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1. INTRODUCTION

This survey strives to present the core concepts underlying the different texture-
based approaches to automatic detection, segmentation and recognition of visual
text occurrences in complex images and videos. It emphasizes the different
approaches to attack the many issues in this space. For each kind of approach
only a few representative references are given. This survey does not try to
give an exhaustive listing of all relevant work, but to help practitioners and
engineers new in the field to get a thorough overview of the state-of-the-art
principles, methods, and systems in Video OCR. Hereto, the approaches of the
various researchers are broken up into its constituents and presented as a design
choice in a hypothetical image and video OCR system.

Sometimes video text detection algorithms are classified by whether the orig-
inally proposed detection algorithm was designed to operate on uncompressed or
compressed video streams. In this survey, we do not make this distinction, since
almost all texture-based detection algorithms can be applied to the compressed
as well as to the uncompressed domain. The issue of compressed versus uncom-
pressed processing is orthogonal to the task of Video OCR. It only determines
the space in which to perform the text texture detection. Text segmentation is
usually performed in the uncompressed domain.

From a bird’s eye view, the task of detecting, segmenting and recognizing
text visually appearing in complex images and/or video seems to be well defined.
However, many design decisions have to be taken based on the overall goal.

Typical design choices are:

o What kind of text occurrences should be considered?

Based on its origin there exist two different kinds of text in videos and images
[13][14]. Scene text is text that was recorded as part of scene such as street
names, shop names, and text on T-shirts. It mostly appears accidentally and is
seldom intended. Due to its incidental and the thus resulting unlimited variety
of its appearance, it is hard to detect, extract and recognize. It can appear with
any slant, tilt, in any lighting and upon straight or wavy surfaces. It may also
be partially occluded.

In contrast, the appearance of overlay text is carefully directed. It is
often an important carrier of information and herewith suitable for indexing



and retrieval. For instance, embedded captions in TV programs represent a
highly condensed form of key information on the content of the video [30]; in
commercials, the product and company name are often part of the text shown.
Here, the product name is often scene text but used like artificial text. Most
research work concentrates on artificial text occurrences, where it is implicitly
implied that text lies in a plane roughly perpendicular to the optical axis of the
camera. Only little work can be found on scene text [20][21][3][4].

A different classification scheme of text occurrences is based on the con-
straints in the placement of planar text in the 3D space. Typical classes with
increasing degree of freedom are

1. horizontal overlay text in the plane parallel to the camera plane (6 =
0, = 0,7 =0) (see Figure 1(a)),

2. planar overlay text in the plane parallel to the camera plane (6 = any, p =
0,7 = 0) (see Figure 1(b)),

3. Unconstrained planar 3D text (6 = any,p = any,y = any) (see Fig-
ure 1(c)), and

4. Unconstrained 3D text (8 = any, ¢ = any,y = any, text on any surface).
e With what font attributes?

Text occurrences can differ significantly in font size, type, style, and colour.
Some research work has been tailored to very specific domains with limited
variations in these attributes. For instance, the Video OCR module in the
Informedia project is tailored to CNN Headline News video encoded in MPEG-1
[24][25]. It explicitly exploits the domain knowledge about the tight restrictions
in font attributes such as font types and font sizes. Other Video OCR systems
avoid any attribute restrictions [16][29]. Text can be of any size, type, style and
colour.

e In what kind of media data?

Should the underlying text detection, segmentation and recognition approach
be image-based (i.e., treating a video as a set of independent images) or should
it exploit the fact that the same text line occurs in videos for some time and
that, therefore, the multiple instances of the same text line can be utilized to
achieve better detection, segmentation and recognition performance.

e How will the output of the Video OCR system be used?

Different usages have different levels of tolerance against errors. For instance,
if the Video OCR output is only used for image/video indexing based on the
transcribed text, pixel errors in the localization and segmentation steps as well
as recognition errors can be tolerated and compensated. If, however, the output
is used for object-based video encoding, the system must minimize the errors in



pixel classification. The system in [16], for example, was explicitly designed to
label each pixel in a video as whether it belongs to text or not. This information
was used to encode text occurrences then as a high-fidelity foreground MPEG-4
video objects (VOPs) at low frame per second (fps) rate, while re-colouring the
pixels behind the text pixels with colours efficient for compression. A gain of
about 1.5dB in PSNR at low bit rates were reported (see Table 1).

