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Berezinskii-Kosterlitz-Thouless type scenario in the molecular spin liquid ACr2O4(A = Mg,Zn,Cd)

M. Hemmida,1 H.-A. Krug von Nidda,1 Vladimir Tsurkan,1,2 and A. Loidl1
1Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany

2Institute of Applied Physics, Academy of Sciences of Moldova, MD-2028 Chisinau, Republic of Moldova
(Received 27 September 2016; revised manuscript received 20 March 2017; published 5 June 2017)

The spin relaxation in chromium spinel oxides ACr2O4 (A = Mg, Zn, Cd) is investigated in the paramagnetic
regime by electron spin resonance (ESR). The temperature dependence of the ESR linewidth indicates an
unconventional spin-relaxation behavior, similar to spin-spin relaxation in the two-dimensional (2D) chromium-
oxide triangular lattice antiferromagnets. The data can be described in terms of a generalized Berezinskii-
Kosterlitz-Thouless (BKT) type scenario for 2D systems with additional internal symmetries. Based on the
characteristic exponents obtained from the evaluation of the ESR linewidth, short-range order with a hidden
internal symmetry is suggested.

DOI: 10.1103/PhysRevB.95.224101

I. INTRODUCTION

The search of a molecular spin-liquid state in strongly
frustrated spinels attracts enormous theoretical and experi-
mental interest in the condensed-matter community [1–3]. A
spin molecule is a spin cluster that is spatially confined within
a geometrical shape such as an atomic molecule in which the
intramolecular correlation dominates the intermolecular one
[4]. In the normal spinel structure AB2O4 the pyrochlore lattice
of the B site occupied by magnetic ions with antiferromagnetic
interaction provides the geometrically frustrated framework
for the formation of spin molecules. Experimental evidence
has been indicated, e.g., based on neutron-scattering studies.

Focusing on inelastic neutron-scattering (INS) results
in spinels, the form factor in ZnCr2O4 was convincingly
interpreted in terms of antiferromagnetic multispin clusters
or precisely hexagonal loops (hexamers), made up of six
tetrahedra where two spins of each tetrahedron occupy the
vertices of the hexamers. The remaining two spins of a
given tetrahedron belong to a different hexamer [1,2]. INS
measurements on single crystals of MgCr2O4 did not only
show the presence of hexamers in the antiferromagnetic
phase, but also additional seven-spin clusters (heptamers),
formed by the spins of two corner-sharing tetrahedra [4]. Very
recent INS measurements in the same compound revealed the
existence of hexa- and heptamers also in the paramagnetic
phase [5]. The spin correlations in the paramagnetic phase are
interpreted as a paramagnetic scattering of lowest geometric
quantum modes or geometrons. Moreover, powder INS studies
in HgCr2O4 exhibit molecular-type excitations in form of
dodecamers consisting of two hexamers [6]. Similar multispin
clusters (oligomers) have been observed in many other spinel
compounds like dimers and octamers in CuIr2S4 [7], heptamers
in AlV2O4 [8], hexamers in NiCr2O4 and FeCr2O4 [9],
tetramers and di-tetramers in GeCo2O4 [10,11], and hexamers
and dodecamers in ZnFe2O4 [12].

From a theoretical point of view, Tchernyshyov et al.
considered a model in which spin rearrangements around
such hexagons are dominant [3]. They discuss a mechanism
for lifting the frustration through a coupling between spin
and lattice degrees of freedom. The high symmetry of the
pyrochlore lattice and the spin degeneracy drive a distortion
of tetrahedra via a magnetic Jahn-Teller (“spin-Teller”) effect.

The resulting state exhibits a reduction from cubic to tetragonal
symmetry and the development of bond order in the spin
system with unequal two-spin correlations 〈Si · Sj〉 on different
bonds of a tetrahedron. The spectrum of spin excitations in the
distorted antiferromagnet contains a large number of modes
clustered near a finite frequency. These magnons, a remnant
of pyrochlore zero modes, are confined to strings of parallel
spins, so called string modes. The string modes can live on
straight lines of parallel spins, spirals, irregular lines, or even
closed loops. A mode living on a short loop is a local resonance.

