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pixel 
lassi�
ation. The system in [16℄, for example, was expli
itly designed to

label ea
h pixel in a video as whether it belongs to text or not. This information

was used to en
ode text o

urren
es then as a high-�delity foreground MPEG-4

video obje
ts (VOPs) at low frame per se
ond (fps) rate, while re-
olouring the

pixels behind the text pixels with 
olours eÆ
ient for 
ompression. A gain of

about 1.5dB in PSNR at low bit rates were reported (see Table 1).

Other usage s
enarios are the visual removal of text from videos and the

automati
 translation of dete
ted text from one language into another language.

Figure 1: : Di�erent degrees of freedom in the pla
ement of planar text in the

3D spa
e.

This paper fo
uses on texture-based Video OCR algorithms. It does not ad-

dress the many 
onne
ted-
omponent-based approa
hes su
h as [13℄[14℄[15℄[26℄.

This 
hoi
e was purely made to present the vast resear
h in this �eld in a

more stru
tured way. In no sense it should be understood as a judgement of

the 
onne
ted-
omponent-based approa
h. In fa
t, 
onne
ted-
omponent based

approa
hes are working surprisingly well and su

essful in pra
ti
e and 
an


ompete in performan
e with the best texture-based approa
hes.

The remainder of this paper is organized at follows. In Se
ond 2 we address

texture-based text dete
tion { the task of �nding the lo
ations of text o

ur-

ren
es in images and videos. Starting with general observations about text, a

set of suitable texture features are listed in Subse
tion 2.1. Then, Subse
tion

2.2 details how to use the texture features to a
hieve image-based text dete
-

tion. For video spe
ialized extensions exist to further improve text dete
tion

performan
e. They are explained in Subse
tion 2.3. An overview of 
ommon
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performan
e measures and the performan
e of existing systems is given in Se
-

tion 2.4. Se
tion 3 addresses text segmentation { the task of preparing bitmaps

of lo
alized text o

urren
es for opti
al 
hara
ter re
ognition (OCR). It is sub-

divided into three subse
tions. Subse
tion 3.1 and 3.2 dis
uss pre-pro
essing

steps helping to improve text segmentation performan
e. The former subse
-

tion fo
uses on approa
hes in the image domain, while the latter investigates

the unique possibilities with videos. Finally Subse
tion 3.3 introdu
es the seg-

mentation algorithms. An overview of 
ommon performan
e measures and the

performan
e of existing text segmentation systems is given in Subse
tion 3.4.

Se
tion 4 
on
ludes the paper with a summary and outlook.

1. Dete
tion

Text dete
tion is the task of �nding the lo
ations of text o

urren
es in images

and videos. Dependent on the subsequent task the 
ir
ums
ribing shapes of

the text lo
ations either 
omprise whole text 
olumns or individual text lines.

For planar text o

urren
es in the plane parallel to the 
amera plane the 
ir-


ums
ribing shape is a re
tangle, while for s
ene text it usually is a rotated

parallelogram ignoring the foreshortening under fully perspe
tive proje
tion.

Text dete
tion has many appli
ations. It is the prerequisite for text seg-

mentation. It, however, 
an also be used to re
tify do
uments 
aptured with

still image or wearable 
ameras for improved readability. In most 
ases without

re
ti�
ation the text would exhibit signi�
ant perspe
tive distortions.

1. Text Features

(a) General Observations

Humans 
an qui
kly identify text regions without having to sear
h for individual


hara
ters. Even text too far to be legible 
an easily be identi�ed as su
h. This

is due to the stationary pattern text lines and text 
olumns exhibit at di�erent

s
ales.

In Roman languages text regions 
onsist of text lines of the same orientation

with roughly the same spa
ing in between. Ea
h text line is 
omposed of 
har-

a
ters of approximately the same size, pla
ed next to ea
h other. A text line


ontrasting with the ba
kground shows a large intensity variation verti
ally to

the writing dire
tion as well as horizontally at its upper and lower boundaries.

The mainstream of overlay text in Roman languages is 
hara
terized by the

following features [13℄[14℄. Only a few ex
eptions may be observed in pra
ti
e:

� Chara
ters are in the foreground. They are never partially o

luded.

� Chara
ters are mono
hrome.

� Chara
ters are rigid. They do not 
hange their shape, size or orientation

from frame to frame.
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� Chara
ters have size restri
tions. A letter is not as large as the whole

frame. Nor are letters smaller than a 
ertain number of pixels as they

would otherwise be illegible to viewers.

� Chara
ters are mostly upright.

� Chara
ters are either stationary or linearly moving. Moving 
hara
ters

also have a dominant translation dire
tion: horizontally from right to left

or verti
ally from bottom to top.