Other usage scenarios are the visual removal of text from videos and the
automatic translation of detected text from one language into another language.
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Figure 1: : Different degrees of freedom in the placement of planar text in the
3D space.

This paper focuses on texture-based Video OCR algorithms. It does not ad-
dress the many connected-component-based approaches such as [13][14][15][26].
This choice was purely made to present the vast research in this field in a
more structured way. In no sense it should be understood as a judgement of
the connected-component-based approach. In fact, connected-component based
approaches are working surprisingly well and successful in practice and can
compete in performance with the best texture-based approaches.

The remainder of this paper is organized at follows. In Second 2 we address
texture-based text detection — the task of finding the locations of text occur-
rences in images and videos. Starting with general observations about text, a
set of suitable texture features are listed in Subsection 2.1. Then, Subsection
2.2 details how to use the texture features to achieve image-based text detec-
tion. For video specialized extensions exist to further improve text detection
performance. They are explained in Subsection 2.3. An overview of common



performance measures and the performance of existing systems is given in Sec-
tion 2.4. Section 3 addresses text segmentation — the task of preparing bitmaps
of localized text occurrences for optical character recognition (OCR). It is sub-
divided into three subsections. Subsection 3.1 and 3.2 discuss pre-processing
steps helping to improve text segmentation performance. The former subsec-
tion focuses on approaches in the image domain, while the latter investigates
the unique possibilities with videos. Finally Subsection 3.3 introduces the seg-
mentation algorithms. An overview of common performance measures and the
performance of existing text segmentation systems is given in Subsection 3.4.
Section 4 concludes the paper with a summary and outlook.

1. Detection

Text detection is the task of finding the locations of text occurrences in images
and videos. Dependent on the subsequent task the circumscribing shapes of
the text locations either comprise whole text columns or individual text lines.
For planar text occurrences in the plane parallel to the camera plane the cir-
cumscribing shape is a rectangle, while for scene text it usually is a rotated
parallelogram ignoring the foreshortening under fully perspective projection.
Text detection has many applications. It is the prerequisite for text seg-
mentation. It, however, can also be used to rectify documents captured with
still image or wearable cameras for improved readability. In most cases without
rectification the text would exhibit significant perspective distortions.

1. Text Features

(a) General Observations

Humans can quickly identify text regions without having to search for individual
characters. Even text too far to be legible can easily be identified as such. This
is due to the stationary pattern text lines and text columns exhibit at different
scales.

In Roman languages text regions consist of text lines of the same orientation
with roughly the same spacing in between. Each text line is composed of char-
acters of approximately the same size, placed next to each other. A text line
contrasting with the background shows a large intensity variation vertically to
the writing direction as well as horizontally at its upper and lower boundaries.

The mainstream of overlay text in Roman languages is characterized by the
following features [13][14]. Only a few exceptions may be observed in practice:

e Characters are in the foreground. They are never partially occluded.
e Characters are monochrome.

e Characters are rigid. They do not change their shape, size or orientation
from frame to frame.



e Characters have size restrictions. A letter is not as large as the whole
frame. Nor are letters smaller than a certain number of pixels as they
would otherwise be illegible to viewers.

e Characters are mostly upright.

e Characters are either stationary or linearly moving. Moving characters
also have a dominant translation direction: horizontally from right to left
or vertically from bottom to top.

e Characters contrast with their background since artificial text is designed
to be read easily.

e The same characters appear in multiple consecutive frames.

e Characters appear in clusters at a limited distance aligned to a virtual
line. Most of the time the orientation of this virtual lines is horizontal
since that is the natural writing direction.

Most of these features also hold for non-Roman languages, but some
need to be adapted to the characteristics of the particular language system. For
instance, the minimal readable font size of Roman languages is about 7 to 8 pt.
In contrast, Chinese characters due to their complex structure require at least
twice the size. In Roman languages meaningful words are built from multiple
characters. Therefore, a semantically meaningful text line should be composed
of at least three or more characters. In Chinese, however, each character has
a meaning voiding this constraint. Roman languages are most readable with
justified characters. Justified text lines in turn result in homogenous stroke
densities that can easily be detected. Chinese characters, in contrast, have
a fixed block size letting its spatial stroke density vary significantly. Every
character occupies the same space. At the same time the number of strokes
can vary from 1 to 20 [2]. Some texture-based features might therefore not be
applicable to Chinese character detection.

