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By this means all knowledge degenerates into probability; and this probabil-
ity is greater or less, according to our experience of the veracity or deceit-
fulness of our understanding, and according to the simplicity or intricacy of
the question.

(David Hume, A Treatise of Human Nature, 1739-40)

It isn’t that they can’t see the solution. It’s that they can’t see the problem.
They can’t see the problem if they are looking in the wrong place. They
can’t see the problem if they have blinders on — for ‘none are so blind as
those that will not see’.

(Gilbert K. Chesterton, Scandal of Father Brown, 1935)

Complete realism is clearly unattainable, and the question whether a theory
is realistic enough can be settled only by seeing whether it yields predic-
tions that are good enough for the purpose in hand or that are better than
predictions from alternative theories.

(Milton Friedman, The Methodology of Positive Economics, 1953)
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Abstract

This research examines the events of mortgage Pfandbrief defaults occurring due to
asset-liability mismatches on the balance sheet of Pfandbrief banks. The risk assess-
ment of the Pfandbrief in a one-period and risk-neutral setting is based on advanced
structural and reduced-form modelling approaches. In its over 200 year history not one
single Pfandbrief has ever defaulted, however, this practically risk-free perception has
changed since the recent financial crises. Investors seek methods to carry out their own
credit quality analysis instead of relying on ratings from third parties, e.g. rating agen-
cies, and basing their investment decisions thereupon. A generic modelling framework
is proposed and adapted to the mortgage type of Pfandbrief. Certain characteristics at-
tributed specifically to the Pfandbrief and cover pool risks, for example, refinancing risk,
interest rate risk and asset default risk are incorporated into the introduced models. The
first model is based on Merton’s structural approach. Significant improvements wrt to
computation time and accuracy of the underlying stochastic process are accomplished as
well as an enhanced least square Monte Carlo application is established. The innovative
reduced-form approach adopts techniques from CDO modelling which are applied to the
underlying cover pool. A large homogeneous portfolio is postulated for the cover pool
where stochastic recovery rates are included. Forecasting future default probabilities in
continuous time is accomplished via generator matrices where updated credit quality
information regarding the cover pool assets can be integrated. Furthermore, the well-
established JLT model is extended allowing stochastic risk premiums to be exogenously
considered. Dependency between asset positions is captured via copulas. The profound
advantage of the reduced-form model over its structural counterpart is the more accurate
modelling of the Pfandbrief’s downside risk.
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1. Introduction

Pfandbriefe are covered bonds issued on the basis of the German Pfandbriefgesetz
(PfandBG). In contrast to many other European covered bonds, the fundamentals of
the Pfandbrief and its emission are regulated by law instead of only by contract. The
two most important classes of German Pfandbriefe are the mortgage Pfandbriefe and
public sector Pfandbriefe, which are characterised by the type of available collateral
(cover pool). In 2016, Germany represents the second largest covered bond market,
after Denmark, with an outstanding volume (including all types of Pfandbriefe) of ap-
proximately e373.8 bn with a market share of 15.6% — the worldwide covered bond
volume totalling e2.4 tn. In addition to the significant size of the Pfandbrief market,
the following points underline the high social and economic relevance:

· Pfandbriefe represent one of the most cost-efficient refinancing options — e.g. com-
pared to unsecured bonds they allow a much more favourable refinancing for the
issuer — in the classical banking business (lending), and thus promote both the lend-
ing amount as well as the conditionality of lending by banks due to lower refinancing
costs. This is especially true in times of liquidity bottlenecks and financial crises,
since Pfandbriefe were one of the most stable and liquid asset classes even in hight
of the financial crisis, referring to VDP (2010) and VDP (2011). Likewise, accord-
ing to VDP (2011), the issue volume of German Pfandbriefe was hardly affected by
the financial crisis and the emissions expectations of the vdp (Verband deutscher
Pfandbriefbanken) member banks were essentially fulfilled.

· Due to their structural advantages over other securitisation structures, German
Pfandbriefe in the financial market are regarded as similarly safe investments as
German government bonds. This assessment of Pfandbriefe being highly qualitative
(i.e. practically fail-safe) and extremely liquid investments in the financial market is
also confirmed by the liquidity guidelines of the supervisory authorities in Basel III
(BIS, 2013). Inline with Basel III, Pfandbriefe are permitted to be part of the liq-
uidity buffer of a bank and to be included for calculating its LCR (liquidity coverage
ratio) under specific criteria (EBA, 2016, p. 91). The favourable treatment of the
covered bond, enabled by the LCR Delegated Act, came into effect in July 2018 by
the European Commission and represents an EU-wide implementation of the Basel’s
LCR rules.

· Pfandbriefe represent one of the most important asset classes, in particular for Ger-
man insurance companies and pension funds. One example is Allianz Deutschland
AG which holds approximately 15.6% of its investments in Pfandbriefe, amounting
to e89.9 billion, in 2016, compare Allianz SE (2016). This means that the surplus
yields of the insurance companies, and thus, for example, the returns on life insurance
contracts or the costs for private health insurance depend to a large extent on the
performance of German Pfandbriefe.
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1. Introduction

1.1. Problem Statement

Since Pfandbriefe were regarded as ‘largely non-hazardous’ until a few years ago, their
spread differences to German government bonds were usually interpreted as pure liquid-
ity premiums. However, due to the increase in the fluctuations in the spreads of German
Pfandbriefe observed in recent years (see Figure 1.1), this interpretation was questioned
in academic examinations where alternative explanatory approaches were presented for
the widening of spreads phenomenon. Some reasons for a shift of opinions amongst

Figure 1.1.: Performance of Pfandbrief spreads in comparison to covered bonds and
bunds (Source: (VDP, 2012)). Top: iBoxx Mortgage/Public Pfandbrief versus iBoxx
Covered; Bottom: iBoxx Germany covered versus iBoxx Bund

researchers and investors, especially since the financial crisis, are:

· Up to the recent past, i.e. until the onset of the financial crisis, the Pfandbrief market
was one of the most liquid bond markets in Germany. The spreads between Ger-
man Pfandbriefe and German government bonds were very low and also had very
low volatility (see Figure 1.1). Thus, now there exists a more urgent need for the
pricing of German Pfandbriefe, similarly to structured but illiquid and more volatile
credit derivatives of Collateralized Debt Obligations (CDOs) or (Mortgage-Backed
Securities) MBSs.
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· In the same way as for other credit derivatives, such as CDOs or MBSs, investors in
their investment decision essentially depended on the judgement of rating agencies.
Due to the loss of trust in third party gradings or at least having an increased aware-
ness of an underlying potential bias, investors are now willing to carry out their own
risk assessments, even though the overall consent over the excellent credit quality of
German Pfandbriefe evidently still remains.

· The Pfandbriefgesetz was established on May 22nd, 2005 with its latest amendment on
January 3rd, 2018. It regulates, among other things, the transparency requirements
for Pfandbrief issuers and specifies which information issuers are required to publish
on a quarterly basis. However, it is important to emphasise that only since the vdp
transparency initiative in third quarter 2010 has resulted in a uniform interpretation
of these requirements across all vdp member banks. This allows to carry out a
coherent and consistent modelling of Pfandbriefe on the basis of such granular data.

Despite the high popularity of the Pfandbrief, in contrast to CDOs or MBSs, there
is neither an adequate mathematical modelling framework, nor software tools for the
assessment and / or risk analysis of German Pfandbriefe. This gap is to be partially
bridged by this work on the basis of innovative financial mathematical and information
technology methods in order to answer current questions about the Pfandbrief on a
quantitative basis where CDO and MBS modelling concepts are adopted.

1.2. Related Work

To this end, quantitative studies on the Pfandbrief remain scarce. In Siewert and Vonhoff
(2011) the authors on the one hand confirm the historical view to the extent that liquidity
remains the central driving factor for spread differences, but on the other hand the
issuer’s default risk (thus the balance sheet structure) and the quality of the cover
pool also have a strong influence on the valuation differences to German government
bonds. The analysis in Siewert and Vonhoff (2011) is carried out empirically by means
of regression approaches based on available market information in the form of spreads and
cover pool assets / loans. A comparable study is also given in Prokopczuk and Vonhoff
(2012). In the PhD thesis of Sünderhauf (2006), the question is investigated whether
the mortgage Pfandbrief can be described as a failure risk independent of the issuer’s
credit rating. Sünderhauf (2006), and likewise Siewert and Vonhoff (2011), conclude
that this is not the case. Main driver of the issuer’s risk structure is the constitution
of the balance sheet with its asset-liability and maturity mismatches. In Sünderhauf
(2006)’s risk assessment a structural model based on the Merton (1974) approach is
applied where various stress scenarios are simulated. Given the issuer has defaulted,
it is then of interest if the Pfandbrief itself has defaulted. The third major work on
this topic complex by Rudolf and Saunders (2009) compares the structural differences
between mortgage Pfandbriefe, CDOs and MBSs. The authors conclude that German
Pfandbriefe have a much lower credit risk than comparable financial instruments due to
the structural concept. Kenyon (2009) provides pricing methods for covered bonds based
on a ‘Triggered Refreshed CDO’ with ‘Issuer Risk model’ solely focussing on public-
/sovereign-related sector case. The model concentrates on asset replacement by the
issuer resulting in a significant change to the default distribution described by the factor
Copula approach. However, requirements on asset-liability matches on issuances, e.g.
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1. Introduction

duration, cash flows, etc. are ignored. A more recent study on covered bonds, in general,
is provided by Tasche (2016) based on the balance sheet segmentation of Chan-Lau and
Oura (2014). Thereby, emphasis is laid upon the impact of the asset encumbrance by the
cover pool on the loss characteristics of the issuer’s senior unsecured debt. It is shown
that an exact calibration of the two asset case may be impossible based on a one-period
structural modelling approach. Likewise to Kenyon (2009), the assumption of a well-
managed cover pool is postulated (non consideration of asset-liability mismatches). A
first multi-period simulation-based Pfandbrief model is introduced by Spangler (2018)
providing a flexible framework to adequately account for Pfandbrief’s most important
characteristics and risks. Calibration and simulation results are analysed.
An extensive risk analysis of the Pfandbrief is given in Spangler and Werner (2014)
where certain risks are prioritised, based on the legislative framework of the Pfandbrief
issuance. This is of great significance to the overall modelling process. For example, in
the event of an issuer defaulting Pfandbrief holders are ring fenced from other creditors.
Homey and Soldera (2010) also give some insights on the legal framework (PfandBG).
A more general view of the covered bond market (not only in Germany) can be found in
Golin (2006), Packer et al. (2007), Philipp (2008), Volk (2009), Volk (2011), Pinedo and
Tanenbaum (2010a), Pinedo and Tanenbaum (2010b) and Bertalot et al. (2011), whereas
Beckers (2009) and Just and Maennig (2012) give specific background information on the
German mortgage market and the product of the mortgage Pfandbrief. Dübel (2010)
argues that a need to reform the Pfandbrief product itself and Pfandbrief banks is
necessary in the wake of the financial crisis.

1.3. Thesis Structure

An outline of the thesis structure is detailed for orientation purposes. Apart from the
main body of the thesis an appendix is provided for outsourcing elements which do not
contribute to the general setup and flow of reading, however, provide extra insight to
certain topics.
Appendix A is dedicated to the object orientated implementation side of the complete
Pfandbrief framework in Matlab1 and a proposal of efficient programming thereof.
More in-depth theory on certain topics and derivations of some important formulas are
provided in Appendix B. Essential to the complete modelling process is to establish a
data catalogue (Appendix C) where all required data is documented. Supplementary
graphics can be found in Appendix D.
In the main part we first give an overview of the covered bond and Pfandbrief market and
examine a mortgage Pfandbrief bank more closely wrt its balance sheet. The findings
thereof are then incorporated into the investigation of the Pfandbrief default process
consisting of the Pfandbrief modelling framework, its models and its applications to
available data. One main result from the statistical market analysis is the rise in market
share of the mortgage type Pfandbriefe. Thus, solely mortgage Pfandbrief banks (banks
with a predominant mortgage Pfandbrief business) are subject to the default investiga-
tion in a one-period setting. Methods essential to the framework are first described in
theory then backed by extensive applications where appropriate. Often examples, identi-
fiable by a separate example environment, are included providing a better understanding

1Copyright © R2017a
Matlab®is a registered trademark of MathWorks, Inc.TM
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of the underlying theory and adding a common theme to the overall thesis structure.
By selecting and connecting examples one can deduce the default determination of the
Pfandbrief product from beginning to end. This thesis is structured as follows:

� Chapter 2 — Market and Bank Analysis provides a worldwide review of the covered
bond and in particular of the Pfandbrief market in Germany. Some interesting de-
velopments in recent years are extracted and taken into consideration for educing
suitable modelling concepts. Further, on a micro level the balance sheet setup is
analysed by the example of the selected mortgage Pfandbrief bank Münchener Hy-
pothekenbank eG. Historical time series of balance sheet positions are statistically
analysed in order to make assertions about past and future business developments.

� Chapter 3 — A Pfandbrief Modelling Framework describes the underlying theory of
the Pfandbrief modelling in a one-period setting, namely, how a Pfandbrief bank’s
balance sheet is embedded into a general default framework. The Pfandbrief frame-
work produces the fundamental ground work for any financial models taken into
consideration. Emphasis is laid upon providing a structure which constitutes cru-
cial features restricted by the boundaries of the underlying Pfandbrief law, yet at
the same time keeping it generic for allowing a flexible interpretation on choosing
applicable models from a mathematical perspective. An analysis of suitable interest
rate models in general is taken into account by taking past and current interest rate
market environments into consideration. It turns out that, according to well de-
fined model selection criteria, the (affine) one-factor Hull-White interest rate model
is most suitable in fulfilling the requirements for assessing the default profile of the
Pfandbrief in a one-period setting. An application to market data is carried out in
a risk-neutral setup.

� Chapter 4 — Structural Model reviews the one-period Pfandbrief model introduced
by Sünderhauf (2006). An advanced least-square Monte Carlo approach is imple-
mented and advantageous numerical methods for the stochastic volatility and jump
process are developed where vast computational improvements wrt to accuracy and
speed are achieved. Furthermore, we provide mathematical formulations of the
underlying stochastic differential equations in the forward and real-world measure
adding additional modelling possibilities. As aforementioned, we only take the mort-
gage business of a Pfandbrief bank into account, as opposed to Sünderhauf (2006)
who also included the public sector, thus reducing the simulation effort. However,
any presented amendments can easily be extended to public sector financing of a
Pfandbrief bank.

� Chapter 5 — Reduced-Form Model is the newly proposed model based on the reduced
form approach. The major advantage stems from the fact that the distribution of
the cover pool is directly determined by ratings, obtained for example from internal
ratings-based (IRB) approach, of its assets which are incorporated in the credit risk
assessment of the Pfandbrief product. This renders expensive simulations unneces-
sary. The mortgage cover pool marginal distribution is linked by a copula with the
other assets position capturing the underlying dependence structure. Model com-
plexity is significantly reduced by postulating a large homogeneous portfolio for the
cover pool assets. Additionally, by allowing stochastic recovery rates more emphasis
can be laid upon the downside risk of the loss distribution. At the same time more
reliable information on cover pool assets can be injected into the loss distribution,
and thus more control over resulting default probabilities of the Pfandbrief can be
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1. Introduction

obtained. Thereby, a great deal of attention is dedicated to obtaining forward and
risk-neutral default probabilities in a Markovian modelling environment. The nov-
elties of this chapter are represented by an extension to the standard JLT model
by incorporating stochastic risk premiums paired with optimisation techniques for
transforming the given annual transition matrix to a valid generator matrix.

� Chapter 6 — Default Analysis applies the Pfandbrief framework with the struc-
tural and the reduced form model to a selection of mortgage Pfandbrief banks, with
Münchener Hypothekenbank eG at the centre of attention. The model outcomes
are examined on realistic and stressed scenarios applied to available balance sheet
and §28 PfandBG data. Thereby, interest rate risk is accounted for by calibrating
to today’s market. The overall aim is to investigate under which circumstances the
bank’s asset-liability management is not sufficiently adapted or equipped preventing
Pfandbriefe from defaulting. Should an event of default occur, the loss given default
and expected loss are then of interest.

Finally, Chapter 7 — Conclusion summarises the thesis and suggests promising future
research areas.
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2. Market and Bank Analysis

This section can be viewed as supplementary to standard providers of market statistics,
for example the fact books of the ECBC1 ((ECBC, 2016) and (ECBC, 2017)) or VDP2

((VDP, 2016) and (VDP, 2017)), where the depicted graphics provide an overall devel-
opment in an ‘at a glance manner’3. Additionally, this statistical analysis can be viewed
as extension of the Pfandbrief market section in Spangler and Werner (2014). Moreover,
a thorough market analysis is crucial for any modelling attempts at a later stage.
Emphasis is laid upon the public sector and mortgage type of covered bonds and Pfand-
briefe. Other types (including ship, aircraft and mixed assets issued in France) do not
play a significant role in the overall market or have just recently emerged, for instance
the aircraft and ship Pfandbrief in the German market. Evidently, from Figure 2.1 the
covered bond in 2016 is dominated by the public sector (12% after 15% in 2015) and
mortgage type4 (86% after 85% in 2015). This snapshot reveals the importance of the
mortgage type covered bond internationally over the public sector type. The German
Pfandbrief market (Figure 2.2) is more balanced between mortgage (55%) and public
sector (43%) types, however, coming a long way from a dominated public sector market
contributing three-quarters of the share in 2003. Further analysis throughout this sec-
tion will reveal that there is a clear trend towards a mortgage covered bond / Pfandbrief
driven market.
Despite a low interest rate environment (see for example Figure 2.29), fixed rate bonds
continue to make up the majority of the covered bond market, see Figure 2.3 which
is also the case for the domestic German market (Figure 2.4) regarding outstanding
and new issuance bonds. According to ECBC (2016) “an even more pronounced shift
towards fixed rates in our statistics in the coming years” is expected due to repo haircuts
reflecting the actual maturity of a bond.
In the German Pfandbrief market the larger amount of outstanding volume and new
issuance is denominated in Euro (Figure 2.6) which, being situated in the EU, comes
with no surprise. Internationally, the picture is slightly different where domestic cur-
rencies have gained more market share. This has largely got to do with contractions in
volume of large Euro markets, e.g. Germany, France and Spain whereas Denmark has
gained a higher impact on the covered bond market with its Danish krone, compared to

1http://ecbc.hypo.org
2http://www.pfandbrief.de
3One of the more complex produced plots for the market analysis is a bubble plot in order to display

the short (x-axis) and long (y-axis) term developments of the respective markets and market players.
This comparison is obtained by calculating the relative percentage changes of outstanding volume in
comparison to the average change of the total market. Additionally, today’s market (here 4th quarter
2016) is represented as bubbles of the total outstanding volume. The desired effect is to receive a
chart where under and over performing markets and market players are easily identified wrt the average
performance of the underlying market by allocation to the newly defined quadrants of the coordinate
system.

4Figures in this section will occasionally exhibit other types than public sector and mortgage but
will be widely ignored in this statistical analysis.
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2. Market and Bank Analysis

2015 (Figure 2.5).
A noteworthy salience of 2016 is the rise of newly issued soft bullet covered bonds
compared to the traditional hard bullet maturity structures which have dominated the
covered bond markets with a two thirds market share (Figure 2.7). New issues of soft
bullet covered bonds account for 50% while hard bullet covered bonds are a mere 45% in
2016. Conditional pass-through (CPT) maturity structures still remain a niche product.
Germany is a traditional hard bullet market making up 100% of outstanding Pfand-
briefe5. A soft bullet maturity structure has not been seen necessary, since, in case of
an insolvency the trustee has different means to meet the timely reimbursement of the
outstanding payments. These include, e.g. making use of the 180-day liquidity buffer and
taking out of covered loans from other credit institutions or the Central Bank, amongst
others (Spangler and Werner, 2014). However, the vdp proposes a PfandBG amendment
(Hagen, 2018) which includes the possibility of maturity postponements of Pfandbriefe
in the event of the insolvency of a Pfandbrief bank. This can be seen as an additional
protection of the cover pool, converging towards a soft bullet maturity structure.

Other,
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Public Sector,

 12%

Mortgage,

 85%

Outstanding volume 2016

Other,

 1%

Public Sector,

 6%

Mortgage,

 92%

New issuance 2016

Figure 2.1.: Share of outstanding covered bond volume and new issuance split by
collateral type, in 2016

2.1. Covered Bond Market

The covered bond market is the most important privately issued bond segment in Eu-
rope’s capital markets. Prior to the intensification of the financial crisis in September
2008, covered bonds were a key source of funding for Euro area banks. The market
had grown to over e2.2 tn by the end of 2008 and further expand to e2.4 tn in 2016
with 32 issuing countries. Despite the recent financial turmoil, the covered bond asset
class has proven to be a reliable investment instrument guaranteeing financial stability
with a 200 year long history. Both, issuers and investors, widely benefit from this stable
and long-term investment opportunity, particularly in real estate loans and public sector
debt. In fact, the covered bond asset class restored investor confidence and ensured
European issuers access to debt capital markets. They are characterised by the double

5An additional figure for the Pfandbrief market is therefore omitted.
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Figure 2.2.: Share of outstanding Pfandbrief volume and new issuance split by collat-
eral type, in 2016
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Figure 2.3.: Coupon shares of outstanding covered bond volume and new issuance, in
2016
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Figure 2.4.: Coupon shares of outstanding Pfandbrief volume and new issuance, in
2016
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Figure 2.5.: Currency shares of outstanding covered bond volume and new issuance,
in 2016
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Figure 2.6.: Currency shares of outstanding Pfandbrief volume and new issuance, in
2016

Hard,

 62%

Soft,

 36%

CPT,

 2%

Bullet − Outstanding in 2016

Hard,

 45%

Soft,

 50%

CPT,

 5%

Bullet − New issuance in 2016

Figure 2.7.: Bullet shares of outstanding covered bond volume and new issuance, in
2016
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protection offered to their holders, the separation of collateralised assets in a cover pool
that is dynamically managed, and strict regulatory and supervisory frameworks.

2.1.1. An Overview

At first we take a macro view of the market of 2016 with the following main observations,
compare Figure 2.8, Figure 2.9 and Figure 2.10:

· A seismic shift has occurred from 2015 to 2016. Denmark (e391 bn) has overtaken
Germany (e374 bn) as the largest covered bond market. Denmark has steadily grown
its covered bond market predominantly consisting of mortgage covered bonds. For
the mortgage type Denmark already dominated the market over a longer period.

· UK (e102 bn) dropped by two positions to number nine. Switzerland (e118 bn) and
Norway (e115 bn) consequently moved up by one position to take number seven and
eight, respectively.

· Turkey has entered the covered bond market as a newest member totalling 31 coun-
tries with outstanding covered bonds.

· Nordic countries, including Denmark, have further enlarged their market share com-
pared to the traditional markets of Germany, France and Spain.
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Figure 2.8.: Outstanding covered bond volume of issuing countries split into different
collateral types, in 2016

An overview of long-term trends since 2003 are given stacked by covered bond types,
compare Figure 2.11 and Figure 2.12:

· Even during the financial crisis up until 2013 a clear upward trend in the covered
bond market could be observed.
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Figure 2.9.: New issuance of covered bonds of issuing countries split into different
collateral types, in 2016

Germany,

 15%

France,

 12%

Spain,

 10%
Nordics,

 31%

Rest of Europe,

 24%

Non−European countries,

 8%

Outstanding volume 2016

Germany,

 9%
France,

 6%

Spain,

 8%

Nordics,

 44%

Rest of Europe,

 23%

Non−European countries,

 9%

New issuance 2016

Figure 2.10.: Share of outstanding covered bond volume and new issuance split by
country groups, in 2016

· The upward trend came to an end in 2013 when the market contracted by 8% for the
first time.

· Since 2015 the downward trend in outstanding volumes has been stopped where since
2016 we see a sideways drift.

· At 310 active issuers (that operate a total of 426 covered bond programmes), the net
number has gone down by 6. This number has nearly tripled since 2003 climaxing
in 2011 before flattening towards 2016 and correlating positively with the overall
outstanding covered bond volume.
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The ongoing steady growth between 2008 and 2012 can be largely explained by the
intervention of the ECB into the covered bond market (Beirne et al., 2011). After the
bail-out of four German banks all together during the time period April 2008 to the end
of 2011 a certain uneasiness was widely spread amongst investors raising concerns about
the stability of the market. Simultaneously, funding conditions of issuers deteriorated.
This situation gave enough reason for the ECB to act by establishing the covered bond
purchase programme (CBPP) amounting to e60 bn of covered bond purchases between
July 2009 and June 2010. This restored liquidity to the market, re-launched issuances
and reduced spreads. Two further programmes CBPP2 (from November 2011 to October
2012) and CBPP3 started at the end of October 2014. The programme size of CBPP2
amounted to e40 bn where an amount of e16.4 bn of covered bonds was purchased.
CBPP3 is still ongoing. As of July 7th, 2017, the ECB held a volume of e223.0 bn
covered bonds under the CBPP3, compare Volk (2017). The total volume of CBPP3
eligible covered bonds in the ECB’s database amounts to e1,080 bn (as of July 14th,
2017) where the CBPP3 ECB share then is 21%. Since the ECB can buy covered bonds
up to 70% share per issue, there still exists plenty of room for further CBPP3 purchases.
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Figure 2.11.: Outstanding covered bond volume split into different collateral types,
with number of issuers over time

2.1.2. Legal Frameworks

In EPRS (2015), the call for a ‘common European framework’ is expressed. Particu-
larly, it is criticised that “there is no single, harmonised, legal framework for covered
bonds. Industry participants note that this can partly be explained by the fact that
the cultural, legal and economic fundamentals vary from country to country and as a
result, real-estate finance systems and the role of covered bonds as funding instruments
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Figure 2.12.: New issuance of covered bonds split into different collateral types, with
number of issuers over time

for housing mortgages vary accordingly.”, cf. (EPRS, 2015). Although efforts have been
undertaken of standardising the various differing frameworks, at least on EU level, we
shall display the current main legal frameworks in place today.
Golin (2006) gives two fundamental categories with which covered bonds can be asso-
ciated. These are ‘statutory’ and ‘structured’ covered bonds which categorise the legal
frameworks under which the covered bonds are issued. The latter allows issuers and bond
holders to construct their own bilateral agreement of the legal contract regarding the
covered bond purchase and is, e.g., well established in the United Kingdom. However,
many countries, thereof most European countries, have adopted a statutory regulatory
framework which applies to all market participants issuing covered bonds. Germany has
its own Pfandbrief law, the ‘PfandBG’, which came into effect on May 22nd 2005. So
called ‘enhanced’ covered bonds are considered to be a mixture between ‘statutory’ and
‘structured’ covered bonds where a covered bond legal framework is implemented but
also allows contractual degrees of freedom between investors and issuers. The ‘enhanced’
category has emerged, for example, in Spain.
Recently, most European countries have undertaken amendments (ECBC, 2016, p. 131)
to their covered bond laws. Also outside of Europe attempts have been made to intro-
duce the covered bond as an investment product, notably in Australia, Canada, Japan,
New Zealand, South Korea and the USA. A more differentiated view on the respective
legal structures is given in Stöcker (2011) which is based on the work by Lassen (2005).
An overview of these models can be seen in Table 2.1 and a brief description of the
models is given by the following (Stöcker, 2011):

· Model I: Origination and servicing of eligible assets and management of covered bond
issuing institute by the parent bank where the funding institute has no other function
than holding eligible assets. In the case of insolvency the covered bond issuer is
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separated from the parent bank.

· Model II: Issuer originates, services and funds eligible business where loan origination
is restricted by law to mortgages and public sector loans. In the case of insolvency
the cover assets are segregated from insolvency estate.

· Model III: Issuer originates, services and funds eligible and non-eligible business where
covered bond license is granted only to banks complying with legal license require-
ments. Strict eligibility criteria apply for identifying eligible cover assets. In the case
of insolvency the cover assets are segregated from insolvency estate.

· Model IV: Issuer originates, services and funds eligible and non-eligible business where
no issuing license is required or license is granted without any requirements. Strict
eligibility criteria apply for identifying eligible cover assets. In the case of insolvency
the cover assets are segregated from insolvency estate.

· Model V: Issuer originates, services and funds eligible and non-eligible loans. Assets
are transferred onto a legally separated entity, a special purpose vehicle (SPV) without
bank status.

Remark 2.1. The models of Table 2.1 are subject to minor modifications compared to
Stöcker (2011). Firstly, model III of Stöcker (2011) — the issuer is an universal credit
institution — is further distinguished where a qualified covered bond license is needed,
specifying model III, and not needed which defines model IV in Table 2.1. Further, the
‘pooling model’ in Stöcker (2011) is omitted for a more clear distinction of categories as it
can be combined with any other model in Table 2.1. A similar legal model classification
to Stöcker (2011) can be found in Hillenbrand (2013).

A clear dissociation of above listed models is not always given. As already alluded in
Remark 2.1, pooling models are also implemented in several countries, particularly in
Austria, Denmark, France, Germany, Hungary, Spain and Switzerland. Here, the covered
bond issuer, in most cases, is a credit institution cooperating with several or even many
originators which keep on servicing the cover assets. Eligibility criteria apply to the
cover assets and the issuance is governed by a special legal framework. Furthermore,
different pooling models exist wrt their transfer techniques. For more details on pooling
models refer to Stöcker (2011). Besides, some countries have adopted more than one
kind of model which, in some cases, are running parallel. Increasingly, the type where
the issuer is an universal credit institution (models III and IV) is the favoured choice,
referring to Stöcker (2011). This applies to Denmark, Finland, Luxembourg and Sweden
where legislation has already been passed or is on its way. However, the old frameworks
are still in place so that these original models are recorded in Table C.1. Model V
can be viewed as a convergence towards the product of an asset backed security (ABS).
Superficially, the products are similar, since ABSs are also backed by pools of loans. The
decisive difference is that ABSs use SPVs. Unlike covered bonds, the asset encumbrance
of banks’ balance sheets is non-existent or small. The embraced ‘bail-in’ policy after
the financial crises requires unencumbered balance sheets where bondholders and/or
depositors — not taxpayers as in the ‘bail-out’ case — are subject to the insolvency
process. Yet, ABSs, apart from CDOs, are regarded as the cause for the US subprime
mortgage crisis and forfeited trust amongst investors. Moreover, the risk of ‘bail-in’

15



2. Market and Bank Analysis

is less attractive from an investor perspective6. Markets where the model affiliation
is not clear or are not classified by Stöcker (2011) are defined as ‘other’. New model
assignments, according to the respective framework descriptions in ECBC (2016), are
Australia — model V, Belgium — model III, Canada — model V, Cyprus — model III,
New Zealand — model V, Panama — other, Singapore — model V, South Korea —
model IV and United States — other. A complete list of countries with corresponding
models is given in Table C.1. Noteworthy is the fact that non-European countries,
belonging to the more recent covered bond issuing members, tend to opt for model V.
Concluding, the article ‘An anatomy of a successful covered bond jurisdiction’ (ECBC,
2016) covers necessary pre-conditions needed for successfully introducing a covered bond
legislation.

Model Description

I Issuer is completely specialized funding institute
II Issuer is specialized credit institution by law
III Issuer is universal credit institution with a qualified license
IV Issuer is universal credit institution without a qualified license
V Issuer is using SPV to achieve insolvency segregation of cover assets

Table 2.1.: Legal framework models

2.1.3. Covered Bonds by Legal Framework and Country

We extend the covered bond market overview of Section 2.1.1 by including the informa-
tion gathered in Section 2.1.2. Thereby, we apply the described ‘at a glance’ format3

based on data going back as far as 2008. At first the total covered bond market is ex-
amined which is then broken down in a public sector and mortgage covered bond type
review. This allows a more differentiated analysis of the empirical developments.