� Chara
ters 
ontrast with their ba
kground sin
e arti�
ial text is designed

to be read easily.

� The same 
hara
ters appear in multiple 
onse
utive frames.

� Chara
ters appear in 
lusters at a limited distan
e aligned to a virtual

line. Most of the time the orientation of this virtual lines is horizontal

sin
e that is the natural writing dire
tion.

Most of these features also hold for non-Roman languages , but some

need to be adapted to the 
hara
teristi
s of the parti
ular language system. For

instan
e, the minimal readable font size of Roman languages is about 7 to 8 pt.

In 
ontrast, Chinese 
hara
ters due to their 
omplex stru
ture require at least

twi
e the size. In Roman languages meaningful words are built from multiple


hara
ters. Therefore, a semanti
ally meaningful text line should be 
omposed

of at least three or more 
hara
ters. In Chinese, however, ea
h 
hara
ter has

a meaning voiding this 
onstraint. Roman languages are most readable with

justi�ed 
hara
ters. Justi�ed text lines in turn result in homogenous stroke

densities that 
an easily be dete
ted. Chinese 
hara
ters, in 
ontrast, have

a �xed blo
k size letting its spatial stroke density vary signi�
antly. Every


hara
ter o

upies the same spa
e. At the same time the number of strokes


an vary from 1 to 20 [2℄. Some texture-based features might therefore not be

appli
able to Chinese 
hara
ter dete
tion.

In this survey we will 
on
entrate on texture-based approa
hes for Roman

languages. Other language system as well as its dual approa
h, text dete
tion

and text segmentation based on 
onne
ted 
omponent analysis, will not be

addressed here.

All approa
hes should keep the following general 
hallenges in mind:

� The 
ontrast of text in 
omplex ba
kgrounds may vary in di�erent areas of

the image. Complex ba
kground usually requires strong 
ontrast to make

text still readable, while for simple ba
kground even a small 
ontrast is

suÆ
ient [2℄.

� The 
olour of text is not uniform due to 
olour bleeding, noise, 
ompression

artefa
ts, and applied anti-aliasing. Colour homogeneity should therefore

not be stri
tly assumed [14℄[18℄.

1. Texture-based Features
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Text exhibits unique features at many s
ales. Resear
hers have developed many

statisti
al features based on the lo
al neighbourhood to 
apture 
ertain texture

aspe
ts of text. Some features operate at di�erent text s
ales and are designed

to identify individual text lines, while others measure 
ertain attributes of text

paragraphs. In this subse
tion, the most important features are listed. None

of them will uniquely identify text regions. Ea
h individual feature will still


onfuse text with non-text areas, but models one or several important aspe
ts

of text versus non-text regions. A so
iety of features will 
omplement ea
h other

and allow identifying text unambiguously.

0.1 Gray Levels of Raw Pixels

Shin et al. suggest the use of grey levels of raw pixels as features. The input

feature ve
tor size is redu
ed by taking only a stru
tured subset of all pixels in

a neighbourhood. For instan
e, they suggest the use of a star pattern mask as

shown in 0.2 [27℄.

Figure 3: Star-like pixel pattern

0.2 Lo
al Varian
e

The observed lo
al varian
e in text regions depends on the s
ale. For small and

medium text medium values are expe
ted, sin
e text in su
h areas undergoes

aliasing at the boundaries. Very high varian
e region indi
ate single sharp edges

and not text. In [3℄ a 
ir
ular disk �lter S of radius 3 is applied to measure

lo
al varian
e V :

V = S � (I � S � I)

2

:

S is the area mask of the lo
al neighbourhood and I the input image.

0.3 Lo
al Edge Strength

Chara
ters 
onsist of strokes. Text regions thus have a high density of edges.

The lo
al edge strength E is de�ned as the average edge magnitude in a neigh-

bourhood:

E = S � jD � I j :

I is the input image, D an edge �lter (e.g., gradient or Sobel �lter), and S some

averaging �lter (e.g., box, binomial, or Gaussian �lter). In [2℄ and [3℄ a Sobel

�lter is applied, followed by a 
ir
ular disk �lter of radius 6. The lo
al edge

strength responds to text of any orientation.

If only horizontal in plane text should be dete
ted, it is favourable to 
onsider

primarily only the horizontal edge strength:

E

h

= S � jD

x

� I j ;

where D

x

is some horizontal edges dete
tor. In [32℄ the horizontal edge strength

is dire
tly derived from DCT-en
oded JPEG-images and MPEG-based I-frames
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by means of the sum of the absolute amplitude of the horizontal harmoni
s in

ea
h DCT blo
k(i,j):

TRIALRESTRICTION

TRIALRESTRICTION are the horizontal harmoni
s of 8x8 DCT blo
k (i; j).