In this survey we will concentrate on texture-based approaches for Roman
languages. Other language system as well as its dual approach, text detection
and text segmentation based on connected component analysis, will not be
addressed here.

All approaches should keep the following general challenges in mind:

e The contrast of text in complex backgrounds may vary in different areas of
the image. Complex background usually requires strong contrast to make
text still readable, while for simple background even a small contrast is
sufficient [2].

e The colour of text is not uniform due to colour bleeding, noise, compression
artefacts, and applied anti-aliasing. Colour homogeneity should therefore
not be strictly assumed [14][18].

1. Texture-based Features



Text exhibits unique features at many scales. Researchers have developed many
statistical features based on the local neighbourhood to capture certain texture
aspects of text. Some features operate at different text scales and are designed
to identify individual text lines, while others measure certain attributes of text
paragraphs. In this subsection, the most important features are listed. None
of them will uniquely identify text regions. Each individual feature will still
confuse text with non-text areas, but models one or several important aspects
of text versus non-text regions. A society of features will complement each other
and allow identifying text unambiguously.

0.1 Gray Levels of Raw Pixels

Shin et al. suggest the use of grey levels of raw pixels as features. The input
feature vector size is reduced by taking only a structured subset of all pixels in
a neighbourhood. For instance, they suggest the use of a star pattern mask as
shown in 0.2 [27].

Figure 3: Star-like pixel pattern

0.2 Local Variance

The observed local variance in text regions depends on the scale. For small and
medium text medium values are expected, since text in such areas undergoes
aliasing at the boundaries. Very high variance region indicate single sharp edges
and not text. In [3] a circular disk filter S of radius 3 is applied to measure
local variance V :

V=Se(l-Sel).

S is the area mask of the local neighbourhood and I the input image.

0.3 Local Edge Strength

Characters consist of strokes. Text regions thus have a high density of edges.
The local edge strength E is defined as the average edge magnitude in a neigh-
bourhood:

E=Se|Del|.

I is the input image, D an edge filter (e.g., gradient or Sobel filter), and S some
averaging filter (e.g., box, binomial, or Gaussian filter). In [2] and [3] a Sobel
filter is applied, followed by a circular disk filter of radius 6. The local edge
strength responds to text of any orientation.

If only horizontal in plane text should be detected, it is favourable to consider
primarily only the horizontal edge strength:

E,=Se|D,ell,

where D, is some horizontal edges detector. In [32] the horizontal edge strength
is directly derived from DCT-encoded JPEG-images and MPEG-based I-frames



by means of the sum of the absolute amplitude of the horizontal harmonics in
each DCT block(i,j):
TRIALRESTRICTION

TRIALRESTRICTION are the horizontal harmonics of 8x8 DCT block (i, j).
The boundaries vl and v2 have to be chosen according to the character size.
[32] uses 2 and 6 for vl and v2, respectively. The DCT coefficients capture
the spatial periodicity and directionality in a local block and are therefore a
short cut to edge detection. Such a compressed domain edge detector, however,
covers only a small part of the many resolutions of a frame posing a problem
to scale-independent text extraction. This is especially true for high resolution
videos such as HDTV video sequences.

Cai et al. suggest using an adaptive edge strength threshold [2]. They
observed that for text embedded in simple background low contrast suffices to
render text readable, and that this can also be observed in practice. However,
for text embedded in complex-background a high-contrast is always required and
used. In a first step a low threshold is applied to the edge strength map. The
threshold is selected to accommodate for low-contrast text in simple background.
Based on a sliding window, the number of edge-free rows is counted. A high
count suggests simple background and no threshold adjustments, while higher
counts suggest choosing a higher adaptive threshold in that area to remove more
edge pixels. One might argue that a more efficient continuous classifier can be
build by using machine learning algorithms.

0.4 Edge Density

Text density is usually evaluated by opening/closing operations applied to bi-
narized edge maps. In [2] specific filters are designed, however, it is not clear
why they should perform better than standard opening/closing operations. In
general, the optimization criterion would be to learn a filter or morphological op-
eration that keeps text regions of certain edge density, while removing non-text
regions based on their diverging edge density.