2.1.3.1. Total

In total e2,488,299 mn of outstanding covered bonds are registered according to ECBC
(2017). Here we shall focus our attention on the public sector and mortgage covered
bonds only. As already mentioned above, the market for ship covered bonds is negligibly
small with e8,295 mn in 2016 where Denmark (e4,744 mn) and Germany (e3,551 mn)
are the single two issuing countries. This also applies to the aircraft where Germany has
an outstanding volume of e1,006 mn in 2016. France additionally issues a mixed asset
type of covered bond amounting to e66,587 mn.
In Figure 2.13 the top ten markets in 2016 are displayed in a stacked graph (in a
cumulative sense) which have a 82% share of the total covered bond market. Denmark
has taken the lead as the largest issuing country of covered bonds overtaking Germany.
Interestingly, new markets such as Canada (the only non-European country) in 2007,
Norway in 2007, Italy in 2004 and Sweden in 2005 have fairly recently joined the covered
bond market and have established themselves under the top ten by 2016. Furthermore,

6A more complete comparison of securitisation markets and German covered bond, particularly
mortgage-backed, is given in Staff Team of IMF (2011)
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2.1. Covered Bond Market

while the old markets, Germany, Spain and France, have steadily declined, especially
since 2012 the new members have counterbalanced this negative trend, simultaneously,
increasing their market share.
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Figure 2.13.: Total outstanding covered bond volume over time of top ten markets in
2016

An overview of short (since 2014) and long (since 2008) term changes of covered bond
markets7 can be found in Figure 2.14. On average all covered bond issuing countries
have lost -0.3% (or approximately stayed the same) on the short term and have gained
10.0% on the long term which is marked by the blue circle with ‘ECBC’. Since 2003
Germany’s covered bond market has nearly dropped by two thirds in outstanding volume
(e-682.9 bn), since 2008 by -53.6% (e-431.8 bn) and since 2014 by -6.8% (e-28.5 bn).
Germany with its large absolute volume losses pulls the market as a whole to the bottom
left corner of the coordinate system of Figure 2.14. Spain (x: -15.8%, y: -22.1%) and
the United Kingdom (x: -25.5%, y: -50.0%) (both under the top ten markets, see
Figure 2.13) underperform on a short as well as a long-term horizon compared to the
overall market. The Nordics, represented by Denmark, Norway, Sweden and Finland,
all outperform the market. A further observation is that countries in the first quadrant,
which possess a significant outstanding covered bond volume, are either categorised
‘model I’ — Finland (x: 5.5%, y: 488.2%), Norway (top 10; x: 10.3%, y: 425.6%),
Sweden (top 10; x: 6.0%, y: 89.1%) and Switzerland (top 10; x: 33.8%, 190.2%) — or
‘model V’ — Australia (x: 9.3%, y: 2756,4%), Canada (top 10; x: 55.5%, y: 1433.7%),
Italy (top 10; x: 11.7%, y: 906.3%) and The Netherlands (x: 14.9%, y: 229.2%).

7Not included are Latvia, Singapore and Turkey. These either have no outstanding volume in 2016
or do not show a long enough history. Country ISO codes marked with ‘*’ have a shorter long-term
time horizon for the simple reason that no covered bond market existed prior. The differing onset dates
(other than 2008) can be extracted from Table C.1.

17



2. Market and Bank Analysis

A
U

T

C
Z

E
D

N
K F
IN

F
R

A

D
E

U
H

U
N

IS
L

IR
L

LU
X

N
O

R
*

P
R

T

S
V

K

E
S

P

S
W

E

C
H

E

N
LD

G
B

R
*

U
S

A

PA
N

*

K
O

R
*

●

E
C

B
C

 (x: −
0.3%

; y: 10.0%
)

C
A

N
 (55.5; 1433.8)

G
R

C
 (−

69.2; −
10.3)

ITA
 (11.7; 906.3)

P
O

L (129.9; 217.5)

A
U

S
* (9.4; 2756.5)

B
E

L* (54.2; 633.6)

C
Y

P
* (−

35.0; −
87.5)

N
Z

L* (12.8; 756.1)

−
100
−

75
−

50
−

25 0 25 50 75
100
125
150
175
200
225
250
275
300
325
350
375
400
425
450
475
500
525
550
575
600
625
650

−
80

−
70

−
60

−
50

−
40

−
30

−
20

−
10

0
10

20
30

40
50

60
70

80
90

100
110

120
since 2014 (in %

)

since 2008 (in %)

*: custom
axis
onsets

legal
fram

ew
ork

category

m
odel I

m
odel II

m
odel III

m
odel IV

m
odel V

other

outstanding
volum

e
in 2016
(in m

n E
U

R
)

10,000
50,000
100,000

200,000

F
igure

2.14.:
Totaloutstanding

covered
bond

volum
e,w

ith
short

and
long

term
developm

ent
ofissuing

countries,in
2016

18



2.1. Covered Bond Market

2.1.3.2. Public Sector

Taking a closer look at the public sector market we find that Germany and France are the
major players in this segment. Germany accounts for 53.6% and France for 21.3% of the
market share in 2016, amounting to three quarters put together (subsequent markets
are Spain (8.9%), Austria (5.6%), Luxembourg (2.6%) and Italy (2.5%)). However,
their developments are inverse. While France has increased its volume and gaining
a larger market share since 2003, Germany has suffered a substantial loss, especially
over the last ten years, see Figure 2.15. Still both Germany (e10.3 bn) and France
(e6.4 bn) together with Spain (e7.3 bn) are by far the largest markets in terms of new
issuance in 2016, see Figure 2.9. According to ECBC (2017, p. 136), particularly in
Germany and France, local government investments (around 30% of loans) are financed
by covered bonds. In total, “more than e250 bn European Union local government
loans, an equivalent of close to 14% of the total European Union local government debt,
are refinanced via the covered bond market.”, cf. (ECBC, 2017, p. 136).
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Figure 2.15.: Outstanding public sector covered bond volume over time of top ten
markets in 2016

Altogether, only eleven countries had outstanding public sector covered bonds in 2016,
see Figure 2.16. Poland still had a volume of e35.2 mn outstanding public sector
covered bonds in 2015 which has fallen to zero in 2016. Belgium is also not considered
in Figure 2.16 since its public sector outstanding volume history only dates back to
2014. Refer to Table C.1 for countries marked7 with ‘*’. It is now evident that the
bulk of established total losses in the German covered bond market (Section 2.1.3.2) is
explained by the contraction of the public sector. Since 2003, -79.7% (e-635,6 bn), since
2008 -72.0% (e-417.1 bn) and since 2014 -21.6% (e-44.6 bn). Once again Germany is
the main driver of the short as well as long term negative trend where the average market
is denoted by ‘ECBC’ (x: -19.2%, y: -61.0%). Long term wise the United Kingdom (x:
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2. Market and Bank Analysis

-20.4%, 42.3%) and Spain (x: 5.4%, y: 51.4%) can show a substantial positive trend
being two major markets (both in top ten list). Austria (x: -11.0, y: -0.9), France (x:
-5.1, y: -0.8) and Italy (x: -12.9, y: -6.0) do not show large movements in the short nor
long term.
As already stated by Spangler and Werner (2014) two main factors for the negative trend
in the German market have been identified, the

· EU decision on the end of guarantees for the German Landesbank sector by 2015, in
2001 (abolishment of the ‘Gewährträgerhaftung’), and the

· ongoing sovereign crisis of EU states (mainly Portugal, Italy, Ireland, Spain and
Greece) leading to a reduction cover pool assets from these countries.

Particularly, for the German market the decline has potentially more, yet weaker, rea-
sons:

· Rescue of Hypo Real Estate AG, Germany’s largest issuer of Pfandbriefe, in 2009
where a re-structuring of its balance sheet and operating structure became necessary.
In general, Banks’ future “(...) losses which in certain cases run into several billions
might continue to have an impact on the business strategies (...)”, cf. (PBB, 2009, p.
65).

· Short-term introduction of alternative funding instruments during the financial crises
provided by the ECB and issuance of Government Guaranteed Bonds (GGBs), cf.
(VDP, 2009).

· German re-unification inflated the issuance of public sector covered bonds which could
not be sustained over time, cf. (ECBC, 2016, p. 120).

These points, paired with a general risk aversion and market weariness in a post-Lehman
Brothers financial era has led to this dramatic public sector flight. However, there might
be light at the end of the tunnel and a bottom limit reached in the near future. The
article ‘Refinancing local public sector investments and export loans — a key role for
covered bonds’ in ECBC (2016) indicates public sector covered bonds will remain a
source of funding especially for local authorities and a key pillar for public investments,
also for other European countries. In ECBC (2017, p. 139) the hope is expressed that
export loans might be eligible for covered bond refinancing reviving the public sector
market if the loans meet the criteria stated in Capital Requirements Regulation (CRR)
of Article 129(1), thus “benefiting from a state guarantee or a guarantee provided by an
export credit agency (ECA)”, cf. (ECBC, 2017, p. 138). Nevertheless, many outlooks
of the public sector covered bond remain pessimistic, see for example Schönfeld (2012).
Furthermore, new markets for the public sector type have not emerged, or at least es-
tablished themselves. For example, the US has not been able to pass a suitable covered
bond legislation to this date, although this has been apparently attempted several times,
according to ECBC (2016, p. 495). Furthermore, referring to the year 2017, “all pre-
viously issued structured covered bonds (...) have now matured and there are currently
no outstanding US covered bonds.”, cf. (ECBC, 2017, p. 519).
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2. Market and Bank Analysis

2.1.3.3. Mortgage

A complete opposite picture to the public sector covered bonds in Section 2.1.3.2 is
produced by the mortgage type. This segment has seen considerable growth since 2003.
Newer markets (in 2016), represented by Sweden (e222.4 bn), Italy (e138.9 bn), Norway
(e113.1 bn) and Canada (e100.8 bn) have contributed enormously to the overall volume
increase, see Figure 2.17. Currently, Denmark (e386.3 bn) has volume wise the largest
impact on the mortgage market. Germany (e207.3 bn) and France (e177.8 bn) could
maintain a stable development over a longer period while Spain’s market contracted
since 2012 (e232.5 bn in 2016). The United Kingdom (e97.1 bn in 2016), traditionally
a MBS market, could establish itself in the top ten group with a steep growth rate of
factor 40 from 2003 to 2010. However, it will be interesting to see how ‘Brexit’ will affect
the covered bond market as negative impacts are already starting to appear, compare
ECBC (2016, p. 501).
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Figure 2.17.: Outstanding mortgage covered bond volume over time of top ten markets
in 2016

A rather similar picture to the total market of Figure 2.14 is also depicted by the mort-
gage type, compare Figure 2.18. This is easily explained since the covered bond market
is dominated by the mortgage type, see Figure 2.1, Figure 2.8 and Figure 2.11. We
see an average growth rate of 49.1% since 2008 and 3.2% since 2014 denoted by ‘ECBC’
which nearly exactly coincides with Denmark — the largest mortgage market. Con-
tributing to the Danish covered bond success story is a certain degree of flexibility wrt
refinancing and repayment (ECBC, 2016, p. 68-69):

· “Mainly bullet bonds and to an extent floaters are refinanced by the issuance of new
bonds at refinancing auctions over the life of the loan.”, cf. (ECBC, 2016, p. 68-69).
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2.1. Covered Bond Market

· “Any Danish covered bond can be bought back by the borrower8 at the current market
price and delivered to the issuing mortgage bank — the buyback option.”, cf. (ECBC,
2016, p. 68-69).

The rest of the Nordics outperform the market, situated in the first quadrant of the
coordinate system, with Finland (x: 5.5%, y: 488.2%), Norway (top 10; x: 10.0%,
y: 415.6%) and Sweden (top 10; x: 6.0%, y: 89.1%), all belonging to the same legal
framework ‘model I’. Switzerland, one of the top ten markets and also belonging to
‘model I’, can likewise lock in a positive growth rate of 33.8% short-term and 190.2%
long-term. Further countries with extraordinary market gains and substantial market
volumes are Australia (x: 37.6%, y: 521.2%), Canada (top 10; x: 55.5%, y: 1433.7%),
Italy (top 10; x: 13.5%, y: 2038.1%), New Zealand (x: 12.8%, y: 756.1%) and The
Netherlands (x: 14.9%, y: 229.2%) — all issuing under ‘model V’.
As for the German market we see an expansion of 9.1% since 2014 and a contraction of
-4.6% since 2008. Referring to Spangler and Werner (2014), two main characteristics of
its robustness are

· attractive refinancing possibilities. Cheap funding can be obtained at comparably
low costs, and

· new issuers, such as saving banks and international players are joining the market.

Further reasons are

· “a benign constellation of Germany’s housing market” (DGHYP, 2012, p. 6), and

· offering “ready availability of financing at the longest tenors possible and the lowest
price feasible” (ECBC, 2016, p. 137).

2.1.4. Jumbo Market

The first Jumbo (benchmark format with > e1 bn) was issued in 1995. This format
of the German Pfandbrief was primarily created to provide more liquidity to investors
— particularly having a direct impact on secondary liquidity — and increased funding
for public sector lending. “Jumbo size, e.g., have on average double the trading volume
than benchmarks with less than e1 bn of nominal outstanding.”, cf. (ECBC, 2017, p.
61). Wolf (2010) shows when and how many new countries have followed suit since the
introduction of the Jumbo Pfandbrief, reshaping the covered bond market as a whole. In
2016, the largest issuing countries of Jumbos are Denmark (e240.3 bn), France (e188.5
bn), Sweden (e177.3 bn), Spain (e129.7 bn) and Canada (e84.2 bn). Taking a closer
look at the placements in Figure 2.19, we see for 2016 that the Jumbo nearly accounts
for half of all outstanding covered bonds. The Jumbos, in total, saw a decline in 2016
(e174 bn in 2016 after e217 bn in 2015) continuing the trend since 2012 (Figure 2.20).
While Jumbos are are considered to be more liquid due to their size, from an issuer’s
perspective “smaller benchmark issues are more favourable in the context of asset liabil-
ity management and legal requirements regarding liquidity holdings”, cf. (Spangler and
Werner, 2014, p. 26). Until 2013, we have seen a steady growth for all categories, see
Figure 2.20. According to ECBC (2017), during the years of the financial and the Euro
sovereign crisis many banks in various countries used retained covered bonds as repo

8The borrower is referred to as the covered bond issuer.
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2.2. Pfandbrief Market

collateral, partly, accounting for this overall upward trend. The biggest increase com-
pared to 2014 took place in the e500-999 m benchmark category. Outstanding covered
bonds in this category increased by e66 bn or 24%. “In 2015, the rise in gross supply
of Euro benchmark covered bonds was merely due to increased issuance from banks lo-
cated within the Euro area. This is related (at least partly) to the Eurosystem’s third
covered bond purchase programme (CBPP3), which has made it increasingly attractive
for banks to issue covered bonds.”, (ECBC, 2017, p. 74).
In 2013, a large drop in the private placement category occurred (e-85 bn or -11%) be-
cause “European lenders paid back part of their long-term refinancing operations (LTRO)
money and consequently cancelled out retained covered bonds”, cf. ECBC (2017, p. 582).
The gross issuance decline in 2013 is also reflected in Figure 2.21. In 2014 this category
did continue to fall (e-26 bn or -4%) but similar to the overall market it has stabilised
in 2015. In 2016, private placements increased slightly from e115 bn to e126bn.
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Figure 2.19.: Placement shares of outstanding covered bond volume and new issuance,
in 2016

2.2. Pfandbrief Market

Let us now solely view the sub-segment of Section 2.1 the German covered bond market,
respectively the Pfandbrief market, where the attention is largely shifted to the issuing
Pfandbrief banks themselves. In total there exist 35 Pfandbrief issuing banks in Ger-
many (Table C.2) in 2016. When dissecting the Pfandbrief market in recent years it
is noteworthy that “there never has been a German Pfandbrief default, and nor has a
German Pfandbrief bank ever failed. In fact, prior to the crisis, the only covered bond
issuer bankruptcy was in 1883 — the Austrian issuer Böhmische Bodenkredit. In that
case, the failed bank’s covered bond obligations were transferred to another bank two
years later, interest payments were reduced, and the bonds redeemed in full in 1901.”,
cf. (Staff Team of IMF, 2011). The trust of investors in the Pfandbrief and the issuing
banks stems from this well acknowledged circumstance that no Pfandbrief has ever de-
faulted.
Yet, it is evident (from Section 2.1) that since the financial crisis of 2008 and the consec-
utive Euro crisis the Pfandbrief market in Germany has changed significantly. During
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Figure 2.20.: Placement shares of outstanding covered bond volume over time
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the financial crisis certain banks, including one of the largest issuers the Hypo Real Es-
tate Group, were subject to bank bailouts by the German government. “The banks in
question included Düsseldorfer Hypothekenbank (April 2008), Hypo Real Estate Group
(October 2008), and EuroHypo AG (May 2009). For example, in the case of Hypo Real
Estate Group, the covered bonds were seen as being sufficiently collateralised, but there
were questions regarding the ability to liquidate it in the wake of the Lehman Brothers
bankruptcy.”, cf. (Staff Team of IMF, 2011). Consequently, the affected banks had to go
through painful recovery and resolution regimes neglecting their daily business of issuing
new Pfandbriefe. Naturally, the bailouts also eroded trust amongst investors (evidently
from Figure 1.1).
In the following we shall further dissect the Pfandbrief market by viewing Pfandbrief
types separately in order to obtain a more complete picture thereof. Not included in
the analysis are in general DVB, EH and PSD. DVB only issues ship Pfandbriefe. For
PSD Pfandbrief data is only available since 4th quarter 2015 where Pfandbriefe of e15
mn were issued and totalling e163 mn in 4th quarter 2016. All significant assets and lia-
bilities of EH, Hypothekenbank Frankfurt AG, were transferred to DSB, Commerzbank
AG, and the banking license was returned in May 2016.

2.2.1. An Overview

At first we take a macro view9 of the market of 2016 with the following main observations,
compare Figure 2.22 and Figure 2.23:

· Deutsche Pfandbriefbank AG, formerly known as Hypo Real Estate Group, thus the
abbreviation HRE, is still the largest issuing bank of Pfandbriefe with a total of
e30.3 bn where mortgage and public sector are evenly split (mortgage e14.1 bn;
public sector e16.2 bn).

· Interestingly, there exist banks (APO, DIBA, HASP, MMW, NAT, SKB, WBP) only
issuing mortgage type Pfandbriefe, but no bank solely focusing on the public sector
type, only in combination with the mortgage type.

· Eligible cover pool assets are predominately situated in Germany — mortgage (82%)
and public sector (81%). Mainly, this has to do with that the PfandBG sets geo-
graphical restrictions. For example, a 10% limit is in place for foreign lending outside
the EU (compare Spangler and Werner (2014)). Only 2% - 3% of assets lie outside
of Europe.

· Ship Pfandbriefe have a total outstanding volume of e3,590.7 mn (BRL: e102.1 mn,
DSB: e1,135.4 mn, DVB: e720.0 mn, HSH: e1,553.2 mn, NLB: e80.0 mn). DVB is
the only bank solely issuing ship Pfandbriefe.

· The first and only issuing bank of aircraft Pfandbriefe is NLB with an outstanding
(and new issuance) volume of e1,006 mn.

An overview of long-term trends since 2003, stacked by Pfandbrief types, are given,
compare Figure 2.24 and Figure 2.25:

9Note that due to non-existing data of newly issued Pfandbriefe in the context of PfandBG §28 it is
not possible to produce Figure 2.9 as in the overview of the covered bond market (Section 2.2.1).
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· Compared to the overall development of the covered bond market (Section 2.2.1) we
see an inverse trend specifically for the German market. This has solely to do with the
stark decline of the public sector Pfandbriefe (contracting by nearly 80% as already
pointed out in Section 2.1.3.2). Taking a glance at the issuance figures reveals that in
2003 ten times as many public Pfandbrief were issued than in the more recent years.
On average the issuance volume between 2012 and 2016 amounts to approx. e14 bn.

· In terms of volume the mortgage type Pfandbriefe more or less stayed constant (mov-
ing below and above e200 bn) throughout the years since 2003, however, substantially
enlarging its market share from approx. 20% in 2003 to 55% in 2016. Taking a look
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at the issuance figures suggests a similar interpretation where on average approx. e40
bn of new mortgage Pfandbrief have been issued over the time period 2003 to 2016.

· During the crisis years, beginning 2007 with the financial crisis and ending 2013 with
the European sovereign crisis, the largest drop in outstanding Pfandbriefe is recorded
with over 50%.

· Since 2014 a flattening out of the outstanding volume can be observed which is paired
with stabilised sizes of new Pfandbriefe issuances since 2012.

· Interesting is the persisting positive trend of longer maturity terms for Pfandbriefe
(red line in Figure 2.24 and Figure 2.25), rising from 4.6 years in 2003 to 7.1 years
in 2016.
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Figure 2.24.: Outstanding Pfandbrief volume split into different collateral types, with
term to maturity over time

2.2.2. An Investor’s Perspective

The Pfandbrief is widely considered to be a safe investment. From an investor’s perspec-
tive some advantages of the Pfandbrief include the double recourse to issuer and cover
pool and therefore higher recovery in case of liquidation. Furthermore, there is no risk
of bailing-in, generally, there exists better liquidity through larger issue size and higher
rating and higher rating stability than unsecured debt.
A main feature of the security behind the Pfandbrief is its cover pool and overcollat-
eralisation (OC) thereof. Per PfandBG it is mandatory to hold a minimum of 2% OC
over the total outstanding Pfandbriefe in each asset type class. Many Pfandbrief is-
suers even maintain voluntary OC exceeding the 2% level. Higher levels of OC may also
have a positive impact on the overall credit rating and is favourably recognised amongst
Pfandbrief investors. However, since it is voluntarily the issuer may reduce the created

29



2. Market and Bank Analysis

211.4

173.9 172.7
167.2

135.4

152.9

110.4

87

72.8

56.6
49.5

45.9

58.1

45.4

0

50

100

150

200

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
Time

Is
su

an
ce

 v
ol

um
e 

(in
 b

n 
E

U
R

)

PB type Public Sector Mortgage Ships Aircraft

6.4
6.3

7.1

7.4

7.2

4.8

6.7

5.2

4.9

5.7

6.7
6.6

7

8.6

Te
rm

 to
 m

at
ur

ity
 (

in
 y

ea
rs

)

5

6

7

8

Figure 2.25.: New issuance of Pfandbriefe split into different collateral types, with
term to maturity over time

buffer at any time, also in case of default. A more elaborate analysis of OC and its
implications can be found in Spangler and Werner (2014). The average OC over all
issuing banks of mortgage Pfandbriefe is 53.9% and 63.9% of public sector Pfandbriefe.
In Figure 2.26 we see the total cover pool divided in total outstanding Pfandbriefe and
share of OC held by each bank for the public sector type and mortgage type Pfandbriefe,
respectively. Further, it can be extracted that there exists a wide range of voluntary
OC between issuers. For the mortgage type BHH holds an OC of 7.0% whereas DEKA
holds 263.0% OC. For the public sector type MHB maintains a OC slightly above the
the 2% mandatory level (2.5%) whereas SKB has an additional buffer over 440%.
Further, it is natural to take a closer look at the spreads of the Pfandbrief compared
to other covered bond markets and other financial products. Figure 1.1 depicts the
time period of the financial crisis and shortly before and after. Clearly, two spikes can
be observed in Figure 1.1 wrt the Pfandbrief. Once in the first half of 2009, abruptly
widening after the collapse of Lehman Brothers, moving from below zero to 100 bp. The
second larger spread widening occurred during the European sovereign crisis between
2011 and 2012. Currently, spreads have moved back to pre-crisis levels of below zero bp,
see Figure 2.27. Yet, compared to other financial products with high seniority, includ-
ing covered bonds from other issuing countries, spreads of the Pfandbrief — mortgage
or public sector — are significantly lower throughout turbulent and benign markets. On
average mortgage spreads are slightly lower than public spreads.
A similar picture is depicted of the Jumbo market (Figure 2.28). Germany, Denmark,
Spain, France and the United Kingdom account for most very large issues trading in
liquid secondary markets that are dominated by OTC trading. For German Jumbo
Pfandbriefe daily average spreads are published including benchmark issuances with a
minimum size of e500 mn and with a residual maturity of at least one year as part of
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the transparency initiative by the vdp10.
Although, the analysis of spreads restore trust into the Pfandbrief, the poor return on
investment has given investors reason to look for alternative opportunities. Pfandbrief
yields11 have fallen due to the zero interest rate policy of the ECB in recent years, see
Figure 2.29. On the x-axis we see the historical interest rates where a peak was reached
for 2008 and after declined until reaching practically zero for lower maturities, even turn-
ing slightly negative for maturities of one to five years. On the y-axis the daily yield
curve is depicted where a higher rate is expected for longer maturities. Interestingly,
humped and inverted yield curves12 can also be observed for 2008 reflecting the market’s
uncertainty in a turbulent period. Currently, the earnings of a Pfandbrief investor for
Pfandbriefe with longer maturities are around 1% for ten years and higher.

2.2.3. Pfandbriefe by Issuing Category and Bank

Similarly to Section 2.1.3, we incorporate additional information in the ‘at a glance’ for-
mat3 based on data going back as far as 2008. We define three issuing categories, namely
‘Hyp’ — banks having a predominant mortgage Pfandbrief business, ‘Hyp-Oef’ — banks
largely issuing a mixture of mortgage and public sector Pfandbriefe and ‘Other’ — banks
where the Pfandbrief business plays a minor role in relation to other balance sheet posi-
tions. These classifications are based on the shares of Pfandbriefe in the banks’ balance
sheets summarised in Table C.2. Deducing from Table C.2, currently, seven Pfandbrief
banks in total are suitable for modelling the Pfandbrief’s default which predominantly
issue mortgage liabilities and consequently hold mortgage related assets in their balance
sheet. The selected mortgage Pfandbrief banks, with some recent Pfandbrief related
business strategies, are:

AAR The business model of AAR consists of real estate financing and refinancing ac-
tivities which belongs to their structured property financing segment. In this segment,
AAR supports national and international clients with their real estate investments
and is active in Europe, North America and Asia. Aareal Bank provides financing for
commercial real estate, in particular office buildings, hotels, retail, logistics and resi-
dential real estate. In 4th quarter 2016, AAR has e9,036.7 mn outstanding mortgage
10According to vdp’s website (https://www.pfandbrief.de/site/de/vdp/statistik/statistik/

spread.html) the spread determination is based on mid-asset swap versus 6-month Euribor. In par-
ticular, “for each Jumbo Pfandbrief and issues with min. issuance volume of e500 mn outstanding with
a residual life of more than one year, the participating banks report every trading day within a given
time window a spread on the basis mid-asset swap versus 6-month Euribor. A clearly defined procedure
is used to calculate an average secondary market spread every trading day for each involved Pfandbrief.
This spread is then published on the vdp’s website.”, cf. vdp (above link).

11The underlying data of the Deutsche Bundesbank (https://www.bundesbank.de/Navigation/DE/
Statistiken/Zeitreihen_Datenbanken/Geld_und_Kapitalmaerkte/geld_und_kapitalmaerkte_list_
node.html?listId=www_skms_it04a) are the series BBK01.WT3311 - BBK01.WT3339 from 01/01/2004
to 30/12/2016 consisting of the daily term structure of interest rates in the debt securities market
based on estimated values by the Deutsche Bundesbank. “Interest rates on (notional) zero-coupon
bonds without a default risk, estimated by the procedure described in the definitions of the Statistical
Supplement Capital Market Statistics. The estimates are based on the prices of Pfandbriefe (Mortgage
and Public Pfandbriefe) with residual maturities of at least 3 months. The interest rates are estimated
using a non-linear parametric approach”, cf. Deutsche Bundesbank (above link). A more detailed
description and structure of the securities can be found in Schich (1996). The time series consist of 15
data points, which are distributed equally between 1 and 15 years.

12Compare also Figure 3.4 in Section 3.7.1.

31

https://www.pfandbrief.de/site/de/vdp/statistik/statistik/spread.html
https://www.pfandbrief.de/site/de/vdp/statistik/statistik/spread.html
https://www.pfandbrief.de/site/de/vdp/statistik/statistik/spread.html
https://www.pfandbrief.de/site/de/vdp/statistik/statistik/spread.html
https://www.bundesbank.de/Navigation/DE/Statistiken/Zeitreihen_Datenbanken/Geld_und_Kapitalmaerkte/geld_und_kapitalmaerkte_list_node.html?listId=www_skms_it04a
https://www.bundesbank.de/Navigation/DE/Statistiken/Zeitreihen_Datenbanken/Geld_und_Kapitalmaerkte/geld_und_kapitalmaerkte_list_node.html?listId=www_skms_it04a
https://www.bundesbank.de/Navigation/DE/Statistiken/Zeitreihen_Datenbanken/Geld_und_Kapitalmaerkte/geld_und_kapitalmaerkte_list_node.html?listId=www_skms_it04a
https://www.bundesbank.de/Navigation/DE/Statistiken/Zeitreihen_Datenbanken/Geld_und_Kapitalmaerkte/geld_und_kapitalmaerkte_list_node.html?listId=www_skms_it04a
https://www.bundesbank.de/Navigation/DE/Statistiken/Zeitreihen_Datenbanken/Geld_und_Kapitalmaerkte/geld_und_kapitalmaerkte_list_node.html?listId=www_skms_it04a


2. Market and Bank Analysis

29.6

81
7

60.9

26.9

263

41.7

27.3

11.1

73.2

19.8

44.2

61.1

0

40.8

12.6

0

161.9

65.2

46.9
13.6

35.6

11.1
7.4

41.3
95

42.9
49.4

67.7
33.3

68.1
163.2

25
9.7

39.7

16.9

45.2
9

6

15.5

40.7

0

21.5

16

116.3

17.9

43.9

9.4

0

0

11

0

0

40

61.7
62.5

20.1

2.5
383.9

0
28.4

0
36.5

54.9
442.4

57.9
0

88.3
13.1

0

Hyp Oef

WIB
WEL
WBP
SKB
SEB

SAAR
PSD
NLB
NAT

MMW
MHB

LBBW
LBB
KSK
KHB
HVB
HSH
HRE
HLB

HASP
EH

DVB
DTH
DSB
DPB
DKB

DIBA
DHB
DGH

DEKA
BRL
BLB
BHH
APO
AAR

0 100 200 300 400 0 100 200 300 400
Overcollateralisation 4th quarter 2016 (in %)

B
an

k

OC Hyp Oef

Figure 2.26.: Overcollateralisation of mortgage (left) and public sector (right) cover
pool, in 4th quarter 2016

Pfandbriefe and the nominal value of the cover pool amounts to e11,712.0 mn with
an OC of 29.6% (Figure 2.26). The purchase of Westdeutsche ImmobilienBank AG
(WIB) which specialises in commercial real estate financing was completed effective
on May 31, 2015 (AAR, 2015). In addition to the German Pfandbrief and unsecured
bank bonds, housing deposits represent an important pillar in the bank’s long-term
refinancing mix (AAR, 2016).

BHH Berlin Hyp is a financial institution specialising in commercial real estate finance,
combining the experience gained in around 150 years of real estate lending business
and the corresponding feel for current market trends in order to design future-oriented
products and services for professional clients. April 27, 2015 marks the day the bank
issued a seven-year term e500 mn mortgage Pfandbrief which was the first ‘Green
Pfandbrief’. This is a mortgage Pfandbrief in the sense of the Pfandbrief Act, to which
the ‘Green Bond Principles’ — particularly sustainable buildings – are additionally
applied (BHH, 2015). In total e11,839.1 mn outstanding mortgage Pfandbriefe are in
circulation covered by e12,664.6 mn which amounts to an OC of 7%.

MHB MHB focuses on residential real estate finance in Germany. Central partners in
this business area are the banks of the Genossenschaftliche Finanzgruppe. Around
two-thirds of business is accounted for by private residential property financing. MHB
profited from continued low interest rates, high demand for real estate and real estate
financing as well as the strong market position of brokerage partners, especially the
cooperative banks. Due to MHB’s business strategy wrt the public-sector Pfandbriefe,
no public Pfandbriefe were issued in 2016. Further, more mortgage Pfandbriefe in
foreign currencies were issued (around 40% of funding volume were not denominated
in euros), compare MHB (2016). MHB is the largest issuer of mortgage Pfandbriefe
(Figure 2.34) with a relatively small voluntary OC of 11.1% (Figure 2.26).
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2.2. Pfandbrief Market

Figure 2.27.: Performance of Pfandbrief spreads in comparison to covered bonds and
uncovered debt (Source: (VDP, 2016)). Top: Uncovered bank debt versus covered
funding; Bottom: Development of the swap spreads of Pfandbriefe compared to other
covered bonds

MMW MMW, founded in 1995, is a bank focused on long-term real estate financing
and the refinancing of these businesses. Investors are mainly banks, pension funds and
insurances in Germany; Private investors play a subordinate role. In general, the main
refinancing instrument remains the Pfandbrief. Given the particular structure of the
asset side, but also with regard to the management of the liability side, small-volume
registered Pfandbriefe — responding to the needs of smaller institutional investors —
have always made up a large part of the issue volume. In 2016, MHB continued to
expand its real estate financing similar to previous years on the basis of a successful
Pfandbrief business (MMW, 2016). The outstanding mortgage Pfandbrief volume is
relatively small of e1,250.4 mn with an OC of 7.4%.

NAT One of the decisive legal bases for the activities of the bank is the Pfandbrief Act
(PfandBG). The bank mainly operates only those transactions that can be reclassified
into Pfandbrief coverage under the Pfandbrief Act. The business of NAT in the real
estate lending sector continues to be generated mainly from the countries of France
and Germany. The focus of lending is on the issue of commercial loans with mortgage
collateral. The refinancing of NAT is carried out in line with its business model through
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the issue of Pfandbriefe. Outstanding mortgage Pfandbrief volume amounts to e947.7
mn with a corresponding cover pool of e1339.4 mn and OC of 41.3% (see Figure 2.26).
Of the ‘Hyp’ type issuers the bank has zero outstanding public sector Pfandbrief, thus
solely concentrating on the mortgage type.