The formation of such spin loops strongly reminds to the
configuration of the magnetic vortices in two-dimensional
(2D) magnets. This was originally described by Berezenskii
[13], Kosterlitz, and Thouless [14] for the classical vortices
with U (1) symmetry in the XY model and later by Kawamura
and Miyashita [15] for vortices with Z2 symmetry in the
triangular Heisenberg antiferromagnet. In both types of 2D
magnets the spin-spin relaxation turned out to be governed
by the presence of the vortices resulting in a characteristic
temperature dependence of the electron spin resonance (ESR)
linewidth �H . In the paramagnetic regime the influence
of vortices on the linewidth was approximately derived as
�H ∝ ξ 3 where ξ denotes the vortex correlation length [16].
Experimental realization was found, e.g., in the 2D XY
antiferromagnet BaNi2V2O8 [17] and in triangular Heisenberg
antiferromagnets ACrO2 with A = H, Li, K, Cu, Ag, and
Pd [18,19]. Here we will show that in ACr2O4 the ESR line
broadening can be described in terms of a generalized vortex
scenario, suggesting that the linewidth provides a direct access
to the string modes in the paramagnetic phase.

II. EXPERIMENTAL DETAILS

Polycrystalline ZnCr2O4, MgCr2O4, and CdCr2O4 samples
were prepared by solid-state reaction from high-purity binary
oxides in evacuated quartz ampoules. The synthesis was
repeated several times in order to reach good homogeneity.
Magnetization measurements have been performed using a su-
perconducting quantum interference device (SQUID) MPMS5
(Quantum Design) at temperatures 2 � T � 300 K. The ESR
measurements were performed in a Bruker ELEXSYS E500-
CW spectrometer at X band (9.4 GHz) frequency equipped
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with a continuous He-gas flow cryostat (Oxford Instruments)
working in the temperature range 4.2 � T � 300 K. The
polycrystalline samples were fixed in a quartz tube with
paraffin. Due to the lock-in technique with field modulation the
field derivative of the microwave-absorption signal is detected
as a function of the static magnetic field. Resonance absorption
occurs if the incident microwave energy matches the energy
of magnetic dipolar transitions between the electronic Zeeman
levels.

III. RESULTS

In the whole paramagnetic regime, above the Néel temper-
ature TN, the ESR spectra of all three compounds, shown in the
right frames of Fig. 1, are well described by the field derivative
of single Lorentz lines following

dP

dH
= A

−2x

(1 + x2)2
, with x = H − Hres

�H
. (1)

Here Hres denotes the resonance field, �H is the half width
at half maximum (HWHM), and A is the amplitude factor. At
elevated temperatures, the resonance fields depicted in the right
frames of Fig. 2 yield a g value (g ≈ 1.98) typical for Cr3+

(electronic configuration 3d3, spin S = 3/2) in octahedral O2−
coordination. On decreasing temperature the resonance line

FIG. 1. Left: Temperature dependence of the ESR intensities and
SQUID susceptibilities of MgCr2O4, ZnCr2O4, and CdCr2O4. Right:
ESR spectra in X band for selected temperatures in the paramagnetic
regime. The solid line indicates the fit with the field derivative of a
Lorentz line.

FIG. 2. Left: Selected ESR spectra close to TN (solid lines indicate
fits with the field derivative of a Lorentz line) and right: Temperature
dependence of paramagnetic resonance fields of MgCr2O4, ZnCr2O4,
and CdCr2O4 at X-band frequency.

slightly shifts to lower resonance fields, strongly broadens,
and disappears on passing TN, as illustrated in the left frames
of Fig. 2. On approaching TN, where the linewidth reaches
values of the same order of magnitude like the resonance field,
it was necessary to take into account the counter resonance at
−Hres for a reliable fitting as described Ref. [20]. The double
integrated intensity

IESR =
∫ ∞

0
P (H )dH = π

2
A�H 2, (2)

depicted in the left frames of Fig. 1, follows the static suscep-
tibility at elevated temperature, but significantly deviates and
decreases on approaching TN. This is different from the typical
behavior in antiferromagnets, where the intensity follows the
static susceptibility as long as the paramagnetic signal can be
resolved, like, e.g., in the case of LiCuVO4 in Ref. [21].