The boundaries v1 and v2 have to be 
hosen a

ording to the 
hara
ter size.

[32℄ uses 2 and 6 for v1 and v2, respe
tively. The DCT 
oeÆ
ients 
apture

the spatial periodi
ity and dire
tionality in a lo
al blo
k and are therefore a

short 
ut to edge dete
tion. Su
h a 
ompressed domain edge dete
tor, however,


overs only a small part of the many resolutions of a frame posing a problem

to s
ale-independent text extra
tion. This is espe
ially true for high resolution

videos su
h as HDTV video sequen
es.

Cai et al. suggest using an adaptive edge strength threshold [2℄. They

observed that for text embedded in simple ba
kground low 
ontrast suÆ
es to

render text readable, and that this 
an also be observed in pra
ti
e. However,

for text embedded in 
omplex-ba
kground a high-
ontrast is always required and

used. In a �rst step a low threshold is applied to the edge strength map. The

threshold is sele
ted to a

ommodate for low-
ontrast text in simple ba
kground.

Based on a sliding window, the number of edge-free rows is 
ounted. A high


ount suggests simple ba
kground and no threshold adjustments, while higher


ounts suggest 
hoosing a higher adaptive threshold in that area to remove more

edge pixels. One might argue that a more eÆ
ient 
ontinuous 
lassi�er 
an be

build by using ma
hine learning algorithms.

0.4 Edge Density

Text density is usually evaluated by opening/
losing operations applied to bi-

narized edge maps. In [2℄ spe
i�
 �lters are designed, however, it is not 
lear

why they should perform better than standard opening/
losing operations. In

general, the optimization 
riterion would be to learn a �lter or morphologi
al op-

eration that keeps text regions of 
ertain edge density, while removing non-text

regions based on their diverging edge density.

0.5 Symmetri
 Edge Distribution

In areas of 
learly readable text one expe
ts { besides high lo
al edge strength

{ to �nd edges of all angles and that in most 
ases an edge of a 
ertain angle

is a

ompanied by an edge in the opposite dire
tion [15℄. Clearly visible and

readable text should have an edge on both sides of a stroke. Thus

TRIALRESTRICTION

is measure of symmetry using lo
al edge angle histograms [4℄. TRIALRESTRICTION

is the total magnitude of edges in dire
tion TRIALRESTRICTION . This fea-

ture is s
ale invariant. Figure 4 shows an example taken from [3℄.

TRIAL RESTRICTION
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0.6 Edge Angle Distribution

For text regions we expe
t edge angles to be well distributed, i.e., almost all

edge angles will o

ur. An appropriate measure is:

TRIALRESTRICTION

TRIALRESTRICTIONrepresents the average magnitude over all dire
tions.

The EAD measure has its lowest value for homogenous edge distributions and

will in
rease for skewed ones. Unlike most other features this feature allows to

distinguish straight ramps, 
anals, or ridges from text [3℄. In other words, at

the appropriate s
ale text areas are isotropi
. Alternatively, this attribute 
ould

be measured by Jaehne's Inertia tensor [10℄.

0.7 Wavelets

Wavelet de
omposition naturally 
aptures dire
tional frequen
y 
ontent at dif-

ferent s
ales. Li et al. suggest using the mean, se
ond order (varian
e) and

third-order 
entral moments of the LH, HL, and HH 
omponent of the �rst

three levels of ea
h 16x16 window [9℄.

0.8 Derivatives

In [16℄ the gradient image of the RGB input image TRIALRESTRICTION

is used to 
al
ulate the 
omplex-values edge orientation image E:

TRIALRESTRICTION:

E maps all edge orientations between 0� and 90�, and thus distinguishes only

between horizontal, diagonal and verti
al orientations.

1. Dete
tion

The most 
ommon and generi
 form of feature-based text dete
tion is based on

a �xed s
ale and �xed position text 
lassi�er on some feature image F .

A feature image F is a multi-band image where ea
h band 
an be one of the

features des
ribed in subse
tion 2.1 
omputed at a given s
ale from the input

image I . Given aWxH window region in a multi-band feature image F , a �xed

size �xed position text dete
tor 
lassi�es the window as 
ontaining text if and

only if text of a given size is 
ompletely 
ontained in the window. Often the

window height is 
hosen to be one or two pixels larger than the largest targeted

font height, and the width is 
hosen based on the width of the shortest possible,

but semanti
ally still meaningful word. For instan
e, in [16℄ a window of 20x10

was used.

