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1 Lehrstuhl für Mustererkennung, Universität Erlangen-Nürnberg, Germany
2 Lehrstuhl für Japanologie, Universität Erlangen-Nürnberg, Germany

Andreas.Maier@cs.fau.de

Abstract
In second language learning, the correct use of prosody plays a
vital role. Therefore, an automatic method to evaluate the nat-
uralness of the prosody of a speaker is desirable. We present a
novel method to model prosody independently of the text and
thus independently of the language as well. For this purpose,
the voiced and unvoiced speech segments are extracted and a
187-dimensional feature vector is computed for each voiced
segment. This approach is compared to word based prosodic
features on a German text passage. Both are confronted with the
perceptive evaluation of two native speakers of German. The
word-based feature set yielded correlations of up to 0.92 while
the text-independent feature set yielded 0.88. This is in the same
range as the inter-rater correlation with 0.88. Furthermore, the
text-independent features were computed for a Japanese transla-
tion of the passage which was also rated by two native speakers
of Japanese. Again, the correlation between the automatic sys-
tem and the human perception of the naturalness was high with
0.83 and not significantly lower than the inter-rater correlation
of 0.92.
Index Terms: learning systems, speech analysis, feature ex-
traction.

1. Introduction
Prosody, i. e., the information contained in speech that goes be-
yond the spoken words, is very important for communication
between human beings. It is for example used to disambiguate
the meaning of an utterance that is ambiguous given the lit-
eral content only. Prosody can also indicate irony and convey
mood, affect or emotion. Last but not least, the skillfulness of a
speaker is reflected in his or her prosody — mostly involuntar-
ily so. Often non-native speakers exhibit unnatural prosody that
makes the speech difficult to understand and listen to. There-
fore, prosody plays an important role for acquiring a foreign
language.

When learning a foreign language in class, time per individ-
ual learner is too short for training the pronunciation of single
words efficiently. Training the prosody of the foreign language,
however, is often neglected fully. This is also the case for to-
day’s computer-assisted language learning systems: although
some systems provide automatic pronunciation scoring for sin-
gle words, prosodic phenomena are mostly ignored [1]. It is
therefore desirable to have an automatic method for evaluating
the quality of the speaker’s prosody. Apart from allowing the
learner to train prosody at home, it could also be applied in
entry-level or assessment tests.

In this paper, we propose a system to automatically evaluate
a speaker’s prosody. For evaluation, we concentrate on one spe-
cific aspect of speech: the naturalness of a speaker’s prosody.
For the applicability of automatic speech assessment methods,

it is very convenient if the system is independent of the learner’s
specific pair of native (L1) and foreign language (L2), because
then no model has to be built for every L1/L2-combination (pos-
sibly quadratic in the number of languages) but only for every
L2-language in question. Our approach meets this constraint by
utilizing only an automatic speech recognition system trained
on (native) L2 speech. A text-independent approach using fea-
tures based on voiced segments works even completely without
speech recognition.

The paper is organized as follows. Section 2 presents the
collection and annotation of the speech data used for training
and evaluation. Section 3.1 introduces the features based on
a speech recognizer, Section 3.2 the text-independent features.
The rest of that Section covers the tools used for estimating the
naturalness of the speaker’s prosody from the computed fea-
tures. Section 4 presents results, which are discussed in Section
5. Section 6 closes with a summary.

2. Data
The recorded data consists of both the German and the Japanese
version of the same text passage from the book “The Little
Prince” by Antoine de Saint-Exupéry. It was considered ap-
propriate for the aim of targeting prosodic features, due to its
balanced difficulty and literacy requirements.

26 people were recorded altogether, aged between 19 and
53 years: 8 German female, 5 German males, 9 Japanese fe-
males, and 4 Japanese males. All subjects were able to speak
German and Japanese. The task was to read the German and
the Japanese version of the text. All subjects were provided an
opportunity to read and practice the texts beforehand in order
to be able to concentrate on reading as fluently and naturally as
possible during recording.

The German text covers 183 words and took German sub-
jects about 1 min. 15 sec. to read in average, whereas Japanese
native speakers needed about 30 seconds more to complete the
text. The Japanese version of the text took Japanese subjects
about 1 min. 45 sec. to read, German native speakers needed
about 1 minute more to complete.

The microphone was carefully positioned near the reader’s
mouth, assuring avoidance of exhaled air noise as well as en-
abling minimization of possible background noise. We recorded
at a sample rate of 16 kHz with 16 bit.

The collected data was independently evaluated by two na-
tive speakers of Japanese and two native speakers of German,
who separately listened to each record of each subject and eval-
uated the naturalness of the speaker’s prosody on a scale from 1
to 5. All raters had experience in teaching their own native lan-
guage. In order to form a reference for the automatic evaluation
system the mean of both raters was computed.
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3. Methods
3.1. Word-based Prosodic Features

In order to compute prosodic features, the output of a word
recognition system in addition to the speech signal is required.
In this case, the time-alignment with the Viterbi algorithm
of our recognizer and the information about the underlying
phoneme classes (like long vowel) can be used to calculate our
prosodic word features [2].

