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Abstract
In this paper, we report on classification results for emotional
user states (4 classes, German database of children interacting
with a pet robot). Starting with 5 emotion labels per word, we
obtained chunks with different degrees of prototypicality. Six
sites computed acoustic and linguistic features independently
from each other. A total of 4232 features were pooled together
and grouped into 10 low level descriptor types. For each of
these groups separately and for all taken together, classification
results using Support Vector Machines are reported for 150 fea-
tures each with the highest individual Information Gain Ratio,
for a scale of prototypicality. With both acoustic and linguistic
features, we obtained a relative improvement of up to 27.6%,
going from low to higher prototypicality.
Index Terms: emotion, prototypes, feature types, automatic
classification

1. Introduction
In word recognition, it is either/or: either the word to be rec-
ognized ‘is there’, or not. This holds true even if the signal-to-
noise ratio is unfavourable, or the speaker is slurring. In emo-
tion recognition, it is different: neither do we know exactly,
what an emotion is, nor do we know — in a literal meaning
(ground truth) — in the actual case which emotion is expressed
by the speaker up to which extent. Thus we have to resort to spe-
cific strategies: we can use acted speech —with or without sub-
sequent perceptual evaluation — or we can use ‘spontaneous’
speech with some external (context-) annotation, or human la-
belers. Acted data are relatively easy to get and can be designed
in such a way that there are enough cases per class; produced
by a good actor, they can be conceived as pure and (sort of)
prototypical. However, their relevance for modelling realistic
data is doubtful. Realistic data, on the other hand, is normally
unbalanced and sparse. Moreover, there is ample evidence that
realistic emotions are not either/or but can be mixed or more or
less pronounced, i.e. prototypical. Normally, more than one la-
beler is employed that either can annotate explicitly whether the
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emotion is pronounced/mixed or not, or we can resort to major-
ity voting for assigning an emotion label. For instance, for the
database dealt with in this paper, we employed five labelers and
normally use as majority voting an agreement of at least three
out of these five labelers [1, 2, 3]. This is a reasonable but of
course not the only possible strategy: we could have used an-
other threshold, for instance, at least four out of five. Less or not
prototypical cases constitute a sort of waste-paper-basket cate-
gory; in order to get a somehow balanced sample, they are often,
together with the majority of the default class (i.e., neutral), dis-
carded. No matter which strategy has been chosen, it should be
described fully, together with possible consequences: if we do
not select but deal with the whole database, classes might be
‘noisy’ and classification performance rather low. This is, how-
ever, a realistic setting. If we select most prototypical cases,
classification performance might be considerably higher but we
will not be dealing with a fully realistic scenario.

The ‘prototypical’ study on automatic classification of emo-
tion first selects the data and the class assignment — which is
then kept constant throughout the study — and tries to opti-
mize performance by varying, for example, features and fea-
ture selection, or (types of) classifiers. The focus of the present
study is the opposite: we vary the degree of prototypicality and
keep everything else constant. For that, we use a very large
feature vector with subsequent feature selection, and state-of-
the-art classification procedures. The idea behind is, of course,
that using only more prototypical cases yields higher classifi-
cation performance. We do not know of any other study so far
where degrees of prototypicality and classification performance
were systematically investigated.

Another question we want to address is whether the use of
prototypical cases — and let’s assume that acted data are proto-
typical as well — can be beneficial for classification: if we take
such clear cases and classify all cases, even the less clear ones,
will performance be higher, the same, or less? In this paper, we
cannot discuss in what way acted data are different from sponta-
neous, prototypical data — they surely are. Seen from a pattern
recognition / data mining point of view, we simply can focus on
classification performance. The third topic we want to deal with
is whether the relevance of different acoustic and linguistic fea-
ture types changes if we go over from less prototypical to more
prototypical constellations.

In Sec. 2 we introduce the database used and describe the
labeling process resulting in each pattern assigned to a unique
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emotional class. In the same section we define prototypes. In
Sec. 3 we give a short overview of the feature types employed.
Experimental setup and prototypes’ performance are described
in Sec. 4. In Sec. 5 we summarize the most important results.