Many di�erent supervised ma
hine learning te
hniques have been used to

train a �xed s
ale �xed position text 
lassi�er su
h as De
ision Trees, Neural

Networks, 
omplex Neural Networks, Boosting, Support Ve
tor Ma
hines, GMs,

and hand
rafted methods. An important design 
onsideration at this stage is
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the amount of s
ale and lo
ation independen
e that should be trained into the

�xed size �xed position 
lassi�er. Common 
hoi
es for s
ale independen
e range

from� 10% to �50% of some referen
e font size, while for position independen
e

�1 to �W*10% pixels are 
ommon.

Lo
ation independen
e is a
hieved by sliding the WxH window pixel by

pixel over the whole feature image and re
ording the probability of having text

at that lo
ation in a s
ale-dependent salien
y map (see Figure 5, single row).

S
ale independen
e is a
hieved by applying the �xed s
ale dete
tion s
heme

to res
aled input images of di�erent resolution [9℄[16℄[29℄. Alternatively the

features instead of the image 
an be res
aled to a
hieve a multi-s
ale sear
h

[17℄[28℄.

As one 
an observe from the forth 
olumn in Figure 5, where 
on�den
e

in text lo
ations is en
oded by brightness, text lo
ations sti
k out as 
orre
t

hits at multiple s
ales, while false alarms appear less 
onsistent over multiple

s
ales. Similar results have been observed by Rowley et al. for their neural

network-based fa
e dete
tor [23℄ and by Laurent Itti in his work on models of

salien
y-based visual attention [5℄.

In order to re
over initial text bounding boxes, the response images at the

various s
ales must be integrated into a 
onsistent text dete
tion result. Di�er-

ent approa
hes are used for s
ale integration. Examples are:

� Extra
t and re�ne initial text boxes at ea
h s
ale from its asso
iated

salien
y map in parallel before integrating them into the �nal dete
tion

result. Ea
h s
ale might also take into a

ount the response of nearby

s
ales (3).

� Extra
t and re�ne initial text boxes sequentially { from the salien
y maps

at lower s
ales to the salien
y maps at higher s
ales. Remove all regions

in the higher s
ale response maps, whi
h have already been dete
ted at

lower s
ales.

� Proje
t the 
on�den
e of being text ba
k to the original s
ale of the input

image and extra
t and re�ne initial text boxes from the s
ale-integrated

salien
y map. Figure 5 
olumn 5 gives an example [16℄.

There are two prin
iple ways of extra
ting initial text boxes: bottom-up and

top-down approa
hes. Bottom-up approa
hes are region growing algorithms.

Starting with seed pixels of highest text probability, text regions are grown

iteratively. While this works well for Roman languages due to their low-varian
e

stroke density property, it might 
ause problems for Chinese 
hara
ters due to

their large varian
e in stroke density [2℄. Top-down approa
hes split images

regions alternately in horizontal and verti
al dire
tions based on texture features

[2℄. Sometimes both approa
hes are used simultaneously. For instan
e in [16℄ a

bottom-up approa
h is used to �nd text 
olumns, while a top-down approa
h is

used to partition these text 
olumns into individual text lines.

The overall multi-s
ale sear
h pro
edure is summarized inFigure 5. Note

that the raw s
ale and s
ale independent salien
y maps are often smoothed by

some morphologi
al operations su
h as opening and 
losing.
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TRIAL RESTRICTION

1. Exploiting Temporal Redundan
y

Videos di�er from images by temporal redundan
y. Ea
h text line appears over

several 
ontiguous frames. This temporal redundan
y 
an be exploited to

� in
rease the 
han
e of lo
alizing text sin
e the same text may appear under

varying 
onditions from frame to frame,

� remove false text alarms in individual frames sin
e they are usually not

stable throughout time,

� interpolate the lo
ations of `a

identally' missed text lines in individual

frames, and

� enhan
e text segmentation by bitmap/stroke integration over time.

Early approa
hes used tra
king primarily to remove false alarms. Therefore,

potential text lines or text stroke segments were only tra
ked over a few frames

(e.g., 5 frames) [13℄[26℄. Dependent on whether the tra
king was su

essful or

not, a text 
andidate box or text stroke region was either preserved or dis
arded.

Short term tra
king also put fewer requirements on the quality of the tra
king

module.

More re
ent approa
hes summarize text boxes and 
hara
ter strokes of the

same 
ontent in 
ontiguous frames into a single text obje
t. A text obje
t

des
ribes a text line over time by its text bitmaps or 
onne
ted-
omponents,

their sizes and their positions in the various frames as well as their temporal

range of o

urren
e.

Text obje
ts are extra
ted in a two-stage pro
ess in order to redu
e 
om-

putational 
omplexity: In stage 1, a video is monitored at a 
oarse temporal

resolution (see Figure 6 and [9℄[16℄). For instan
e, the image-based text lo
alizer

of subse
tion 2.2 is only applied to every se
ond (i.e., every 30th and 25

th

frame

in NTSC and PAL, respe
tively). The maximum possible step size is given by

the assumed minimum temporal duration of text line o

urren
es. It is known

from vision resear
h that humans need between 2 and 3 se
onds to pro
ess a


omplex s
ene. Thus, it is safe to assume that text appears 
learly for at least

one se
ond.