Figure 3 shows the ESR linewidths of all three compounds
as a function of reduced temperature (T − TN) on a double
logarithmic scale. Using the experimental values of TN

determined from the susceptibility, the data (solid symbols)
monotonously increase on decreasing temperature but level
off on approaching TN. Only at elevated temperatures the
data suggest a critical divergence �H ∝ (T/TN − 1)−p with
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FIG. 3. Temperature dependence of the ESR linewidth of
MgCr2O4, ZnCr2O4, and CdCr2O4 as a function of the reduced
temperature T − TN on a double logarithmic plot. Dotted lines
indicate critical divergences �H ∝ (T/TN − 1)−p .

exponents p < 1 as indicated by the dotted lines. Such small
critical exponents are far below the value (p = 1.7) expected
for 3D Heisenberg antiferromagnets. Similar small values
have been obtained in 2D triangular antiferromagnets ACrO2

[18,19]. These compounds reveal a dominant Heisenberg
character with a strong direct exchange interaction between
Cr3+ ions. Remarkably in three-dimensional (3D) pyrochlore
chromium oxides, a similar dominant direct exchange interac-
tion between Cr3+ ions is also present [22].

Furthermore, the deviation of the ESR intensities from static
spin susceptibilities illustrated in Fig. 1, similarly, has been
observed in the geometrically frustrated 2D chromium based
ordered rock salts and delafossites. It has been attributed to
the increasing influence of nonresonant relaxational modes
with strongly increasing linewidth [23]. In 2D ACrO2 these
modes have been related to the Z2 vortices [19]. It seems that
in ACr2O4 such nonresonant relaxational modes can be asso-
ciated with string modes, i.e., the spin molecules mentioned
above in the Introduction for the following reason: as has been
indicated, e.g., by Moessner and Ramirez [24] or Ross et al.
[25], the geometrical frustration within the pyrochlore lattice
strongly promotes 2D correlations on the (111) kagome planes
inherent in this lattice structure. Especially the formation
of the spin hexamers takes place exactly on these kagome
planes. Therefore, we suggest that the spin relaxation on the
pyrochlore lattice is of dominantly 2D character indicating the
tendency to undergo a topological phase transition analogous
to the Berezinskii-Kosterlitz-Thouless (BKT) transition in the
2D XY magnet or the Kawamura-Miyashita (KM) scenario in
the 2D triangular Heisenberg antiferromagnet.

Assuming this analogy, we adopted the theoretical frame-
work of BKT vortices where the space (r) and time (t)
dependent two-spin correlation function above the topological
phase transition reads [26]

〈Sx(0,0)Sx(r,t)〉 ≈ 1
2S2 exp{−

√
ξ 2r2 − γ 2t2} (3)

with spin S, vortex correlation length ξ , and γ = √
πū/(2ξ ),

where ū denotes the average vortex velocity. Fourier transfor-
mation yields the dynamic structure factor

Sxx(q,ω) = S2

2π2

γ 3ξ 2

{ω2 + γ 2[1 + (ξq)2]}2
(4)

probed by inelastic neutron scattering. In general the ESR
linewidth is determined by four-spin correlations. Following
Benner and Boucher [27], in independent-mode approxi-
mation, these four-spin correlations can be factorized into
two-spin correlation functions. Taking into account that the
microwave energy of 9 GHz is small compared to the energy
scale of the vortices, the ESR linewidth probes the dynamic
structure factor at zero momentum transfer q = 0 and nearly
zero frequency ω ≈ 0 yielding

�H ∝ Sxx(q = 0,ω → 0) ∝ ξ 2

γ
. (5)

Assuming the averaged vortex velocity ū to be temperature
independent, one finally arrives at �H ∝ ξ 3, i.e., the linewidth
is determined by the vortex correlation length only [16].

Using this approximation, we tried to describe the temper-
ature dependence of the resonance linewidth in the chromium-
oxide spinels using the generalized vortex-correlation length
ξ derived by Bulgadaev [28] as

ξ = ξ0 exp

[
b

(T/TB − 1)ν

]
, T > TB,

ξ = ∞, T < TB, (6)

where TB is the Bulgadaev temperature which substitutes for
the Kosterlitz-Thouless temperature in the BKT scenario. The
exponent ν provides information on the internal symmetries
of the spin system under consideration. For the pure BKT
scenario of the XY magnet one obtains ν = 0.5. For the KM
scenario of the triangular antiferromagnet, theoretical calcula-
tions derived ν ≈ 0.4 in agreement with experiment [19].