2. Chunks: Labels and Prototypes
The database consists of German recordings of children com-
municating with Sony’s AIBO pet robot; it is described in more
detail in [1, 2, 3]. The basic idea was to collect ‘natural’ emo-
tional speech within aWizard-of-Oz scenario: a human operator
causes the AIBO to perform a fixed, predetermined sequence of
actions, provoking emotional reactions in the child. The whole
database comprises about 9.2 hours of speech without pauses
collected at two different schools from 51 children (age 10−13,
21 male, 30 female). We segmented the data into ‘turns’ of
variable length, using as criterion a pause of ≥ 1.5 sec. By
that we got many one-word turns, but even turns with up to
> 50 words. Five labelers (advanced students of linguistics)
listened to the turns in sequential order and annotated indepen-
dently from each other each word as neutral or as belonging to
the one of ten other classes. If three or more labelers agreed,
the label was attributed to the word (majority voting). All in all,
48401 words were labeled.

As emotional units match better with semantically mean-
ingful chunks than turns containing up to > 50 words, we clus-
tered words into chunks. Eventually, these chunks which rep-
resent the patterns in the classification process, were labeled by
mapping word labels onto chunks by the procedure described
below. The chunking was based on syntactic and prosodic in-
formation. First, we performed a coarse, manual, syntactic la-
beling with the following chunk triggering boundaries: at main
clauses, free phrases, and between adjacent /Aibo/ instances be-
cause repetitions of vocatives make emotional colouring more
likely. Eventually, we applied a prosodic, additional criterion:
if the pause between words is ≥ 500 msec, we assume a chunk
boundary; the length of the pauses between words was ob-
tained from the manually corrected word segmentation. This
is a reasonable, heuristic criterion for segmenting syntactically
ill-formed sequences which often can be observed in scenar-
ios such as ‘giving commands to a pet (robot)’. Before label-
ing the chunks, as some of the labels were very sparse, we re-
sorted to down-sampling neutral and emphatic classes, while
touchy, reprimanding, and angry were mapped under the same
cover class angry. Patterns assigned to the classes surprised,
helpless, irritated, bored, joyful and rest were discarded due to
sparse data. Weighted kappa for the four (cover) classes moth-
erese, neutral, emphatic, and angry is 0.59. The mapping of
word- onto chunk-based labels followed basically the strategy
described in [2]: for each chunk, we pooled the labels given
by our 5 labelers (for a chunk of n words, we obtain n × 5 la-
bels). For the chunks to be mapped onto Neutral1, 60% of the
(word) labels had to be neutral. If 40% or more are non-neutral,
then the chunk is Angry, Motherese, or Emphatic: the chunk
is mapped onto Motherese if at least 50% of the non-neutral
labels are motherese, otherwise, if emphatic is more (as) fre-
quent than (as) anger, the turn is mapped onto Emphatic. The
remaining chunks, which are neither Emphatic norMotherese,
are defined as Angry. By that we employ some ‘markedness’
criterion: Motherese is more marked than Emphatic andAngry,
and all are more marked than Neutral (see the example below in

1Labels given to chunks have initial letter boldfaced: this letter is
used in the figures to identify the respective emotional class.

this section). This procedure yielded 4543 chunks (914 Angry,
586Motherese, 1045 Emphatic, and 1998 Neutral— cf. ‘w/o’
(without) in Fig. 1) with 2.9 words per chunk on average.

The l = n× 5 word-based emotion labels assigned to each
chunk (made of n words) can serve to select the most prototyp-
ical patterns. More in general, we can construct ensembles of
prototypical chunks that have a certain expectation of being rep-
resentative of the emotion they are assigned to. This expectation
might be simply estimated by looking at the labelers’ agreement
on the final chunk label L: #L/l×100 in percentage. By using
opportune thresholds thr we can construct prototypical datasets
with growing degrees of representativity. How prototypes are
obtained, can be better explained with the following example:

chunk A M E N # words label agreem.
0052 7 0 7 11 5 E 28%
0056 1 0 1 13 3 N 87%
0037 2 8 0 10 4 M 40%