0.5 Symmetric Edge Distribution

In areas of clearly readable text one expects — besides high local edge strength
— to find edges of all angles and that in most cases an edge of a certain angle
is accompanied by an edge in the opposite direction [15]. Clearly visible and
readable text should have an edge on both sides of a stroke. Thus

TRIALRESTRICTION

is measure of symmetry using local edge angle histograms [4]. TRIALRESTRICTION
is the total magnitude of edges in direction TRIALRESTRICTION. This fea-
ture is scale invariant. Figure 4 shows an example taken from [3].

TRIAL RESTRICTION



0.6 Edge Angle Distribution

For text regions we expect edge angles to be well distributed, i.e., almost all
edge angles will occur. An appropriate measure is:

TRIALRESTRICTION

TRIALRESTRICTIONrepresents the average magnitude over all directions.
The EAD measure has its lowest value for homogenous edge distributions and
will increase for skewed ones. Unlike most other features this feature allows to
distinguish straight ramps, canals, or ridges from text [3]. In other words, at
the appropriate scale text areas are isotropic. Alternatively, this attribute could
be measured by Jaehne’s Inertia tensor [10].

0.7 Wavelets

Wavelet decomposition naturally captures directional frequency content at dif-
ferent scales. Li et al. suggest using the mean, second order (variance) and
third-order central moments of the LH, HL, and HH component of the first
three levels of each 16x16 window [9].

0.8 Derivatives

In [16] the gradient image of the RGB input image TRIALRESTRICTION
is used to calculate the complex-values edge orientation image E:

TRIALRESTRICTION.

E maps all edge orientations between 0" and 90 °, and thus distinguishes only
between horizontal, diagonal and vertical orientations.

1. Detection

The most common and generic form of feature-based text detection is based on
a fized scale and fixed position text classifier on some feature image F'.
A feature image F' is a multi-band image where each band can be one of the
features described in subsection 2.1 computed at a given scale from the input
image I. Given a WxH window region in a multi-band feature image F', a fixed
size fixed position text detector classifies the window as containing text if and
only if text of a given size is completely contained in the window. Often the
window height is chosen to be one or two pixels larger than the largest targeted
font height, and the width is chosen based on the width of the shortest possible,
but semantically still meaningful word. For instance, in [16] a window of 20x10
was used.

Many different supervised machine learning techniques have been used to
train a fixed scale fixed position text classifier such as Decision Trees, Neural
Networks, complex Neural Networks, Boosting, Support Vector Machines, GMs,
and handcrafted methods. An important design consideration at this stage is



the amount of scale and location independence that should be trained into the
fixed size fixed position classifier. Common choices for scale independence range
from + 10% to £50% of some reference font size, while for position independence
+1 to £W*10% pixels are common.

Location independence is achieved by sliding the WxH window pixel by
pixel over the whole feature image and recording the probability of having text
at that location in a scale-dependent saliency map (see Figure 5, single row).
Scale independence is achieved by applying the fixed scale detection scheme
to rescaled input images of different resolution [9][16][29]. Alternatively the
features instead of the image can be rescaled to achieve a multi-scale search
[17][28].

As one can observe from the forth column in Figure 5, where confidence
in text locations is encoded by brightness, text locations stick out as correct
hits at multiple scales, while false alarms appear less consistent over multiple
scales. Similar results have been observed by Rowley et al. for their neural
network-based face detector [23] and by Laurent Itti in his work on models of
saliency-based visual attention [5].

In order to recover initial text bounding boxes, the response images at the
various scales must be integrated into a consistent text detection result. Differ-
ent approaches are used for scale integration. Examples are:

e Extract and refine initial text boxes at each scale from its associated
saliency map in parallel before integrating them into the final detection
result. Each scale might also take into account the response of nearby
scales (3).

e Extract and refine initial text boxes sequentially — from the saliency maps
at lower scales to the saliency maps at higher scales. Remove all regions
in the higher scale response maps, which have already been detected at
lower scales.

e Project the confidence of being text back to the original scale of the input
image and extract and refine initial text boxes from the scale-integrated
saliency map. Figure 5 column 5 gives an example [16].