WBP WBP was founded in 1968 as a special institute for mortgage lending and sup-
ported clients of Wüstenrot Bausparkasse AG in the financing of their real estate
projects. In 2005, Wüstenrot Bank AG Pfandbriefbank, one of the first universal banks
with a Pfandbrief license, emerged from the merger with Wüstenrot Hypothekenbank.
The Pfandbrief portfolio amounted to e2.5 bn (previous year: e3.4 bn) and contains
only mortgage Pfandbriefe in 2016. The public sector Pfandbriefe business was dis-
continued as of June 30, 2016 where the cover pool was fully settled (WBP, 2016). In
the products and asset classes of the proprietary business, the focus is on fixed income,
i.e. covered and unsecured bonds, e.g. government and bank bonds and Pfandbriefe.
In addition, only a small amount is invested in foreign currencies. The refinancing of
the lending business is carried out in particular via Pfandbriefe (WBP, 2015).

WIB The credit portfolio of WIB is distributed primarily to the German, European
markets and North America. WIB primarily finances office and retail real estate,
shopping centers, logistics centers, hotels, residential properties and public facilities.
The loan portfolio also includes a portfolio of private mortgage lending. The past
financial year was marked by the further integration of WIB into the AAR Group.
Here we depict WIB still as stand-alone bank — although taken over by AAR — with
its own Pfandbrief business (outstanding volume according to vdp amounts to e2,745.4
mn) independent of AAR since the data source is mainly vdp where both banks are
still treated separately on vdp’s website13 in the 4th quarter of 2016 (WIB, 2016).

At first the total Pfandbrief market is examined which is then broken down in a public
sector and mortgage covered bond type review. This allows a more differentiated analysis
of the empirical developments.

2.2.3.1. Total

The total Pfandbrief market of the top ten issuers in 4th quarter 2016, see Figure 2.30,
consists of the sum of public sector and mortgage type of Pfandbrief types. The top
ten issuers account for e227 bn of outstanding Pfandbrief volume which makes up 60%
of the Pfandbrief market. HRE, the Deutsche Pfandbriefbank AG (formerly known as
the Hypo Real Estate Bank AG), is still the largest issuer in Germany. The merging
of Hypo Real Estate Bank AG and DEPFA Deutsche Pfandbriefbank AG to Deutsche
Pfandbriefbank AG in mid 2009 is reflected in the time series of Figure 2.30 by the jump
in 2nd quarter 2009. Also the incorporation of EH into DSB can clearly be observed
in 2nd quarter 2016, letting DSB become the forth largest issuer in 4th quarter 2016.
Also, DSB is the bank with the largest gain since 4th quarter 2008 with over 1600%.
LBBW has substantially forfeited its market share compared to 4th quarter 2008 when
it was the largest issuer. In 4th quarter 2008 its Pfandbrief volume amounted to e75.0
bn which is reduced by -74.5% to e19.1 bn in 4th quarter 2016. In total the volume size
of the group of top ten issuers has contracted by 38.1%.

13https://www.pfandbrief.de/site/de/vdp/statistik/statistik/statistiken-pfandbg-
vdp.html
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In Figure 2.31 the depiction of the public sector and mortgage Pfandbrief market is
given where Pfandbrief banks of Table C.2 are visualised14 in comparison to the average
over banks development (depicted by the blue circle and labeled vdp) of Pfandbrief banks
with -7.9% in short and -53.5% in long term changes. BLB (top 10; x: -13.9, y: -61.3),
DGH (top 10; x: -25.8, y: -64.0) and LBBW (top 10; x: -13.2, y: -74.5) are three banks
with the largest losses in volume pulling the overall market to the bottom left corner of
the coordinate system. Four banks belonging to the issuing category ‘Hyp’ outperform
the market, situated in the first quadrant of the coordinate system, with NAT* (x: 75.4,
y: 1795.4), MMW (x: 12.5, y: 31.9), MHB (top 10; x: 7.8, y: -0.9) and BHH (x: 5.6,
y: -41.6). Also WEL (x: 7.5, y: -13.3) categorised as ‘Hyp-Oef’ can be found in the
first quadrant. It needs to be noted that the outlier DSB has no impact on the overall
average changes as its volume increase is only a shift from EH to DSB.

2.2.3.2. Public Sector

We now focus on the public sector Pfandbrief market. A similar picture as in Figure 2.24
is also depicted for the top ten markets in Figure 2.32. The top ten issuers account
for approx. 70% of market share with an accumulated outstanding volume of e112.2
bn. Unlike in the total market of Section 2.2.3.1, HRE is only in third place in the
public sector market. HLB is the largest issuer with an outstanding volume e17.4 bn
(share 10.7%) followed by BLB with e16.2 bn (share 10.0%) so that the top three hold
approx. one third of the market share. For HLB one can observe a significant jump in

14Banks marked with ‘*’ have a shorter long-term time horizon (y-axis): DIBA* since 3rd quarter
2011, DKB* since 3rd quarter 2009, LBB* since 1st quarter 2010, NAT* since 1st quarter 2013 and
SAAR* since 1st quarter 2010.
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2. Market and Bank Analysis

Figure 2.32 as well as Figure 2.24 from 2nd quarter 2012 (e15.6 bn) to 3rd quarter
2012 (e21.3 bn) in public sector volumes. On July 1st, 2012, HLB has taken over
significant parts of refinancing funds — including outstanding issues of Pfandbriefe —
from WestLB’s Verbundbank activities.
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Figure 2.32.: Outstanding public sector Pfandbrief volume over time of top ten issuers
in Q4 2016

In Figure 2.33 the depiction of the public sector Pfandbrief market is given where
Pfandbrief banks of Table C.2 are visualised15 in comparison to the total development
(vdp) of Pfandbrief banks with -26.7% in short and -72.2% in long term changes. Once
again three players, LBBW (top 10; x: -42.5, y: -87.9), DGH (top 10; x: -41.6, y: -78.3)
and DTH (top 10; x: -39.0, y: -69.7), from the top ten list account for the larger volume
losses, amounting to over e60 bn in total since 4th quarter 2008 and over e2 bn in total
since 4th quarter 2014. The only two banks which show a positive growth rate — short
and long term — are DSB (top 10; x: 453.2, y: 649.6) and KSK (x: 0.9, y: 465.0)
whereas DSB’s exorbitant growth is a consequence of the takeover of EH.

2.2.3.3. Mortgage

For the mortgage type Pfandbriefe we see a rather stable sideways shift on the long
term under the top ten market players and a growth period in the short term since 4th
quarter 2014 which is inline with Figure 2.24. The top ten issuers in 4th quarter 2016
account for 63.3% of the mortgage Pfandbrief market share. HVB, in 4th quarter 2008
the largest issuer, has forfeited half its market share by 4th quarter 2016 from 14.2% to

15Banks marked with ‘*’ have a shorter long-term time horizon (y-axis): DPB* since 3rd quarter 2009,
LBB* since 1st quarter 2010 and SAAR* since 1st quarter 2010. Not included in analysis are APO, DIBA,
HASP and NAT which do not issue public Pfandbriefe. KHB does not issue public Pfandbriefe after 1st

quarter 2010 and WBP ceased their public sector Pfandbrief program in 2nd quarter 2016.
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2. Market and Bank Analysis

7.2% ranking third. First place goes to MHB with a market share of 9.8% in 4th quarter
2016 which is labeled as a predominant ‘Hyp’ type issuer according to Table C.2. Also
categorised as ‘Hyp’ and under the top ten issuers are BHH (5.7%) and AAR (4.4%).
As in Figure 2.30 and Figure 2.32 we again see the significant gain in market share
of DSB since 1st quarter 2016.
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Figure 2.34.: Outstanding mortgage Pfandbrief volume over time of top ten issuers in
Q4 2016

In Figure 2.35 the depiction of the mortgage Pfandbrief market is given where Pfand-
brief banks of Table C.2 are visualised16 in comparison to the total development (vdp)
of Pfandbrief banks with 13.9% in short and -6.2% in long term changes. In the bottom
left quadrant we find WIB (x: -35.2, y: -61.2) and WBP (x: -28.5, y: -44.6) of the issuer
category ‘Hyp’. For AAR (top 10; x: -16.1, y: 28.8) we only see on the short term a
negative sign. A rather stable and slightly above market average growth rate — long
and short term — can be observed for BHH (top 10; x: 10.6, y: 21.3), MHB (top 10;
x: 15.5, 65.9) and MMW (x: 15.4, y: 84.7). NAT* (x: 75.4, y: 1795.4) once again is
marked as outlier in the top right corner.

2.2.4. Jumbo Market

Continuing the coverage of the Jumbo market of Section 2.1.4, now specifically for
the German market, we immediately spot the stark decline of the Jumbo Pfandbrief
(Figure 2.37). Compared to 2003, totalling e383.2 bn in outstanding Pfandbriefe, over
90% in outstanding volume has been lost, amounting to e34.6 bn in 2016. Germany

16Banks marked with ‘*’ have a shorter long-term time horizon (y-axis): DIBA* since 3rd quarter
2011, DKB* since 3rd quarter 2009, DSB* since 4th quarter 2013, LBB* since 1st quarter 2010, NAT*
since 1st quarter 2013 and SAAR* since 1st quarter 2010.
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2. Market and Bank Analysis

is therefore not included in the top ten Jumbo issuing countries in 2016. Traditionally,
Jumbos are issued as the public sector type of Pfandbriefe, thus, the trend is correlated
with that of the public sector (Section 2.2.3.2). In the late 1990s and 2000, the pre-
dominant Jumbo to be issued was the public-sector type, with a share of over 90% of
all Jumbos issued, compare Mastroeni (2000). This is simply due to the higher issued
volume of public-sector Pfandbriefe (over 80% at that time; compare also Figure 2.24)
and the difficulty involved in pooling the necessary e1 bn or higher in mortgage loans.
In 2016, the market for benchmark Pfandbriefe of e500 mn or higher has changed dra-
matically. A total of e22,3 bn were issued thereof e18,5 bn (83.0%) mortgage and
only e3.8 bn (17.0%) public-sector Pfandbriefe. The benchmark with size e500-e999
mn has significantly gained influence and popularity since 2012, see Figure 2.37 and
Figure 2.38. As alluded above, especially, for mortgage type Pfandbriefe it is easier
to bundle smaller amounts of mortgages together rather than sums of e1 bn or higher
contributing to the rise of the lower benchmark category. The top five banks wrt out-
standing volume of mortgage benchmark Pfanbriefe of e500 mn or higher are DSB (e6.8
bn), MHB (e6.6 bn), WEL (e6.0 bn), PBB (e5.0 bn) and BHH (e4.9 bn).
In 2016, the Pfandbrief market consists predominantly of private placements making up
over half of outstanding Pfandbriefe (Figure 2.36) which clearly contrasts to the picture
of all covered bond markets in Figure 2.19. In 2003, private placements only accounted
for 36.4% of all outstanding Pfandbriefe.

Jumbo
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 9%
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(500 − 999mn),

 23%
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 11%
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 57%

Placements − Outstanding in 2016

Jumbo
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 12%
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(500 − 999mn),

 45%
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(< 500mn),

 14%

Private,

 29%

Placements − New issuance in 2016

Figure 2.36.: Placement shares of outstanding Pfandbrief volume and new issuance,
in 2016

2.3. Münchener Hypothekenbank eG (MHB)

Exemplary for the ‘Hyp’ issuer category in Table C.2 we analyse the balance sheet po-
sitions of MHB, simply because it is the largest mortgage Pfandbrief issuer in 2016, see
Figure 2.34. One finding from above sections (Section 2.1 and Section 2.2) is a persis-
tent trend of a declining public covered bond, respectively, Pfandbrief which will likely
become even less significant in the future. This also applies to MHB. MHB’s decrease
of the public Pfandbrief since the 4th quarter 2008 has amounted to −63.7% and since
4th quarter 2014 to −16.0% (Figure 2.33). The time series data of MHB is available on
its website (www.muenchenerhyp.de) and VDP’s website (www.pfandbrief.de), with
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onset 4th quarter 1999. A linear interpolation procedure is conducted for filling missing
data, prior to 4th quarter 2008.
In this bank level investigation, methods from time series analysis and the field of econo-
metrics are applied. Emphasis is laid upon the bank’s development of balance sheet
positions relative to time. Thereby, it is of high interest to statistically derive two main
features by extracting the information contained in the series:

Structural changes The analysis of structural changes has two reasons. First it is of
interest if statistically detected changes coincide with actual break dates, for example
the beginning of the recent financial crisis, the introduction of the ‘New Pfandbrief Act’
(PfandBG) or realignment of internal business strategies. Secondly, when structural
changes are present forecasts can be made based on the series as of the breakpoint
instead of the complete series, thus relying on more recent data. Translated into a
parametric time series model, this means that the parameters of the model are not
stable throughout the sample period but change over time. Throughout, structural
breakpoints are computed with a linear regression on lagged series. The F-statistic on
the obtained residuals is then consulted where the null hypothesis has no structural
change boundaries. “Tests based on F-statistics (...) are designed to have good power
for single-shift alternatives (of unknown timing). The basic idea is to compute an
F-statistic (or Chow statistic) for each conceivable breakpoint in a certain interval
and reject the null hypothesis of structural stability if any of these statistics (or some
other functional such as the mean) exceeds a certain critical value (...).”, cf. (Kleiber
and Zeileis, 2008). Visually, the original series with its corresponding fitted values are
depicted. The located breaks by the F-statistic are included with a 95% confidence
interval. Additionally, a linear regression is conducted before and after the break
quantifying the change in the slope regression coefficient. Zeileis et al. (2002) provide
an excellent R package for detecting potential structural breaks.

Forecasting Predictions on the future behaviour of the asset and liability positions are
established. Thereby, it is important to find an adequate time series model which
captures the underlying information. Moreover, the stationary property needs to hold
for guaranteeing non-biased estimates. R provides several packages for time series
analysis. Here, the forecasts rely on the (S)ARIMA (seasonal auto regressive integrated
moving average) technique where differentiating takes place for integrated series and
automatic best fit algorithms are implemented, according to either AIC, AICc or BIC
value. The (S)ARIMA model is the seasonal version of the ARIMA model taking the
seasonality present in the time series into consideration. To fix the notation (Peña
et al., 2001)

ARIMA (p, d, q)︸ ︷︷ ︸
non-seasonal

part

(P,D,Q)[s]︸ ︷︷ ︸
seasonal

part

, (2.1)

with

Φ(Ls)φ(L)(1− Ls)D(1− L)dyt = c+ θ(L)Θ(Ls)εt, (2.2)

where
· the non-seasonal AR (autoregressive) part is given by the pth order polynomial

φ(L) = 1− φ1L− . . .− φpLp,
· the non-seasonal MA (moving average) part is given by the qth order polynomial
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2.3. Münchener Hypothekenbank eG (MHB)

θ(L) = 1 + θ1L+ . . .+ θqL
q,

· d is the order of differencing for the non-seasonal part,
· the seasonal AR part is given by the P th order polynomial Φ(Ls) = 1 − Φ1L

s −
. . .− ΦPL

Ps,
· the seasonal MA part is given by the Qth order polynomial Θ(Ls) = 1 + Θ1L

s +
. . .+ ΘQL

Qs,
· D is the order of differencing for the seasonal part,
· s number of periods per season,
· c is some constant, and
· L is the lag operator so that for a given time series y = {y1, y2, . . .} then Lyt = yt−1

and ∆yt = yt − yt−1 = (1− L)yt holds.
An univariate analysis is preferred because an independent view on the position series
is necessary due to differing breaking points in the series. Numerous literature on time
series analysis exists. Peña et al. (2001), Tsay (2010) and Tsay (2013) cover most
essential approaches.

2.3.1. Total Assets and Liabilities

Before we take a closer look at the asset and liability positions we analyse the total sum
of assets and liabilities as accounted on its quarterly balance sheet. With a lag of two
the F-test in Table 2.2 finds a structural break at 2nd quarter 2008 with a rather wide
confidence interval between 4th quarter 2006 and 2nd quarter 2009.

statistic p-value lag date

F-test 14.08 0.02 2 Q2 2008

Table 2.2.: Structural change test of total asset and liability positions

MHB first addresses the sub-prime and beginning of the financial crisis in the interim
financial report of MHB (2007b), the first half of 2007. According to MHB its business
was not directly affected by the crisis in the sub-prime segment of the credit market,
as it operates exclusively in the commercial sector and in rental property construction
and does not finance homes or condominiums in the US. In accordance with its risk
strategy MHB is primarily involved in the financing of office real estate and focus on
top-tier financing tranches. However, indirectly MHB, as every other financial interme-
diate, felt the liquidity crunch due to the general crisis of confidence in the financial
markets. Worldwide investors withdrew investments from bonds. In Figure 2.39 we
see the structural change depicted with its vertical red dashed line and its corresponding
confidence interval (horizontal red line). In the post crisis era a sluggish growth rate
with e87.1 mn per quarter can be observed compared to e174.4 mn per quarter prior
which is double the amount prior to 2nd quarter 2008.
The model ARIMA(2,0,0)(2,1,0)[4] is fitted to the time series as of the detected struc-
tural change in 2nd quarter 2008. In Table 2.3 we see from the unit root test results
that all information contained in the series in Figure 2.39 has been extracted so that
only white noise is left over (see also Figure D.1 in Appendix D). In Figure 2.40 we see
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the forecast for the time series for the next three years with a corresponding confidence
interval resulting in a sideways shift without a clear upward or downward trend. Next
we apply the same procedure for each asset and liability position separately. This way
we can further investigate in an isolated manner by extracting the information contained
in each position.
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Figure 2.39.: Depiction of significant structural change of total asset and liability
positions, in mn EUR

ADF-Test PP-Test KPSS-Test
statistic p-value statistic p-value statistic p-value

-7.63 0.01 -7.61 0.01 0.21 0.10

Table 2.3.: Unit root tests of total asset and liability positions
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Figure 2.40.: Depiction of significant structural change of total asset and liability
positions, in mn EUR

2.3.2. Assets

On the asset side emphasis is laid upon the three positions mortgage (Hyp) CP, public
sector (Oef) CP and other assets (OA). OA simply contains all other assets which are not
in CP-Hyp or CP-Oef. Table 2.4 contains the F-statistics with corresponding p-values
and break dates of all three positions. The null hypothesis of no structural change is
rejected where the break dates turn out to lie close to each other within a time span just
over a year. For CP-Hyp we choose a lag of two while for CP-Oef and OA a lag of one
is sufficient.
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F-Test CP-Hyp CP-Oef OA

statistic 20.67 31.78 30.46
p-value 0.00 0.00 0.00
lag 2 1 1
date Q4 2007 Q3 2006 Q1 2007

Table 2.4.: Structural change test of asset positions

From Figure 2.33 and Figure 2.35 we already know the adverse developments of the
public sector and mortgage assets of MHB. In Figure 2.41 the structural changes are
visualised. Until the time period approx. between 3rd quarter in 2006 and 4th quarter in
2007 both positions were positively correlated possessing a positive upward trend where
the public sector even had a double growth rate than its mortgage counterpart. This
drastically changed from then on. Since the 3rd quarter in 2006, CP-Oef dropped by
e-297.4 mn per quarter. An accelerated growth can be seen for the mortgage cover pool
after the 4th quarter of 2007 by a factor of over three. Another observation is that OA
fluctuate between e4 and e6 bn up to the 2nd quarter of 2007 before growing by e121.5
mn per quarter.
In the annual reports of MHB some explanations can be found for the structural changes
on the asset side. We mainly refer to MHB (2005), MHB (2006) and MHB (2007a)
where the public and mortgage new business is emphasised upon. Further, there exists
a certain lag on business decisions from previous quarters or years before their impacts
are reflected on the overall development of the balance sheet positions as in the time
series of Figure 2.41.
Evidently from the annual reports the main business of MHB on the asset side is the
funding of real estate which can be roughly divided into private residential financing
and commercial mortgages. Overall, new business in 2007 increased to e4.14 bn (MHB,
2007a). The engine of new business in private housing finance was the strong demand
for forward financing, which increased again in 2007. The main reason for this was
the development of interest rates. On the one hand, the flat interest-rate structure
meant that the premiums for forward loans were low and, on the other, rising interest
rates prompted many customers to secure favorable interest rates before the end of their
financing. Taking into account the purchase of the Corealcredit Bank AG portfolio in the
new business, the volume of commitments in the private residential construction segment
amounted to e2.33 bn. Furthermore, growth in international business was particularly
pronounced. New business rose by 49.5%, or e361.2 mn, to e1.09 bn which for the most
part was achieved in the USA. The US business’s share of total foreign new business was
around 77%.
In general, MHB does not pursue any volume targets in the public sector (state and
municipal) lending business, see MHB (2006) and MHB (2007a). Commitments by
MHB, which include in particular tradable promissory notes issued by federal states, local
authorities and public-sector banks, are solely based on terms of revenue and profitability
considerations. In MHB (2005) we find some explanations for the retreat of MHB in
the public sector segment: The persistently weak margin situation compared to the
previous years and the lower market volume due to the abolition of state liability for
Landesbanken has led to declining loan commitments from e5.3 bn in the previous year
to e1.9 bn in 2005. By the 2nd quarter 2007, overall, public sector commitments dropped
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to volume of e1,052.3 mn which was e1,687.0 mn in the same period of the previous
year.
We fit the models of Table 2.5 on the univariate time series data of the individual
time series data where the structural changes are detected onward. The corresponding
unit root tests can be found in Table 2.6 and ACF plots in Figure D.2. For CP-Hyp
and CP-Oef we see a clear upward and downward trend for the forecast of three years.
Similar to the overall trend of Figure 2.39 no clear direction can be determined for OA,
thus, the rather larger confidence interval.
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Figure 2.41.: Depiction of significant structural change of asset positions, in mn EUR

2.3.3. Liabilities

We now draw our attention to the refinancing business — the liability side. We observe
that the structural changes of PB-Hyp and PB-Oef coincide with their counterparts on
the asset side (CP-Hyp and CP-Oef) having similar quarterly rates before and after the
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position model

CP-Hyp ARIMA(1,0,0)(1,1,0)[4] with drift
CP-Oef ARIMA(1,1,0) with drift
OA ARIMA(1,1,0)

Table 2.5.: SARIMA model fits of asset positions

CP-Hyp CP-Oef OA

ADF-test statistic -7.27 -8.33 -7.41
p-value 0.01 0.01 0.01

PP-test statistic -7.35 -8.33 -7.40
p-value 0.01 0.01 0.01

KPSS-test statistic 0.24 0.19 0.03
p-value 0.10 0.10 0.10

Table 2.6.: Unit root tests of asset positions

break dates. This should not be too surprising since there exists a causality between the
amount of assets available and issuing of Pfandbriefe — per definition a Pfandbrief only
can be issued on the basis of the assets by which it is covered. In Table 2.7 the detected
structural changes with the corresponding break dates are given which are visualised in
Figure 2.43. The position other liabilities (OL), the counterpart of OA, has an earlier
break date, yet, with a broader forward leaning 95% confidence interval in the range
of 3rd quarter 2003 and 2nd quarter 2006. For equity (EQ) we can see a continuous
moderate quarterly growth rate with a more recent larger jump in 4th quarter 2013.
Again we relate to the annual reports of MHB during the period of the structural changes.
One would expect that the sale of Pfandbriefe, particularly larger benchmark issues
(Section 2.2.4), is considerably more difficult during the financial crises triggered by
the sub-prime crisis of 2007. The financial market crisis and its further exacerbation
due to the insolvency of Lehman Brothers hampered the refinancing business for credit
institutions worldwide. As a result, the money and capital markets came to a complete
standstill at times. However, according to the annual reports, particularly (MHB, 2008)
MHB got off lightly. This has to do with having a reliable customer, the German
insurance industry, being the most important buyer of structured issues for MHB. In
this sector, MHB is able to place high volumes, especially in the case of long-dated,
multi-callable bonds (MHB, 2005). Furthermore, especially during this time, MHB could
largely rely on the cooperative ‘FinanzVerbund’17 which turned out to be very beneficial
to its liquidity management. In 4th quarter 2008, large parts of emissions could be placed
with the ‘FinanzVerbund’. Lastly, due to the good reputation as a reliable issuer, MHB
was also able to refinance itself outside the ‘FinanzVerbund’.
Fitting the models of Table 2.8 to the time series posterior to the break dates we
obtain the parameters for forecasting future developments in Figure 2.44. Again a
rather similar picture is given as in Figure 2.42. The corresponding unit root tests can
be found in Table 2.9 and ACF plots in Figure D.3.

17The ‘FinanzVerbund’ relates to the financial network of the Volksbanken Raiffeisenbanken.
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Figure 2.42.: Depiction of significant structural change of liability positions, in mn
EUR

F-Test PB-Hyp PB-Oef OL EQ

statistic 24.67 22.51 15.17 30.24
p-value 0.00 0.00 0.01 0.00
lag 3 1 1 1
date Q3 2007 Q3 2006 Q4 2003 Q4 2013

Table 2.7.: Structural change test of liability positions
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Figure 2.43.: Depiction of significant structural change of liability positions, in mn
EUR

position model

PB-Hyp ARIMA(1,0,0)(1,1,0)[4] with drift
PB-Oef ARIMA(0,1,1) with drift
OL ARIMA(2,0,1)(2,1,0)[4] with drift
EQ ARIMA(0,2,0)(0,1,0)[4]

Table 2.8.: SARIMA model fits of liability positions
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PB-Hyp PB-Oef OL EQ

ADF-test statistic -5.78 -6.23 -6.90 -3.15
p-value 0.01 0.01 0.01 0.13

PP-test statistic -5.81 -6.24 -6.93 -2.94
p-value 0.01 0.01 0.01 0.21

KPSS-test statistic 0.10 0.58 0.09 0.08
p-value 0.10 0.02 0.10 0.10

Table 2.9.: Unit root tests of liability positions
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2.4. Summary

Two main takeaways from the market and bank analysis can be stated: Firstly, the
rising importance of the mortgage covered bond / Pfandbrief business and, secondly,
the simultaneous decline of the public covered bond / Pfandbrief business. Both trends
have been sufficiently verified by current and past market developments. On the interna-
tional scale it will be interesting to see whether Denmark can further claim its position as
largest covered bond issuer in total and in the mortgage segment. Furthermore, in view
of the existing legal frameworks implemented in each country, it will also be interesting
to see which will establish itself, or at least to be taken as blue print for enforcing a
consolidation wrt an universal framework on the European stage.
Evidently, the financial crisis, starting as sub-prime crisis in 2007, had an impact also on
the covered bond market in general and its aftermath is still felt today reflected by the
exceptionally low interest rates (see Figure 2.29) due to an expansive monetary policy
by the ECB and other central banks. Yet, the complete magnitude of the financial crisis
on the covered bond can not be fully assessed since the further interference of the ECB
with its CBPP resulted in a distorted market view. Surely, on the one hand this was
a necessary move to restore liquidity and confidence back into the market, however, a
clear assessment of true covered bond sales is not really possible. Moreover, a distortion
among banks arises, between those making use of state and central bank bailout funds
and those that do not. On the long run the low interest rate environment may be more
harmful to covered bond issuing banks.
On the bank level we have learnt that it is even harder to pin point one or more macro
economic influences as in the case of MHB. While regarding the balance sheet develop-
ment as a whole – the sum of assets or liabilities — the conclusion might well be that the
financial and Euro crisis may have a sluggish impact on the bank’s overall growth rate
since the break point of the time series coincides with the onset of the financial turbu-
lences dating back to 2008. However, dissecting the balance sheet positions separately
we see the adverse developments of public and mortgage balance sheet positions on both
sides. According to the annual reports this has largely to do with the business strategy of
MHB at that time — the concentration on residential construction and commercial lend-
ing. Besides, MHB claims the sub-prime crisis and its consequences for the international
financial markets did not affect MHB directly. Investments in the sub-prime segment
were and are not included in its portfolio due to careful risk policy. MHB even goes on
by stating that the financial crisis, rather, offered attractive additional business oppor-
tunities, as the traditional securitisation business — especially the syndication business
— experienced a certain renaissance due to the weakening securitisation markets (MHB,
2007a).
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The modelling of the Pfandbrief requires specific characteristics attributed to a financial
intermediary issuing Pfandbriefe in a one-period setting. This includes the incorporation
of the underlying legal framework and cover pool risks, a risk-neutral modelling setup,
the application of different credit risk — structural and reduced-form — approaches, a
simplified Pfandbrief bank’s balance sheet structure and a default waterfall scheme wrt
to the bank itself as well as the Pfandbrief as a financial product. In the wake of negative
interest rates and due to its role as a fundamental component of the underlying models,
interest rate risk is examined more closely. At the core, standard market assumptions
are postulated. Merton (1974), in his seminal work, assumes perfect capital markets
with no arbitrage possibilities, rational market participants, the existence of a risk-
free investment opportunity and the strict absolute priority rule is held, amongst other
restrictions.

3.1. Legal Requirements and Cover Pool Risks

The Pfandbrief product is, apart from the Kreditwesengesetz (KWG), embedded in the
Pfandbriefgesetz (PfandBG) which regulates the legal requirements for the issuance of
the Pfandbrief. An extensive analysis of the Pfandbrief’s legal framework (PfandBG)
and related cover pool risks are given in Spangler and Werner (2014). Here we shall
briefly address the main characteristics and properties which need to be considered in
any model setup. The focus lies upon the investor’s perspective should the bank and
its issued Pandbriefe default. A Pfandbrief investor also accounts losses if there is not
sufficient collateral to prevent Pfandbriefe from defaulting. All applied models must be
conform to the PfandBG, fulfilling the following main requirements:

Characterisation 3.1 (Legal requirements).

· The Pfandbrief investor has a preferential claim over the cover pool and cross-
collateralisation does not exist, thus cover pools are ring-fenced.

· The nominal amount of the cover pool must at any time cover — greater or equal —
the nominal amount of all outstanding Pfandbriefe.

· The net present value1 of the cover pool must at any time cover — greater than
2% — the net present value of all outstanding Pfandbriefe (including interest and
amortization commitments).

Key elements of cover pool risks in a post-issuer insolvency environment are identified
in descending order (Spangler and Werner, 2014):

1This is legally specified in the net present value regulation (‘PfandBarwertV’).
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Characterisation 3.2 (Cover pool risks).

1. Refinancing risk (and market value risk) — Should the amortization of the cover
pool assets be insufficient to match the outstanding Pfandbriefe at maturity then
mismatches between assets and liabilities exist, referring to as refinancing risk. The
market value of real estates may also differ during booming markets and times of
economic recessions.

2. Interest rate and currency risk — Interest rate and currency risk refer to losses due to
adverse interest rate and, respectively, exchange rate movements. Losses are casued
by interest rate and currecny mismatches between the cover pool and outstanding
Pfandbriefe, or by mark-to-market losses in case of a forced sale.

3. Asset default risk (and real estate risk) — Losses can occur when the credit quality
of cover pool assets deteriorate over time and even default, known as asset default
risk or asset credit risk. The risk of losses arising from changing real estate prices
is referred to as real estate risk.

4. Reinvestment risk — Uncertainty arises on whether cover pool earnings can be rein-
vested if these are not needed to fund Pfandbrief payments where, in the long run,
interest payments to Pfandbrief holders might be insufficient if wrongly allocated.

5. Prepayment and counterparty risk — Prepayment risk arises from the early repay-
ment of cover pool debt. When there exist high counterparty concentrations of deriva-
tives in the cover pool which are positively correlated to the Pfandbrief issuer then
this results in counterparty risk.

Remark 3.1. Other risks related to the default of the Pfandbrief exist, such as issuer
risks which are relevant in the pre-issuer insolvency period, see Spangler and Werner
(2014). However, we shall concentrate on the above cover pool risks 1. to 3. of Character-
isation 3.2 in a post-insolvency environment since “issuer default triggers the Pfandbrief
holder’s direct exposure to cover pool risks” (Spangler and Werner, 2014) and simply
because of the reason that not all risks can be adequately modelled in a one-period setting
as many risks are conditional on different time points.

3.2. Real-World vs Risk-Neutral Setting

During the conceptional development of the underlying Pfandbrief framework an im-
portant question arises whether to model under the real-world or risk-neutral measure.
In Hull (2015) we find a compact description of the concepts of valuation (risk-neutral)
and scenario analysis (real-world) which are both used for estimating future cash flows,
however, are distinguished by:

· “In valuation, a financial institution is interested in estimating the present value of
future cash flows. It does this by calculating the expected values (i.e., average values)
of the future cash flows across all alternative outcomes and discounting the expected
values back to today.”, cf. (Hull, 2015, p. 137).

· “In scenario analysis, a financial institution is interested in exploring the full range
of situations that might exist at a particular future time.”, cf. (Hull, 2015, p. 137).
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Typically, risk-neutral valuation is used for projections of evolving asset prices through
time. Monte Carlo simulations are widely applied to simulate, for example, the situa-
tion of a company defaulting at a discrete point in time. As alluded already above in
Section 3.1 (Characterisation 3.1), we are dealing with present values of a bank’s asset
and liability side of the balance sheet (see for example Table C.6 displaying the input
data of Münchener Hypothekenbank eG). It is then natural to resort to the risk-neutral
measure for pricing of today’s and future present values. Thus, the existence of the
risk-neutral probability measure Q is postulated. The ‘Fundamental Theorem of Asset
Pricing’ guarantees the risk-neutral measure Q because it is assumed that the capital
market is arbitrage free (see for example Bingham and Kiesel (2013)). Under the as-
sumption of a complete market there exists an unique equivalent martingale. In general,
we relate to the risk-neutral measure Q henceforth if not stated otherwise. Switching
between the risk-neutral and real-world measure can be achieved by a change of measure
represented by the Radon-Nikodým derivative.
In general, one can relate the applied setup to a economic scenario generator (ESG)
to project future scenarios2. When utilising ESG, all derivatives must be priced within
those scenarios using the risk-neutral measure. Besides a structural approach, the risk-
neutral setting can also be applied in a reduced-form based approach, both of which are
introduced in the next section.