If text is dete
ted, the se
ond stage of text tra
king will be entered. In

this stage text lines found in the monitoring stage are tra
ked ba
kwards and

forwards in time up to their �rst and last frame of o

urren
e. We will restri
t

our des
ription to forward tra
king only sin
e ba
kward tra
king is identi
al

to forward tra
king ex
ept in the dire
tion you go through the video. Also the

tra
king des
ription will be biased towards the feature based approa
h, although

most 
an be dire
tly applied to the stroke-based text dete
tion approa
hes, too.

A fast text tra
ker takes the text line in the 
urrent video frame, 
al
ulates

a 
hara
teristi
 signature, whi
h allows dis
rimination of this text line from text

lines with other 
ontents, and sear
hes in the next video frame for a region of the
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same dimension, whi
h best mat
hes the referen
e signature. If the best mat
h

ex
eeds a minimal required similarity, the text line is de
lared to be found and

added to the text obje
t. If the best mat
h does not ex
eed a minimal required

similarity, a signature-based drop-out is de
lared. The size of the sear
h radius

depends on the maximal assumed velo
ity of text. Heuristi
ally text needs at

least 2 se
onds to move from left to right in the video. Given the frame size

and the playba
k rate of the video this translates dire
tly to the sear
h radius

in pixels. In prin
iple, the sear
h spa
e 
an be narrowed down by predi
ting

the lo
ation of text in the next frame based on the information 
ontained in the

text obje
t so far.

The signature-based text line sear
h 
annot dete
t a text line fading out

slowly sin
e the sear
h is based on the signature of the text line in the previous

frame and not on a �xed master/prototype signature. The frame to frame


hanges are likely to be too small to be dete
table. Further, the signature-

based text line sear
h 
an tra
k zooming in or zooming out text only over a

very short period of time. To over
ome these limitations, the signature-based

sear
h is repla
ed every x-th frame by the image-based text lo
alizer in order

to re-
alibrate lo
ations and sizes of the text lines.

Often 
ontinuous dete
tion and tra
king of text obje
ts is not possible due

to imperfe
tion in the video signal su
h as high noise, limited bandwidth,

text o

lusion, and 
ompression artefa
ts. Therefore tra
king should be ter-

minated only if for a 
ertain number of 
ontiguous frames no 
orresponding

text line 
ould be found. For this, two thresholds TRIALRESTRICTION

and TRIALRESTRICTIONare used. Whenever a text obje
t 
annot be ex-

tended to the next frame, the drop-out 
ounter of the respe
tive lo
alization

te
hnique is in
remented. The respe
tive 
ounter is reset to zero whenever the

sear
h su

eeds. The tra
king pro
ess is �nished as soon as one of both 
ounters

ex
eeds its threshold.

Post-Pro
essing

In order to prepare a text obje
t for text segmentation, it must be trimmed

down to the part whi
h has been dete
ted with high 
on�den
e: the �rst and

last frame in whi
h the image-based text lo
alizer dete
ted the text line. Text

obje
ts with a high drop-out rate and/or short duration (e.g., less than a se
ond)

should be dis
arded. The �rst 
ondition rests on our observation that text lines

are usually visible for at least one se
ond. The se
ond 
ondition removes text

obje
ts resulting from unstable tra
king whi
h 
annot be handled by subsequent

pro
essing. Unstable tra
king is usually 
aused by strong 
ompression artefa
ts

or non-text obje
ts.

Finally, a few attributes should be determined for ea
h text obje
t:

� Text 
olour: Assuming that the text 
olour of the same text line does

not 
hange over the 
ourse of time, a text obje
t's 
olour is determined as

the median of the text 
olours per frame.

� Text position: The position of a text line might be stati
 in one or both


oordinates. If stati
, all text bounding boxes are repla
ed by the me-

dian text bounding box. The median text bounding box is the box whose

11



left/right/top/bottom border is the median over all left/ right/top/bottom

borders. If the position is only �xed in one dire
tion su
h as the x or y

axes, the left and right or the top and bottom are repla
ed by the median

value, respe
tively. Temporally 
hanging 
oordinate 
omponents may be

smoothed by linear regression over time.

Figure 7 shows the result of text tra
king of lo
ated text lines for a sample

sequen
e. All text lines ex
ept `Dow' 
ould be su

essfully tra
ked. The line

`Dow' is missed due to its partially diÆ
ult ba
kground su
h as the iron gate and

fa
e border. The iron gate's edge pattern is very similar to text in general. It also


ontains individual 
hara
ters, thus 
onfusing the image-based text lo
alization

system, whi
h in turn renders tra
king impossible.