There are two principle ways of extracting initial text boxes: bottom-up and
top-down approaches. Bottom-up approaches are region growing algorithms.
Starting with seed pixels of highest text probability, text regions are grown
iteratively. While this works well for Roman languages due to their low-variance
stroke density property, it might cause problems for Chinese characters due to
their large variance in stroke density [2]. Top-down approaches split images
regions alternately in horizontal and vertical directions based on texture features
[2]. Sometimes both approaches are used simultaneously. For instance in [16] a
bottom-up approach is used to find text columns, while a top-down approach is
used to partition these text columns into individual text lines.

The overall multi-scale search procedure is summarized inFigure 5. Note
that the raw scale and scale independent saliency maps are often smoothed by
some morphological operations such as opening and closing.
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1. Exploiting Temporal Redundancy

Videos differ from images by temporal redundancy. Each text line appears over
several contiguous frames. This temporal redundancy can be exploited to

e increase the chance of localizing text since the same text may appear under
varying conditions from frame to frame,

e remove false text alarms in individual frames since they are usually not
stable throughout time,

e interpolate the locations of ‘accidentally’ missed text lines in individual
frames, and

e enhance text segmentation by bitmap/stroke integration over time.

Early approaches used tracking primarily to remove false alarms. Therefore,
potential text lines or text stroke segments were only tracked over a few frames
(e.g., 5 frames) [13][26]. Dependent on whether the tracking was successful or
not, a text candidate box or text stroke region was either preserved or discarded.
Short term tracking also put fewer requirements on the quality of the tracking
module.

More recent approaches summarize text boxes and character strokes of the
same content in contiguous frames into a single text object. A text object
describes a text line over time by its text bitmaps or connected-components,
their sizes and their positions in the various frames as well as their temporal
range of occurrence.

Text objects are extracted in a two-stage process in order to reduce com-
putational complexity: In stage 1, a video is monitored at a coarse temporal
resolution (see Figure 6 and [9][16]). For instance, the image-based text localizer
of subsection 2.2 is only applied to every second (i.e., every 30th and 25" frame
in NTSC and PAL, respectively). The maximum possible step size is given by
the assumed minimum temporal duration of text line occurrences. It is known
from vision research that humans need between 2 and 3 seconds to process a
complex scene. Thus, it is safe to assume that text appears clearly for at least
one second.

If text is detected, the second stage of text tracking will be entered. In
this stage text lines found in the monitoring stage are tracked backwards and
forwards in time up to their first and last frame of occurrence. We will restrict
our description to forward tracking only since backward tracking is identical
to forward tracking except in the direction you go through the video. Also the
tracking description will be biased towards the feature based approach, although
most can be directly applied to the stroke-based text detection approaches, too.

A fast text tracker takes the text line in the current video frame, calculates
a characteristic signature, which allows discrimination of this text line from text
lines with other contents, and searches in the next video frame for a region of the
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same dimension, which best matches the reference signature. If the best match
exceeds a minimal required similarity, the text line is declared to be found and
added to the text object. If the best match does not exceed a minimal required
similarity, a signature-based drop-out is declared. The size of the search radius
depends on the maximal assumed velocity of text. Heuristically text needs at
least 2 seconds to move from left to right in the video. Given the frame size
and the playback rate of the video this translates directly to the search radius
in pixels. In principle, the search space can be narrowed down by predicting
the location of text in the next frame based on the information contained in the
text object so far.

The signature-based text line search cannot detect a text line fading out
slowly since the search is based on the signature of the text line in the previous
frame and not on a fixed master/prototype signature. The frame to frame
changes are likely to be too small to be detectable. Further, the signature-
based text line search can track zooming in or zooming out text only over a
very short period of time. To overcome these limitations, the signature-based
search is replaced every x-th frame by the image-based text localizer in order
to re-calibrate locations and sizes of the text lines.

Often continuous detection and tracking of text objects is not possible due
to imperfection in the video signal such as high noise, limited bandwidth,
text occlusion, and compression artefacts. Therefore tracking should be ter-
minated only if for a certain number of contiguous frames no corresponding
text line could be found. For this, two thresholds TRIALRESTRICTION
and TRIALRESTRICTION are used. Whenever a text object cannot be ex-
tended to the next frame, the drop-out counter of the respective localization
technique is incremented. The respective counter is reset to zero whenever the
search succeeds. The tracking process is finished as soon as one of both counters
exceeds its threshold.