As shown in Fig. 4, Bulgadaev’s scenario turns out to
describe successfully the linewidth data �H ∝ ξ 3 in the full
temperature range without any residual contributions. Only
the exponent ν has to be chosen much smaller than those
found in the 2D Heisenberg antiferromagnet so far [18,19]. For
the Mg and Zn compound ν ≈ 0.063 yielded the optimum fit
while for CdCr2O4 ν ≈ 0.143 was preferable. The Bulgadaev
temperature TB is obtained as 2.47, 2.82, and 0.91 ± 0.05 K,
where b = 5.29, 5.27, and 2.94 ± 0.05 for A = Mg, Zn, and
Cd, respectively.

IV. DISCUSSION

First of all, it is important to note that the Bulgadaev
temperature TB exhibits values significantly below the Néel
temperature TN in all three compounds. This is very similar
to the findings in most of the 2D triangular antiferromagnets
ACrO2, where the characteristic temperature TV derived from
the vortex scenario is located clearly below the magnetic
ordering temperature [18,19]. In those 2D frustrated antifer-
romagnets, this observation could be ascribed to the existence
of a broad spin-fluctuation regime for TV � T � TN, where
magnetic vortices coexist with antiferromagnetic order, as was
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FIG. 4. Temperature dependence of the linewidth �H of
MgCr2O4, ZnCr2O4, and CdCr2O4. The solid lines indicate fits by
�H ∝ ξ 3 [16] using Eq. (6). Insets: Logarithmic plots of �H as
ln(�H ) vs −τ−ν , where ν values are 0.063 ≈ 1/16 for MgCr2O4

and ZnCr2O4, and 0.143 ≈ 1/7 in the case of CdCr2O4.

confirmed by complementary experimental methods: for ex-
ample, in NaCrO2 (TN = 41 K) the characteristic temperature
of TV = 24 K derived from the temperature dependence of
the ESR linewidth was found to be in good agreement with
the maximum of the broad peak of the μSR-relaxation rate
[29]. Such a μSR-relaxation peak results from strong spin
fluctuations below TN. This was further supported by neutron
scattering in NaCrO2, detecting long-range order within the
triangular planes [30], but only a weak incommensurate mod-
ulation along the c axis [31]. Taking into account the similarity
of the observed relaxation scenario in 2D ACrO2 with the 2D
melting transition from a well-ordered solid into a disordered
liquid via an intermediate liquid-crystal phase [32,33], the
temperature regime TV � T � TN can be regarded as magnetic
analog of this intermediate state. Transferring these ideas to
the chromium-oxide spinels, the temperature dependence of
the linewidth suggests the existence of a wide spin-fluctuation
regime TB � T � TN for all three compounds where TB is
located more than 80% below TN. Indeed, the existence of spin
molecules above TN in the correlated paramagnetic regime
and the coexistence of the spin molecules with long-range
antiferromagnetic order below TN, as detected by neutron
scattering, indicate the importance of spin fluctuations also

below TN. However, if there is really another phase transition
at TB, it cannot be stated at present, because our ESR data
are obtained in the paramagnetic regime and, therefore, only
suggest the tendency for the behavior below TN.

Focusing on the nature of exponents ν ≈ 0.063 and ν ≈
0.143, we realized that the obtained values are close to ν =
1/16 and ν = 1/7, respectively. According to Bulgadaev [cf.
Eq. (A1) in the Appendix], these exponents correspond to the
so called Coxeter numbers hG = 30 and 12, respectively. The
number hG = 30 can indicate the Lie groups An=29, Dn=16,
or E8, while hG = 12 may indicate An=11, Dn=7, or E6. In
the following we provide hints based on recent experimental
findings in literature that the exceptional groups E8 and E6 are
probably relevant for the observed relaxation behavior.