1. Experimental Results

Two di�erent kinds of performan
e measure have been used by the resear
hers

in the �eld:

� Pixel-based performan
e measures and

� Text box-based performan
e measures.

Both performan
e measures require ground truth knowledge, i.e., pre
ise

knowledge about the text positions in ea
h image/frame. Su
h ground truth

knowledge usually has to be 
reated by hand.

Pixel-based performan
e numbers 
al
ulate the hit rate, false hit rate

and miss rate based on the per
entage of pixels the ground truth and the de-

te
ted text bounding boxes have in 
ommon:

TRIALRESTRICTION

TRIALRESTRICTION

TRIALRESTRICTION

where TRIALRESTRICTION and TRIALRESTRICTION are the sets of

pixel sets representing the automati
ally 
reated text boxes and the ground

truth text boxes of size TRIALRESTRICTION and TRIALRESTRICTION ,

respe
tively. TRIALRESTRICTION and TRIALRESTRICTION denote

the number of pixels in ea
h text box, and TRIALRESTRICTION the set of

joint pixels in TRIALRESTRICTION and TRIALRESTRICTION .

In 
ontrast, the text box-based performan
e numbers refer to the num-

ber of dete
ted boxes that mat
h with the ground truth. An automati
ally 
re-

ated text bounding box A is regarded as mat
hing a ground truth text bounding

box G if and only if the two boxes overlapped by at least x%. Typi
al values

for x are 80% or 90%:

TRIALRESTRICTION

12



TRIALRESTRICTION

TRIALRESTRICTION;

where

TRIALRESTRICTION :

Alternatively, often re
all and pre
ision values are reported:

TRIALRESTRICTION ; TRIALRESTRICTION

The most important text dete
tion approa
hes and their reported performan
es

numbers are listed and 
ompared in Table 1.

Commonly reported sour
es of text misses are due to weak text 
ontrast

with the ba
kground, large spa
ing between the 
hara
ters, or too large fonts.

Non-text regions with multiple verti
al stru
tures often result in false alarms.

1. Segmentation

Text segmentation is the task of preparing the bitmaps of lo
alized text o
-


urren
es for opti
al 
hara
ter re
ognition (OCR). Often standard 
ommer
ial

OCR software pa
kages, whi
h are optimized for s
anned do
uments, are used

for re
ognition due to their high level of maturity.

Text segmentation is 
ommonly performed in two steps: In a �rst step, the

image quality is enhan
ed in the still image and/or video domain, before in

a se
ond step a binary image is derived from the visually enhan
ed image by

means of standard binarization algorithms [21℄[22℄.

1. Enhan
ements in the Image Domain

0.9 Resolution Enhan
ement

The low resolution of video (typi
ally 72 ppi) is a major sour
e of problems

in text segmentation and text re
ognition. Individual 
hara
ters in MPEG-I

en
oded videos often have a height of less than 11 pixels. Although su
h text

o

urren
es are still re
ognizable for humans, it 
hallenges today's standard

OCR systems due to anti-aliasing, spatial sampling and 
ompression artefa
ts

[18℄[15℄[24℄. Today's OCR systems have been designed to re
ognize text in

do
uments, whi
h were s
anned at a resolution of at least 200dpi to 300dpi

resulting in a minimal text height of at least 40 pixels. In order to obtain good

results with standard OCR systems it is ne
essary to enhan
e the resolution of

segmented text lines.

A 
ommon pre-pro
essing step is to obtain higher resolution text bitmaps by

sub-pixel a

urate res
aling of the original text bitmaps to a �xed target height,

while preserving the aspe
t ratio. Typi
al values for the target height range

from 40 to 100 pixels, and 
ubi
 interpolation or better up-sampling �lters are

used for res
aling. Fixing a target height is 
omputationally eÆ
ient, be
ause

text with a larger height neither improves segmentation nor OCR performan
e

[9℄[16℄[24℄. In addition, the �xed target height e�e
tively normalizes the stroke

widths to a narrow range for Roman 
hara
ters, whi
h in turn 
an be used later

for additional re�nement operations.
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Table 1: : PSNR 
omparison of same video en
oded as a single VOP MPEG-4

video and a multiple VOP MPEG-4 video with one additional VOP for ea
h

dete
ted text line.