Post-Processing

In order to prepare a text object for text segmentation, it must be trimmed
down to the part which has been detected with high confidence: the first and
last frame in which the image-based text localizer detected the text line. Text
objects with a high drop-out rate and/or short duration (e.g., less than a second)
should be discarded. The first condition rests on our observation that text lines
are usually visible for at least one second. The second condition removes text
objects resulting from unstable tracking which cannot be handled by subsequent
processing. Unstable tracking is usually caused by strong compression artefacts
or non-text objects.

Finally, a few attributes should be determined for each text object:

e Text colour: Assuming that the text colour of the same text line does
not change over the course of time, a text object’s colour is determined as
the median of the text colours per frame.

e Text position: The position of a text line might be static in one or both
coordinates. If static, all text bounding boxes are replaced by the me-
dian text bounding box. The median text bounding box is the box whose
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left /right /top/bottom border is the median over all left/ right /top/bottom
borders. If the position is only fixed in one direction such as the x or y
axes, the left and right or the top and bottom are replaced by the median
value, respectively. Temporally changing coordinate components may be
smoothed by linear regression over time.

Figure 7 shows the result of text tracking of located text lines for a sample
sequence. All text lines except ‘Dow’ could be successfully tracked. The line
‘Dow’ is missed due to its partially difficult background such as the iron gate and
face border. The iron gate’s edge pattern is very similar to text in general. It also
contains individual characters, thus confusing the image-based text localization
system, which in turn renders tracking impossible.

1. Experimental Results

Two different kinds of performance measure have been used by the researchers
in the field:

e Pixel-based performance measures and

e Text box-based performance measures.

Both performance measures require ground truth knowledge, i.e., precise
knowledge about the text positions in each image/frame. Such ground truth
knowledge usually has to be created by hand.

Pizxel-based performance numbers calculate the hit rate, false hit rate
and miss rate based on the percentage of pixels the ground truth and the de-
tected text bounding boxes have in common:

TRIALRESTRICTION

TRIALRESTRICTION
TRIALRESTRICTION

where TRIALRESTRICTION and TRIALRESTRICTION are the sets of
pixel sets representing the automatically created text boxes and the ground
truth text boxes of size TRIALRESTRICTION and TRIALRESTRICTION,
respectively. TRIALRESTRICTION and TRIALRESTRICTION denote
the number of pixels in each text box, and TRIALRESTRICTION the set of
joint pixels in TRIALRESTRICTION and TRIALRESTRICTION.

In contrast, the text box-based performance numbers refer to the num-
ber of detected boxes that match with the ground truth. An automatically cre-
ated text bounding box A is regarded as matching a ground truth text bounding
box G if and only if the two boxes overlapped by at least ©%. Typical values
for z are 80% or 90%:

TRIALRESTRICTION
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TRIALRESTRICTION
TRIALRESTRICTION,

where
TRIALRESTRICTION

Alternatively, often recall and precision values are reported:
TRIALRESTRICTION , TRIALRESTRICTION

The most important text detection approaches and their reported performances
numbers are listed and compared in Table 1.

Commonly reported sources of text misses are due to weak text contrast
with the background, large spacing between the characters, or too large fonts.
Non-text regions with multiple vertical structures often result in false alarms.

1. Segmentation

Text segmentation is the task of preparing the bitmaps of localized text oc-
currences for optical character recognition (OCR). Often standard commercial
OCR software packages, which are optimized for scanned documents, are used
for recognition due to their high level of maturity.

Text segmentation is commonly performed in two steps: In a first step, the
image quality is enhanced in the still image and/or video domain, before in
a second step a binary image is derived from the visually enhanced image by
means of standard binarization algorithms [21][22].

1. Enhancements in the Image Domain

0.9 Resolution Enhancement

The low resolution of video (typically 72 ppi) is a major source of problems
in text segmentation and text recognition. Individual characters in MPEG-I
encoded videos often have a height of less than 11 pixels. Although such text
occurrences are still recognizable for humans, it challenges today’s standard
OCR systems due to anti-aliasing, spatial sampling and compression artefacts
[18][15][24]. Today’s OCR systems have been designed to recognize text in
documents, which were scanned at a resolution of at least 200dpi to 300dpi
resulting in a minimal text height of at least 40 pixels. In order to obtain good
results with standard OCR systems it is necessary to enhance the resolution of
segmented text lines.