In 3D the perfect realization of E8 symmetry is the
icosahedron. Therefore, icosahedral symmetry or—its dual
counterpart—dodecahedral symmetry is expected to indicate
the hidden E8 symmetry. In this respect we work out
indications for icosahedral or dodecahedral features appearing
from different experimental results in ACr2O4, especially
focusing on analogies to icosahedral short-range order patterns
in glasses.

(i) Dynamical molecular spin state: Ultrasound velocity
measurements in ZnCr2O4 and MgCr2O4 reveal elastic anoma-
lies in the paramagnetic phase due to geometrical frustration
[34]. The trigonal shear modulus exhibits a characteristic
minimum at T ≈ 50 K, while the temperature dependent
tetragonal shear modulus shows huge Curie-type softening.
The phonon frequency is said to soften, because its value is
determined by restoring forces that soften on cooling [35].
The soft modes are torsional (transverse) phonons which are
slowing down the dynamical processes at a second-order
critical point, i.e., at TN. Following Ref. [34], the behavior
of the shear moduli strongly suggests the coexistence of a
dynamical spin-Jahn-Teller effect, evident from the softening
of the tetragonal shear modulus, and a dynamical molecular-
spin state, related to the only weakly temperature dependent
trigonal shear modulus, in the paramagnetic phase. This is
compatible with the coexistence of magnetostructural order
with cooperative tetragonal lattice distortion and a dynamical
molecular-spin state with local trigonal lattice fluctuations
in the antiferromagnetic phase. Thus, the magnetostructural
ordering is explained by the spin-Jahn-Teller mechanism via
magnetoelastic coupling, where cooperative distortions of
the tetrahedra release the frustration in the nearest-neighbor
antiferromagnetic interactions. Simultaneously, INS studies in
MgCr2O4 revealed the appearance of gapped molecular-spin
excitations in the antiferromagnetic phase, which corroborate
the coexistence of magnetostructural order and zero-point
motionlike fluctuations of the spin molecules [5].

(ii) Boson peaks: Further analysis of INS results in ZnCr2O4

and MgCr2O4 concluded that broad spin-excitation peaks are
usually signatures of short-range order [1,5]. They are analogs
to the short-range vibrational modes—so called boson peaks—
observed in supercooled liquids and glasses [36–38]. These
boson peaks in glasses are equivalent to the transverse acoustic
van Hove singularities in the vibrational density of states in
crystals [39]. In ZnCr2O4, van Hove singularities have been
observed as a wave-vector degeneracy in the spin-wave spectra
[1]. The relation between the broad spin-excitation peaks
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and van Hove singularities can be clarified in the following
way: geometrical frustration leads to constant energy surfaces
or volumes for spin-wave dispersion relations in reciprocal
spaces. Such Q-space “degeneracy” in turn yields pronounced
van Hove singularities in wave-vector averaged spectra. A
real-space interpretation has yet to be found for dispersionless
excitations in the pyrochlore lattice. The broad peak indicates
that they are highly localized in the ordered phase of ZnCr2O4

[1]. This is supported by theoretical calculations approving
that, due to spin loops, van Hove singularities are seen in the
local density of spin waves of ZnCr2O4 [3].

(iii) Dodecahedral spin clusters: Interestingly, by applying
INS methods in transition-metal-based quasicrystals, Sato
et al. found that broad inelastic peaks can be interpreted as
localized collective fluctuations of short-range ordered spins
in dodecahedral spin clusters [40,41]. Hence, they indicated
a possible close relation between these peaks and boson
peaks in glasses. By extending the Sethna-Sachdev-Nelson
formula [42,43], Kanazawa introduced a generalized view of
the physical origin of the boson peak in the gauge-invariant
formula [44]. He pointed out that the localized modes (massive
gauge modes), which correspond to the boson peak, are
required naturally through the Higgs mechanism. This means
that localized modes, van Hove singularities, and spin clusters
have a common nature.

Taking into account the analogy of short-range order
fluctuations and cluster formation in frustrated spin systems,
metallic glasses, and quasicrystals, we suppose that the spin or
molecular clusters in ZnCr2O4 and MgCr2O4 exhibit a hidden
icosahedral symmetry, precisely the E8 symmetry indicated
by ν = 1/16, which results in some kind of short-range order.
This conjecture is based on the defect description of liquids and
metallic glasses which are governed by an icosahedral order
parameter [45]. Further experimental and theoretical efforts
are necessary to check these ideas.