3.3. Structural vs Reduced-Form Approach

Here we shall give a brief review of the structural and reduced-form approaches and the
implications thereof on the modelling of the Pfandbrief default. The difference between
the two approaches is as follows:

· “Structural models are based on the information set available to the firm’s manage-
ment, which includes continuous-time observations of both asset values and liabili-
ties.”, cf. (Guo et al., 2009).

· “Reduced-form models are based on the information set available to the market, typi-
cally including only partial observations of both the firm’s asset values and liabilities.”,
cf. (Guo et al., 2009).

Put in other words the main differences are: Structural models provide the link between
the probability of default and the firms’ fundamental financial situation incorporated in
their assets and liabilities structure whereas reduced-form lack this link between credit
risk and the firms’ balance sheet information. Due to the assumption of complete infor-
mation investors, usually, are able to predict the arrival of default in structural models.
In reduced-form models default is an unpredictable event — characterising its main fea-
ture and advantage. Relying on market information reduced-form models use market
prices of the firms’ defaultable instruments, such as bonds or credit default swaps, to
extract both their default probabilities and their credit risk dependencies.
The classical structural approach in determining the bank’s and Pfandbrief default is
applied by Sünderhauf (2006). Sünderhauf (2006) argues that this is the more suitable
modelling approach since it allows an impact and causal analysis. Should a default
event occur then it can be directly allocated to one or more endogenous risk factors.

2ESG is used, for example, in the modelling of life insurances.
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This may be true when it comes to modelling the overall bank and Pfandbrief default
profile. However, the innovative reduced-form model in this work addresses solely the
asset side, namely emphasising on the quality of the cover pool (referring to 3. of Char-
acterisation 3.2). The cover pool is modelled as a risky zero-coupon bond consisting of
a large amount of mortgage assets. Thus, we regard the reduced-form approach wrt the
cover pool as a superior modelling choice since the default probabilities of each single
asset can be incorporated into the default analysis in an aggregated manner. This allows
a much more direct access to the overall risk profile of the cover pool capturing the down
side risks more adequately. Furthermore, stressed scenarios can be simulated by letting
the mortgage credit ratings deteriorate over time.

3.4. One-Period vs Multi-Period Setting

When setting up a modelling framework, naturally, a trade-off between applicability and
complexity arises. Realistically, the overall default process of a bank stretches over a
longer time period of several weeks or even months. During the default process, a finan-
cial institution has the possibility of acquiring additional liquidity, apart from its own
mandatory liquidity cushion, either from external sources or by restructuring its own
balance sheet. For example, a bank has access to unsecured — overnight borrowings
and the issuance of certificates of deposit or commercial papers — and secured — repur-
chase agreements (repos) or collateralised central bank open market operations where
assets are deposited as collateral in exchange for cash — external funding. The option
of debt roll-over is another way of delaying or even preventing an actual default. The
multi-period model of Spangler (2018), for example, adequately accounts for the most
important additional funding possibilities to the default modelling of a Pfandbrief bank,
respectively Pfandbrief product.
While a multi-period model can account for different stages of a defaulting bank where
counter measures are established to keep the bank alive, a one-period model can essen-
tially only take a snap shot of the bank’s solvency at a certain point in time. Thus,
a one-period model is a simplification where the default of the Pfandbrief bank and
its cover pool is examined simultaneously at the maturity of liabilities. This addition-
ally implies that Pfandbriefe with different maturities are not considered. Resorting
to a one-period setting means modelling default due to over-indebtedness. Arguably, a
multi-period approach is the more realistic modelling choice. An approximation thereof
is advantageous when it comes to obtaining a fast and simplified risk assessment. Fur-
thermore, it might be of interest to obtain scenarios where additional funding options
are deliberately not wanted, thus obtaining blunt and sober risk assessments of the
current balance sheet constitution and, consequently, revealing potential asset-liability
mismatches for one time period.
A more recent one-period modelling approach of a covered bond issuing bank is given by
Tasche (2016) based on the balance sheet classification by Chan-Lau and Oura (2014).
Similarly to Sünderhauf (2006)’s one-period model (based on the work by Anderson and
Cakici (1999)), the asset side consists of one position of encumbered assets (cover pool)
and one position of unencumbered assets (other assets). Likewise, the liability side is
identically structured divided into three positions with secured debt (Pfandbrief), un-
secured debt (other liabilities) and equity. Actually, compared to Chan-Lau and Oura
(2014), Tasche (2016) adds the refinement of splitting the unsecured debt into senior
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and junior unsecured debt. Yet, it is in our interest to use actual published data ac-
cording to §28 PfandBG and bank’s balance sheet where a clear distinction of senior
and junior unsecured debt is not obtainable. Additionally, both models, Tasche (2016)
and Sünderhauf (2006), are based on structural credit risk approaches where the recov-
ery is determined endogenously. However, one striking difference is that Tasche (2016)
does not account for asset-liability mismatches (1. of Characterisation 3.2), thus assum-
ing that the cover pool is well-managed. Further, Tasche (2016) does not distinguish
between nominal and present values (Characterisation 3.1) and does not account for
risk-neutral modelling (see Section 3.2). Moreover, Tasche (2016) makes the assumption
of log-normal distributions for the cover pool and other assets positions on the asset side
which may be a bit over-simplified.
The framework in a one-period setting that we propose3 refers to Sünderhauf (2006)
and captures the main features of Characterisation 3.1 and Characterisation 3.2. The
assessment of over-indebtedness is accomplished by defining an exogenous default bar-
rier, namely the total liability nominal. The seniority of the Pfandbrief investor over
the cover pool is considered. In the case of default the Pfandbrief investor has full claim
over the cover pool, and furthermore the issuer has the obligation to fulfil certain cover
requirements which are explicitly incorporated into the one-period model.

3.5. Balance Sheet Structure

A general and theoretical balance sheet of a mortgage-Pfandbrief bank is depicted in
Figure 3.1. The asset side is divided into the cover pool (CP), which is segmented into
mortgage (MCP), public (PCP), ship (SCP) and aircraft (ACP) loans and other assets
(OA). Correspondingly, the liability side consists of the issued Pfandbriefe (PB), sub-
divided into mortgage (MPB), public (PPB), ship (SPB) and aircraft (APB) issuances,
other liabilities (OL) and equity (EQ). The general balance sheet equation (in terms of
present value) then amounts to

(VMCP + VPCP + VSCP + VACP ) + VOA =
(VMPB + VPPB + VSPB + VAPB) + VOL + VEQ, (3.1)

for any given point in time. The asset and liability side always match. From a modelling
perspective, the more balance sheet positions are considered the more complex suitable
models become. Moreover, an underlying dependence structure between positions needs
to be incorporated. An aggregation of positions may be desirable, possibly even neces-
sary. The concept of a simplified balance sheet to an assessable amount of positions is
adopted from Sünderhauf (2006). However, any simplification of the balance sheet needs
to be consistent with actual business characteristics of a mortgage Pfandbrief bank.
SPB and APB are in general negligible small (see Figure 2.2) so that these play no
major part in the overall default process of the selected banks in Table C.2. The re-
maining positions are MPB and PPB where four modelling possibilities are formulated
wrt the balance sheet:

3The introduced framework was first presented at the Operations Research (OR) 2013 in Rotterdam
on September 3rd, 2013.
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Assets (A) Liabilities (L)


Cover Pool (CP)
- Mortgage (MCP)
- Public (PCP)
- Ship (SCP)
- Aircraft (ACP)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Other Assets (OA)

Pfandbriefe (PB)
- Mortgage (MPB)
- Public (PPB)
- Ship (SPB)
- Aircraft (APB)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Other Liabilities (OL)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Equity (EQ)

Figure 3.1.: General balance sheet of a mortgage Pfandbrief bank.

1. Model MPB and PPB with corresponding MCP and PCP separately. Strictly speak-
ing, this is the most reasonable choice, since the cover pool positions should be
treated separately according to Characterisation 3.1. However, from a modelling
perspective an extra asset position can be significantly more cumbersome on a com-
putational level where additional underlying dependency structures between asset
positions need to be considered.

2. Aggregate MPB with PPB on the liability side to one Pfandbrief position and MCP
with PCP on the asset side to one cover pool position. This summary is accompanied
by a certain modelling bias, however, cover pool assets and Pfandbrief liabilities are
consistently pooled wrt to their corresponding risk profiles.

3. Encumber public Pfandbrief cover pool assets to a new position which is not eligible
for the overall cover pool upon default. This means basically to ‘cut out’ the public
sector (PCP and PPB) from the balance sheet entirely which is then refrained from
being included in the overall bank and Pfandbrief default analysis.

4. Aggregate PPB with OL and corresponding PCP with OA. This simplification poses
a gross inconsistency since the property of homogeneous risk profiles is not given any
more. Furthermore, OA can potentially be utilised as additional collateral for the
Pfandbrief. Consequently, adding PCP to OA means that a larger amount of assets
is available for the coverage of Pfandbriefe in case of the bank’s default, meaning
defaulting Pfandbriefe become even more unlikely. This case then becomes a biased
scenario in favour of the Pfandbrief.

Certainly, the first modelling possibility makes the most sense, widely complying with
the requirements of PfandBG (see Characterisation 3.1). Possibilities two to four con-
stitute considerable approximations where the balance sheet is aggregated even further.
However, this group of simplifications have different biases within. We argue that the
third and fourth points pose a higher degree of distortion compared to the second. The
second is at least homogeneous wrt to cover pool assets and on the other side Pfand-
brief liabilities, and largely inline with Characterisation 3.1. Further, we know from the
findings in Table C.2 that ‘pure’ mortgage Pfandbrief banks also have a predominant
mortgage cover pool and Pfandbrief position compared to their public sector holdings.
Moreover, market trends and bank specific forecasts (see Chapter 2) suggest that the
public sector position will become even less significant in the future.
Thus, we deduce the fundamental Assumption 3.1 for modelling the default of the
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Pfandbrief. Assumption 3.1 can be considered as a substantial simplification of a mort-
gage Pfandbrief bank’s balance sheet and has a major impact on the model complexity
amounting to only five balance sheet positions which need to be taken into account.

Assumption 3.1 (Balance Sheet Aggregation).

(a) The present value of the cover pool is aggregated over all cover pool segments to

VCP = VMCP + VPCP + VSCP + VACP

and, likewise, all Pfandbrief segments to one total Pfandbrief

VPB = VMPB + VPPB + VSPB + VAPB.

(b) Equation (3.1) simplifies (for any point in time) to

VCP + VOA = VPB + VOL + VEQ. (3.2)

Remark 3.2. We want to stress at this point that the upcoming models in a one-period
setting can always be extended where public sector cover pool and Pfandbrief positions
can additionally be considered if desired.

3.6. Default Waterfall Scheme

The objective of this section is implementing a viable mathematical framework for mod-
elling the Pfandbrief based on Assumption 3.1. This setup is essential to the overall
modelling process and can be regarded as the core foundation in the one-period set-
ting. Firstly, the proposed framework needs to meet the requirements in Section 3.1
and secondly, needs to be generic in the sense so that various financial models may be
applied and substituted. The derived formulations are set in the risk-neutral measure
Q. Broadly, the proposed framework is based on the work by Sünderhauf (2006) which
originates from Anderson and Cakici (1999). However, an amendment is undertaken wrt
the change of measure from risk-neutral to the forward measure ensuring a mathematical
sound formulation. In addition, an extension is provided in the form of the reduced-form
modelling representation.
Assets naturally have a longer maturity period than liabilities, thus the bank’s balance
sheet implies an asset-liability mismatch, see 1. of Characterisation 3.2. This problem
can intensify and, in a worst case scenario, lead to the default of the bank, if the bank
does not intervene accordingly, or it may be inevitable due to extraordinary circum-
stances. When modelling the default of a Pfandbrief bank two stages need to be taken
into consideration. At the maturity of the Pfandbriefe, T1, one checks if the bank de-
faulted or not. This is the case iff — after taking into account the priority claim of
the Pfandbrief holders — the liabilities cannot be fully paid back. Expressed in a for-
mula, default occurred when VCP (T1, T2) + VOA(T1) < NPB(T1) +NOL(T1), meaning if
the sum of present values of the cover pool (cover pool values are modelled as a risky
zero-coupon bond with maturity T2, thus discounting until T1 becomes necessary; more
details will follow in Section 3.6.1) and other assets is smaller than the sum of nominals
of the Pfandbriefe and other liabilities. Once this event has occurred, then it becomes
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3.6. Default Waterfall Scheme

necessary to proceed to the second stage where one needs to check if the Pfandbrief de-
faulted or not, expressed by formula VCP (T1, T2)+VOA(T1) < NPB(T1). This is the case
iff — also taking into account that the Pfandbriefe have to maintain a certain cover at all
times — the Pfandbriefe cannot be paid back in full. When this occurs, the Pfandbrief
investor will account a loss, with a certain recovery rate (the complete default scheme
is depicted in Figure 3.2). To incorporate the above default structure (Figure 3.2) of

Time T1:......................................................................................

Stage 1:
......................................................................................

Bank default?

VCP + VOA < NPB +NOL

................................................................................................................................................................................................................................................................................................................................................................................................................

No
......................

Stage 2:
......................................................................................

No losses
VPB = NPB VOL = NOL

VEQ ≥ 0

Yes

Pfandbrief default?

VCP + VOA < NPB

................................................................................................................................................................................................................................................................................................................................................................................................................

No
......................

Yes

Losses for OL
VPB = NPB VOL < NOL

VEQ = 0

Losses for PB & OL
VPB < NPB VOL = 0

VEQ = 0

Figure 3.2.: Default waterfall scheme. Stage 1 depicts the default of a bank and Stage
2 of the Pfandbrief at time T1 (maturity of the liabilities).

two stages into a viable setup, structural credit risk models are considered based on the
seminal work of Merton (1974). Merton considers three balance sheet positions in his
original model. VA represents the asset value total4 (aggregating VCP with VOA, thus
VA = VCP +VOA). The liability values VPB and VOL are aggregated to VD (representing
the total debt-structure). The equity position stays as it is, namely VEQ (completing
the liability side with VL = VD + VEQ = VPB + VOL + VEQ). Obviously, equation
VA = VD + VEQ holds. Now default is examined at maturity of debts being T1, where
the firm must pay a promised payment of N . Consequently, if VA(T1) ≥ N the creditor
receives his money in full and equity gets the payment of VA(T1) − N ≥ 0, otherwise
if VA(T1) < N the firm is bankrupt as it cannot meet its obligations (and VEQ = 0).
Resulting from this the debt value can be expressed as a risky zero-coupon bond with

VD(T1) := min[VA(T1), N ], (3.3)

which is equivalent to a put option. On the other hand the equity position corresponds
to a call option on the firm’s asset values with

VEQ(T1) := max[VA(T1)−N, 0]. (3.4)

4The dynamics for the value of the firm are described by log-normal diffusion, see Merton (1974).
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3.6.1. Assets

Continuing Merton’s idea of modelling a bank’s credit risk the present values of the
bank’s asset side, the cover pool (CP) and other assets (OA) (Vx, x ∈ {CP,OA}), are
now introduced, where VA = VCP + VOA.

3.6.1.1. Cover Pool

The cover pool is modelled as a risky zero-coupon bond with nominal NCP and maturity
T2 (T2 ≥ T1). Two approaches arise for determining the cover pool value at T1 where
BT1
BT2

= exp
(
−
∫ T2
T1
r(s)ds

)
is the stochastic discount factor, BT1 is a bank account process

(Definition B.5) at T1 with B0 = 1 and r(t) is the underlying risk-free (instantaneous)
short rate process.

Structural Approach Following Sünderhauf (2006), based on the idea proposed by An-
derson and Cakici (1999), the cover pool defaults if VCP (T2, T2) < NCP . In this case
the recovery value is then given by VCP (T2, T2). Otherwise, the nominal can be fully
repaid. Discounting to time T1 under the risk-neutral measure and calculating the
conditional expectation given the information at time T1 yields the present value of
the cover pool at time T1

VCP (T1, T2) = EQ
(
BT1

BT2
min[VCP (T2, T2), NCP ]

∣∣∣∣FT1

)
, (3.5)

where VCP is a state variable process and FT1 is the information given at T1 with
T1 ≤ T2.

Reduced-Form Approach For pricing the risky zero-coupon bond price of the cover
pool the reduced-form approach formulation by Jarrow et al. (1997) is adopted. The
pricing formula at time T1 amounts to

VCP (T1, T2) = EQ
(
BT1

BT2

(
δ1{τ≤T2 | τ>T1} + 1{τ>T2 | τ>T1}

) ∣∣∣∣FT1

)
(3.6)

where T1 ≤ T2, FT1 is the information given at T1, τ denotes the random default
time and δ ∈ [0, 1] the recovery rate (initially assumed to be exogenously given which
for now is constant). The indicator function 1{τ≤T2 | τ>T1} is one if the cover pool
defaults as a whole no later than T2, given no default until T1 and zero otherwise. The
opposite is the case for 1{τ>T2 | τ>T1} which represents the survival. Thus, information
on the credit-worthiness of the cover pool is needed for determining the value of its
corresponding risky zero-coupon bond.

Formulas (3.5) and (3.6) incorporate the typical credit portfolio characteristics meaning
the majority of loans and bonds have a fixed maturity where payments are capped at T2,
the maturity of asset cash flows, including nominal payments and in some cases interest
payments (Sünderhauf, 2006).

Remark 3.3. From formulas (3.5) and (3.6) we can see that a log-normal assumption
for the CP as in Chan-Lau and Oura (2014), respectively Tasche (2016) is not justifiable
since the formulas account for the asset-liability mismatch.
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Conclusively, in order to calculate the present values at time t the T1-forward (mar-
tingale) measure, derived in (B.15) in Appendix B.2.2, is required. The issue is that
over the interval [t, T1], the stochastic processes V (t, T1) and r(t) are (almost) never
independent so that the conditional expectation cannot be computed without enormous
computational undertaking. The idea is to use a T1-bond (for a fixed T1) as numeraire
rather than using the money market as numeraire, as in the risk-neutral case. Plug-
ging in the values at T1 from (3.5) and (3.6) the resulting formula under the T1-forward
measure QT1 , is given by

VCP (t, T1) = EQT1

(
Bt
BT1

VCP (T1, T2)
( dQ

dQT1 |Ft

) ∣∣∣∣Ft)
= EQT1

(
Bt
BT1

VCP (T1, T2)
(
BT1P (t, T1)
P (T1, T1)Bt

) ∣∣∣∣Ft)
= P (t, T1)EQT1

(VCP (T1, T2) | Ft) , (3.7)

where t ≤ T1 ≤ T2.

3.6.1.2. Other Assets

Other asset present values, on the other hand, are simply fixed at T1, where we denote
any future random variable — simulated from today to T1 or randomly drawn at T1 —
by VOA(T1, T1) so that

VOA(T1) := VOA(T1, T1), (3.8)

as the majority of mortgage banks typically do not have a loan-like payment profile, cf.
Sünderhauf (2006). Calculating today’s present values results to

VOA(t, T1) = EQ
(
Bt
BT1

VOA(T1)
∣∣∣∣Ft) , (3.9)

where t ≤ T1 and Bt
BT1

= exp
(
−
∫ T1
t r(s)ds

)
.

3.6.2. Liabilities

We assume that at time T1 the values VCP (T1, T2) and VOA(T1) are known from (3.5)
or (3.6) and (3.8) respectively. Applying Merton’s idea to the more complex structure
of the balance sheet of a mortgage Pfandbrief bank, one obtains equations (3.11), (3.14)
and (3.15) for the liability side. Again, debt is modelled as zero-coupon bonds with
maturity T1 and again the debtors’ maximum claims Nx, x ∈ {PB,OL} are repaid, or
not, depending on the value of the bank’s assets.
According to the waterfall scheme of Figure 3.2 Pfandbrief holders rank senior wrt
the cover pool (Characterisation 3.1). The uniqueness of the PB payment profile lies
therein that at first PB creditors have full recourse over the CP and then additionally
on OA in order to cover the claim of NPB — the nominal zero-coupon bond value of
the Pfandbrief. In a one-period setting, at T1, the issuer has no other possibility to
tap monetary sources except OA where the issuer is required by PfandBG to maintain
cover requirements with a minimum of 2% of overcollateralization. More precisely, the
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present value of CP is denoted by VCP (T1, T2) on which the mortgage PB investor has
preferential claim. Now, should the CP not be sufficient, i.e. there exists a shortfall given
by

SFCP = max[NPB − VCP (T1, T2), 0], (3.10)

then the OA present values, VOA(T1), can also be tapped. In total, the PB creditor’s
payout is defined by the minimum over NPB and appertained recoverable assets —
consisting of CP and OA — with

VPB(T1) := min[VCP (T1, T2) + VOA(T1), NPB]. (3.11)

The creditors of OL receive in T1 the minimum of the nominal zero-coupon bond value
NOL and the present value of the appertained collateral. Their share amounts, firstly, to
the part of OA which is not needed to fill up the shortfall of the CP in (3.10), so that

OARest = max[VOA(T1)−max[NPB − VCP (T1, T2), 0], 0]. (3.12)

Secondly, OL creditors can potentially be paid by what is left over from the CP, known
as overcollateralization, which amounts to

OCCP = max[VCP (T1, T2)−NPB, 0]. (3.13)

With (3.12) and (3.13) it follows the payment profile of OL with

VOL(T1) := min[max[VOA(T1)−max[NPB − VCP (T1, T2), 0], 0] +
max[VCP (T1, T2)−NPB, 0], NOL]. (3.14)

The simplest liability payment profile is that of the equity (EQ) position. It is unaffected
by the priority payments of the financing with outside capital. Analogously to Merton
(1974)’s formula (3.4), the present values of EQ is represented by a call option of the
total asset position present values subtracted by the nominal amounts of all liability
positions in T1, see (3.15). Hence, (3.15) is positive iff the bank does not default at T1,
with (compare also Figure 3.2)

VEQ(T1) := max[VCP (T1, T2) + VOA(T1)−NPB −NOL, 0]. (3.15)

The present value of a liability position x ∈ {PB,OL,EQ} at time t can be determined
by

Vx(t, T1) = EQ
(
Bt
BT1

Vx(T1)
∣∣∣∣Ft) , (3.16)

where t ≤ T1.

Remark 3.4. The extended version of above waterfall scheme with the additional public
sector Pfandbrief type with positions PCP and PPB can be found in Sünderhauf (2006,
p. 140).
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3.7. Interest Rate Risk

The mathematical formulation of the Pfandbrief modelling framework under Section 3.6
relies on modelling interest rate risk5 — addressing 2. of Characterisation 3.2. Ulti-
mately, an adequate and correct risk assessment of the Pfandbrief product needs to
be ensured. Both, the structural and reduced-form approach in Section 3.6.1 have the
underlying interest rate market as a common factor. More precisely, we want to find
suitable stochastic discount factors (Definition B.6) in form of

D(t, T1) = Bt
BT1

= exp
(
−
∫ T1

t
r(s)ds

)
, 0 ≤ t ≤ T1,

and, respectively,

D(T1, T2) = BT1

BT2
= exp

(
−
∫ T2

T1
r(s)ds

)
, 0 ≤ T1 ≤ T2,

for equations (3.5), (3.6), (3.7), (3.9) and (3.16). Now, we do not know much about the
component r(s), respectively r(t), at some point in time s or t yet, other than being
the instantaneous spot interest rate arising from taking the limit T → t+ of the yield
curve R(t, T ) of Definition B.10 (see also Remark B.7). Furthermore, the above discount
factors, D(t, T1) and D(T1, T2), are embedded in equations consisting of calculating the
conditional expectation of some risky zero-coupon bond price Vx, x ∈ {CP,OA,PB,OL}
under the risk-neutral measure Q which, at this stage, we do not know how to handle.
There exist numerous interest rate models to choose from. Certain model selection
criteria are analysed and formulated as modelling requirements in order to find a suitable
interest rate model. In-depth theory and derivations of the established requirements are
largely outsourced to Appendix B.2.3, Appendix B.2.4 and Appendix B.2.5. Before
continuing our analysis of finding an appropriate model we can already state that we
are dealing with spot interest rates which is formulated in Requirement 3.1.

Requirement 3.1. An underlying short rate, r(t), more precisely an instantaneous
spot rate model needs to be postulated.

In the upcoming section we shall concentrate on the current — extraordinary — mar-
ket situation of negative interest rates. This embodies one of the higher prioritised
requirements which need to be met. The analysis of the modelling requirements is then
summarised where the model choice is revealed. It turns out, the (affine) one-factor Hull-
White interest rate model (Hull and White, 1990), respectively extended Vašìček model,
poses a promising option of taking on the task of modelling the current interest rate
environment and, additionally, possesses favourable modelling features. Furthermore,
emphasis is laid upon a practitioner’s perspective for applying the Pfandbrief modelling
framework. Thus, we purposely only give examples in the cases of calibration of the
well-known and widely used Hull-White model. However, due to the negativity of the
yield curve in the short term, the standard calibration approach is not applicable. An
alternative to the ‘Black-76’ model (Black, 1976) for obtaining input market prices is

5Currency risk is deliberately omitted. Outstanding Pfandbriefe (Figure 2.6) as well as cover pool
assets are largely denominated in Euros where the majority of real estates are situated in Germany or
EU countries (compare Spangler and Werner (2014)).
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given. For a more extensive numerical analysis of the applied methods and resulting
parameter estimates we refer to the literature.
The theory and notation is mainly based on the books by Björk (2004) and Brigo and
Mercurio (2007). Fundamental contributors to the evolution of various stochastic in-
terest rate models, amongst many others, are Vašìček (1977), Brennan and Schwartz
(1982), Cox et al. (1985), Ho and Lee (1986), Hull and White (1990) and Heath et al.
(1992).

3.7.1. Market Resemblance

Analysing and understanding the interest rate market is crucial in order to choose a
suitable interest rate model. Furthermore, market shocks, such as the default of the
Lehman Brothers Holdings Inc., may have significant impacts on the resulting model
parameters when estimating or calibrating.
Figure 3.3 gives an insight of the interest rate market movements of the past 18 years,
represented by the Euro InterBank Offered Rate (EURIBOR). Two central points can
be extracted. Clearly, a structural change in rates has occurred in a short time period of
eight months after September 2008, when the base rates were lowered seven consecutive
times by the ECB, accumulating to 3.25% points. Only during 2011 there was a period of
rising rates before returning to 1% in the same year again. Since then, the ECB gradually
lowered the base rate, being just about above zero in 2014 before finally reaching 0% on
March 10th, 2016. Similar base rate reductions in similar time intervals can be observed
from the Bank of England and the Fed. The specific dates and corresponding base
rates are given in Table 3.1 which unambiguously is reflected in Figure 3.3. The pre

Date Rate Date Rate Date Rate

Jul. 3rd, 2008 4.25% Apr. 2nd, 2009 1.25% Jul. 5th, 2012 0.75%
Oct. 8th, 2008 3.75% May 7th, 2009 1.00% May 2nd, 2013 0.50%
Nov. 6th, 2008 3.25% Apr. 7th, 2011 1.25% Nov. 7th, 2013 0.25%
Dec. 4th, 2008 2.50% Jul. 7th, 2011 1.50% Jun. 5th, 2014 0.15%
Jan. 15th, 2009 2.00% Nov. 3rd, 2011 1.25% Sep. 4th, 2014 0.05%
Mar. 5th, 2009 1.50% Dec. 8th, 2011 1.00% Mar. 10th, 2016 0.00%

Table 3.1.: ECB base rates

Lehmann default mean over all rates with different maturities thereby dropped from
3.34% to 0.70% since. The second noteworthy observation is the recent phenomenon of
negative interest rates which only has been observed in the Japanese market thus far. The
zero interest rate policy by the ECB (as of 2014, see Table 3.1) subsequently affected
the market rates, starting with short termed rates to become negative. Onset dates of
corresponding EURIBORs turning negative for different maturities (as in Figure 3.3),
are

· EURIBOR1W: September 5th, 2014,

· EURIBOR1M: January 19th, 2015,

· EURIBOR3M: April 21th, 2015,

· EURIBOR6M: November 6th, 2015,
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· EURIBOR9M: November 27th, 2015, and

· EURIBOR12M: February 5th, 2016.

The dramatic change since the financial crisis, climaxing in the default of Lehmann
Brothers on 15/09/2008, is also reflected in present term structures of interest rates.
Benchmark fixed income securities in the form of EONIA, EURIBOR1M, EURIBOR3M,
EURIBOR6M and EURIBOR12M are depicted in Figure 3.4. Exemplarily, the yield
curves of 16/09/2008 and 31/12/2016 are compared and interpreted in an economic con-
text. The yield curves from 16/09/2008 are all positive (as expected from Figure 3.3),
mostly in the range of 4% and 5% and show a ‘humped’ and ‘inverted’ shape. A ‘humped’
yield curve usually indicates that investors are uncertain about the future of the general
economic state, and where a current transitioning form a ‘normal’ to ‘inverted’ state is
reflected. Here the yield curves become slightly ‘inverted’ after approximately 15 years
which heralds a potential looming economic recession as investors accept a lower interest
rate although longer-term securities generally bear a greater investment risk. The yield
curves from 31/12/2016 are negative in the short term which become positive in the
longer term and show a ‘normal’ shape where investors have a more benign expectation
of the future economic growth. It is also an indicator that central banks are increasing
the supply of money, thus an easing monetary policy which has clearly been the case in
recent months and years.
Concluding, it is apparent that any chosen interest rate model needs to be adaptable to
recent market developments as a result of zero interest rate policies imposed by central
banks around the world. Moreover, there is no reason to believe that base rates are
likely to be raised in the near future. Thus, modelling of negative interest rates must be
a central feature for any eligible model, see Requirement 3.2.

Requirement 3.2. An adequate interest rate model needs to be able to handle nega-
tive interest rates which includes calibration of the model parameters to the market and
simulation of the instantaneous spot interest rate.

Remark 3.5. The assumption of normal short rates (Vašìček (1977) or extended
Vašìček (Hull and White, 1990), see Remark B.12) in a negative interest rate market
environment is plausible where negative rates are allowed. Moving back to the economical
commonplace of positive rates other distributions where positivity can be guaranteed are
needed. From Remark B.14 we know that Dothan (1978), Black et al. (1990) and Black
and Karasinski (1991) are log-normally distributed yielding positive interest rates. How-
ever, apart from not having a closed form solution, log-normal models have an explosive
nature since the exponential function is applied twice on r(t), once for the log-normal
distribution and once for the bank account process in (B.16). Thus, it may be more
advisable to resort to square-root diffusions, for example, the CIR1F (Remark B.12)
interest rate model (Cox et al., 1985) which has an underlying non-central chi-square
distribution.

3.7.2. Model Choice

Now let us summarise the findings of Appendix B.2.3, Appendix B.2.5 and Section 3.7.1
to establish modelling requirements in order to choose an adequate interest rate model
to be utilised for the Pfandbrief framework in a one-period setting.
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Figure 3.3.: Daily EURIBOR interest rates for different maturities (1W, 1M, 3M, 6M,
9M, 12M), from 31/12/1998 to 02/01/2017 (data source: http://www.bundesbank.de)
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Figure 3.4.: Selection of yield curves represented by EONIA and EURIBOR (1M, 3M,
6M, 12M). Left: 16/09/2008; Right: 31/12/2016 (data source: Bloomberg)

Since we are dealing with spot interest rates, as formulated in Requirement 3.1, we can
already rule out any other type of model. Now one may argue that the Heath-Jarrow-
Morton (HJM) framework (Heath et al., 1992) where the state variable is represented
by the forward rate curve may also be a viable modelling option. In fact, it is possible
to move from short rate6 to forward rate model and back. A short term rate is simply
a particular forward rate. The converse is not necessarily true. Even if compatibility
exists, analytical derivations from short rate to HJM types of models is not possible where
numerical methods need to be established instead. Derivable short rate models are for
example Vašìček (Vašìček, 1977), extended Vašìček (Hull and White, 1990), extended
Cox-Ingersoll-Ross (Hull and White, 1990) and also the Ho and Lee (1986) model.

6A list of affine short rate models can be found in Björk (2004, p. 375) or Schlüchtermann and Pilz
(2010, p. 332).
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Remark 3.6. Ho and Lee (1986) is the discrete time version of the HJM framework
(Heath et al., 1992) which was the first forward curve based model in order to model the
forward rate stochastic process {f(t, T )}0≤t≤T .