Chunk 0052, annotated as Emphatic following the ‘marked-
ness’ procedure described above, has 7/(5 × 5) = 28% of
the labels supporting this decision, while chunk 0056 has
13/(3×5) = 87% agreement on theNeutral choice. Therefore,
a threshold thr=60% would discard chunk 0052 (and 0037 as
well) from the prototype list while it would retain chunk 0056.
The higher the threshold thr (which reflects the degree of rep-
resentativity of a certain group of prototypes), the lower the re-
taining number of patterns. In the upper part of Fig. 1 we draw
the distributions of the prototypes over the class labels and over
the threshold thr . Note, that for thresholds above 90% the num-
ber of patterns of the classes Emphatic andMotherese is almost
negligible, especially in relation to the neutral patterns. Below
in Fig. 1, we sketch the number of words per chunk as thr in-
creases. In general, the number of words per chunk thereby de-
creases, co-varying with higher inter-labeler correspondence for
shorter chunks. Differently for what happens with Neutral pat-
terns — thr is weakly correlated with # of words per Neutral
chunk, which is always above 3.5 — Emphatic is falling more
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Figure 1: Above: distributions of the chunks over the emo-
tional classes and over some representative prototypes’ thresh-
olds thr . Below, words per chunk, for all but Neutral class, and
for different thr . The initial distribution is labeled with ‘w/o’
(without). Thresholds are in percentage.
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steeply, maybe because of frequent emphatic stand-alone words
such as ‘stop’, whileMotherese is slowly falling until thr=80,
probably because child-directed speech often consists of more-
word chunks (e.g. ‘yeah, that’s fine’).

3. Features
The 4232 features used in this study can be clustered according
to the type of Low Level Descriptors (LLDs). We concentrate
on a characterisation in phonetic and linguistic terms — what
has been extracted rather than how it has been extracted.

Acoustic features comprise: Duration (# = 391) LLDs
model temporal aspects of the speech signal. Positions of
prominent energy or F0 values on the time axis are attributed
to this type as well. Energy (265) features model intensity,
based on the amplitude in different intervals. Pitch (333): the
acoustic equivalent to the perceptual unit pitch is measured in
Hz and often made perceptually more adequate by, e.g., loga-
rithmic transformation. Intervals, characterising points, or con-
tours are being modelled. Spectrum (656) or formant (spectral
maxima) LLDs model spoken content, esp. lower ones. Higher
formants also represent speaker characteristics. Each one is
fully represented by position, amplitude and bandwidth. As fur-
ther spectral features band energies, roll-off, centroid or flux are
used. Long term mean spectrum over a chunk averages out for-
mant information, giving general spectral trends. Cepstrum
(1699): MFCC features tend to strongly depend on the spoken
content. Yet, they have been proven beneficial in practically any
speech processing task. They emphasise changes or periodic-
ity in the spectrum, while being relatively robust against noise.
Voice quality (153) features comprise HNR, jitter, shimmer,
and other measures of microprosody. They are based in part on
pitch and intensity but reflect voice quality such as breathiness
or harshness. Wavelets (216) give a short-term multi-resolution
analysis of frequencies over time.

Linguistic features include: Bag Of Words, BOW (476)
which are well known from document retrieval tasks, showing
good results for emotion recognition as well. Each term within
a vocabulary is represented by an individual feature modelling
the term’s (logarithmical and normalized) frequency within the
current phrase. Terms are clustered with Iterated Lovins Stem-
ming. Part Of Speech, POS (31) classes (frequencies in the
chunk) represent a coarse taxonomy of six lexical and mor-
phological main word classes based on the spoken word chain.

thr. w/o 60 70 80 90 100
# 4543 3472 2012 1597 630 430

acoustic features
RR 61.7 69.6 77.3 80.3 91.6 89.5
CL 60.7 66.0 73.3 70.9 60.8 58.2
F 61.2 67.8 75.3 75.3 73.1 70.5

linguistic features
RR 62.6 68.8 75.7 78.5 86.8 90.5
CL 62.2 67.9 75.6 73.5 80.1 86.2
F 62.4 68.3 75.6 75.9 83.3 88.3

acoustic & linguistic features
RR 63.6 72.8 80.5 81.7 92.2 90.9
CL 62.5 71.4 79.1 73.6 68.1 73.9
F 63.0 72.1 79.8 77.5 78.3 81.5

Table 1: Classification performance of different prototypical
groups of chunks. Figures [%] are obtained by 3-fold SVM
speaker-independent stratified cross-validation. Each experi-
ment was conducted on 150 selected (IGR) features only.