A common pre-processing step is to obtain higher resolution text bitmaps by
sub-pixel accurate rescaling of the original text bitmaps to a fixed target height,
while preserving the aspect ratio. Typical values for the target height range
from 40 to 100 pixels, and cubic interpolation or better up-sampling filters are
used for rescaling. Fixing a target height is computationally efficient, because
text with a larger height neither improves segmentation nor OCR performance
[9][16][24]. In addition, the fixed target height effectively normalizes the stroke
widths to a narrow range for Roman characters, which in turn can be used later
for additional refinement operations.
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Table 1: : PSNR comparison of same video encoded as a single VOP MPEG-4
video and a multiple VOP MPEG-4 video with one additional VOP for each

detected text line.

Work Scope DOT Per-formance Comments
main
imagg explojtcaptiorScene | Compressed/
video text Uncompressed
Cai’02 X X U H: 98.2% Detection of horizontal text in E
2] F: 6.5%
Jeong’99 X X U H: 92.2% Neural Network (NN)-based text
[12] F: 51%
Li’00 b'e b'e b'e (x) U R: 92.8% Tracking system is sensitive to ct
[9] P: 91.0%
Lienhart’02 b'e b'e b'e (x) U H: 94.7% Complete NN-based system; mul
[16] Fi: 18%
Mariano’00 X X U H: 94% Designed for horizontal, uniform
[19] F: 39%
[Ohya’94] X X X U H: 95.0% Detection, Segmentation and Re:
21]
Sato1999 X X X U H: 98.6% Complete innovative system for ¢
24]
Shim‘98 X x X X U H: 98.8% Designed for horizontal text only
126]
[Shin] b'e b'e U H: 94.5% Uses SVM on raw pixel inputs; 1
[27] F: 42%
Wu’99 X X X U H: 93.5% Complete system for video, news
29]
Zhong’99 X b'e X C H: 96% Very fast pre-filter for text detec
[31] Fi: 6.07%
Zhong’00 X X C H: 99.1% Very fast pre-filter for text detec
[32] Fi: 36%
Fy:: 1.58%
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0.10 Character Stroke Enhancement

Sato et al. propose to use 4 directional stroke filters of 0°, +45°, -45° , and

90 ° trained by fixed English fonts. These filters calculate the probability of

each pixel being on a text stroke of that direction. By integrating the four filter

results an enhance text stroke bitmap is formed (see Figure 8 taken from [24])
TRIAL RESTRICTION

1. Enhancements in the Video Domain

0.11 Temporal Integration

Text objects in videos consist of many bitmaps of the same text line in contigu-
ous frames. This redundancy can be exploited in the following way to remove
the complex background surrounding characters: Suppose the bitmaps of a text
object are piled up over time such that the characters are aligned perfectly with
each other. Looking through a specific pixel in time, one may notice that pix-
els belonging to text vary only slightly, while background pixels often change
tremendously through time. Since a text line’s location is static due to its align-
ment its pixels are not supposed to change. In contrast, background pixels are
very likely to change due to motion in the background or motion of the text line
(see Figure 9(a)).

A temporal maximum/minimum operator applied to all or a subset of per-
fectly aligned greyscale bitmaps of a text object for normal/inverse text is gen-
erally capable to separate text pixels from background pixels. This temporal
maximum /minimum operation was first proposed by Sato et al. for static text
[25], but can also applied to moving text if the text segmentation system sup-
ports sub-pixel accurate text line alignment [16]. An alternative approach to
the min/max operation is to calculate a pixel’s temporal mean and variance and
reject pixels with large standard deviations or a few outliers.

0.12 Sub-pixel Accurate Text Alignment

Two similar proposals have been developed by Li [9] and Lienhart [16]. The
latter approach, though, is more robust since it exploits the estimated text
colour during tracking and, therefore, does not have problems with complex
background as reported by [9].