Both approaches, short rate and forward rate, have advantages and disadvantages wrt
modelling interest rate risk. However, one main advantage of the above short rate
based models is their tractability given by the ATS representation of Definition B.15
of Appendix B.2.3.2. More precisely, closed form solutions for bond prices and other
interest rate derivatives such as caps / floors or swaptions can be derived. This feature
is certainly advantageous wrt calibrating and pricing, leading to Requirement 3.3. Thus,
we shall opt for short rate based models and leave HJM framework to further research
in the context of the modelling of the Pfandbrief. For further comparisons one can, for
example, refer to Björk (2004).

Requirement 3.3. The ATS representation of short rate based models guarantees
analytical pricing formulas which is well-deemed when modelling interest rate risk.

When fitting the initial term structure a dimensionality issue arises (Appendix B.2.5.1)
since one equation needs to be solved for each yield curve maturity, potentially resulting
in a large calibration problem. Furthermore, in Example B.1 we see that fitting the
initial term structure is not always satisfactory. The Hull-White model can be calibrated
exactly to any initial term structure. By design, the time dependent function θ(t) solves
the dimensionality issue since each time step t can be interpreted as a parameter which
is fitted to the yield curve. Thus, we can confidently state that Requirement 3.4, where
the objective is to optimally calibrate the model parameters to match the market, is
covered by the Hull-White model.

Requirement 3.4. The theoretical prices of the model need to coincide with the ob-
served prices of today. In more detail, we want to choose the parameter vector ϑ such
that

P (0, T ;ϑ) ≈ PM (0, T ), ∀T ≥ 0. (3.17)

Further, we look at potential extensions (Requirement 3.5) introduced in Ap-
pendix B.2.5.2. Answering the question whether extensions are beneficial or not needs to
be evaluated more closely. In general, a trade off between model flexibility and tractabil-
ity remains. When considering one or more factors, the issue of high correlation is not
an immediate problem in a one-period modelling setting. The default assessment of a
Pfandbrief bank solely takes place at maturity T1. Consequentially, potential shocks are
only passed on from model term structure in [t, T1] to the term structure in [T1, T2].
This may not be the case when modelling in a multi-period time setting. Also the gain
in accuracy with taking more than one factor into consideration is negligible. Thus, we
assume that one single source of uncertainty, the single state variable being the instan-
taneous spot rate, is sufficient to explain the movements of the term structure. When
considering time varying model parameters, the extension of the Vašìček model makes
absolutely sense. More flexibility is gained while at the same time retaining a tractable
model. In (B.27) κ and σ are made constant while the mean reversion level parameter,
θ(t), is time dependent gaining more degrees-of-freedom.
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Requirement 3.5. Model extensions need to be easily realisable where important model
features are retained and tractability is not lost.

Lastly, a more recent but not less important requirement is the handling of negative
interest rates (Requirement 3.2). The Vašìček (Vašìček, 1977) and the extended Vašìček
(Hull and White, 1990) short rate models, for example, allow negative interest rates.
This was broadly seen as weakness of the models since, until recently, negativity was
regarded as not possible or at least highly unlikely. Now however, particularly the Hull-
White model has seen a renaissance in increasing popularity.
Concluding, in view of all above requirements a logical and appropriate model choice
is the Hull-White one factor (HW1F) model due to its favourable modelling criteria on
the one hand, and relative simplicity on the other. Model definition, properties and
parameter calibration of the HW1F model shall be presented more closely in the next
section.

Remark 3.7. A trade off between several modelling factors will always be persistent.
For now the HW1F model takes on the role of a favourable modelling choice. The com-
bination of completely fitting the observed bond data and allowing for negative interest
rates in the current market environment makes it indispensable. However, should mod-
elling scenarios change in the future then other more favourable models might emerge.
A natural extension to the HW1F is represented by the G2++ model. As already alluded
above the HJM framework poses an interesting modelling option. Should interest rates
return to the normal state of being positive again then, for example, the CIR++ model
may be considered since it guarantees positive short rates.

3.7.3. Hull-White One Factor (HW1F) Model

The Hull-White model (Hull and White, 1990) belongs to the class of no arbitrage
models which is designed to be exactly consistent with today’s term structure of interest
rate. Thus, today’s term structure of interest rates is directly inserted into the model
where the drift is dependent on time and where the shape of the inserted zero curve
governs the average path taken by the short rate in the future. Other extending features
of the model are placed into Appendix B.2.4 where a complete derivation of the zero-
coupon bond pricing formula (Appendix B.2.4.1) and the real-world and forward measure
representations of the short rate SDEs (Appendix B.2.4.2) are given.

3.7.3.1. Model Definition

Hull and White (1994) assume that the instantaneous short-rate process evolves under
the risk-neutral measure Q according to

dr(t) = (θ(t)− κr(t))dt+ σdWQ(t), r(0) = r0, (3.18)

where κ, σ > 0 are constants and θ(t) is given by

θ(t) = ∂fM (0, t)
∂T

+ κfM (0, t) + σ2

2κ(1− exp(−2κt)), (3.19)
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where fM(0, t) := −∂lnPM(0,t)
∂t is the market instantaneous forward rate prevailing at time

0 for the maturity t and PM(0, t) is the (risk-free) market discount factor at maturity t.
This shows that r follows the initial forward curve. When the short rate process deviates
from the mean reversion level θ(t)κ it is reverted back at rate κ. The SDE of (3.18) can
also be formulated under the forward and real-world measure, see Appendix B.2.4.2.
Integration of (3.18) yields

r(t) = r(s)e−κ(t−s) +
∫ t

s
e−κ(t−u)θ(u)du+ σ

∫ t

s
e−κ(t−u)dWQ(u)

= r(s)e−κ(t−s) + α(t)− α(s)e−κ(t−s) + σ

∫ t

s
e−κ(t−u)dWQ(u), (3.20)

where

α(t) = fM (0, t) + σ2

2κ2 (1− e−κt)2. (3.21)

Remark 3.8. Originally, in Hull and White (1990) the short rate dynamics (3.18) in-
cluded deterministic time dependent functions of mean reversion speed, κ(t), and volatil-
ity level, σ(t), amounting to (B.27), with β = 0, which is widely referred to as the
Hull-White extended Vašìček model. However, as pointed out by Brigo and Mercurio
(2007) this extension must be handled with caution where an additional exact fit to the
volatility may be ‘dangerous’ when emphasising on fitting the term structure of interest
rates, as pointed out already in Section B.2.5.2. Thus, the model (3.18) with constants
κ and σ is preferred.

After integrating (3.18) one obtains that r(t) conditional on Fs is normally distributed
with mean and variance given respectively by

E (r(t) | Fs) = r(s) exp(−κ(t− s)) + fM (0, t) + σ2

2κ2 (1− exp(−κt))2,

V (r(t) | Fs) = σ2

2κ (1− exp(−2κ(t− s))) .
(3.22)

We have an affine structure so by Theorem B.10 bond prices are given by Definition B.15
where A and B solve (B.37) and (B.38). The solutions to these equations yield the zero-
coupon terms for the HW1F model, given by

A(t, T ) = ln
(
PM (0, T )
PM (0, t)

)
+B(t, T )fM (0, t)− σ2

4κ(1− exp(−2κt))B2(t, T ) (3.23)

B(t, T ) = 1
κ

(1− exp(−κ(T − t))) , (3.24)

completing the analytical pricing formula of (B.28). A complete derivation of (3.23) and
(3.24) is given in Appendix B.2.4.1.
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3.7.3.2. Calibration

When calibrating, in the case of negative forward rates one can, for example, resort
to the Bachelier model, instead of the Black model, for obtaining cap / floor market
prices in combination with normal cap / floor volatility quotes. Should only log-normal
volatilities be available then it is also possible to convert these to normal volatilities,
as in Schachermayer and Teichmann (2008). Other alternatives are the normal SABR
model, displaced models and free boundary models in order to deal with the issue of
negative rates. Here we concentrate on the Black (log-normal) and Bachelier (normal)
models and set T := {Tα, . . . , Tβ} containing the reset and payment dates of a cap /
floor and d := {dα+1, . . . , dβ} the corresponding year fractions (Definition B.9). N is the
nominal value, F is the forward rate (e.g. of the floating rate to be capped) and K is the
strike level (e.g. the cap rate). σα,β denotes the common volatility parameter which is
retrieved from market quotes. The ATM strike level is determined as in Definition 3.1.

Definition 3.1. Consider a cap (floor) with payment times Tα+1, . . . , Tβ associated
year fractions dα+1, . . . , dβ and strike K. The cap (floor) is said to be at-the-money
(ATM) if and only if

K = KATM := Sα,β(0) = P (0, Tα)− P (0, Tβ)∑β
i=α+1 diP (0, Ti)

, (3.25)

where Sα,β(0) is the forward swap rate at time t for the sets of times T and year fractions
d. The cap is instead said to be in-the-money (ITM) if K < KATM, and out-of-the-money
(OTM) if K > KATM, with the converse holding for a floor.

Positive rate modelling The standard way of quoting prices on caps / floors (and swap-
tions) is in terms of Black’s model (Black, 1976) which is a version of the Black-Scholes
model (Black and Scholes, 1973) adapted to deal with forward underlying assets. Here
interest rates must not become negative. Cap and floor formulas of the Black model
to be applied are

CapBl(0, T , d, N,K, σα,β) = N
β∑

i=α+1
P (0, Ti)diBlC(K,F (0, Ti−1, Ti, vi)) (3.26)

and

FloorBl(0, T , d, N,K, σα,β) = N
β∑

i=α+1
P (0, Ti)diBlP(K,F (0, Ti−1, Ti, vi)) (3.27)

respectively, where the Black call and put prices amount to

BlC(K,F, vi) = FΦ(d1(K,F, vi))−KΦ(d2(K,F, vi)), (3.28)

and

BlP(K,F, vi) = KΦ(−d2(K,F, vi))− FΦ(−d1(K,F, vi)), (3.29)
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with

d1(K,F, vi) = ln(F/K) + v2
i /2

vi
,

d2(K,F, vi) = ln(F/K)− v2
i /2

vi
,

and

vi = σα,β
√
Ti−1.

Negative rate modelling The normal model, referred to as the Bachelier model (Bache-
lier, 1900), allows valuation of options with negative strikes and negative current for-
ward rates, in contrast to the log-normal model. The formulas for the caps and floors
are the same as for the Black model where instead the Bachelier call and put prices
are inserted, so that

CapBa(0, T , d, N,K, σα,β) = N
β∑

i=α+1
P (0, Ti)diBaC(K,F (0, Ti−1, Ti, vi)) (3.30)

and

FloorBa(0, T , d, N,K, σα,β) = N
β∑

i=α+1
P (0, Ti)diBaP(K,F (0, Ti−1, Ti, vi)), (3.31)

where the Bachelier call and put prices amount to

BaC(K,F, vi) = (F −K)Φ(d1(K,F, vi)) + viφ(d1(K,F, vi)) (3.32)

and

BaP(K,F, vi) = (K − F )Φ(−d1(K,F, vi)) + viφ(d1(K,F, vi)) (3.33)

respectively, with

d1(K,F, vi) = F −K
vi

and

vi = σα,β
√
Ti−1.

Using the results of Section B.2.4.2 we can derive the pricing formulas of the needed
derivatives of the HW1F model. To be able to obtain the closed form solutions we need
to know the distribution of the process r under the T -forward measure QT which is given
by (B.47). The expectation and variance under QT (as for the above (3.22) under Q)
can be found for example in Brigo and Mercurio (2007). Following Brigo and Mercurio
(2007) the price at time t of a European call and put option that mature at time T on
a zero-coupon bond with strike price K maturing at time S is under the Hull-White
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model given by

ZBC(t, T, S,X) = P (t, S)Φ(h)−XP (t, T )Φ(h− σp) (3.34)

and

ZBP(t, T, S,X) = XP (t, T )Φ(−h+ σp)− P (t, S)Φ(−h) (3.35)

respectively, where

σp = σ

√
1− e−2κ(T−t)

2κ B(T, S),

h = 1
σp

log P (t, S)
P (t, T )X + σp

2 ,

with

B(T, S) = 1
κ

(1− e−κ(S−T )).

Cap and floor prices amount to

Cap(t, T , N,X) = N
n∑
i=1

(1 +Xdi)ZBP
(
t, ti−1, ti,

1
1 +Xdi

)
(3.36)

and

Floor(t, T , N,X) = N
n∑
i=1

(1 +Xdi)ZBC
(

(t, ti−1, ti,
1

1 +Xdi

)
(3.37)

respectively, where

σip = σ

√
1− e−2κ(ti−1−t)

2κ B(ti−1, ti),

hi = 1
σip

log P (t, ti)(1 +Xdi)
P (t, ti−1) +

σip
2 ,

with

B(ti−1, ti) = 1
κ

(1− e−κ(ti−ti−1)).

Calibrating the Hull-White model means choosing the model parameters, κ and σ, such
that the model prices for caps and floors given by equations (3.36) and (3.37) coincide,
in a well-defined way, with market prices of cap and floor prices determined from quoted
cap / floor volatilities of the Black model with (3.26) and (3.27) or Bachelier model with
(3.30) and (3.31). The non-linear least-squares problem is formulated in Problem 3.1.
The corresponding calibration procedure is given in Figure 3.7. Mean reversion and
volatility parameters are calibrated simultaneously by using the analytical prices. This
means we perform one 2-dimensional minimisation.
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Problem 3.1 (HW1F calibration).

min
ϑ
‖Π(ϑ)− C‖22, (3.38)

subject to ϑ ∈ Θ ⊂ R2
+

where

· Θ ⊂ R2
+ is a non-empty and compact set,

· ϑ = (κ, σ) is a vector containing the HW1F parameters to be calibrated,

· Π(ϑ) : Θ→ Rm is a vector of price functions of calibration instruments depending on
the parameter ϑ and

· C ∈ Rm the corresponding vector of observed cap / floor market prices.

Remark 3.9. A more intuitive representation of the objective functions in Problem 3.1
is

SSR =
m∑
k=1

(
CapHW

k (t, T , N,X)− CapMarket
k (0, T , d, N,K, σα,β)

)2

or

SSR =
m∑
k=1

(
FloorHW

k (t, T , N,X)− FloorMarket
k (0, T , d, N,K, σα,β)

)2

where m is the number of calibration instruments and SSR is the sum of squared resid-
uals.

Concluding, with the results from Example 3.1 more research needs to be invested in
the relatively new, yet persisting, situation of negative interest rates. The calibration
outcome based on Bachelier model cap market prices still leaves room for improvement.
However, the available volatility surfaces (Figure 3.5) as input data were mostly in-
complete which could have a negative effect on the calibration outcome. Nevertheless,
the Bachelier model provides an adequate remedy for confronting the current market of
low interest rates. Simulating short rates in the HW1F model is straightforward since
short rates are normally distributed with expectation and variance as in (3.22).

Example 3.1 (Calibration HW1F). The Hull-White one-factor model (HW1F) pa-
rameters, κ and σ, are calibrated to cap market prices with corresponding yields curves
EURIBOR3M in Figure 3.4 according to the calibration procedure of Figure 3.7.
Throughout 2016, negative interest rates can be observed so that normal volatilities in
combination with the Bachelier model are chosen as the Black model is not applica-
ble. For 2008 we resort to the traditional approach of the Black model. Cap mar-
ket prices (Figure 3.6) are obtained via the Black model with (3.26) and log-normal
volatilities (Figure 3.5) and via the Bachelier model with (3.30) and normal volatilities
(Figure 3.5). ATM strikes are calculated according to Definition 3.1.
We conduct two calibration procedures for each date where at first we fix κ = 0.5 which
is common practice and then calibrate κ and σ with no fixation. The reason for this
is that the calibration based on the Bachelier model market prices predominantly cali-
brates a small mean reversion speed parameter relative to the volatility level which was
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3. A Pfandbrief Modelling Framework

confirmed also for other dates in 2016. So by fixing κ one obtains a more reasonable
result with little loss in accuracy. In general, results based on the Black model have been
overall more promising, also in the non-fixed case. We use the inbuilt Matlab solver
lsqnonlin() with 'trust−region−reflective' algorithm and set the starting values to
(κ0, σ0) = (0.5, 0.5). Calibration results can be viewed in Table 3.2.
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Figure 3.5.: Volatility surfaces. Left: Log-normal on 16/09/2008; Right: Normal on
31/12/2016 (data source: Bloomberg)
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Figure 3.6.: Cap market prices. Left: Black model on 16/09/2008; Right: Bachelier
model on 31/12/2016

Model Date Fixed κ Non-fixed κ
κ̂ σ̂ Error κ̂ σ̂ Error

Black 16/09/2008 0.5 0.018 1.16 · 10−3 0.078 0.009 3.57 · 10−4

Bachelier 31/12/2016 0.5 0.022 1.22 · 10−2 1.00 · 10−6 0.007 3.44 · 10−3

Table 3.2.: Calibration results of HW1F for fixed and non-fixed κ
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Calibration (Problem 3.1)

HW1F model pricesMarket prices

Impl. log-normal volatilities
with Black model

Impl. normal volatilities
with Bachelier model

Objective function

Optimisation algorithm

Start values

HW1F parameters κ̂, σ̂

Figure 3.7.: Calibration process of the HW1F model
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In the first approach, a bank’s one-period balance sheet is modelled by applying Monte
Carlo simulations as proposed by Sünderhauf (2006), based on the work of Bates (1996),
Zhou (1997) and Zhou (2001), amongst others and going back as far as Merton (1976).
Apart from reviewing this model wrt the asset positions CP and OA of a mortgage
Pfandbrief bank, we present advantageous simulation algorithms wrt to computation
time and an advanced least square Monte Carlo method. Fixating a benchmark of
10,000 paths — representing a sufficient amount to be able to conduct proper valua-
tions thereupon — in a Monte Carlo setting, it was possible to significantly reduce the
computation time during the implementation process1. An initial implementation in a
nested Monte Carlo setting took approx. twelve minutes, by already taking Matlab’s
programming language features — preallocation of storage, vectorisation and parallelisa-
tion (see Appendix A) — into consideration. The techniques introduced in Appendix A
are the basis of any implementation throughout this framework. Particularly, without
exploiting the vector-based advantages the simulations turn out to be rather inefficient,
taking hours not minutes. Additional inclusion of efficient numerical methods could
further reduce the computation time by a factor of six to approx. two minutes for the
nested case (Section 4.1). Moreover, the modelling approximation in form of the least
square Monte Carlo method (Section 4.3.2) could reduce the overall processing to a few
seconds (even under one second depending on the regression method). This amounts to
a gain of at least a factor of 14. However, the least square Monte Carlo method comes
at a cost in accuracy compared to the nested case. Therefore, we propose a stepwise
regression which amounts to just under ten seconds for simulating 10,000 paths at T1
(maturity of liabilities) which explains over 99% variability of its nested counterpart. A
gross summary of computation times and gains in this chapter is given in Table 4.1.
The refined performance analyses can be found in the respective sections. Furthermore,
alternative measures, in terms of a forward risk-neutral and real-world representation
of the underlying SDEs are formulated, providing more modelling flexibility and simul-
taneously a more complete picture of the overall Pfandbrief modelling framework in a
one-period setting (Section 4.2).

Non-vectorised Appendix A Section 4.1 Section 4.3.2

Time ~hours ~12min ~2min ~10sec
Gain factor - >60 >6 >14

Table 4.1.: Summary of approximate computation times and gains in the structural
model.

1First numerical results including computation times of the structural model were presented at the
Operations Research (OR) 2013 in Rotterdam on September 3rd, 2013.
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4.1. Model Setup

Sünderhauf (2006) resorts to various SDEs, consisting of model advancements introduced
in Section 4.1.1, in order to simulate the present values VCP (T1, T2) (Section 3.6.1.1)
and VOA(T1) (Section 3.6.1.2) of the Pfandbrief framework in Chapter 3. The model
components can also be viewed as risk drivers, namely interest rate, volatility, correlation
and credit quality. Sünderhauf (2006) argues that these are necessary to obtain realistic
scenarios of a bank’s day-to-day operational business, hence its creditworthiness and
ultimately the creditworthiness of its Prandbrief issuances. Sünderhauf (2006)’s model
is embedded in a risk-neutral setting.

4.1.1. Model Evolution

Before giving a detailed description of the underlying model we state a brief review of
the model’s developments in the context of historical time line and research literature.
The final model is a geometric jump-diffusion process whose risk-free interest rate, con-
ditional on no-jump, follows a mean-reverting Ornstein-Uhlenbeck process and whose
instantaneous variance follows a mean-reverting square-root process. The jump contri-
bution is modelled through a Poisson shock arrival and a random log-normal amplitude.
In principle all Black-Scholes model (Black and Scholes, 1973) hypotheses hold. How-
ever, specific restrictions to the jump-diffusion process as specified by Merton (1976)
need to be imposed in form of Assumption 4.1.

Assumption 4.1 (Zhou (1997)). The capital asset pricing model (CAPM) holds for
equilibrium security returns and the jump component of a firm’s value equation is purely
firm specific and is uncorrelated with the market.

Assumption 4.1 has further implications, namely (compare Merton (1976), Bates (1991),
Bates (1996), (Zhou, 1997) and (Zhou, 2001)):

· The jump part is diversifiable (or unsystematic). Thus, the jump risk does not require
a risk premium in principle (market price of zero) and consequently the assumption
that the expected return on a portfolio equals the riskless rate under the CAPM
holds.

· Uniqueness of the equivalent martingale measure (EMM) is guaranteed under di-
versifiable firm-jumps, thus choosing one specific EMM by leaving the jump part
unchanged.

· Deriving a closed-form expression for the price of a call option becomes feasible, if
jump risk is diversifiable. Otherwise, the market would be incomplete, the payoffs of
the option cannot be replicated, and consequently the option cannot be priced, since
jumps in the stock price cannot be hedged using traded securities.

Remark 4.1. Refer to Bates (1991), Bates (1996) and Zhou (2001) where systematic
jumps are allowed and differences between jump size parameters under P and Q are
analysed.
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The additional source of uncertainty when pricing options, in order to capture additional
skewed behaviour of the implied volatility of options which cannot be explained by
diffusion-based continuous-path models, is modelled by a Poisson process as specified in
Assumption 4.2.

Assumption 4.2 (Merton (1976)). The Poisson-distributed ‘event’ is the arrival of
an important piece of information about the stock. It is assumed that the arrivals are
independently and identically distributed. Therefore, the probability of an event occurring
during a time interval of length h (where h is as small as you like) can be written as

Prob(the event does not occur in the time interval (t, t+ h))) = 1− λh+ o(h),
Prob(the event occurs once in the time interval (t, t+ h)) = λh+ o(h),

Prob(the event occurs more than once in the time interval (t, t+ h)) = o(h),

where o(h) is the asymptotic order symbol defined by ψ(h) = o(h) if lim
h→0

[ψ(h)/h] = 0,
and λ is the mean number of arrivals per time unit.

4.1.1.1. Merton (1976) Model

The first representation of the model can be found in the seminal work of Merton (1976).
Let V denote the total market value of the assets of the firm. The dynamics of V under
the risk-neutral measure Q are given by the following jump-diffusion process

dV (t)
V (t) = (r − λv)dt+ σV dWQV (t) + (Y (t)− 1)dN(t), (4.1)

where

· r is the (constant) riskless interest rate,

· σV is the (constant) instantaneous volatility of the return (conditional on no arrivals
of important new information, i.e. the Poisson event does not occur),

· WQV (t) is a standard Brownian motion,

· N(t) is an (independent) Poisson process with (constant) intensity parameter λ (mean
number of arrivals per time unit),

· Y (t) > 0 is the jump amplitude and is log-normally distributed with log(Y (t)) iid∼
N(µY , σ2

Y ),

· v = E(Y (t)− 1) = exp(µY + σ2
Y /2)− 1 is the (constant) expected value of the jump

component (Y (t) − 1) (random variable percentage change in the asset value if the
Poisson event occurs), and

· WQV (t), N(t) and Y (t) are assumed to be mutually independent.

The convenient result of Y (t) being log-normally distributed is that the distribution
of dV (t)/V (t) is again log-normal (as in Merton (1974)). Concluding, model (4.1),
consisting of a mixture of both continuous (accounting for ‘normal’ price changes) and
jump (accounting for ‘abnormal’ price changes) processes, “has most of the attractive
features of the original Black-Scholes formula in that it does not depend on investor
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preferences or knowledge of the expected return on the underlying stock”, cf. (Merton,
1976).

Remark 4.2. Initially, Merton (1976) formulated (4.1) under the real-world measure
P, setting µV = r where µV is the (constant) instantaneous expected return on the asset.
Assuming that jumps of the stock prices are diversifiable (Assumption 4.1) allows one
to simply swap the diffusion drift µV with r (and vice versa) while all other parameters,
including those of the jump component, remain unchanged (compare also Korn et al.
(2010, p. 337)). In other words, statistical properties of the jump part under Q or P are
identical so that

λQ = λP and µQY = µPY ,

and where the variance parameter σ2
Y is invariant to any measure change.

Remark 4.3. If we assume that λ = 0, then also dN(t) = 0 and then V (t) has the same
dynamics as in the Black-Scholes (Black and Scholes, 1973) and Merton (Merton, 1974)
approaches.

4.1.1.2. Bates (1996) Model

The first introduced extension to Merton (1976)’s model in Section 4.1.1.1 comprises of
an added stochastic volatility process, ς(t), where the assumption of a constant volatility
parameter of (4.1), σV , gets relaxed (compare also Heston (1993)). Bates (1996) argues
that a combination of stochastic variance with a jump-diffusion process can explain the
‘volatility smile’ when pricing options. However, by resorting to a mean-reverting square
root process (refer to Cox et al. (1985) and Brigo and Mercurio (2007) for further details)
the resulting jump-diffusion type model also takes on a higher level of complexity. Pricing
formulas for European options are derived via moment generating functions. The risk
neutral process of the firm’s asset value is given by

dV (t)
V (t) = (r − λv)dt+ ς(t)dWQV (t) + (Y (t)− 1)dN(t), (4.2)

dς2(t) = κ(θ − ς2(t))dt+ σς

√
ς2(t)dWQς (t),

dWQV (t)dWQς (t) = ρV, ςdt.

where WQV (t) and WQς (t) are independent of N(t) and Y (t) and the correlation ρV, ς is
some constant in [−1, 1]. Otherwise, the same assumptions hold as in Section 4.1.1.1 for
the rest of model components.

Remark 4.4. If the SDE of V (t) in (4.2) is solely driven by

dV (t)
V (t) = ς(t)dWQV (t),

thus setting the drift and jump part to zero (as in the Heston (1993) model), then ς2(t)
can be interpreted as the instantaneous variance of relative changes to V (t). More pre-
cisely, the quadratic variation of dV (t)/V (t) over an instantaneous time period [t, t+dt]
is then ς2(t)dt.
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4.1.1.3. Zhou (1997) Model

Zhou (1997) relaxes the assumption of a constant risk-free interest rate r of (4.1) by
assuming that the instantaneous risk-free interest follows a diffusion process of the well
known Vašìček (1977) interest rate model (for more details on the Vašìček (1977) model
refer to Brigo and Mercurio (2007)). This was first proposed by Longstaff and Schwartz
(1995) for the Merton (1974) model which incorporates both default and interest rate
risk. Thereby, Longstaff and Schwartz (1995) found out, inter alia, that correlation
between changes in firm’s value and interest rates have a significant effect on credit
spreads. The jump-diffusion model with short-term interest rate dynamics amounts
to

dV (t)
V (t) = (r(t)− λv)dt+ σV dWQV (t) + (Y (t)− 1)dN(t), (4.3)

dr(t) = κ (θ − r(t)) dt+ σrdWQr (t),
dWQV (t)dWQr (t) = ρV, rdt,

where WQV (t) and WQr (t) are independent of N(t) and Y (t) and the correlation ρV, r is
some constant in [−1, 1]. Otherwise, the same assumptions hold as in Section 4.1.1.1 for
the rest of model components.

4.1.1.4. Zhou (2001) Model

Finally, Zhou (2001) combines all three models of (4.1), (4.2) and (4.3) where he permits
interest rates to be stochastic, in form of the Vašìček model (Vašìček, 1977) and a variance
process, in form of CIR1F model (refer to Cox et al. (1985) and Brigo and Mercurio
(2007) for further details). While offering a high amount of flexibility, derivations of
closed form solutions wrt pricing options and other derivatives are not feasible. The
complete jump-diffusion model comprises of

dV (t)
V (t) = (r(t)− λv)dt+ ς(t)dWQV (t) + (Y (t)− 1)dN(t), (4.4)

dr(t) = κr (θr − r(t)) dt+ σrdWQr (t),

dς2(t) = κς(θς − ς2(t))dt+ σς

√
ς2(t)dWQς (t),

dWQr (t)dWQς (t) = ρr, ςdt,
dWQV (t)dWQς (t) = ρV, ςdt,
dWQV (t)dWQr (t) = ρV, rdt.

where dWQV (t), WQr (t) and WQς (t) are independent of N(t) and Y (t) and the correla-
tion parameters ρr, ς , ρV, ς and ρV, r are some constants in [−1, 1]. Otherwise the same
assumptions hold as in Section 4.1.1.1 for the rest of model components.

4.1.2. Interest Rate Component

While (4.1) and (4.2) rely on a constant interest rate component in their models, (4.3)
and (4.4) lift this restriction allowing interest rates, more precisely instantaneous spot
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rates, evolve stochastically. Therefore, the Vašìček (1977) model is introduced to model
r(t). However, as pointed out by Zhou (1997) and Zhou (2001) other models can be used
instead in this context. With the current market situation of low interest rates and the
reasons derived in Section 3.7 we resort to the HW1F model (which was also the choice
of Sünderhauf (2006)). Incorporating a stochastic short rate model permits an overall
more realistic modelling since interest rates themselves are of stochastic nature (compare
Figure 3.3). Merton was one of the first to acknowledge this fact: “It [interest rate]
is observable, satisfies the condition of being stochastic over time, and while it is surely
not the sole determinant of yields on other assets, it is an important factor. Hence, one
should interpret the effects of a changing interest rate in the forthcoming analysis in
the way economists have generally done in the past: namely, as a single (instrumental)
variable representation of shifts in the investment opportunity set.”, (Merton, 1973).
Concluding, the relaxation of assuming a constant interest rate is one of the more note-
worthy progressions in the model evolution review (Section 4.1.1) of Merton’s initial
model of (Merton, 1976), respectively (Merton, 1974).

4.1.3. Volatility Component

The Cox-Ingersoll-Ross model (Cox et al., 1985) belongs to the class of so called equi-
librium models for modelling instantaneous spot rates, compare Hull (2009). In the
one-factor case (CIR1F) the short rate process involves only one source of uncertainty
and is described by an Itô process. The instantaneous drift and standard deviation are
assumed to be functions of the short rate but are independent of time. The most im-
portant feature is the avoidance of negative rates. The volatility term decreases when
the spot rate approaches zero. This implies a higher (lower) volatility in case of higher
(lower) interest rates compared to models with constant volatility, for example the model
of Vašìček (Vašìček, 1977). Also, when interest rates are zero, the volatility term is zero,
thereby disabling the random feature of the model and implying that rates shift deter-
ministically in positive direction.
Although originally intended to be an interest rate model, the motivation of applying
this model in the context of stochastic volatilities is obvious, due to its favourable prop-
erty of non-negativity (Heston, 1993). In the following we give a brief model definition
with its main characteristics in the context of the affine term structure introduced in
Section B.2.3.2. Thereby, we use the notation ς2(t) to define the variance process in
from of the CIR1F model. Emphasis is laid upon simulation which is computationally
burdensome, due to an underlying non-central chi-squared distribution of the evolving
process.

4.1.3.1. Model Definition

The model formulation (Brigo and Mercurio, 2007) under the risk-neutral measure Q
is

dς2(t) = κ
(
θ − ς2(t)

)
dt+ σ

√
ς2(t)dWQ(t), ς2(0) = ς2

0 , (4.5)

with positive constants ς2
0 , κ, θ and σ. The Feller condition

2κθ > σ2 (4.6)
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has to be imposed to ensure that the origin is inaccessible to the process (4.5), so that
we can guaranty that ς2(t) remains positive.
The mean reverting process of (4.5) has an underlying non-central χ2-distribution as
defined in Definition B.23 with the non-centrality parameter proportional to ς2(t) where
the transition density has a closed form expression. Following Cox et al. (1985), the
density of ς2(t) at time t, given ς2(s) at time s (s < t), is

p(ς2(t) | ς2(s))(x) = pχ′2ν (λ(s,t))/c(s,t)(x) = c(s, t)pχ′2ν (λ(s,t))(c(s, t) · x), (4.7)

c(s, t) = 4κ
σ2(1− exp(−κ(t− s))) ,

λ(s, t) = c(s, t) exp(−κ(t− s))ς2(s),
ν = 4κθ/σ2,

with ν denoting the degrees of freedom and where now the non-centrally parameter λ in
Definition B.23 is a time dependent stochastic variable λ(s, t). Consequently, ς2(t) can
be expressed as

ς2(t) = (c(s, t))−1χ
′2
ν (λ(s, t)) s < t.