The result in CdCr2O4 raises additional questions. The
E6 symmetry derived from ν = 1/7 would result in a tetra-
hedral configuration. However, neutron-scattering studies in
CdCr2O4 did not reveal any kind of spin loops, probably
due to the incommensurate spin order and its consequences
[46,47]. It seems that in CdCr2O4 bond frustration due to
superexchange interactions gains more influence as com-
pared to the purely geometrically frustrated ZnCr2O4 and
MgCr2O4 in which the direct nearest-neighbor (Cr3+–Cr3+)
exchange interaction dominates. For example, tetramers and
di-tetramers were detected in GeCo2O4 in which the ferro-
magnetic Co2+–O2−–Co2+ superexchange plays an important
role [10,11]. Probably this tendency influences the magnetic
behavior in CdCr2O4.

V. CONCLUSION

To summarize, we found that the spin-spin relaxation mech-
anism in ACr2O4 follows a Beresinskii-Kosterlitz-Thouless-
like scenario similar to the 2D triangular layered antifer-
romagnets ACrO2 but with significantly smaller exponent
ν. In case of strongly geometrically frustrated MgCr2O4

and ZnCr2O4 the value ν = 1/16 was obtained from the
temperature dependence of the ESR linewidth. Based on
Bulgadaev’s model of a generalized BKT transition with

internal symmetry and considering the analogy to metallic
glasses and quasicrystals, this exponent can be ascribed to
the exceptional Lie group E8 indicating a hidden icosahedral
symmetry of the spin molecules formed on the frustrated
lattice.
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APPENDIX

There are several ways of introducing symmetry. In
mathematics, symmetries are usually associated with oper-
ations (translations, rotations, and reflections) that leave a
geometrical object invariant. The collection of such operations
forms a mathematical group. The mathematical description of
continuous symmetries (as opposed to discrete symmetries,
such as those that leave a crystal lattice invariant) is codified in
the notation of a Lie group. There are nine Lie groups which are
classified into two families, classical and exceptional. The first
one includes four different groups known as An = SU (n + 1),
Bn = SO(2n + 1), Cn = SP (2n), Dn = SO(2n), of respec-
tive n � 1, n � 2, n � 3, n � 4 [48,49]. The subscript n is
called the rank of the group and measures how large the group
is. There is no restriction of its maximum value. The notations
SU , SO, and SP refer to special unitary, special orthogonal,
and symplectic, respectively. The second family includes five
groups which are known as G2, F4, E6, E7, and E8. The
words classical and exceptional are used in a sense that one
knows how to describe the classical groups for every n. In
contrast, in the exceptional groups, although the index value
will not exceed the value 8, these groups have very high sym-
metries, which cannot be obeyed by any familiar geometrical
object.

On the other hand, the objects of highest symmetry in
three-dimensional space are regular polyhedra which are well
known as platonic solids: the tetrahedron, cube (hexahedron),
octahedron, dodecahedron, and icosahedron. The cube and
octahedron are “dual” to each other, the same holds for the
icosahedron and the dodecahedron. The word dual means
that one can get one platonic solid from the other when
the center of each face becomes a vertex of the dual.
Dual solids have the same symmetry group, so there are
three symmetry groups here: the tetrahedron, cube, and
icosahedron. These three symmetry groups are the perfect
realization of exceptional Lie groups E6, E7, and E8 in 3D.
Mathematicians project hyperdimensional geometrical objects
into the 2D plane. Coxeter derived a theory of projection of
hyperspace objects into the plane [50]. In this way, megasym-
metry operations as rotations, reflections, etc. are tightly
packed.

Including all possible internal symmetries of 2D systems
into the description of BKT phase transitions, Bulgadaev [28]
derived the vortex-correlation length ξ given in Eq. (6). The
exponent ν is connected to one of the polytope characteristics,
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the so-called Coxeter number hG in the following way:

ν = 2

2 + hG

, (A1)

where the subscript G refers to the class of the group G that
describes the packed local symmetry in the lattice. The Coxeter
number describes the reflection operations in the symmetry
group.
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