The sub-pixel accurate text alignment is achieved as follows: In a first step,
the bounding boxes of detected text locations are slightly increased to ensure
that text is always 100% contained in the enlarged bounding boxes (see Fig-
ure 10). Let TRIALRESTRICTION denote the N bitmaps of the enlarged
bounding boxes of a text object and TRIALREST RICTIONthe representa-
tive bitmap, which is to be derived and initialized to TRIALRESTRICTION.
Then, for each bitmapT RIALRESTRICTION, the algorithm searches for
the best displacement vector TRIALRESTRICTION, which minimizes the
difference between T RIALRESTRICTIONandTRIALRESTRICTION with
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respect to pixels having text colour, i.e.,
TRIALRESTRICTION

A pixel is defined to have text colour if and only if it does not differ more than
a certain amount from the greyscale text colour estimated for the text object.
At each iteration, TRIALREST RICTIONis updated to

TRIALRESTRICTION,TRIALRESTRICTION

where op=maz for normal text and op=min for inverse text. Figure 9(b) shows
an example of the min/max operation.

1. Segmentation

Different segmentation techniques have been used for text segmentation. Some-
times several of them are combined to achieve better and more reliable segmen-
tation results.

0.13 Seedfilling from Border Pixels

Text occurrences are supposed to have enough contrast with their background
in order to be easily readable. This feature can be exploited to remove large
parts of the complex background. The basic idea is to increase the text bounding
boxes such that no text pixels fall onto the border and then to take each pixel on
the boundary of the text bounding box as a seed to a virtual seedfill procedure,
which is tolerant to small colour changes. Pixels which differ not more than
TRIALRESTRICTIONfrom the seed will be regarded as pixels of the same
colour as the seed. In theory the virtual seedfill procedure should never remove
character pixels since the pixels on the boundary do not belong to text and
text contrasts with its background. We attributed the seedfill procedure with
“virtual” since the fill operation is only committed after the seedfill procedure
has been applied to all pixels on the border line in order avoid side effects
between different seeds [16].

In practise, however, text segmentation sometimes has to deal with low
contrast, which may cause the seedfill algorithm to leak into a character. A
stop criterion may be defined based on the expected stroke thickness. Regions
which over a large extent comply with the stroke thickness range of characters
in one dimension should not be deleted.

Not all background pixels are eliminated by this procedure, since the sizes of
the regions filled by the seed-fill algorithm are limited by the maximum allowed
colour difference between a pixel and its border pixel seed. In addition, some
regions are not connected to the border such as the interior of closed stroke
characters ‘o’ and ‘p’. Therefore, a hypothetical 8-neighborhood seedfill proce-
dure with TRIALRESTRICTIONis applied to each non-background pixel in
order to determine the dimension of the region that can hypothetically be filled.
Background regions should be smaller then text character regions. Therefore,
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all hypothetical regions violating the typical range of width and height values
for characters are deleted.

Thresholding

The simplest form of thresholding rests on a single, global threshold. Many
different variants of global thresholding have been designed — ranging from bi-
level schemes to tri-level schemes. More sophisticated variants also exploit the
estimated text colour [16][24][29].

For text on complex background a global threshold may not be appropri-
ate since background pixel can have similar greyscale values as the text, or it
be brighter and darker than the text at different locations. In these cases an
adaptive threshold should be applied. Commonly used adaptive binarization
algorithms are derivatives of Otsu’s [22] and Ohya’s work [21].

1. Experimental Results

For text segmentation no generally accepted performance measure has emerged
in the literature. The three most common performance measures are:

e Manual visual inspection: Correctness is determined by manual visual
inspection of all created binary bitmaps.

e OCR Accuracy: Segmentation performance is evaluated indirectly by
means of the resulting OCR error rate with a given OCR engine making
the results dependent on the OCR engine and its peculiarities.

e Probability of Error: The probability of error measure requires pixel
maps of the ground truth data, which in most cases is very hard to provide.
The probability of error (PE) is defined as follows [6]:

TRIALRESTRICTION,

where P(B]O) and P(O|B) are the probability of error in classifying a text/background
pixel as background/text pixel, P(O) and P(B) are the a priori probabilities of
text/background pixels in the test images.

Table 2 reports the important text segmentation approaches and their per-
formances numbers. Only OCR accuracy in reported for comparability.

Warning: TRIAL RESTRICTION — Table omitted!

1. CONCLUSION

Text localization and text segmentation in complex images and video have
reached a high level of maturity. In this survey we focused on texture-based
approaches for artificial text occurrences. The different core concepts underly-
ing the different detection and segmentation schemes were presented together
with guidelines for practitioners in video processing. Future research in Video
OCR will focus more on scene text as well as on further improvements of the
algorithms for localization and segmentation of artificial text occurrences.
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