In words, conditional on ς2(s), ς2(t) is distributed as (c(s, t))−1 times a non-central
χ2-distribution with ν degrees of freedom and non-centrality parameter λ(s, t). Equiva-
lently, the cumulative distribution function of ς2(t) | ς2(s) is

Prob(ς2(t) ≤ x | ς2(s)) = Fχ′2ν (λ(s,t)) (c(s, t) · x) s < t,

with the cdf of χ′2ν (λ) and λ = λ(s, t) (Johnson et al., 1995)

Prob(χ′2ν (λ) ≤ x) = Fχ′2ν (λ)(x)

= e−λ/2
∞∑
j=0

(1
2λ)j/j!

2ν/2+jΓ(1
2ν + j)

∫ x

0
yν/2+j−1e−y/2dy, x > 0,

where Γ(·) is the (complete) gamma function with

Γ(α) =
∫ ∞

0
e−uuα−1du.

This setup allows us to simulate (4.5) analytically on a discrete time grid. This means
sampling from the non-central χ2-distribution which is looked at more closely in the
next section.

Remark 4.5. In Johnson et al. (1995) it is stated that for ν → ∞ (λ remaining
constant) or λ → ∞ (ν remaining constant) the non-central χ2-distribution of Defini-
tion B.23 converges to a normal distribution (or in both cases when ν and λ approach
infinity). See Definition B.23 for more details.
Transferred to the CIR1F model of (4.5) this implies that for large ς2(t) that the un-
derlying non-central χ2-distribution converges to the normal distribution, since the non-
centrality parameter λ(s, t) depends on ς2(t).
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The mean and variance of ς2(t) conditional on Fs (s < t) are given by

E
(
ς2(t)

∣∣∣Fs) = ς2(s) exp(−κ(t− s)) + θ (1− exp(−κ(t− s))) , (4.8)

V
(
ς2(t)

∣∣∣Fs) = ς2(s)σ
2

κ
(exp(−κ(t− s))− exp(−2κ(t− s))) +

θ
σ2

2κ (1− exp(−κ(t− s)))2 (4.9)

where ς2(t) grows with increasing σ (volatility level) and decreasing κ (mean reversion
speed).

Remark 4.6. Belonging to the class of affine term structure models we can, in
an abbreviated manner due to Corollary B.2, derive the closed form solution to the
zero-coupon bond price equation of (B.28) which is outlined in the following. Inserting
µ(r, t) = κ(θ − ς2(t)) and σ(r, t) = σ

√
ς2(t) in (B.30) one obtains[

∂A(t, T )
∂t

− κθB(t, T )
]
−
(

1 + ∂B(t, T )
∂t

− κB(t, T )− 1
2σ

2B2(t, T )
)
r = 0.

When ς2(t) converges to zero the terms in brackets should be equal zero, so that equations
(B.37) and (B.38) emerge. Making use of Theorem B.10 by setting α(t) = −κ, β(t) = κθ,
γ(t) = σ2 and δ(t) = 0 one comes to the same results, namely

∂B(t, T )
∂t

= κB(t, T ) + 1
2σ

2B2(t, T )− 1

B(T, T ) = 0
(4.10)

and 
∂A(t, T )

∂t
= κθB(t, T )

A(T, T ) = 0.
(4.11)

Solving the partial differential equation for the CIR1F model is quite cumbersome, espe-
cially the solution to (4.11) meaning integrating with respect to t over an interval [t, T ].
However, having only constant parameters α(t) = −κ, β(t) = κθ, γ(t) = σ2 and δ(t) = 0
Corollary B.2 can be applied, where

B(t, T ) = 2(ec1(T−t) − 1)
(κ+ c1)(ec1(T−t) − 1) + 2c1

, (4.12)

with c1 =
√
κ2 + 2σ2. For A(t, T ) we postulate

A(t, T ) = 2κθ
σ2 ln

(
2c1e

1
2 (κ+c1)(T−t)

(κ+ c1)(ec1(T−t) − 1) + 2c1

)
(4.13)

as correctly given by Cox et al. (1985) and reverse engineer the solution by computing
the derivative of (4.13) wrt time t. We set C = (κ+ c1)(ec1(T−t) − 1) + 2c1 so that after
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applying the chain rule

∂A(t, T )
∂t

= 2κθ
σ2 ·

C

2c1e
1
2 (κ+c1)(T−t)

· (c3
1 − κ2c1)e

1
2 (κ+3c1)(T−t) + (κ2c1 − c3

1)e
1
2 (κ+c1)(T−t)

C2

= 2κθ
σ2 ·

(c3
1 − κ2c1)(e

1
2 (κ+3c1)(T−t) − e

1
2 (κ+c1)(T−t))

2c1e
1
2 (κ+c1)(T−t)C

= 2κθ
σ2 ·

2c1σ
2e

1
2 (κ+c1)(T−t)(ec1(T−t) − 1)
2c1e

1
2 (κ+c1)(T−t)C

= κθ
2(ec1(T−t) − 1)

C
= κθB(t, T )

equals (4.11). Inserting (4.13) and (4.12) with c1 into (B.28) finally yields the zero-
coupon bond price for the CIR model.

4.1.3.2. Simulation

For obtaining the exact solution of the CIR1F model ones needs to draw from the non-
central chi-squared distribution (Definition B.23), as the process paths are distributed
accordingly. The density function for a non-central chi-square random variable takes on
an interesting form consisting of an infinite weighted sum of central Chi-square densities
with Poisson weights. This comes with a huge computational burden2. Thus, generating
multiple CIR1F paths will have an multiplicative effect on the overall simulation time.
It is the objective, and crucial in the case of CIR1F, to find alternative methods which
are faster but have little loss in accuracy. A trade-off between accuracy and compu-
tational efficiency naturally arises. Additionally, to the well-known ‘Euler-Maruyama’,
‘Milstein’ or ‘Milstein-Implicit’ discretisations (see Remark 4.7 for the generic formula-
tions thereof) and the ‘Analytic’ approach, the ‘Truncated-Gaussian’ and ‘Quadratic-
Exponential’ schemes are compared. The two latter schemes provide expeditious algo-
rithms which feature desirable efficiency and accuracy properties. For more information
see Andersen (2008) and Andersen et al. (2010). Moreover, we need to analyse if the
introduced schemes can guarantee positivity of (4.5). More precisely, it needs to be anal-
ysed if Prob(ς2(t) > 0,∀t > 0) = 1 holds even if the Feller condition (4.6) is imposed.
We divide the proposed schemes into two (homogeneous) approximating groups wrt the
‘Analytic’ scheme, namely the ‘standard’ discretisations of ‘Euler-Maruyama’, ‘Milstein’
and ‘Milstein-Implicit’ and the ‘moment-matching’ techniques of ‘Truncated-Gaussian’
and ‘Quadratic-Exponential’. Main simulation results3 of the five schemes are first pre-
sented before going into more detail of the algorithms themselves and their computations
below.
First we take a look at convergence rates of the schemes ‘Euler-Maruyama’, ‘Milstein’
and ‘Milstein-Implicit’ for different time steps. Strong and weak convergence for SDEs
are applied which are the two most widely used convergence concepts determining the

2A detailed description on drawing random numbers for the chi-squared and non-central chi-squared
distribution e.g. via a Poisson distribution is given in Johnson et al. (1994) and Johnson et al. (1995),
respectively.

3More extensive numerical tests on pricing of European call options in the Heston model are provided
in Andersen (2008).
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accuracy of SDE simulation methods (Kloeden and Platen, 2011). Time steps are cho-
sen so that 2n, n = {5, 6, . . . , 14} at which the convergence formulas are applied. As
expected, Figure 4.1 reveals that ‘Euler-Maruyama’ compared to its more sophisti-
cated counterparts ‘Milstein’ and ‘Milstein-Implicit’ is inferior in the weak as well as
strong convergence case (compare also Higham (2001)). Noteworthy is the fact that
the ‘Euler-Maruyama’ scheme has a convergence order of 1, the same as ‘Milstein’ and
‘Milstein-Implicit’, in the weak case. However, “this should not be viewed as a deficiency
of Milstein’s method; rather the Euler scheme is better than it ‘should’ be, achieving
order-1 weak convergence without expanding all terms to O(h)”, (Glasserman, 2004).
For the schemes ‘Analytic’, ‘Quadratic-Exponential’ and ‘Truncated-Gaussian’ we can
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Figure 4.1.: Strong and weak convergence error plots of schemes ‘Euler-Maruyama’,
‘Milstein’ and ‘Milstein-Implicit’. Left: Strong convergence; Right: Weak convergence

reproduce the plots given in Andersen (2008) and Andersen et al. (2010) where the cu-
mulative distribution functions of the respective schemes are depicted. For comparison
reasons we also include the Gaussian and log-normal distributions where the conditional
mean (4.8) and variance (4.9), the first two moments of ς2(t), are parametrised. As
stated in Andersen (2008), neither of these distributions are particularly good prox-
ies for the true distribution of ς2(t) where the Gaussian also turns negative. However,
they do reveal how close the more elaborate schemes of ‘Quadratic-Exponential’ and
‘Truncated-Gaussian’ are to the analytical simulation (blue graph in Figure 4.2) with
the true underlying non-central chi-squared distribution of (4.7). As pointed out in An-
dersen (2008), in typical applications condition (4.6) is mostly not met, thus very small
values (close to zero) are very likely. Inherently, it is the area close to zero where any
scheme has difficulties matching the random numbers of Algorithm 4.4 which is evidently
the case in Figure 4.2. However, we find that the ‘Quadratic-Exponential’ scheme fairly
accurately emulates the true underlying cumulative distribution of the ‘Analytic’ scheme
for different parameter settings (compare left and right picture of Figure 4.2). A per-
formance analysis is undertaken where one path consisting of 10 years with 250 business
days for each year is generated and repeated 100 times. Taking a look at the result-
ing computation times (Table 4.2) of the introduced methods we find that the more
elaborate the scheme the longer it takes to generate the process path. Even though we
compute the cache in the case of the ‘Truncated-Gaussian’ (Algorithm 4.1) at a pre-loop
stage, as suggested by Andersen (2008), the lookup of ψ∗ still consumes a large amount
of time. Thereby, the smallest absolute difference to the cache values is determined and
indexed, yielding the wanted cached value (see also Remark 4.9). However, reducing
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Figure 4.2.: Cumulative distribution function for ς2(T ) given ς2(0), with T = 0.1 of
schemes ‘Analytic’, ‘Quadratic-Exponential’ and ‘Truncated-Gaussian’. Model parame-
ters are θ = 0.04, κ = 0.5, and σ = 1. Left: ς2(0) = 0.04 and including the Gaussian
and log-normal distributions; Right: ς2(0) = 0.09

equidistant partitions of the interval ψ from 1,000 reduces the computation time sub-
stantially. The same simulation with 100 partitions yields the computation time of only
36.83 seconds (compared to 327.10 seconds in Table 4.2). The less granular the seg-
mentation of Iψ is the larger the distance between to the ‘true’ values of ψ becomes. The
less accurate schemes ‘Euler-Maruyama’, ‘Milstein’ and ‘Milstein-Implicit’ are the fasted
where differences are small amongst each other. A symbolic summary of the accuracy
measurements of the underlying schemes is also depicted in Table 4.2.
To summarise: Conditional on accuracy and speed the ‘Quadratic-Exponential’ scheme
is the most favourable, reducing the computational burden of the ‘Analytic’ scheme by
a factor of over twelve. However, if speed is of utmost importance the one might want to
resort to ‘Milstein-Implicit’ (factor of approximately up to 450 over ‘Analytic’ ) in the
class of ‘standard’ discretisations. Utilising the ‘Analytic’ scheme in situations where
accuracy may be of concern it still poses a manageable simulation duration. There is no
reason opting for ‘Euler-Maruyama’, ‘Milstein’ or ‘Truncated-Gaussian’.

Euler-
Maruyama

Milstein Milstein-
Implicit

Truncated-
Gaussian

Quadratic-
Exponential

Analytic

Time (sec) 0.20 0.21 0.08 327.10 3.02 36.72
Accuracy − ◦ ◦ ◦ + +

Table 4.2.: Computation times and accuracy depiction (‘−’: bad, ‘◦’: moderate and
‘+’: good) of the CIR1F simulation schemes of ‘Euler-Maruyama’, ‘Milstein’, ‘Milstein-
Implicit’, ‘Truncated-Gaussian’, ‘Quadratic-Exponential’ and ‘Analytic’. Simulations are
based on 2500 time points and 100 repetitions.

Remark 4.7. For the schemes ‘Euler-Maruyama’, ‘Milstein’ or ‘Milstein-Implicit’ we
state the generic formulations wrt to the process X(t). (Refer to Glasserman (2004) or
Kloeden and Platen (2011) for derivations and more details on the proposed approxima-

88



4.1. Model Setup

tions.) Consider the following (scalar) stochastic differential equation (SDE)

dX(t) = a(X(t))dt+ b(X(t))dW (t). (4.14)

We define a time grid 0 = t0 < t1 < · · · < tn, Zi ∼ N(0, 1), i = 1, . . . , n then for
i = 0, . . . , n − 1 the time-discretised approximations X̂ of X with X̂(0) = X(0) and
∆t = ti+1 − ti are:

· Euler-Maruyama:

X̂(ti+1) = X̂(ti) + a(X̂(ti))∆t+ b(X̂(ti))
√

∆tZi+1 (4.15)

· Milstein:

X̂(ti+1) = X̂(ti) + a(X̂(ti))∆t+ b(X̂(ti))
√

∆tZi+1 +
1
2b
′(X̂(ti))b(X̂(ti))∆t(Z2

i+1 − 1) (4.16)

· Milstein-Implicit:

X̂(ti+1) = X̂(ti) + a(X̂(ti+1))∆t+ b(X̂(ti))
√

∆tZi+1 +
1
2b
′(X̂(ti))b(X̂(ti))∆t(Z2

i+1 − 1) (4.17)

In summary ‘Milstein’ and ‘Milstein-Implicit’ expand ‘Euler-Maruyama’ by the term

1
2b
′(X̂(ti))b(X̂(ti))∆t(Z2

i+1 − 1).

Notice the difference between ‘Milstein’ and ‘Milstein-Implicit’ where the former pos-
sesses the drift term a(X̂(ti)) depending on the past time point ti and the latter is driven
by the drift term a(X̂(ti+1)) at current time ti+1. Replacing

X(t) = ς2(t),

a(X(t)) = κ
(
θ − ς2(t)

)
,

b(X(t)) = σ
√
ς2(t)

in (4.14) we receive the SDE discretisation schemes (4.15), (4.16) and (4.17) for (4.5).

Euler-Maruyama The stochastic ‘Euler-Maruyama’ method is the simplest discretisa-
tion method for stochastic differential equations. The method is a stochastic differ-
ential equation that maps a random variable ς2(ti−1) of the CIR1F process (4.5) into
a new random variable ς2(ti) where dς2(t) ≈ ∆ς2(t), dt ≈ ∆t and dW (t) ≈ ∆W (t)
(∆ denoting the difference operator). This is accomplished using a recursive discrete
version of Equation (4.5) at discretisation times ti, i = 1, . . . , n:

ς2(ti) = ς2(ti−1) + κ(θ − ς2(ti−1))∆t+ σ
√
ς2(ti−1)∆tZti

= κθ∆t+ (1− κ∆t)ς2(ti−1) + σ
√
ς2(ti−1)∆tZti , (4.18)
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where ∆t = ti − ti−1 =
∫ ti
ti−1

1ds and ∆W (t) = W (ti)−W (ti−1) =
∫ ti
ti−1

1dW (s) = Zti
with Z ∼ N(0, 1). The probability of ς2(ti) turning negative when ς2(ti−1) > 0 is then
(compare also Lord et al. (2006))

Prob(ς2(ti) < 0) = Φ
(
−(1− κ∆t)ς2(ti−1) + κθ∆t

σ
√
ς2(ti−1)∆t

)

where Φ is the cdf of the standard normal distribution. With ∆t → 0 then also
Prob(ς2(ti) < 0) → 0, thus with decreasing step size the less likely negative values
occur. An illustration of the process behaviour of (4.5) under the ‘Euler-Maruyama’
scheme for two different parameter sets is given in Example 4.1. To address the non-
positivity issue some (rather crude) numerical solutions are proposed within the ‘Euler-
Maruyama’ scheme:
· Deelstra and Delbaen (1998):

ς2(ti) = κθ∆t+ (1− κ∆t)ς2(ti−1) + σ
√

max(ς2(ti−1), 0)∆tZti

· Higham and Mao (2005):

ς2(ti) = κθ∆t+ (1− κ∆t)ς2(ti−1) + σ
√
|ς2(ti−1)|∆tZti

· Berkaoui et al. (2008):

ς2(ti) = |κθ∆t+ (1− κ∆t)ς2(ti−1) + σ
√
ς2(ti−1)∆tZti |

In Lord et al. (2006) and Dereich et al. (2012) one finds a more thorough analysis (and
additional schemes) of above amendments wrt positivity preservation and convergence
rates. Noteworthy is the fact that the scheme under Deelstra and Delbaen (1998) still
cannot completely rule out occurring negative values. Lord et al. (2006) state that an
expansion of Deelstra and Delbaen (1998) to

ς2(ti) = κθ∆t+ (1− κ∆t) max(ς2(ti−1), 0) + σ
√

max(ς2(ti−1), 0)∆tZti

works best under the proposed fixings to the ‘Euler-Maruyama’ scheme (for more
details see Lord et al. (2006)). Although being the easiest to implement, it does
raise the question if these amendments to the ‘Euler-Maruyama’ produce permissible
realisations of a paths of (4.5). Thus, we turn our focus to other, potentially more
promising, schemes.

Example 4.1. Due to, potentially, occurring negative values under the root, the real
valued part of the process (Re(ς2(t))) is plotted in Figure 4.3. On the left side we have
2κθ = 0.36 ≯ 1.00 = σ2 so that condition (4.6) is not fulfilled for given parameters
where on multiple occasions (as expected) the non-negativity criterium of the CIR1F is
not met. On the right picture of Figure 4.3 the Feller condition (4.6) is satisfied with
2κθ = 0.40 > 0.25 = σ2 for given parameters. However, although positivity should be
ensured by (4.6) we observe a breach of the zero boundary, marked in red.

Milstein The next proposed scheme is the ‘Milstein’ scheme of (4.16). It makes use of
Itô’s formula (Theorem B.3) to increase the accuracy of the approximation by adding
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Figure 4.3.: Example path of ‘Euler-Maruyama’ scheme. Left: Condition (4.6) not
fulfilled, with ς2(0) = 0.09, κ = 2, θ = 0.09 and σ = 1; Right: Condition (4.6) fulfilled,
with ς2(0) = 0.05, κ = 5, θ = 0.04 and σ = 0.5

a second order term of the Taylor expansion. It can be regarded as a refinement
to ‘Euler-Maruyama’ where a convergence rate of h) is achieved for the drift term
(compare Glasserman (2004)). For (4.5) the discretisation amounts to

ς2(ti) = ς2(ti−1) + κ(θ − ς2(ti−1))∆t+ σ
√
ς2(ti−1)∆tZti + 1

4σ
2∆t(Z2

ti − 1)

= κθ∆t+ (1− κ∆t)ς2(ti−1) + σ
√
ς2(ti−1)∆tZti + 1

4σ
2∆t(Z2

ti − 1),

where Z ∼ N(0, 1). As in the case of the ‘Euler-Maruyama’ scheme, ‘Milstein’ also
generates, with positive probability, negative values of (4.5) (compare Andersen et al.
(2010)). Numerical adjustments, as already proposed in ‘Euler-Maruyama’, wrt to
absolute or maximum values also become necessary. However, under certain circum-
stances when all conditions (see for example Kahl (2008)) in Remark 4.8 are met, then
also (4.5) is guaranteed to be positive under the ‘Milstein’ scheme.

Remark 4.8. The generic ‘Milstein’ method of (4.16) guarantees positivity if the
conditions for i = 0, . . . , n− 1

b(X̂ti)b′(X̂ti) > 0,

X̂ti >
b(X̂ti)

2b′(X̂ti)
,

∆t < 2
b(X̂ti)b′(X̂ti)− 2a(X̂ti)

(
X̂ti −

b(X̂ti)
2b′(X̂ti)

)

are fulfilled. (The last condition is only necessary if the denominator is positive.)

Milstein-Implicit A notable improvement over ‘Euler-Maruyama’ and ‘Milstein’ is the
‘Milstein-Implicit’ scheme. It can be shown than under the Feller condition (4.6)
retaining positivity for (4.5) is feasible. The difference to ‘Milstein’ lies with the
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treatment of the drift term. Applying Ito’s formula (Theorem B.3) yields

ς2(ti) = 1
1 + κ∆t

(
ς2(ti−1) + κθ∆t+ σ

√
ς2(ti−1)∆tZti + 1

4σ
2∆t(Z2

ti − 1)
)
, (4.19)

where Z ∼ N(0, 1). Since the denominator of (4.19) is positive it leaves us to show
that the numerator is positive. Thereby, we aggregate all stochastic parts (depending
on Zti) of (4.19) to a (quadratic polynomial) function f

f(Zti) := σ
√
ς2(ti−1)∆tZti + 1

4σ
2∆tZ2

ti .

Since the second derivative of f is f ′′(Zti) > 0 and the root of f ′(Zti) (f ′(Zti)
!= 0) is

Zti = −2
√
ς2(ti−1)
σ
√

∆t
,

we obtain the (global) minimum of −ς2(ti−1) for f(Zti). Thus, we can approximate
the numerator of (4.19) by

ς2(ti−1) + κθ∆t+ σ
√
ς2(ti−1)∆tZti + 1

4σ
2∆t(Z2

ti − 1)

= ς2(ti−1) +
(
κθ − 1

4σ
2
)

∆t+ f(Zti)

≥ ς2(ti−1) +
(
κθ − 1

4σ
2
)

∆t− ς2(ti−1)

=
(
κθ − 1

4σ
2
)

∆t > 0.

Concluding, we can state that ‘Milstein-Implicit’ is the first scheme in our selection of
altogether five proposed schemes where the Feller condition (4.6) is fulfilled.

Truncated-Gaussian Andersen (2008)’s idea for a ‘Truncated-Gaussian’ (TG) method
stems from the already established fact of Remark 4.5 that for λ(s, t) → ∞ the non-
central χ2-distribution approaches a normal distribution so that for large ς2(t) the first
two Gaussian moments provide a suitable fit, hence the name ‘Gaussian’ in TG. How-
ever, relying entirely on large ς2(t) is predestined for failure. A first impression of a
pure ‘Gaussian’ (postulating a normal distribution) approximation with moments (4.8)
and (4.9) can be viewed in Figure 4.2 (left picture). Clearly, as ς2(t) approaches zero
the ‘Gaussian’ approximation is not able to produce a satisfying result in resembling a
‘χ2-kind of density’ around the origin (compare the ‘Analytic’ curve which resembles
the ‘true’ underlying distribution). Furthermore, negative values are not permitted
for (4.5). Thus, it would be advantageous to impose a boundary at the origin as a
first measure, hence the name ‘Truncated’ in TG. This step of “shifting the left tail
mass of a Gaussian into a delta-function at zero” (Andersen, 2008) is comparable to
the additional necessary amendments under the ‘Euler’ scheme. However, we are not
done yet. The name ‘Truncated-Gaussian’ may be somewhat misleading since Ander-
sen (2008) additionally adds the advancement of sampling from a moment-matched
Gaussian density where “for small ς2(t), the resulting scheme will approximate the
chi-square density in (B.61) by a mass in 0 combined with an upper density tail pro-
portional to e−x2/2”, (Andersen, 2008). Consequently, the overall success of TG will
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be attributed to the handling of small values of ς2(t) as then λ(s, t) → 0 and the
non-central approaches the central χ2-distribution with ν = 4κθ/σ2 (Definition B.22).
When additionally ν → 0 the χ2-distribution shifts more mass to the origin and as
pointed out by Andersen (2008) the more frequent case is ν = 4κθ/σ2 << 2. In sum-
mary, Andersen (2008) uses a combination of Gaussian and central χ2 approximations
where the TG scheme is defined as follows:

ς2(ti) =
(
µ(ς2(ti−1)) + σ(ς2(ti−1))Zti

)+

= max
(
µ(ς2(ti−1)) + σ(ς2(ti−1))Zti , 0

)
(4.20)

where Z ∼ N(0, 1) and the still unknown parameters µ and σ depend on the process
ς2(ti−1) at time ti−1. Note that positivity of (4.5) is ensured by (4.20). The specifica-
tion of µ(ς2(ti−1) and σ(ς2(ti−1)) with the complete computation steps of TG are now
introduced (for more details and corresponding proofs refer to Andersen (2008)).
The moment-matching procedure consists of approximating the exact first two condi-
tional moments of (4.8) and (4.9) by the unconditional moments E(ς2(ti)) and V(ς2(ti))
in order to obtain the parameters µ and σ of (4.20). The proposed moment-matching
function and solution is given in Theorem 4.1 (refer to Andersen (2008) for correspond-
ing proof).

Theorem 4.1 (Moment-matching ‘Truncated-Gaussian’). Let φ(x) =
(2π)−1/2e−x2/2 be the standard Gaussian density, and define a function g : R → R
by the relation

g(x)φ(g(x)) + Φ(g(x))
(
1 + g(x)2

)
= (1 + x) (φ(g(x)) + g(x)Φ(g(x)))2 (4.21)

Also set

ψ := m2

s2 > 0. (4.22)

with m = E(ς2(ti) | ς2(ti−1)) and s2 = V(ς2(ti) | ς2(ti−1)). If ς2(ti) is generated by the
TG scheme (4.20), with parameter settings

µ = m

φ(g(ψ))g(ψ)−1 + Φ(r(ψ)) , σ = m

φ(g(ψ)) + g(ψ)Φ(r(ψ)) ,

then E(ς2(ti)) = m and V(ς2(ti)) = s2.

A greater portion of computations can be done outside of the loop over discretised
time steps, saving on computational time. These prerequisites involve solving (4.21)
for ψ ∈ [1/α2, σ2/(2κθ)] = Iψ (a sufficient discretisation of the interval is for example
1,000 equidistant partitions) and α = 4.5 (according to Andersen (2008) the confidence
multiplier α needs to be “a number around 4 or 5”) and computing

fµ(ψ) = g(ψ)
φ(g(ψ)) + g(ψ)Φ(g(ψ)) , fσ(ψ) = ψ−1/2

φ(g(ψ)) + g(ψ)Φ(g(ψ))

which consists of the values than can be cached together with Iψ into the main memory
for later lookup, see left picture of Figure 4.4 and Remark 4.9 for more details. The
interpretation of interval Iψ is subtended. Large values of ψ correspond to small values
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of ς2. Since we are more interested in small values (near to zero) the corresponding
upper region of Iψ is, likewise, of higher importance. Lower and upper boundaries are
obtained via limits of (4.22) where

lim
ς2(ti−1)→∞

(
E(ς2(ti) | ς2(ti−1))

)2
V(ς2(ti) | ς2(ti−1)) = 0

and

lim
ς2(ti−1)→0

(
E(ς2(ti) | ς2(ti−1))

)2
V(ς2(ti) | ς2(ti−1)) = σ2

2κθ .

However, the case for ς2(ti−1)→∞ (large values of ς2(ti−1)) is of less importance since
it is covered by the Gaussian distribution approximation of Remark 4.5. Therefore,
the confidence multiplier α is introduced to define the relevant domain for mapping
the function g(ψ) which is given by Iψ. Consequently, if ψ ≤ 1/α2 then fµ = fσ = 1
and µ = m and σ = s. The complete cache range of fµ and fσ is depicted in the left
picture of Figure 4.4 where for ς2(ti−1) = 0 the corresponding values are fµ = −49.4
and fσ = 6.65 marking the range end points. On the right picture of Figure 4.4 we
see the impact of fµ and fσ on µ and σ in comparison to m and s. An interval of sorted
ς2(ti−1) values with ς2(ti−1) ∈ [0, 0.01] is chosen for visualisation. For ς2(ti−1) > 0.01
visual differences betweenm and µ as well as between s and σ are not detectable. Thus,
for larger values of ς2(ti−1) the parameters (m, s, µ, σ) converge as expected. The
purpose of fµ and fσ is to counteract the behaviour of the simplified shifting of (4.20)
when µ = m and σ = s which would result in a larger mean and smaller variance in
relation to the (original) Gaussian distribution. The right picture of Figure 4.4 reveals
that the moment-matching procedure of Theorem 4.1 will firstly shift probability mass
further to the left by a mean < 1 and raise the variance of small ς2(ti−1). This is the
desired outcome for emulating a central χ2-distribution around the origin. Concluding,
Andersen (2008) states the following final result: “Naïve truncation schemes (such as
certain Euler schemes) that assume fµ ≈ fσ ≈ 1 not surprisingly have large biases.”
The additional necessary computation steps for TG are presented in Algorithm 4.1.

Algorithm 4.1 (Truncated-Gaussian).
1. Given ς2(ti−1), compute (moments (4.8) and (4.9))

m = θ + (ς2(ti−1)− θ)e−κ∆t

s2 = ς2(ti−1)σ2e−κ∆t

κ

(
1− e−κ∆t

)
+ θσ2

2κ
(
1− e−κ∆t

)2

and plug into

ψ∗ = s2

m2 .

2. Look up ψ∗ in the cache and extract the corresponding function evaluations fµ(ψ)
and fσ(ψ) and compute

µ = fµ(ψ)m
σ = fσ(ψ)s.
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3. Compute ς2(ti) = (µ+ σZ)+, where Z ∼ N(0, 1).
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Figure 4.4.: Left: Cache for fµ(ψ) and fσ(ψ) of the ‘Truncated-Gaussian’ scheme;
Right: Comparison of the parameters m and s to the ‘Truncated-Gaussian’ parameters
µ, and σ for small ς2(t), with ς2(0) = θ = 0.04, κ = 5, and σ = 0.5

Remark 4.9. Look up procedure of ψ∗ in the cache involves the following simple
computations where the index of corresponding fµ(ψ) and fσ(ψ) is returned. Let us
assume the values of fµ(ψ) and fσ(ψ) together with Iψ are successfully cached.
The first implementation attempt of simulating one path of the CIR1F model comprises
of the intuitive computation of the absolute differences of Iψ and ψ∗ and looking for
the smallest difference.

1 % Intuitive implementation
2 [~,positionMu] = min(abs(cacheMu(:,1) − psiParameter));
3 [~,positionSigma] = min(abs(cacheSigma(:,1) − psiParameter));

This procedure can be expanded to a simulation setting with more than one path in a
vectorised fashion. Therefore, Matlab’s inbuilt bsxfun() function is utilised to avoid
a for loop over each ψ.

1 % Vectorised implementation
2 [~,positionMu] = min(abs(bsxfun(@minus,cacheMu(:,1),psiParameter)));
3 [~,positionSigma] = min(abs(bsxfun(@minus,cacheSigma(:,1),psiParameter)));

Finally, we resort to Matlab’s inbuilt function histc() to speed up the computation
(approximately by a factor of two). histc() returns the bin number that each entry in
ψ∗ sorts into with ψ representing the bin range.

1 % Fastest implementation
2 [~,positionMu] = histc(psiParameter,cacheMu(:,1));
3 [~,positionSigma] = histc(psiParameter,cacheSigma(:,1));

Quadratic-Exponential A further advancement to the above TG scheme is represented
by ‘Quadratic-Exponential’ (QE) algorithm (Andersen, 2008). QE has its root in
the above introduced TG scheme where the common ground is a moment-matching
technique. However, QE allows for a slower density decay of ς2(ti−1) when approaching
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zero. Thus, QE adds an additional, more accurate, approximation step as opposed to
TG resulting to two different distributions for approximating the distribution of the
variance on the lower tail. More precisely, the refinements of QE include:
· A non-central χ2-distribution approximation by, firstly, a moment-matching ap-

proach via a quadratic function applied to a Gaussian variable (hence the name
‘Quadratic’ in QE) and, secondly, an exponential distribution approximation (hence
the name ‘Exponential’ in QE).

· A switching rule between the two approximation steps (moment-matching and ex-
ponential distribution) is established to obtain a reasonable approximation for small
values of the variance process (4.5).

Furthermore, the advantage wrt to memory and speed of QE over TG is the fact that
pre-caching (functions fµ and fσ in TG) is not necessary. With the knowledge from TG
over computation of ψ via (4.22) the proposed QE scheme is divided into computation
steps, namely:
· Case ψ ≤ 2: The first case covers the more moderate values of ς2(ti−1). From

Remark 4.5 we know that the Gaussian distribution is a suitable approximation
(see also TG scheme). Here a quadratic function is chosen in the form of

ς2(ti) = a(ς2(ti−1))
(
b(ς2(ti−1)) + Zti

)2
(4.23)

where a and b are dependent on ς2(ti−1) and Zti is a standard normal random
variable. Notice that (4.23) precludes any negative values (if a(ς2(ti−1)) > 0 and
b(ς2(ti−1)) > 0). The specification of a(ς2(ti−1)) > 0 and b(ς2(ti−1)) is given in
Theorem 4.2 (see Andersen (2008) for corresponding proof).