Higher Semantics (12) features (frequencies in the chunk) are
based on a coarse taxonomy into six classes, (partly scenario-
specific) most relevant words, word classes, and emotional va-
lence (negative vs. positive), based on the spoken word chain.

Different types of normalizations are applied to the LLDs’
base contours listed above before functionals are applied: fea-
tures are often both – raw and normalized within each chunk.
Linguistic features are not extracted fully automatically as the
word transliteration was manually checked. A more detailed
overview of the extracted features per site is given in [3].

4. Experiments and Results
Different grades of prototypicality, cf. Tab. 1 (increment: 10%)
and Fig. 2 (increment: 5%), were classified with Support Vector
Machines: linear kernel, one-against-one multi-class discrimi-
nation, sequential minimal optimization [4]; this constellation
provided best accuracy in [3]. To eliminate the bias towards the
most frequent classes, cf. Neutral in Fig. 1, we up-sampled the
training sets by n-times complete instance repetition per class
except Neutral so that we finally approximated uniform class
distributions. Note that the multiplying factors n depend on the
thresholds thr chosen for the tuning of level of prototypization.
Classification results were obtained by partitioning the data set
into three balanced splits meeting the following requirements
(in the ‘w/o’ configuration): no splitting within-subject chunks,
quite similar distribution of chunk labels, and balance between
the two schools and genders. The three splits were exploited in
a 3-fold cross validation framework. Performance figures are
reported as F-measure, defined here as the uniformly weighted
harmonic mean of the class averaged recall (CL) and overall
recognition rate (RR). This is a slightly different definition from
the standard one [5]. However, this approach seems to be more
adequate in a multi-classification problem.

In the first set of experiments we focused on evaluating
the effects of prototyping on classification, using different sub-
sets of prototypes obtained with the procedure described above.
Results are reported in Tab. 1 using the 150 best acoustic
or linguistic features, or the 150 best acoustic and linguis-
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Figure 2: Classification results using single feature types (LLD),
each one previously reduced to 150 by IGR. The lines represent
LLD performance trends over growing prototyping thresholds.
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tic features. For feature selection, we used open-loop non-
decorrelating compression by highest Information Gain Ratio
(IGR), cf. [3]. Results for individual LLDs (Fig. 2) were ob-
tained by applying IGR within each group separately: this fea-
ture selection approach is fair across LLDs because the original
number of features is very unequal (see Sec. 3: 1699 cepstral
vs. 153 voice quality). Groups with less than 150 features were
not reduced: for instance, F-measures obtained using POS fea-
tures only are computed by exploiting 31 features.

Note that the results in Tab. 1 (and Fig. 2) are not directly
comparable across increments — the test sets are prototypized
as well, and therefore contain different patterns. Nonetheless,
they can be taken as exemplars for experiments with different
grades of prototypes. First of all, we see that prototypical pat-
terns clearly allow to boost classification performance, also in
spite of the reduced and more unbalanced dataset.2 The ‘rubi-
con’ for such an improvement seems to be between a thr of
70 and 80, i.e. 75 (Fig. 2): for ‘acoust. & ling. features’ F-
measure is slightly better than 79.8% (thr=70, Tab. 1), namely
80.4% (not shown); this amounts to a relative improvement on
‘w/o’ of 27.6%.3 Fig. 1 reveals that this is at the transition of
a real 4-class problem to a ‘mutilated’ 4-class problem which is
rather a 2-class problem because of sparse data for Motherese
and Emphatic. This holds for all acoustic features but duration
which is, in a way, a sort of linguistic feature as well: content
words are on average longer than function words, and by look-
ing at the linguistic features, we see that all three types, i.e. POS
as well, are not really impeded by the thr ≥ 75.