Work

S
ope Do-

main

Per-forman
e

Comments

image exploit

video


aptionsS
ene

text

Compressed/

Un
ompressed

Cai'02

[2℄

x x U H : 98.2%

F : 6.5%

Dete
tion of horizontal text in English and Chinese

Jeong'99

[12℄

x x U H : 92.2%

F : 5.1%

Neural Network (NN)-based text dete
tion for news video; English and Chinese

Li'00

[9℄

x x x (x) U R: 92.8%

P : 91.0%

Tra
king system is sensitive to 
omplex ba
kground; multi-s
ale sear
h

Lienhart'02

[16℄

x x x (x) U H : 94.7%

F

1

: 18%

Complete NN-based system; multi-s
ale sear
h

Mariano'00

[19℄

x x U H : 94%

F : 39%

Designed for horizontal, uniformed 
oloured text

[Ohya'94℄

[21℄

x x x U H : 95.0% Dete
tion, Segmentation and Re
ognition are tightly integrated into ea
h other; fo
us on upright s
ene text

Sato1999

[24℄

x x x U H : 98.6% Complete innovative system for CNN Headline News; designed for very small font sizes

Shim`98

[26℄

x x x x U H : 98.8% Designed for horizontal text only; similar to [14℄

[Shin℄

[27℄

x x U H : 94.5%

F : 4.2%

Uses SVM on raw pixel inputs; multi-s
ale sear
h

Wu'99

[29℄

x x x U H : 93.5% Complete system for video, newspapers, ads, photos, et
.; multi-s
ale sear
h

Zhong'99

[31℄

x x x C H : 96%

F

1

: 6.07%

Very fast pre-�lter for text dete
tion

Zhong'00

[32℄

x x C H : 99.1%

F

1

: 36%

F

2

:: 1.58%

Very fast pre-�lter for text dete
tion
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0.10 Chara
ter Stroke Enhan
ement

Sato et al. propose to use 4 dire
tional stroke �lters of 0�, +45�, -45�, and

90� trained by �xed English fonts. These �lters 
al
ulate the probability of

ea
h pixel being on a text stroke of that dire
tion. By integrating the four �lter

results an enhan
e text stroke bitmap is formed (see Figure 8 taken from [24℄)

TRIAL RESTRICTION

1. Enhan
ements in the Video Domain

0.11 Temporal Integration

Text obje
ts in videos 
onsist of many bitmaps of the same text line in 
ontigu-

ous frames. This redundan
y 
an be exploited in the following way to remove

the 
omplex ba
kground surrounding 
hara
ters: Suppose the bitmaps of a text

obje
t are piled up over time su
h that the 
hara
ters are aligned perfe
tly with

ea
h other. Looking through a spe
i�
 pixel in time, one may noti
e that pix-

els belonging to text vary only slightly, while ba
kground pixels often 
hange

tremendously through time. Sin
e a text line's lo
ation is stati
 due to its align-

ment its pixels are not supposed to 
hange. In 
ontrast, ba
kground pixels are

very likely to 
hange due to motion in the ba
kground or motion of the text line

(see Figure 9(a)).

A temporal maximum/minimum operator applied to all or a subset of per-

fe
tly aligned greys
ale bitmaps of a text obje
t for normal/inverse text is gen-

erally 
apable to separate text pixels from ba
kground pixels. This temporal

maximum/minimum operation was �rst proposed by Sato et al. for stati
 text

[25℄, but 
an also applied to moving text if the text segmentation system sup-

ports sub-pixel a

urate text line alignment [16℄. An alternative approa
h to

the min/max operation is to 
al
ulate a pixel's temporal mean and varian
e and

reje
t pixels with large standard deviations or a few outliers.

0.12 Sub-pixel A

urate Text Alignment

Two similar proposals have been developed by Li [9℄ and Lienhart [16℄. The

latter approa
h, though, is more robust sin
e it exploits the estimated text


olour during tra
king and, therefore, does not have problems with 
omplex

ba
kground as reported by [9℄.

The sub-pixel a

urate text alignment is a
hieved as follows: In a �rst step,

the bounding boxes of dete
ted text lo
ations are slightly in
reased to ensure

that text is always 100% 
ontained in the enlarged bounding boxes (see Fig-

ure 10). Let TRIALRESTRICTION denote the N bitmaps of the enlarged

bounding boxes of a text obje
t and TRIALRESTRICTIONthe representa-

tive bitmap, whi
h is to be derived and initialized to TRIALRESTRICTION .

Then, for ea
h bitmapTRIALRESTRICTION , the algorithm sear
hes for

the best displa
ement ve
tor TRIALRESTRICTION , whi
h minimizes the

di�eren
e between TRIALRESTRICTIONandTRIALRESTRICTIONwith
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respe
t to pixels having text 
olour, i.e.,

TRIALRESTRICTION

A pixel is de�ned to have text 
olour if and only if it does not di�er more than

a 
ertain amount from the greys
ale text 
olour estimated for the text obje
t.