Theorem 4.2 (Moment-matching ‘Quadratic-Exponential’: ψ ≤ 2). Letm
and s be as defined in Theorem 4.1 (equations (4.8) and (4.9)), and set ψ = s2/m2.
Provided that ψ ≤ 2, set

b2 = 2ψ−1 − 1 +
√

2ψ−1
√

2ψ−1 − 1 ≥ 0 (4.24)

and

a = m

1 + b2
. (4.25)

Let ς2(ti) be as defined in (4.23), then E(ς2(ti)) = m and V(ς2(ti)) = s2.

· Case ψ ≥ 1: This case covers the very small values of ς2(ti−1). Here Andersen (2008)
resorts to an approximation by an exponential distribution for the lower tail arising
from the asymptotic behaviour of the non-central χ2-distribution. More precisely,
the proposed density is a mixture of a Dirac delta-function and an exponential
distribution. For more details on its derivation refer to Andersen (2008)). The
resulting pdf, cdf and inverse cdf of this approximation read as follows:

Prob(ς2(ti) ∈ [x,dx]) ≈
(
pδ(0) + ζ(1− p)e−ζx

)
dx, x ≥ 0,

Ψ(x) = Prob(ς2(ti) ≤ x) = p+ (1− p)
(
1− e−ζx

)
, x ≥ 0,
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and

Ψ−1(u) = Ψ−1(u; p, ζ) =

0, 0 ≤ u ≤ p
ζ−1 ln

(
1−p
1−u

)
, p < u ≤ 1

where δ is a Dirac delta-function, p ∈ [0, 1] and ζ ≥ 0. Finally, we simply can
sample the future value ς2(ti) by

ς2(ti) = Ψ−1(Uti ; p(ς2(ti−1)), ζ(ς2(ti−1))) (4.26)

where p and ζ depend on ς2(ti−1) and Uti is an uniform random number. Notice
that negative values are not possible under (4.26). The computations of p and ζ
are given in Theorem 4.3 (see Andersen (2008) for corresponding proof).

Theorem 4.3 (Exponential distribution ‘Quadratic-Exponential’: ψ ≥
1). Let m, s and ψ be as defined in Theorem 4.1. Assume that ψ ≥ 1 and set

p = ψ − 1
ψ + 1 ∈ [0, 1), (4.27)

and

ζ = 1− p
m

= 2
m(ψ + 1) > 0. (4.28)

Let ς2(ti) be as defined in (4.26), then E(ς2(ti)) = m and V(ς2(ti)) = s2.

Lastly, we need to find a rule of when to use the moment-matching approach and when
to use the exponential distribution approximation. This can be easily found since both
cases have a common domain of ψ ∈ [1, 2]. It is natural to choose the mean of this
interval yielding the critical value ψc = 1.5. A visual impression of the switching rule
and imposed approximations is given in Figure 4.5. Therefore, a path of ten years
with 250 business days for each year is simulated using the same parameter settings
as in Figure 4.4. For clarity reasons the values of ς2(t) are capped at 0.04 and values
of exactly zero are omitted. Setting the switching rule to ψc = 1.5 it is expected to
have, to some extent, an overlapping region for ς2(t). However, overall a high degree
of selectivity between both above cases can be observed. The domain for small values
is assigned to (4.26) with Theorem 4.3, and likewise for large values to (4.23) with
Theorem 4.2. The complete computation steps are given in Algorithm 4.2.

Algorithm 4.2 (Quadratic-Exponential).
1. Compute ψ = s2

m2 , with m and s2 as in step 1. of Algorithm 4.1.
2. if ψ ≤ ψc

a) Compute a and b according to equations (4.25) and (4.24).
b) Set ς2(ti) = a(b+ Zti)2.

3. otherwise ψ > ψc

a) Compute ζ and p according to equations (4.28) and (4.27).
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Figure 4.5.: Switching rule for ‘Quadratic-Exponential’ scheme, with ψc = 1.5 and
ς2(0) = θ = 0.04, κ = 5, and σ = 0.5; Left: Time series; Right: Histogram

b) Set ς2(ti) = Ψ−1(U ; p, ζ), where U ∼ Unif(0, 1) and

Ψ−1(u) = Ψ−1(u; p, ζ) =

0, 0 ≤ u ≤ p
ζ−1 ln

(
1−p
1−u

)
, p < u ≤ 1.

Remark 4.10. Now, Algorithm 4.2 is fairly straight forward to implement. However,
from an implementation perspective a loop over each ψ value is needed as the ‘if
else’ statement only can handle scalars which makes the code slow. Instead, by
indexing arrays with conditions ψ ≤ ψc, ψ > ψc and p < u ≤ 1 respectively an
efficient vectorisation (see Appendix A.2) can be achieved. A Matlab code excerpt of
Algorithm 4.2 is given where procVola denotes the underlying variance process (note
one single loop over time with index i is still required and random numbers are here
uniformly distributed):

1 % 2. b):
2 idx1 = psi <= psi_c;
3 procVola(i,idx1) = a(idx1).*(sqrt(b(idx1)) + norminv(RN(i,idx1),0,1)).^2;

1 % 3. b):
2 idx2 = RN(i,:) <= p & psi > psi_c;
3 procVola(i,idx2) = 0;
4

5 idx3 = RN(i,:) > p & psi > psi_c;
6 procVola(i,idx3) = log((1 − p(idx3))./(1 − RN(i,idx3)))./zeta(idx3);

Analytic The ‘Analytic’ approach involves simulating the square-root diffusion (4.5) by
sampling from the transition density (4.7) on a (discretised) time grid 0 = t0 < t1 <
. . . < tn. From Section 4.1.3.1 we know that c(ti−1, ti)ς2(ti) | ς2(ti−1) ∼ χ′2ν (λ(ti−1, ti)).
With the parameters defined in (4.7) we have all necessary tools and inputs available to
successfully implement the procedure. However, as pointed out by Glasserman (2004)
it would be advantageous splitting the sampling from the non-central χ2-distribution
into sampling from a central χ2-distribution and a Poisson random variable or from a
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4.1. Model Setup

central χ2-distribution and a standard normal random variable so that two separate
algorithms can be proposed for the ‘Analytic’ approach. Note that for the Algorithm
specification we change the notation of the degrees of freedom parameter from ν to d.
The two cases are (Glasserman, 2004):
· Case ν > 1: The first case samples from a central χ2- and a standard normal

distribution. As outlined in Definition B.23 it is possible to decompose χ′2ν (λ) to

χ
′2
ν (λ) = (Z1 + δ)2 + Z2

2 + . . .+ Z2
ν = χ

′2
1 (λ) + χ2

ν−1

for when ν only takes on integers. In the general case where ν takes on any real
number ν > 1 we then have (compare also Johnson et al. (1995))

χ
′2
ν (λ) = (Z +

√
λ)2 + χ2

ν−1

where Z is a standard normal variable and χ2
ν−1 a central chi-square random variable

with ν − 1 degrees of freedom. Following Glasserman (2004), the sampling from
an non-central χ2-distribution can be formulated as in Algorithm 4.3 which now
consists of drawing a central chi-square and an (independent) standard normal
random variable.

Algorithm 4.3 (Analytic Simulation (d > 1)).
1. Draw a standard normal random variable Z, with mean 1

2λ(ti−1, ti).
2. Draw a central chi-square (Definition B.22) random variable χ2

d, with d = ν− 1
degrees of freedom.

3. Set ς2(ti) = c(ti−1, ti))−1[(Z +
√
λ(ti−1, ti))2 + χ2

d].

· Case ν ≤ 1: The second case, which is also the general case as it would cover
ν > 0, involves drawing from a central χ2- and a Poisson distribution. However,
since we have covered ν > 1 in Algorithm 4.3 we only need to consider the values
(0 <)ν ≤ 1. As stated in Johnson et al. (1995) one can decompose Fχ′2ν (λ)(x)
(for x > 0) of the non-central χ2-distribution “as a weighted sum of central χ2

probabilities with weights equal to the probabilities of a Poisson distribution with
expected value 1

2λ” (Johnson et al., 1995), thus

Fχ′2ν (λ)(x) =
∞∑
j=0


(

1
2λ
)j

j! e−λ/2
Prob(χ2

ν+2j ≤ x)

=
∞∑
j=0


(

1
2λ
)j

j! e−λ/2
F (x; ν + 2j, 0) (4.29)

where with λ = 0, non-central χ2-distribution takes on a central χ2-distribution
with ν + 2j degrees of freedom (compare also Definition B.23). Glasserman (2004)
offers a derivation of (4.29), namely: We define a Poisson random variable N with
mean 1

2λ then the probability of N = j is

Prob(N = j) =

(
1
2λ
)j

j! e−λ/2, j = 0, 1, 2, . . . .
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Conditional on N = j, the random variable χ2
ν+2N has a central χ2-distribution

with ν + 2j degrees of freedom, so that

Prob(χ2
ν+2N ≤ x |N = j) = 1

2ν/2+jΓ(ν/2 + j)

∫ x

0
e−y/2yν/2+j−1dy.

Then we obtain the unconditional distribution
∞∑
j=0

Prob(N = j) Prob(χ2
ν+2N ≤ x |N = j) = Fχ′2ν (λ)(x),

resulting to (4.29). In summary when ν ≤ 1 one then follows the steps as in
Algorithm 4.4 (which also can be found in Andersen et al. (2010)).

Algorithm 4.4 (Analytic Simulation (d ≤ 1)).
1. Draw a Poisson random variable N , with mean 1

2λ(ti−1, ti).
2. Given N , draw a central chi-square (Definition B.22) random variable χ2

d, with
d = ν + 2N degrees of freedom.

3. Set ς2(ti) = (c(ti−1, ti))−1 · χ2
d.

Concluding the description of the ‘Analytic’ case leaves us to mention that the case
ν > 1 is hardly relevant in practice since ν = 4κθ/σ2 << 2 (Andersen, 2008). However,
it is good to know that the case exists since computation times can be significantly
reduced (drawing a standard normal instead of a Poisson random variable) and switch-
ing between ν > 1 and ν ≤ 1 is easily implemented should the case ν > 1 apply at
some point. Yet, if we are talking of the ‘Analytic’ scheme from here on after we mean
the Algorithm 4.4 with ν ≤ 1.

4.1.4. Jump Component

Before introducing the full model with its risk components it appears necessary to give
more theoretical insight to the underlying jump component of the model as well as
efficient simulation algorithms thereof.

4.1.4.1. Model Definition

In Glasserman (2004) we find the theoretical basis for a jump-diffusion type model. A
simple representation of a jump process is assumed in Definition 4.1.

Definition 4.1 (Jump-diffusion process). The jump process J is given by

J(t) =
N(t)∑
j=1

(Yj − 1) (4.30)

where Y1, Y2, . . . are random variables and N(t) is a counting process. This means that
there are random arrival times

0 < τ1 < τ2 < · · ·
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and

N(t) = sup{n : τn ≤ t}

counts the number of arrivals in [0, t]. The size of a jump is Yj − 1 if t = τj and 0 if t
does not coincide with any of the τj.

We now postulate a distribution for the underlying counting process N(t) of the jump
process J(t) (Assumption 4.3).

Assumption 4.3. N(t) is a (homogeneous) Poisson process (having an underlying
Poisson distribution) with rate λt (and constant λ).

1. Inter-arrival times are τj+1−τj independent with a common exponential distribution

Prob(τj+1 − τj ≥ t) = 1− e−λt, t ≥ 0.

2. E[N(t)] = V[N(t)] = λt (Expectation and variance are both dependent on time t.)

3. Yj are i.i.d. and independent of N .

Under Assumption 4.3, J is called a compound Poisson process. For Yj we assume
a log-normal distribution (Assumption 4.4). This choice goes back to Merton (1976),
appointing tractability to the model as the product of a log-normal random variable is
again log-normal (compare also Glasserman (2004)).

Assumption 4.4. If Yj ∼ LN(µ, σ2) (so that log Yj ∼ N(µ, σ2)) then for any fixed n,

n∏
j=1

Yj ∼ LN(nµ, nσ2).

Since we are modelling under the risk neutral measure we need to show that the un-
derlying compound jump process is a martingale. Therefore we borrow the general
Property 4.1 from Glasserman (2004).

Property 4.1. A standard property of the Poisson process is that N(t) − λt (a ‘com-
pensated Poisson process’ with E[N(t) − λt] = 0) is a martingale. A generalisation of
this property is

N(t)∑
i=1

h(Yj)− λE[h(Y )]t,

being a martingale for i.i.d. Y , Y1, Y2 and any function h for which E[h(Y )] is finite.
Accordingly, the process

J(t)− λvt

is a martingale if v = E[Yj ]− 1.

Certain Properties 4.2 can be deduced from the defined jump process wrt to Yj and the
models of V (t) under Section 4.1.1, cf. (Glasserman, 2004).
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Property 4.2.

1. Yj are the ratios of the asset price before and after a jump and jumps are multiplica-
tive wrt V (t).

2. The process V (t) is continuous from the right.

3. By restricting Yj to be positive random variables, the process V (t) can never become
negative.

Remark 4.11. Properties 4.2 imply (Glasserman, 2004):
Right continuousness means

V (t) = lim
u↘t

V (u),

which contains the jump at time t and the value instantaneously before a jump takes on
the limit

V (t−) = lim
u↗t

V (u)

approaching from the left where t− denotes the time just before a potential jump. The
jump in V at τj is

V (τj)− V (τj−) = V (τj−)[J(τj)− J(τj−)] = V (τj−)(Yj − 1),

so that

V (τj) = V (τj−)Yj

which is equivalent to

log(V (τj)) = log(V (τj−)) + log(Yj).

This explains the Yj − 1 term (rather than simply Yj) in Definition 4.1. “Yj − 1 random
variable percentage change in the stock price if the Poisson event occurs”, cf. (Merton,
1976).

Consequential from Definition 4.1, Assumption 4.3, Assumption 4.4 and Properties 4.2
we can write

dJ(t) = (Y (t)− 1)dN(t) =
dN(t)∑
j=1

(Yj − 1),

as in models of V (t) under Section 4.1.1, which stands for the jump at time t. Also the
solutions to the SDEs of the generalised (with jump component) geometric Brownian
motions can be stated by applying Itô’s formula, namely

V (t) = V (0) exp(X(t))
N(t)∏
j=1

Yj ,

where:
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· Merton (1974), respectively model (4.1), with constant interest rate and volatility:

X(t) = (r − 1
2σ

2
V − λv)dt+ σV dWQV (t)

· Bates (1996), respectively model (4.2), with constant interest rate and stochastic
volatility:

X(t) = (r − 1
2 ς

2(t)− λv)dt+ ς(t)dWQV (t)

· Zhou (1997), respectively model (4.3), with stochastic interest rate and constant
volatility:

X(t) = (r(t)− 1
2σ

2
V − λv)dt+ σV dWQV (t)

· Zhou (2001), respectively model (4.4), with stochastic interest rate and volatility:

X(t) = (r(t)− 1
2 ς

2(t)− λv)dt+ ς(t)dWQV (t).

4.1.4.2. Simulation

We now turn our focus on producing efficient algorithms for the jump component. From
Section 4.1.3 we know that simulating with an underlying Poisson distribution (the non-
central chi-squared distribution relies on drawing from a Poisson distribution) is slow.
Evidently, the jump process of Definition 4.1 with Assumption 4.3 also draws random
numbers from a Poisson distribution. Glasserman (2004) offers two standard algorithms
(Algorithm 4.5 and Algorithm 4.6) in the context of the Poisson jump process which
are slightly modified. The major difference between both algorithms is that once we
simulate at fixed dates 0 = t0 < t1 < · · · < tn where the increment N(ti+1)−N(ti) has
a Poisson distribution with mean λ(ti+1− ti) and each increment is independent of each
other (Algorithm 4.5). The other simulates at jump times τ1, τ2, . . . and uses the fact
that these are exponentially distributed (Algorithm 4.6).

Algorithm 4.5 (Poisson process — simulating at fixed dates). Simulating from
ti to ti+1 consists of the following steps:

1. Generate N ∼ Po(λ∆t) with mean λ∆t where λ is the jump intensity and ∆t =
ti+1 − ti is the discretised time difference.

2. Generate log Yj ∼ N(µ, σ2) for j = {1, . . . , N} and compute

J(ti+1) =
N(ti+1)∑

j=N(ti)+1
log Yj ,

with Z ∼ N(0, 1).

Algorithm 4.6 (Poisson process — simulating jump times). Simulating at jump
times τ1, τ2, . . . consists of the following steps:
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1. Generate ∆t = Rj+1 from the exponential distribution Rj+1 ∼ Exp(λ) with mean
1/λ and set tj+1 = tj +Rj+1.

2. Generate log Yj+1 ∼ N(µ, σ2) and set J(ti+1) = log Yj+1.

Since ∆t gets replaced by Rj+1 in Algorithm 4.6 and consequently is dependent on λ,
it is not further pursued as we want to keep an adequate discretisation of dt for the full
process V (t) under our control. We shall concentrate on Algorithm 4.5 where further
advancements are made.
From an implementation and simulation perspective Algorithm 4.5 is inefficient as in
every loop a new random variable N needs to be drawn with mean λ∆t. This issue is
addressed by showing that the complete Poisson process up to time T , on the complete
interval [0, T ], with arrival times τ1, τ2, . . . , τn can be generated. The foundation for
this idea is the ‘order statistics property of the Poisson process’, generally formulated in
Theorem 4.4, with Lemma 4.1 (Mikosch, 2009). Corresponding proof of Theorem 4.4 is
stated in Mikosch (2009).

Lemma 4.1 (Joint density of order statistics). If the i.i.d. Xi, i = 1, . . . , n have
density f then the density of the vector (X(1), . . . , X(n)) is given by

fX(1),...,X(n)(x1, . . . , xn) = n!
n∏
i=1

f(xi)1{x1<···<xn}.

Theorem 4.4 (Order statistics property of the Poisson process). Consider the
Poisson process N = (N(T ))T≥0 with continuous a.e. positive intensity function λ and
arrival times 0 < τ1 < τ2 < · · · a.s. Then the conditional distribution of (τ1, . . . , τn)
given {N(T ) = n} is the distribution of the ordered sample (X(1), . . . , X(n)) of an i.i.d.
sample X1, . . . , Xn with common density λ(x)/µ(T ), 0 < x ≤ T :

(τ1, . . . , τn |N(T ) = n) d= (X(1), . . . , X(n)).

In other words, the left-hand vector has the conditional density

fτ1,...,τn(x1, . . . , xn |N(T ) = n) = n!
(µ(T ))n

n∏
i=1

λ(xi), 0 < x1 < · · · < xn < T

where µ is the linear mean value function.

In the case of a homogeneous Poisson process, with µ(T ) = λT , intensity λ > 0 and
arrival times τi, i = 1, . . . , n, the joint conditional density amounts to

fτ1,...,τn(x1, . . . , xn |N(T ) = n) = n!
Tn

, 0 < x1 < · · · < xn < T, (4.31)

resulting from Theorem 4.4. From Lemma 4.1 it follows that (4.31) resembles the joint
density of a uniform ordered sample X(1), . . . , X(n) of X1, . . . , Xn

iid∼ unif(0, T ) with

f(x1, x2, . . . , xn) = 1
Tn

, 0 < x1 < · · · < xn < T
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because each Xi has the density function 1/T and are independent. Conclusively, given
that the number of arrivals in [0, T ] is n, it follows that the arrival times τ1, . . . , τn are
jointly distributed as an ordered random sample of size n from a unif(0, T ) distribution.
It is also important to note that this property is independent of the jump rate λ. With
the result from Theorem 4.4 we can rewrite Algorithm 4.5 to Algorithm 4.7 (compare
also Korn et al. (2010, p. 312)).

Algorithm 4.7 (Poisson process). Simulating a Poisson process at rate λ up to time
T consists of following steps:

1. Determine number of event occurrences on the complete interval [0, T ], by:

a) Generate N(T ) ∼ Po(λT ) with mean λT .

b) Generate U1, . . . , UN(T )
iid∼ unif(0, T ).

c) Sort in ascending order to obtain the order statistics U(1) < U(2) < · · · < U(N(T ))
and set ti = U(i), i ∈ {1, . . . , N(T )}.

2. Generate log(Y1, . . . , YN(T )) ∼ N(µ, σ2) and assign to each corresponding ti, i =
{1, . . . , N(T )}. Compute the compound Poisson process (over all time points in the
interval [0,T]).

Evident from Table 4.3, a significant reduction in computation time (by a factor of over
400) can be achieved by Algorithm 4.7 for the compound Poisson process, as opposed to
Algorithm 4.5. Even when utilising Matlab’s loop avoidance functions, e.g. arrayfun()
the inferior Algorithm 4.5 could not be improved. An example of a Poisson process,
and its corresponding (homogeneous) Poisson process is depicted in Figure 4.6 where
five path realisations are generated, based on Algorithm 4.7. On the left picture solely
the arrivals are displayed while the right picture also includes the compounded jump
heights from a log-normal distribution. The interval on which the arrivals occur is
[0, 1] (one year with 252 business days) and the intensity is given by λ = 20, so that
E[N(T )] = λT = 20 · 1 = 20. Thereby, due to Theorem 4.4, the arrivals are distributed
according to an ordered sample from an i.i.d. unif(0, 1) sequence on each path. Lastly, we
seek to improve the drawing of random numbers from the Poisson distribution directly
wrt to generation time. Again we refer to Glasserman (2004) where an alternative
Algorithm 4.8 is given based on the inverse transformation method.

Algorithm 4.8 (Inverse transformation method — Poisson distribution). For
discrete distributions the inverse transformation method amounts to the sequential search
for the smallest n at which F (n) ≤ U , where F denotes the cumulative distribution
function and U ∼ unif(0, 1). In the case of a Poisson distribution, F (n) is calculated
as Prob(N = 0) + · · ·+ Prob(N = n); rather than calculating each term in this sum we
can use the relation Prob(N = k + 1) = Prob(N = k)λ/(k + 1). This leads to following
algorithm:

1. Set p = exp(−λ), F = p and N = 0.

2. Generate U ∼ unif(0, 1).

3. Compute loop

while U > F
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N = N + 1; p = pλ/N ; F = F + p;

return N.

We compare Algorithm 4.8 Matlab’s inbuilt random number generator function of
the Poisson distribution poissrnd(). Results are displayed in Table 4.4 where 100
repetitions were run to obtain the average time. Concluding, using Algorithm 4.8 one
can potentially further reduce the computation time in Table 4.3 of the already highly
efficient Algorithm 4.7 by a factor of 2.

Algorithm 4.5 Algorithm 4.7

Time (sec) 38.66 0.09

Table 4.3.: Comparison of Poisson process algorithms with T = 7 and ∆t = 0.004,
totalling 1,764 time points. 1,000 paths were generated for each algorithm in this exper-
iment.
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Figure 4.6.: Five paths of a Poisson process on interval [0, 1] and λ = 20, based on
Algorithm 4.7. Left: Arrivals of a Poisson process; Right: Compound Poisson process,
with µ = 0 and σ = 0.1.

Matlab Algorithm 4.8

Time (sec) 4.49 2.13

Table 4.4.: Comparison of Poisson random variables drawing with 100,000 numbers

4.1.5. Full Model

All model components are summarised here and notations are adapted to make these
components distinguishable. Thereby, we resort to the theoretical groundwork provided
by Section 3.7.3, Section 4.1.1, Section 4.1.2, Section 4.1.3 and Section 4.1.4. Sünderhauf
(2006) incorporates the following risk factors:
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Interest rate risk Fluctuating interest rates let bonds be exposed to certain market
risks. The balance sheet position values of Section 3.6 are also sensitive to interest
rate changes in the market, depending on the time to maturity and coupon rate. Due
to the current market situation with interest rates being close or below zero and other
model cirteria derived in Section B.2.5 we resort to the HW1F. HW1F is also the choice
of Sünderhauf (2006). In order to distinguish model parameters, the Hull-White model
parameters are denoted as κr (mean reversion speed) and σr (volatility level). The
Brownian motion is reformulated as dWQr (t).

Volatility risk The Cox-Ingersoll-Ross (CIR) model (Cox et al., 1985) in Section 4.1.3
is widely used for incorporating stochastic volatilities, see Hull and White (1988). It is
popular for modelling volatilities for the simple reason of its property of non-negativity.
We expand the notation of Section 4.1.3 to ςx(t) for x ∈ {OA,CP}. κςx denotes the
mean reversion speed, θςx the mean reversion level and σςx the volatility level being
the model parameters (> 0), whereas dWQςx (t) represents the Brownian motion, for
x ∈ {OA,CP}. Motivating stochastic time-dependent volatilities, as opposed to a
constant parameter, arises from the assumption that “also the volatilities of assets
returns are exposed to unexpected fluctuations”, cf. (Sünderhauf, 2006).

Credit risk The creditworthiness of a financial intermediate is expressed by the state
variable process Vx(t), for x ∈ {OA,CP}. The complete state variable process consists
of a interest rate, a variance and a jump process where the drift is adjusted by −λxvx
(see Section 4.1.1.1 for further details). The jump process is constructed by, firstly,
· a Poisson process, denoted by dNx(t) with intensity λx ≥ 0, for x ∈ {OA,CP} and

secondly,
· the corresponding jump size is log-normally distributed with ln [Yx(t)] iid∼

N
(
µYx , σ

2
Yx

)
, where vx = EQ [Yx(t)− 1] = exp

(
µYx + 0.5σ2

Yx

)
− 1 and σ2

Yx
≥ 0,

for x ∈ {OA,CP}.
In summary, the underlying jump-diffusion process accounts for marginal fluctuations
of a mortgage Pfandbrief bank’s asset values which are caused by ‘normal’ market
developments and exogenous economical conditions. Ad-hoc announcements may have
extraordinary high impacts on the bank’s asset values which are characterised by the
jump process. The arrival of important new information can consist of, for example,
a judicial decision or other legal amendments concerning the bank’s business, with
positive or negative outcome for a Pfandbrief bank. Furthermore, we are particularly
interested in the downside risk of assets (losses on the asset side will negatively affect
the liability side, see Section 3.6). This can be accomplished by assigning a negative
sign to the mean jump size parameter µYx .

Correlation risk The dependencies between given independent Brownian motions
dW̃Qr (t), dW̃QςOA(t), dW̃QςCP (t), dW̃QVOA(t) and dW̃QVCP (t) are also considered. For incor-
porating the dependencies between Brownian motions a Cholesky decomposition of the
correlation matrix R = LL>, being a positive semidefinite matrix, needs to be con-
ducted which is then multiplied by the Brownian motions. Also following Sünderhauf
(2006) the processes dNx(t) and Yx(t) are independent as well as dW̃Qr (t), dW̃Qςx (t)
and dW̃QVx(t) with dNx(t) and Yx(t), for x ∈ {OA,CP}.

The full model, under the risk neutral measure Q with the cash account numeraire, in a
vectorised formulation results to
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d


r(t)
ς2
OA(t)
ς2
CP (t)
VOA(t)
VCP (t)

 =


[θr(t)− κrr(t)]

κςOA
[
θςOA − ς2

OA(t)
]

κςCP
[
θςCP − ς2

CP (t)
]

VOA(t) [r(t)− λOAvOA]
VCP (t) [r(t)− λCP vCP ]

 dt +



σr

σςOA

√
ς2
OA(t)

σςCP

√
ς2
CP (t)

VOA(t)ςOA(t)
VCP (t)ςCP (t)


◦


dWQr (t)

dWQςOA(t)
dWQςCP (t)
dWQVOA(t)
dWQVCP (t)

+


0
0
0

VOA [YOA(t)− 1] dNOA(t)
VCP [YCP (t)− 1] dNCP (t)

 (4.32)

where ◦ represents the Hadamard product and


dWQr (t)

dWQςOA(t)
dWQςCP (t)
dWQVOA(t)
dWQVCP (t)

 = chol(R)dt ·


dW̃Qr (t)

dW̃QςOA(t)
dW̃QςCP (t)
dW̃QVOA(t)
dW̃QVCP (t)

 ,

with

R =


1 ρr, ςOA ρr, ςCP ρr, VOA ρr, VCP

ρςOA, r 1 ρςOA, ςCP ρςOA, VOA ρςOA, VCP
ρςCP , r ρςCP , ςOA 1 ρςCP , VOA ρςCP , VCP
ρVOA, r ρVOA, ςOA ρVOA, ςCP 1 ρVOA, VCP
ρVCP , r ρVCP , ςOA ρVCP , ςCP ρVCP , VOA 1

 .

Note that for each state variable process the jump process needs to be added, i.e.
[Yx(t)− 1] dNx(t) for x ∈ {OA,CP}.
Concluding, we state which methods have proven to be advantageous, so far, in simulat-
ing (4.32) appropriately and we propose to use. For the interest rate component we can
simulate the HW1F with the exact solution of (3.22) generating normally distributed
short rates as defined in (3.18) at no noteworthy computational cost. The jump compo-
nent is best simulated under Algorithm 4.7 hugely reducing the computational burden,
compared to the conventional method of Algorithm 4.5. Optionally, one can additionally
enhance Algorithm 4.7 by making use of Algorithm 4.8 depending on the software used.
When simulating the CIR1F model the choice of algorithm is a bit ambiguous due to
the trade off between accuracy and speed. However, two methods stand out, namely the
‘Milstein-Implicit’ and ‘Quadratic-Exponential’ schemes. When one prefers speed over
accuracy then ‘Milstein-Implicit’ is the better option, otherwise, ‘Quadratic-Exponential’
represents a rational choice wrt to speed and accuracy.

4.2. Alternative Measures

It may become desirable to represent model (4.32) in different measures, as modelling
narratives might change. We will derive SDEs of (4.32) in

· T2-forward (martingale) measure (QT2), and
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· real-world (objective) measure (P).

In general, changes of measure in continuous time affects the drift part of the SDE.
Thus, a suitable numeraire needs to be found for the drift term which is represented
by the HW1F interest rate model (Section 3.7.3). In order to find this numeraire,
we make use of Girsanov’s Theorem B.4. Note that under Assumption 4.1 the jump
component (Section 4.1.4) is unaffected by the change of measure since the jump process
is independent from the market. Consequently, parameters of the jump amplitude and
frequency are the same under Q, QT2 and P.
For illustration purposes, we consider the three dimensional stochastic process where
the dynamics of the processes r(t), ς2

x(t) and Vx(t) can also be expressed in terms of
three independent Brownian motions W̃Qr (t), W̃Qςx (t) and W̃QVx(t) with x ∈ {CP,OA}
(Cholesky decomposition) where

R =

 1 ρr, ςx ρr, Vx
ρςx, r 1 ρςx, Vx
ρVx, r ρVx, ςx 1


=

l11 0 0
l21 l22 0
l31 l32 l33


l11 l12 l13

0 l22 l23
0 0 l33


= LL>,

with

l11 = 1,

l22 =
√

1− ρ2
ςx, r,

l33 =

√√√√√1−

ρ2
Vx, r

+ 1√
1− ρ2

ςx, r

(ρVx, ςx − ρVx, rρςx, r)


and

l21 = ρςx, r

l31 = ρVx, r

l32 = 1√
1− ρ2

ςx, r

(ρVx, ςx − ρVx, rρςx, r)

so that

dWQr (t) = dW̃Qr (t),

dWQςx (t) = ρςx, rdW̃Qr (t) +
√

1− ρ2
ςx, rdW̃

Q
ςx (t)

dWQVx(t) = ρVx, rdW̃Qr (t) + 1√
1− ρ2

ςx, r

(ρVx, ςx − ρVx, rρςx, r)dW̃Qςx (t) +

√√√√√1−

ρ2
Vx, r

+ 1√
1− ρ2

ςx, r

(ρVx, ςx − ρVx, rρςx, r)

dW̃QVx(t).

(4.33)
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This decomposition makes it easier to perform a measure change where the above de-
pendent Brownian motions (4.33) are inserted in our underlying state variable process
of (4.32) which is reformulated to

dr(t) = (θr(t)− κrr(t))dt+ σrdWQr (t)

dς2
x(t) = κςx(θςx − ς2

x(t))dt+ σςx

√
ς2
x(t)dWQςx (t)

dVx(t) = Vx(t)
[
(r(t)− λxvx)dt+ ςx(t)dWQVx(t) + (Yx(t)− 1)dNx(t)

]
.

(4.34)

Remark 4.12. The complete procedure can easily be extended to the five dimensional
case of (4.32) for deriving the forward and real-world measures. In the following only
the tree-dimensional cases are considered (for illustration purposes).