In Fig. 2, classification results over different prototypical
sets are reported for the single LLDs. The trends basically re-
flects what we already saw with both acoustic and linguistic
features together: the former set is more sensible to the curse
of dimensionality which becomes more compelling as thr in-
creases, apart from duration, cf. above. The differences be-
tween the feature types (e.g., best are energy and duration) has
been discussed in more detail in [3].

To check the effectiveness of prototypes in real-life condi-
tions, we trained our classifier on prototypes and tested on all
the original (thr=w/o) patterns. That way, the test sets always
consist of the same 4543 chunks. Classification performance
in these conditions are reported in Tab. 2. To some extent,
these results confirm similar findings in other areas (e.g. [6]):
data cleaning (or data pruning) is effective for removing mean-
ingless and mislabeled patterns. However, “suspicious patterns
may not be garbage patterns” as noisy data too is needed to
make the classifier learn those difficult patterns (both ambigu-
ous and atypical). The minimum of the generalization error in
Tab. 2 is for ‘acoust. & ling. features’ at thr=60; higher thr ’s
obviously result in over-cleaning the training data. This rela-
tively low threshold probably means that although ambiguous,
many patterns are still important and do characterize sponta-

2As expected, there is a clear negative correlation between thr and
number of words per chunk, cf. Fig. 1: Motherese: -0.95, Neutral:
-0.52, Emphatic: -0.84, and Angry: -0.87: the higher thr , the lower
the number of words; this holds esp. for the non-neutral classes. For
them, there is an even — albeit weak — negative correlation between
number of words and labelers’ agreement, e.g., for w/o: Motherese:
-0.26, Neutral: 0.03, Emphatic: -0.49, and Angry: -0.39.

3If we look at ‘acoust. & ling. features’ in Tab. 1, we see that RR
and CL are balanced for thr=w/o,60, 70. (This is true for ‘linguistic
features’ as well but not for ‘acoustic features’.) This means in turn that
recall for all four classes is rather balanced, for instance, for a thr of
70,Motherese: 79.0%, Neutral: 82.3%, Emphatic: 80.6%, and Angry:
74.3%. If RR and CL are not balanced, the default class Neutral is
classified better, and esp.Motherese worse.

thr. w/o 60 70 80 90 100
# 4543 3472 2012 1597 630 430

acoustic features
RR 61.7 63.1 61.6 61.4 56.6 55.2
CL 60.7 58.5 56.7 51.9 43.6 40.8
F 61.2 60.7 59.0 56.3 49.3 46.9

linguistic features
RR 62.6 62.9 63.2 62.1 60.0 58.2
CL 62.2 60.0 59.4 54.8 49.3 45.4
F 62.4 61.4 61.2 58.2 54.1 51.0

acoustic & linguistic features
RR 63.6 66.4 65.9 63.2 58.5 56.8
CL 62.5 63.6 62.1 54.9 46.3 42.9
F 63.0 65.0 63.9 58.8 51.7 48.9

Table 2: Classification performance of SVM trained on different
prototypical data sets: here, test patterns are not prototypes.
Figures [%] are obtained by 3-fold SVM cross-validation. Each
experiments was conducted on 150 selected (IGR) features only.
Differently from Tab.1, # is the number of training patterns only.

neous emotional speech. It is noticeable though that F-measures
do not heavily decrease until thr=80, where the curse of dimen-
sionality problem gets overwhelming.

5. Conclusions
Our data and our results can be seen as being typical for realistic
databases: a tidy, balanced set of classes is not given, and can
even less be maintained when going over to more prototypical
constellations. However, we could demonstrate that the degree
of prototypicality chosen clearly amounts to a marked differ-
ence in classification performance, e.g. for thr=w/o vs. 75 to
17.4 percent points (27.6% relative improvement). This dif-
ference is higher than the one normally obtained by optimizing
feature sets or classifiers, cf. for our data [2, 3]. Second, Tab.
2 reveals that prototypes cannot fully model variability in the
data and, used for training, yield minor improvements. Even if
our prototypes cannot simply be put on the same level as acted
data, this result makes it less probable that using acted data for
training is the solution for the sparse data problem.
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