At ea
h iteration,TRIALRESTRICTION is updated to

TRIALRESTRICTION; TRIALRESTRICTION

where op=max for normal text and op=min for inverse text. Figure 9(b) shows

an example of the min/max operation.

1. Segmentation

Di�erent segmentation te
hniques have been used for text segmentation. Some-

times several of them are 
ombined to a
hieve better and more reliable segmen-

tation results.

0.13 Seed�lling from Border Pixels

Text o

urren
es are supposed to have enough 
ontrast with their ba
kground

in order to be easily readable. This feature 
an be exploited to remove large

parts of the 
omplex ba
kground. The basi
 idea is to in
rease the text bounding

boxes su
h that no text pixels fall onto the border and then to take ea
h pixel on

the boundary of the text bounding box as a seed to a virtual seed�ll pro
edure,

whi
h is tolerant to small 
olour 
hanges. Pixels whi
h di�er not more than

TRIALRESTRICTION from the seed will be regarded as pixels of the same


olour as the seed. In theory the virtual seed�ll pro
edure should never remove


hara
ter pixels sin
e the pixels on the boundary do not belong to text and

text 
ontrasts with its ba
kground. We attributed the seed�ll pro
edure with

\virtual" sin
e the �ll operation is only 
ommitted after the seed�ll pro
edure

has been applied to all pixels on the border line in order avoid side e�e
ts

between di�erent seeds [16℄.

In pra
tise, however, text segmentation sometimes has to deal with low


ontrast, whi
h may 
ause the seed�ll algorithm to leak into a 
hara
ter. A

stop 
riterion may be de�ned based on the expe
ted stroke thi
kness. Regions

whi
h over a large extent 
omply with the stroke thi
kness range of 
hara
ters

in one dimension should not be deleted.

Not all ba
kground pixels are eliminated by this pro
edure, sin
e the sizes of

the regions �lled by the seed-�ll algorithm are limited by the maximum allowed


olour di�eren
e between a pixel and its border pixel seed. In addition, some

regions are not 
onne
ted to the border su
h as the interior of 
losed stroke


hara
ters `o' and `p'. Therefore, a hypotheti
al 8-neighborhood seed�ll pro
e-

dure with TRIALRESTRICTION is applied to ea
h non-ba
kground pixel in

order to determine the dimension of the region that 
an hypotheti
ally be �lled.

Ba
kground regions should be smaller then text 
hara
ter regions. Therefore,

16



all hypotheti
al regions violating the typi
al range of width and height values

for 
hara
ters are deleted.

Thresholding

The simplest form of thresholding rests on a single, global threshold. Many

di�erent variants of global thresholding have been designed { ranging from bi-

level s
hemes to tri-level s
hemes. More sophisti
ated variants also exploit the

estimated text 
olour [16℄[24℄[29℄.

For text on 
omplex ba
kground a global threshold may not be appropri-

ate sin
e ba
kground pixel 
an have similar greys
ale values as the text, or it

be brighter and darker than the text at di�erent lo
ations. In these 
ases an

adaptive threshold should be applied. Commonly used adaptive binarization

algorithms are derivatives of Otsu's [22℄ and Ohya's work [21℄.

1. Experimental Results

For text segmentation no generally a

epted performan
e measure has emerged

in the literature. The three most 
ommon performan
e measures are:

� Manual visual inspe
tion : Corre
tness is determined by manual visual

inspe
tion of all 
reated binary bitmaps.

� OCR A

ura
y : Segmentation performan
e is evaluated indire
tly by

means of the resulting OCR error rate with a given OCR engine making

the results dependent on the OCR engine and its pe
uliarities.

� Probability of Error: The probability of error measure requires pixel

maps of the ground truth data, whi
h in most 
ases is very hard to provide.

The probability of error (PE) is de�ned as follows [6℄:

TRIALRESTRICTION;

where P(BjO) and P(OjB) are the probability of error in 
lassifying a text/ba
kground

pixel as ba
kground/text pixel, P(O) and P(B) are the a priori probabilities of

text/ba
kground pixels in the test images.

Table 2 reports the important text segmentation approa
hes and their per-

forman
es numbers. Only OCR a

ura
y in reported for 
omparability.

Warning: TRIAL RESTRICTION { Table omitted!

1. CONCLUSION

Text lo
alization and text segmentation in 
omplex images and video have

rea
hed a high level of maturity. In this survey we fo
used on texture-based

approa
hes for arti�
ial text o

urren
es. The di�erent 
ore 
on
epts underly-

ing the di�erent dete
tion and segmentation s
hemes were presented together

with guidelines for pra
titioners in video pro
essing. Future resear
h in Video

OCR will fo
us more on s
ene text as well as on further improvements of the

algorithms for lo
alization and segmentation of arti�
ial text o

urren
es.
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