First so called base-features are extracted from the speech
signal. These are the energy, the fundamental frequency (F0)
after [3], and the voiced and unvoiced segments of the sig-
nal. In a second step, the actual structured prosodic features
are computed to model the prosodic properties of the speech
signal. For each word we extract 21 prosodic features. These
features model F0, energy and duration, e.g. maximum of the
F0. Fig. 1 shows examples of the F0 features. In addition, 16
global prosodic features for the whole utterance are calculated.
They cover mean and standard deviation for jitter and for shim-
mer, the number, length and maximum length both for voiced
and unvoiced sections, the ratio of the numbers of voiced and
unvoiced sections, the ratio of length of voiced sections to the
length of the signal and the same for unvoiced sections. The last
global feature is the variance of the fundamental frequency F0.
In order to evaluate the speech, we calculate the average, the
maximum, the minimum, and the variance of the 37 turn- and
word-based features for the whole text to be read. Thus we get
148 features for the whole text.

Fig. 1 shows examples of the F0 features. The mean values
F0MeanGlobalWord are computed for a window of 15 words
(or less if the utterance is shorter) [4, 5] so they are regarded as
turn-level features here.

3.2. Text-Independent Prosodic Features

The text-independent prosodic features are computed with-
out using a speech recognizer or some kind of forced time-
alignment algorithm. As the name indicates, they are com-
pletely independent from the textual content of the spoken sen-
tence. In fact, these features can be used for prosodic analysis
of any language without any algorithmic changes.

The computational procedure is very similar to the compu-
tation of the word-based features. The prosodic base-features
including energy, voiced and unvoiced segments, F0 and pitch
periods are extracted from the speech signal and then normal-
ized using log-scaling and mean subtraction techniques. The
computation of the structured prosodic features at the next step
requires a segmentation: here we take the voiced segments in-
stead of words. We merge the adjacent segments when they are
separated by less than 50 msec and interpolate the correspond-
ing F0 contour to make the segmentation more robust. In ad-
dition to the single segments we also use the so-called context
segments consisting of two adjacent segments merged together.

The prosodic features we compute on the voiced segments
differ slightly from the word-based feature set. There are no on-
and offsets (and their positions) for F0 features because they
are identical to the segment boundaries. Instead, we addition-
ally compute a spectral description of the F0 and energy con-
tours using the absolute values of the first 10 FFT-coefficients
of the 128-point FFT-window centered over the current segment
which corresponds to a 1.28 second window at our frame rate
of 10 msec. These FFT-features are computed only for the sin-
gle segments. For every segment position, including the current
single segment and its context segments, we extract a total of
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Figure 2: Support Vector regression finds a function that has at
most ε deviation from the targets yi. In order to allow deviations
larger than ε a slack variable ξi is introduced again. Note that
the support vectors are outside the ε-tube.

187 features.
The further processing runs similar as for the case of word-

based features. The 187 segment features are combined to 187
text-features by computation of the mean value for each feature.
These are used for the regression later on.

3.3. Support Vector Regression

In the next step a model to predict the actual target value yi

has to be created. In order to approximate an arbitrary function,
Support Vector Regression (SVR) [7] can be applied. It’s goal
is to compute an estimate value ŷi for each of the N feature
vectors �xi which deviate at most ε from the original target value
yi. This leads to the following equation:

ŷi = �w
�

�xi + b. (1)

The variables �w and b are found by solving the problems

yi − (�w · �xi + b) ≤ ε and (�w · �xi + b)− yi ≤ ε. (2)

To allow deviations greater than ε, the slack variables ξi and ξ∗i
are introduced. Equation 2 changes then to

yi−(�w · �xi+b) ≤ ε+ξi and (�w · �xi+b)−yi ≤ ε+ξ
∗
i . (3)

In order to constrain the type of the vector �w we postulate flat-
ness. One way to achieve this is to minimize it’s norm ||�w||. We
end up with the following minimization problem:

minimize 1

2
||w||2 + C

X
i

(ξi + ξ
∗
i )

subject to

8><
>:

yi − (�w · �xi + b) ≤ ε + ξi

(�w · �xi + b)− yi ≤ ε + ξ∗i

ξi, ξ
∗
i ≥ 0

(4)

As is the case for Support Vector Machines [8], a primal La-
grangian can be formulated introducing Lagrange multipliers
αi, α∗

i , ηi, and η∗
i in order to solve this problem. The Lagrange

multipliers ηi and η∗
i are eliminated in the derivation of the pri-

mal Lagrangian. According to [7] the constraint αiα
∗
i = 0 has

to be met. Thus, there can never be a set of variables αi and
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Figure 1: Computation of prosodic features within one word (after [6])

α∗
i where both are nonzero at the same time. Furthermore αi

and α∗
i are zero if |ŷi − yi| ≤ ε. Therefore, support vectors

can only be found outside the ε-tube (cf. Figure 2). With the
Support Vector Expansion, the prediction of ŷi from Eq. 1 can
be written without the actual weight vector �w:

ŷi =

"X
j

(αj − α
∗
j ) �xj

#�

�xi + b (5)

Hence, only the Support Vectors have to be stored in order to
compute the regression.

3.4. Feature Selection

In this work Correlation-based Feature Subset (CFS) selection
combined with a best-first search as provided by [9] is applied
to select an optimal subset of the full feature set. The idea be-
hind the CFS selection algorithm is to compute the correlation
of a composite variable XS to an outside variable Y as the cri-
terion for the quality. In [10, p.182] a formulation of this corre-
lation as a composition of the inter-correlations r

YxS
i

between
the target variable Y and the NS individual features xS

i and the
intra-correlations rxS

i
xS

j
is found:

rYXS =
NSr

YxS

iq
NS + NS(NS − 1)rxS

i
xS

j

= G
S
CFS (6)

r denotes the mean of the respective correlations. In [11] Eq. 6
is used to create a fast and efficient algorithm to select features
which have a good correlation with the target variable. The
computation is very efficient, since the correlations between all
variables just have to be computed once. After their computa-
tion the single correlations are stored in a lookup-table which
allows fast and easy access to the values.
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Figure 3: Correlation between the experts’ opinion and the
prediction of the LOO system for the German language and the
text-independent features (r = 0.88).

4. Experiments and Results
All experiments were conducted in a leave-one-speaker-out
(LOO) manner. Table 1 reports Pearson’s correlation coeffi-
cients between the raters and the automatic system. All reported
correlations are significant at p < 0.01. Spearman’s correlation
coefficient was also investigated. Since the data was normally
distributed both coefficients were in the same range. Hence,
only Pearson’s correlation is reported. The reported results were
obtained with a linear SVM kernel. The use of higher polyno-
mials did not yield any improvements.

The inter-rater correlation was very high with 0.88 for the
German version of the text and 0.92 for the Japanese version.
Investigation of the agreement between the two raters of each
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Table 1: Correlations between the automatic evaluation system
and the human raters in comparison to the inter-rater correla-
tion

language inter- word-based text-independent
rater SVR SVR (CFS) SVR SVR (CFS)

German 0.88 0.89 0.92 0.88 0.75
Japanese 0.92 - - 0.76 0.83

language with the weighted Kappa [12] yielded coefficients of
κ = 0.72 for German and κ = 0.82 for Japanese which corre-
sponds to a high agreement in both cases.

With the word-based prosodic features, a correlation of 0.89
could be achieved. Feature selection in each leave-one-out iter-
ation could improve this even further to 0.92. A word-based
prosodic evaluation was not performed on the Japanese version
of the text because segmentation into words as in western lan-
guages is not straightforward in Japanese.

The text-independent prosodic features also yielded a high
performance on the German speech data with a correlation of
0.88 (cf. Figure 3) without feature selection and 0.75 with CFS
selection. The correlations between the perceptive evaluation
and the automatic system on the Japanese data was also com-
parable: A correlation of 0.76 was achieved without CFS se-
lection and 0.83 with feature selection. A reason for the differ-
ences between German and Japanese could be that the feature
set was originally designed and evaluated with German speech
data only. Hence, some of the features might not be meaningful
for the Japanese data and should therefore be excluded.

5. Discussion

The perceptive evaluation of the native speakers was very con-
sistent in German and in Japanese. Hence, the raters could de-
termine speakers with natural prosody easily and their agree-
ment on this feature was high. Therefore, the mean of the raters’
opinion is suitable to train an automatic evaluation system.

The results of the word-based evaluation system were in
the same range as the human evaluation. In fact the corre-
lation was even slightly higher than the inter-rater correlation
in two of four cases. No significant difference was found
(p > 0.05), i.e., the automatic evaluation is as reliable as the
ones of the experts. Significance testing with the u-test was
performed after [13].

On the German data the results of the text-independent
prosodic features were slightly worse than the word-based
prosodic features. However, no significant difference between
the inter-rater correlation, the word-based evaluation system,
and the text-independent evaluation system was found (p >
0.05). Hence, the performance of both evaluation systems and
the perceptive evaluation can be regarded as comparable.

With the text-independent system, an automatic evaluation
of the prosody of the Japanese data could also be performed. It’s
performance was worse than the experiments with the German
data. A significance test between the inter-rater correlation and
the SVR system showed that there was no significant difference
between both (p > 0.05). Thus, also the automatic evaluation
of the Japanese automatic system can be regarded as compara-
ble to the perceptive evaluation.

6. Summary
Our novel approach is able to evaluate the naturalness of the
prosody of a speaker. One variant of the system is independent
of the language, because it obtains the time alignment informa-
tion automatically from the structure of the speech data using
voiced and unvoiced segments. Hence, there is no speech recog-
nition required and the system can be applied as is to any other
language.

On the German data it could be shown that these features
allow a comparable performance to word-based prosodic fea-
tures. The accuracy of the system was in the same range as the
perceptive evaluation of native speakers of the respective lan-
guage. For German the inter-rater correlation was 0.88 while
the system’s performance also was 0.88 and for Japanese the
inter-rater correlation was 0.92 while the system had a correla-
tion of 0.83 to the mean of the human raters.
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