4.2.1. Forward Measure

Suppose VCP (T2, T2) is a FT2-measurable random variable of some future cover pool
value. Further, we restrict the σ-field to FT1 . Then according to Definition B.14 in
Appendix B.2.2 we have

dQT2

dQ = P (T2, T2)B(0)
P (0, T2)B(T2) =

exp
(
−
∫ T2

0 r(u)du
)

P (0, T2)

and under the T2-forward (martingale) measure we can rewrite the structural asset
pricing formula (3.5) to

VCP (T1, T2) = BT1EQ
(
B−1
T2
VCP (T2, T2)

∣∣∣FT1

)
= P (T1, T2)EQT2

(VCP (T2, T2) | FT1) ,

with T1 ≤ T2. Computing the expectation under the forward measure allows us to
discount by multiplying with P (T1, T2). The apparent result simplifies matters since
discounting now is of deterministic nature, thus simulating a discount factor as it is the
case in the risk-neutral setting (where the numeraire is a bank account process as in
Definition B.5), becomes unnecessary. The numeraire, in form of the discount factor
P (T1, T2), may then be observed in the market.
Following Brigo and Mercurio (2007) we can define a process x,

dx(t) = −κrx(t)dt+ σrdWQr (t), x(0) = 0,

and by integrating we have for each s < t,

x(t) = x(s)e−κr(t−s) + σr

∫ t

s
e−κr(t−u)dWQ(u),

so that with (3.21), (3.20) is the sum of

r(t) = x(t) + α(t)
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for each t. Furthermore, we borrow the following solution of the integral∫ T2

t
x(u)du = 1− e−κr(T2−t)

κr
x(t) + σr

κr

∫ T2

t

(
1− e−κr(T2−u)

)
dWQ(u) (4.35)

from Brigo and Mercurio (2007). By denoting by fM (0, T2) as the instantaneous forward
rate at time 0 for a maturity T2 implied by the term structure T2 → PM (0, T2) we also
have

α(T2) = fM (0, T2) + σ2
r

2κ2
r

(
1− e−κrT2

)2
, (4.36)

in order to exactly fit the observed term structure, see also (3.21). Having all ingredients
we need, with (4.35) and (4.36), we can derive the change of measure from risk neutral
to T2-forward measure, based on Brigo and Mercurio (2007). Applying the probability
measure, defined by the Radon-Nikodym derivative above, gives us

dQT2

dQ =
exp

(
−
∫ T2

0 r(u)du
)

P (0, T2)

=
exp

(
−
∫ T2

0 x(u)du−
∫ T2

0 α(u)du
)

P (0, T2)

= exp
(
−σr
κr

∫ T2

0

(
1− e−κr(T2−u)

)
dW̃Qr (u)−

∫ T2

0

σ2
r

2κ2
r

(
1− e−κru

)2 du
)
·

exp
(
−
∫ T2

0 fM (0, u)du
)

P (0, T2)

= exp
(
−σr
κr

∫ T2

0

(
1− e−κr(T2−u)

)
dW̃Qr (u)−

∫ T2

0

σ2
r

2κ2
r

(
1− e−κr(T2−u)

)2
du
)
, (4.37)

as with t = 0 it follows that x(0) = 0 and from Definition B.13 we know that PM (0, T2) =
exp

(
−
∫ T2

0 fM (0, u)du
)
. Further, substitution of (1− e−κru)2 with

(
1− e−κr(T2−u)

)2

takes place in the last integral (not affecting the integration outcome).
Girsanov’s Theorem B.4 yields the independent Brownian motions W̃QT2

r , W̃QT2
ςx and

W̃
QT2
Vx

, defined by

dW̃QT2
r (t) = dW̃Qr (t) + σr

κr

(
1− e−κr(T2−t)

)
dt

= dW̃Qr (t) + σrBr(t, T2)dt

dW̃QT2
ςx (t) = dW̃Qςx (t)

dW̃QT2
Vx

(t) = dW̃QVx(t).

(4.38)
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Finally, by inserting (4.33) and (4.38) into (4.34) the joint dynamics of r, ς2
x and Vx

under QT2 are

dr(t) = (θr(t)− κrr(t)− σ2
rBr(t, T2))dt+ σrdW

QT2
r (t),

dς2
x(t) =

[
κςx(θςx − ς2

x(t))− σrBr(t, T2)ρςx rσςx
√
ς2
x(t)

]
dt+

σςx

√
ς2
x(t)dWQT2

ςx (t),
dVx(t) = Vx(t) [r(t)− λxvx − σrBr(t, T2)ρVx rςx(t)] dt+

Vx(t)ςx(t)dWQT2
Vx

(t) + Vx(t)(Yx(t)− 1)dNx(t).

(4.39)

4.2.2. Real-World Measure

Simulating under the real-world measure is useful when real-world based assessments
are desired which can be obtained individually by a Pfandbrief bank. The aim is to
uncover real-world (or actual) probabilities of the Pfandbrief, since under the risk-neutral
valuation default probabilities are overestimated. The main reason for this deviation is
that risk-neutral probabilities compensate investors for their unobservable aversion to
bad outcomes. With the help of Girsanov’s theorem (Theorem B.4) we can derive a SDE
under the real-world measure P from the risk-neutral measure Q by applying a change
of measure to the drift term. Thereby, we set dWQ(t) = dWP(t)−ϕ(t) where ϕ denotes
the market price of risk4. With the findings of Section B.2.4.2 for the HW1F model we
can reformulate the independent Brownian motions W̃Pr , W̃Pςx and W̃PVx at first, defined
by

dW̃Pr (t) = dW̃Qr (t) + ϕr(t)dt
dW̃Pςx (t) = dW̃Qςx (t)
dW̃PVx(t) = dW̃QVx(t)

(4.40)

By inserting (4.33) and (4.40) into (4.34) the joint dynamics of r, ς2
x and Vx under P

are

dr(t) = [θr(t)− (κr + σrϕ)r(t)]dt+ σrdWPr (t)

dς2
x(t) =

[
κςx(θςx − ς2

x(t))− ϕr(t)ρςx rσςx
√
ς2
x(t)

]
dt+ σςx

√
ς2
x(t)dWPςx (t)

dVx(t) = Vx(t) [r(t)(1− ϕρVx rςx(t))− λxvx] dt+
Vx(t)ςx(t)dWPVx(t) + Vx(t)(Yx(t)− 1)dNx(t).

(4.41)

4.3. Monte Carlo Simulation

Due to the continuous development of computers and, therefore, computational power
and memory storage, it has become feasible to compute complex problems via Monte
Carlo simulations. Moreover, in the area of finance this approach has become more

4Note the following relationship between the market price of risk (ϕ) the Girsanov kernel (g): ϕ(t) =
−g(t).
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4.3. Monte Carlo Simulation

and more significant over, at least, the past three decades. Particularly, in the case of
underlying models without closed form solutions, practically, no other real alternatives
exist to Monte Carlo. A first application of Monte Carlo, specifically, in the field of
(corporate) finance is attributed to Hertz (1964). In this work we shall utilise Monte
Carlo in the form of

· nested Monte Carlo (NMC), and

· least square Monte Carlo (LSMC).

4.3.1. Nested Monte Carlo (NMC)

For obtaining the asset (A) present values at maturity T1 of model (4.32), denoted
by formulas (3.5) and (3.8) a nested Monte Carlo (NMC) simulation is conducted (as
depicted in Figure 4.7). Here l paths are generated until maturity of liabilities T1
and from there, for each ith path another m paths until maturity of assets T2. The
conditional expectation (3.5) can then be easily computed by calculating the mean after
discounting by the risk-free interest rate. Note that the nested case of Figure 4.7 only
applies to the cover pool (CP).
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Figure 4.7.: Illustration of a nested Monte Carlo simulation setting. The other asset
(OA) positions mature at time T1 and the cover pool (CP) positions mature at time T2,
with i = 1, . . . , l and j = 1, . . . ,m being the number of paths and t = 0, . . . , T1, . . . , T2,
with 0 ≤ T1 ≤ T2 being the time index.

4.3.1.1. Application

A stylised example of the complete procedure, including the modelling of the liability
side, of applying the structural model in a NMC setting can be seen in Example 4.2.
It is stylised in the sense that no real data of a Pfandbrief bank’s balance sheet or
according to §28 PfandBG is taken into account and parameters are chosen with the
basic scenario set defined by Sünderhauf (2006) in Table C.14. So far the application
can be summarised in three steps in order to obtain information on creditworthiness of
the Pfandbrief which are graphically accompanied in Example 4.2. Here, as depicted
in Figure 4.10 of Example 4.2, no defaults occurred for the Pfandbrief (PB) position,
most other liability (OL) creditors are fully paid out and equity (EQ) also receives some
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4. Structural Model

incoming cash flows (compare also the waterfall default scheme of Figure 3.2). Ideally,
this is how it should be from an investor’s perspective. However, at a later stage we
shall also consider real data and apply different scenarios by stressing the parameter set
of Table C.14 to selected Pfandbrief banks.

Example 4.2 (Application of structural model (stylised)). Applying the struc-
tural model (in a NMC setting) consists of three basic steps:

1. Simulate model (4.32) with basic scenario parameter set of Table C.14. Therefore,
we choose l = 10, 000 and m = 100 numbers of paths (see Figure 4.7) so that we
hold a vector of 10,000 at T1 values for VCP (T1, T2) and VOA(T1). For illustration
purposes the depiction of the simulated paths is thinned out to l = 10 and m = 3 in
Figure 4.8. Shown as dashed red lines, we set the nominal NCP = 1 and simulate
VOA(T1) only to T1.
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Figure 4.8.: NMC simulation of VCP (t) and VOA(t) in model (4.32) with t ∈ [0, T2]

2. Apply formulas (3.5) and (3.8). In T1 (Figure 4.9) we obtain the joint asset dis-
tribution with marginals cover pool (VCP (T1, T2)) and other assets (VOA(T1)).
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Figure 4.9.: Joint asset distribution with marginals cover pool (3.5) and other assets
(3.8) at time T1

3. Apply formulas (3.11), (3.14) and (3.15), with NPB = 1 and NOL = 1. In T1
(Figure 4.10) the desired output of the liability present values are received for further
default assessments.
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Figure 4.10.: Liability present values of Pfandbrief (3.11), other liabilities (3.14) and
equity (3.15) at time T1
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4.3.1.2. Code Efficiency

NMC, also known as Monte Carlo on Monte Carlo, may become numerically cumber-
some, evident from Figure 4.7. In general, but even more so in a nested path generation
setting, it is crucial constructing efficient simulation environments. We already have sig-
nificantly enhanced algorithms regarding the CIR1F model (Section 4.1.3.2) and jump
process (Section 4.1.4.2) from a mathematical standpoint. Additionally, we will now give
some insights on efficient programming, respectively an object oriented implementation
yielding satisfactory results wrt computation times and code readability. We shall il-
lustrate the object oriented implementation proposal by applying a NMC simulation to
the CP position (since only CP is simulated until T2). For reasons of clarity and com-
prehensibility, the most important code snippets are presented in an aggregated manner
rather than displaying the complete source code, due to the complexity of model (4.32).
Thus, the pseudo code in Matlab’s programming language is not executable. Firstly,
we can easily expand the preparatory work of Appendix A.2 to an additional dimension
which is required for the interval [T1, T2] (compare Figure 4.7). We define an array of
dimension ((T2−T1) ∗ 1

∆t ×m× l) for each process object objIR (r(t)), objVola (ς2
CP (t)),

objJump (NCP (t)) and objStateVar (VCP (t)).
For X ∈ {IR, Vola, StateVar} some preparations need to be made first. Drawing standard
normal random numbers of dimension ((T2−T1)∗ 1

∆t×m× l) and computing the Wiener
process increments of objIR, objVola and objStateVar prior to any time costly computa-
tions (e.g. loops) will further enhance the implementation. For simplifying matters we
assume that the Brownian motions of model (4.32) are independent for now.
1 % Preallocate storage
2 procX = nan(nTimeSteps,nPathsNested,nPaths);
3 % Draw random numbers and compute Wiener increments
4 wienerX = randn(nTimeSteps,nPathsNested,nPaths)*deltat;

Similarly, for the objJump process we draw over the complete interval [T1, T2] (compare
Algorithm 4.7), resulting in computational gains as stated in Table 4.3.
1 % Draw random numbers
2 poissRN = poissrnd(intensity*(T2 − T1),nPathsNested,nPaths);

An object oriented programming implies that each process, objIR, objVola, objJump and
objStateVar is wrapped in its own function where the processes are generated. Thereby,
each function goes through the basic steps of preallocating storage, drawing random
numbers and assigning the initial values of each process before any computation of the
respective model are handled. Exemplary, this is shown by means of the objIR object
(compare also Example A.2 in Appendix A.2.2).
1 function irProc = objIR(nTimeSteps,nPathsNested,nPaths,initialValue,deltat

,...)
2 % Preallocate storage
3 irProc = nan(nTimeSteps,nPathsNested,nPaths);
4 % Assign initial value
5 irProc(1,:,:) = repmat(initialValue',nPathsNested,1);
6 % Draw random numbers and compute Wiener increments
7 wienerIR = randn(nTimeSteps,nPathsNested,nPaths)*deltat;
8

9 % Generate short rates (here Euler discretisation)
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10 for i = 2:nTimeSteps
11 irProc(i,:,:) = irProc(i−1,:,:) + ...;
12 end
13

14 % eof
15 end

For the state objStateVar the situation is slightly different, as it depends on the processes
objIR, objVola and objJump which can be generated independently of each other. A for

loop over time is not necessary for objStateVar, as shown for the simplified Example A.3
in Appendix A.2.2.
1 function stateVarProc = objStateVar(procIR,procVola,procJump,...)
2 % Preallocate storage
3 stateVarProc = nan(nTimeSteps,nPathsNested,nPaths);
4 % Assign initial value
5 stateVarProc(1,:,:) = repmat(log(initialValue)',nPathsNested,1);
6 % Draw random numbers
7 wienerStateVar = randn(nTimeSteps,nPathsNested,nPaths)*deltat;
8

9 % Generate state variables
10 stateVarProc(2:end,:,:) = ...;
11 stateVarProc = exp(cumsum(stateVarProc));
12

13 % eof
14 end

Lastly, a code parallelisation5 is suggested for further code optimisation. The parfor loop
allows to parallelise any statements contained within. Since objIR, objVola and objJump

are independent we are able to call the underlying processes in an efficient parallelisation
environment.
1 % Call process objects via parallelised loop
2 parfor loopvar = 1:3
3 % Call interest rate object
4 procIR = objIR(...);
5 % Call volatility object
6 procVola = objVola(...);
7 % Call jump object
8 procJump = objJump(...);
9 end

Remark 4.13. Above implementation proposal can easily be alternated so that correlated
Brownian motions can be modelled too. Simply, draw the standard normal random num-
bers outside of each function of the objects objIR, objVola and objStateVar. Compute
the Cholesky decomposition of the correlation matrix and multiply with the Brownian
increments at each time step t. Then the correlated ((T2 − T1) ∗ 1

∆t × m × l) dimen-
sional Brownian increments, wienerCorrIR, wienerCorrVola and wienerCorrStateVar, can
be passed on as additional function argument of the corresponding object, for example:
1 function volaProc = objVola(...,wienerCorrVola,...)
2 ...

5Note that parallelisation depends on Matlab’s Parallel Computing ToolboxTM.
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3 % eof
4 end

Concluding, from above example it becomes evident that combining the findings of Ap-
pendix A.2 with an object oriented implementation yields an efficient programming style
wrt functional and modular design, readability and, most importantly, computational
time. Alternatively, one could also implement (4.32) in one big loop over time. This,
however would not take advantage of complete vectorisation nor parallelisation tech-
niques. Furthermore, object oriented programming (OOP) allows one to recycle any
object to be used in any other type of model, setting or framework.

4.3.2. Least Square Monte Carlo (LSMC)

An alternative to the NMC simulation above (Section 4.3.1) is the least square Monte
Carlo (LSMC) approach which is the method utilised by Sünderhauf (2006). The main
advantage is that it is only necessary to simulate l paths for the complete interval [0, T2]
(compare Figure 4.7). However, being an approximation over the nested paths, a loss
in accuracy has to be accounted for. An example of the complete procedure and more
details on the LSMC method itself is given in the seminal work of Longstaff and Schwartz
(2001).
In the case of modelling a bank’s default in the one-period setting and having a Marko-
vian process, Equation (3.5) is embedded in the general regression equation

EQ
[
BT1

BT2
min [NCP ;VCP (T2, T2)]

∣∣∣∣XT1

]
︸ ︷︷ ︸

E[Y |XT1 ]

=
p∑

k=0
βkfk(VCP (T1, T1), r(T1), ς2

CP (T1))︸ ︷︷ ︸
C(·)

, (4.42)

where fk(·), k = 0, . . . , p are the predictor functions with VCP (T1, T1), r(T1) and ς2
CP (T1)

as arguments (see also Figure 4.11). Subsequently, one minimises the residuals, being
the difference of the dependent variable (Y ∈ R) and independent variables (XT1 ∈
Rp+1)

min
βk

∥∥∥ BT1

BT2
min [NCP ;VCP (T2, T2)]−

p∑
k=0

βkfk(VCP (T1, T1), r(T1), ς2
CP (T1))

∥∥∥2

2
. (4.43)

In more detail, we model the conditional expectation E[Y |XT1 ] of Y (dependent on
covariates XT1), thus the expectation is a function of covariates denoted by E[Y |XT1 ] =
C(XT1) (see Equation (4.42)). The dependent variable Y can be decomposed in
Y = E[Y |XT1 ]+ε = C(XT1)+ε where in the (classical) linear regression model the resid-
uals ε (non explainable deviation) are normally distributed with E[εi] = 0 and V[εi] = σ2

for i = 1, . . . , l observations. Further, the (least squares) minimisation problem of the
residuals with βk ∈ R can be formulated as min

βk
‖Y − C(XT1)‖22 (see Equation (4.43)),

since ε = Y − C(XT1).
Once each β̂k, k = 0, . . . , p has been determined, the conditional expectation E[Y |XT1 ]
of (4.42) can easily be computed. The vector of fitted values can be computed
with ŷ =

∑p
k=0 β̂kfk(VCP (T1, T1), r(T1), ς2

CP (T1)) yielding the desired cover pool val-
ues V LSMC

CP (T1, T2). So far we have not made any assumptions for fk(·), k = 0, . . . , p.
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Longstaff and Schwartz (2001) resorts to basis functions, here referring to factored poly-
nomial equations in a linear function, as a suitable choice. Clearly, the overall success of
the regression-based approach depends on the choice of the constellation of the predictor
fk(·), k = 0, . . . , p with its basis functions. This issue shall be addressed in what follows
and can be regarded as extensions to the LSMC approach in Sünderhauf (2006).
Expected improvements of the overall LSMC fit may be achieved by resorting to

1. higher polynomial degrees and additional variables for fk(·), k = 0, . . . , p,

2. alternative basis functions fk(·), k = 0, . . . , p, or

3. alternative regression methods,

or a combination of all. To test these proposals, a robustness analysis of the LSMC
method is conducted in the following. Thereby, the obtained LSMC values from Equation
(4.43) are compared to the values from the NMC simulation which are interpreted as
‘true’ values at time T1. The

· root mean squared error (RMSE)
(

1
l

∑l
i=1

(
V NMC
i CP (T1, T2)− V LSMC

i CP (T1, T2)
)2
)1/2

and

· coefficient of determination (R2) from regressing the LSMC values to the NMC values
with V NMC

CP (T1, T2) = β0 + β1V
LSMC
CP (T1, T2) + ε

are calculated as the reference measures.
The procedure is as follows. The full NMC is conducted as in Figure 4.7 with l = 10, 000
and m = 100, generating 1,000,000 paths in total. At T2, 10,000 paths are randomly
drawn from the 1,000,000 paths simulated, on which the LSMC method is applied. Sub-
sequently, the LSMC values are compared to the ‘true’ NMC values at T1 (which are
discounted from T2 in a previous step). Initially, computations are based on the basis
parameter set defined in Table C.14. In order to obtain additional insight into the
behaviour of the underlying LSMC methods, variance and jump parameters are stressed
which are given in Table 4.5.
Regarding the used regression method, in general, a removal procedure is implemented.
If covariates with linear dependence are present then these are simply filtered and the
corresponding coefficients are set to zero, else a standard linear regression is conducted.
This way the effected covariates are removed when multiplying with the vector of co-
efficients. This procedure is based on the orthogonal-triangular decomposition and is
referred to ‘removal of covariates’ throughout the analysis, if not stated otherwise.

ς2
CP (0) θςCP κςCP σςCP λCP

Stressed I 0.06 0.06 - - 1
Stressed II 0.09 0.09 1 1 1

Table 4.5.: Stressed sets for variance and jump process parameters, while all other
parameters in Table C.14 remain unchanged.

119



4. Structural Model

0 0.2 0.4 0.6 0.8 1

V
CP

(T
1
,T

2
)

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

r(
T 1

)

0 0.2 0.4 0.6 0.8 1

V
CP

(T
1
,T

2
)

0

1

2

3

4

5

6

2
(T

1
)

0 0.2 0.4 0.6 0.8 1

V
CP

(T
1
,T

2
)

0

10

20

30

40

50

60

70

80

90

100
V

C
P

(T
1
,T

1
)

Figure 4.11.: Cover pool present values VCP (T1, T2) vs covariates; top left: VCP (T1, T2)
vs r(T1); top right: VCP (T1, T2) vs ς2(T1); bottom middle: VCP (T1, T2) vs VCP (T1, T1)

4.3.2.1. Polynomial Degrees and Variables

The power basis function Wn(x) = xn with n = 2 is the proposed polynomial6 of Sün-
derhauf (2006) where V and r are inserted as arguments7. The suggested solution is
analysed wrt the NMC values and compared to the following adjustments. Arising from
the general regression formulas (4.42) and (4.43) a third variable, the stochastic variance
(ς2), is additionally considered in the regression, in conjunction with higher polynomial
degrees as basis functions. Each regression model has an intercept denoted by c and
interaction combinations of the corresponding input variables (V, r) or (V, r, ς2) are al-
lowed.
At first a benchmark computation based on the basic parameter set adopted from Sün-
derhauf (2006) in Table C.14 is performed. Figure 4.12 depicts the LSMC perfor-
mances of Wn(x), in the form of RMSE (left side) and R2 (right side) with n = 1, . . . 5,
where also the sets of x = {V, r} and x = {V, r, ς2} are compared. As expected the
LSMC fit improves with higher degree and by inserting the stochastic variance which
achieves an (almost) parallel shift in performance.
Next, a direct comparison of W2(V, r) (model proposed by Sünderhauf (2006)) and
W5(V, r, ς2) (best model so far) to the NMC values in Figure 4.13 is conducted. Ar-
guably, the differences between W2(V, r) and W5(V, r, ς2) may seem negligible at first

6The polynomial degree n is to be interpreted in an accumulated sense, e.g. if n = 2 this also includes
the terms 0 and 1, i.e. all terms up until n = 2, if not explicitly stated otherwise.

7For the sake of brevity a simpler notation, omitting CP and t = T1, is used.
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4.3. Monte Carlo Simulation

sight. However, when deviating slightly from the basis parameter set given in Ta-
ble C.14 by stressing the variance and jump parameters to ‘Stressed I’ from Table 4.5,
it becomes more evident in Figure 4.14 that W2(V, r) cannot sufficiently match the
‘true’ NMC values whileW5(V, r, ς2) remains widely insensitive to the parameter change.
Larger deviations to the ‘true’ values can be explained by the higher fluctuations in the
generated simulation paths which largely can be compensated for by considering the
corresponding variance, ς2, as additional explanatory variable in the regression (4.43).
Concluding, basis functions of higher polynomial degree perform better than lower. Cer-
tainly, by increasing the polynomial degree (n → ∞) one might eventually receive a
perfect fit. Moreover, taking the variance variable (V, r, ς2) into account, instead of only
two (V, r), optimises the overall fit.
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Figure 4.12.: LSMC results of Wn(x) for n = 1, . . . , 5, x = {V, r} for the two variable
case and x = {V, r, ς2} for the three variable case, with basis parameter set in Table C.14
and l = 10, 000 simulation paths.
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Figure 4.13.: LSMC results of W2(V, r) and W5(V, r, ς2) compared to NMC, with basis
parameter set in Table C.14 and l = 10, 000 simulation paths.

4.3.2.2. Basis Functions

The best-known and widely used basis functions are, apart from the power function
(Wn(x)) in Section 4.3.2.1, Laguerre, Legendre, Hermite and Chebyshev which are in-
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Figure 4.14.: LSMC results of W2(V, r) and W5(V, r, ς2) compared to NMC based on
the basis parameter set in Table C.14 with stressed parameters ς2

CP (0) = θςCP = 0.06
and λCP = 1 (‘Stressed I’ set of Table 4.5) and l = 10, 000 simulation paths.

troduced in Table 4.6 in the Rodrigues representation:

fn(x) = 1
ang(x)

dn

dxn [p(x) (g(x))n] .

Further, the polynomials of Table 4.6 are weighted by exp(−x/2), as proposed by
Longstaff and Schwartz (2001)). For example, the first three Laguerre polynomials
amount to

P0(x) = exp
(
−x2

)
P1(x) = exp

(
−x2

)
(1− x)

P2(x) = exp
(
−x2

)(
1− 2x+ x2

2

)
.

In Section 4.3.2.1 we established that the three variable case in general performs better.
Therefore, the basis function comparisons are based on x = {V, r, ς2}. The weighted
polynomial functions of Table 4.6 improve the regression fit compared to the simple
power functions. However, no significant differences can be seen between the basis
functions of Table 4.6 (all functions lie on each other).
Concluding, the basis functions in Table 4.6 manage to obtain fairly reasonable results
already for low polynomial degrees, so that a less complex regression function (less
covariates) for Equation (4.43) seems feasible. For example,W5(x) has a similar outcome
as P2(x), with x = {V, r, ς2}.

4.3.2.3. Regression Methods

Multicollinearity poses an issue wrt the usage of basis functions as linear dependence
arises, especially with high n. Repeating similar transformations of the underlying vari-
able will eventually yield a singular regressor matrix. Without addressing this issue the
regression can lead to distorted (very large) coefficients, resulting in completely different
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4.3. Monte Carlo Simulation

Family fn(x) an p(x) g(x)

Laguerre Pn(x) (−1)n2nn! 1 1− x2

Legendre Ln(x) n! e−x x

Hermite Hn(x) (−1)n e−x2 1

Chebyshev Tn(x) (−1)n2n Γ(n+ 1
2 )√

π
(1− x2)−1/2 1− x2

Table 4.6.: Basis functions in the Rodrigues representation, compare Moreno and Navas
(2003).
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Figure 4.15.: LSMC results of various basis functions (Wn(x), Pn(x), Ln(x), Hn(x)
and Tn(x)) for n = 1, . . . , 5 and x = {V, r, ς2} for the three variable case, based on the
basis parameter set in Table C.14 with stressed parameters ς2

CP (0) = θςCP = 0.06 and
λCP = 1 (‘Stressed I’ set of Table 4.5) and l = 10, 000 simulation paths.

predicted values than expected, thus the LSMC approximation might fail. A desired
solution would be to establish a regression procedure guaranteeing:

1. The method yields a stable solution and is easy to use.

2. Any collinearity can be precluded.

3. The optimal solution is found for any given set of covariates (dependent on the
inserted variables, basis functions and number of terms), while at the same time
keeping the complexity of the regression equation low.

Here are four proposed solutions, amongst others, of handling high correlation in between
covariates (for a more detailed description, see Draper and Smith (1998), Fahrmeir et al.
(1996) and Fahrmeir et al. (2013)).

Singular value decomposition (SVD) regression Here the design matrix is decom-
posed into two orthogonal and one diagonal matrix. One needs to find the low rank
approximation in terms of the SVD of the design matrix. This method is used by
Moreno and Navas (2003) to overcome the cases where singular matrices are existent.

Principle component regression (PCR) An also widely used technique, where the re-
gressors are orthogonally transformed in space while at the same time maximising
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4. Structural Model

the variance described by the covariates and resulting in independent variables, called
principle components.

Partial least squares regression (PLSR) Similarly to PCR, it projects the covariates
into a new space, but additionally does this with the predictor variable, by finding the
direction for explaining the maximum of variance.

Stepwise regression Starting with an initial model the stepwise regression will add or
remove covariates incrementally to then compare the explanatory power of the previous
with the updated model. This is done by comparing the F-statics, Akaike information
criterion (AIC) or Bayesian information criterion (BIC), in each step.

Now it is the objective to compare above regression techniques on the Laguerre
Pn(V, r, ς2) function (from the results in Section 4.3.2.2, any of the functions in Ta-
ble 4.6 would be suitable). Therefore, the variance process parameters are stressed
with ‘Stressed II’ from Table 4.5. The visual results are given in Figure 4.16 where
the methods ‘Removal’, ‘SVD’, ‘PLSR’ and ‘PCR’ do not differ to a large amount, so that
any would deliver a fairly reasonable fit8. As can be inferred from Figure 4.16 the gain
in accuracy for n > 2 is neglectable for the regression methods other than stepwise. The
stepwise regression does not improve vastly for n > 1. A direct comparison of P2(V, r, ς2)
with removal method and P1(V, r, ς2) with stepwise method is given in Figure 4.17 and
their correspondong regression formulas in Table 4.7. It is worth while to also have
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Figure 4.16.: LSMC results of various regression methods (‘Removal’, ‘SVD’, ‘PLSR’,
‘PCR’ and ‘Step’), with Pn(x) for n = 1, . . . , 5 and x = {V, r, ς2} for the three variable
case, based on the basis parameter set in Table C.14 with stressed parameters ς2

CP (0) =
θςCP = 0.09 and κςCP = σςCP = λCP = 1 (‘Stressed II’ set of Table 4.5) and l = 10, 000
simulation paths.

a closer look at computation times of all regression methods. Table 4.8 summarises
the times in seconds where as reference the NMC method is also given. Evidently, the
NMC takes the longest, while the regression models reduce the computational burden
significantly, but comes with loss in precision. In the end the decision on what to use,
will remain a trade-off between accuracy and speed. As a reasonable compromise to, on
the one hand make sure that the approximation is as accurate as possible and, on the
other to have a relatively fast computation, one might opt for the stepwise regression9.

8For the methods ‘PLSR’ and ‘PCR’ the full regression model with all covariates are considered.
9Surely, this would not apply to the conventional usage of the LSMC approximation for valuing

American or other exotic options, as each time step needs to be considered, but may well be a solution
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Figure 4.17.: LSMC results of P2(V, r, ς2) with removal method and P1(V, r, ς2) with
stepwise method compared to NMC based on the basis parameter set in Table C.14
with stressed parameters ς2

CP (0) = θςCP = 0.09 and κςCP = σςCP = λCP = 1 (‘Stressed
II’ set of Table 4.5) and l = 10, 000 simulation paths.

Formula RMSE R2

Removal (n = 2) y ∼ 1 +P0(V ) +P1(V ) +P2(V ) +P0(r) +
P1(r) + P2(r) + P0(ς2) + P1(ς2) +
P2(ς2) +V · r+V · ς2 + r · ς2 +V · r · ς2

0.0222 0.9781

Stepwise (n = 1) y ∼ 1 +V · r · ς2 +P1(V ) ∗P0(r) +P1(V ) ∗
P1(ς2)+P0(r)∗P1(r)+P0(r)∗P1(ς2)+
P1(r) ∗ P1(ς2)

0.0132 0.9932

Table 4.7.: Comparison of LSMCmethods removal and stepwise regression of Pn(x) and
x = {V, r, ς2}, for the three variable case, based on the basis parameter set in Table C.14
with stressed parameters ς2

CP (0) = θςCP = 0.09 and κςCP = σςCP = λCP = 1 (‘Stressed
II’ set of Table 4.5) and l = 10, 000 simulation paths. The expressions in the Formula
column is based on Wilkinson notation for regression models (i.e. a ∗ b means a, b, a · b
in standard notation and 1 is the intercept term).

Furthermore, the stepwise regression fulfills all three posed requirements from above.
Also, during the analysis it could be observed that the methods ‘SVD’, ‘PLSR’ and
‘PCR’ did not deliver stable results all the time.
Lastly, this extensive analysis clearly suggests that a careful regression analysis needs
to be conducted beforehand to obtain a sufficiently well approximation by the LSMC
approach for any given parameter set.

Removal SVD PLSR PCR Stepwise Nested

Time (sec) 1.95 4.88 0.07 0.05 9.51 133.83

Table 4.8.: Computation times of the LSMC methods (Removal, SVD, PLSR, PCR,
Stepwise) and NMC, for n = 5. All methods are based on generating l = 10, 000 present
values t = T1 (the NMC generates another m = 100 for each i in the interval [T1, T2]).

for a one-period setting as is the case here.
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4. Structural Model

4.4. Summary

Above review of Sünderhauf (2006)’s structural model has revealed the following im-
provements:

· A sound mathematical formulation of the underlying one-period Pfandbrief model is
provided in Chapter 3, building the foundation of the structural modelling proposal.
When discounting the cover pool’s present values (3.5) to today, a change of measure
is required to obtain the valuation formula (3.7).

· Embedding of the SDEs into the real-world and forward-measure for additional mod-
elling flexibility and consistency are additionally considered, see Section 4.2.

· Enhanced simulation algorithms, particularly for the volatility component (Sec-
tion 4.1.3) and jump component (Section 4.1.4), are implemented so that the compu-
tational burden is significantly reduced while at the the same time keeping accuracy
high.

· Reassessing the LSMC technique (Section 4.3.2) has led to significant corrections in
simulation accuracy compared to the ‘true’ simulated values of the NMC technique.
Thereby, the inclusion of ς2

CP (T1) as independent variable, the utilisation of Laguerre
polynomial functions and the application of the stepwise regression technique have
proven to be the decisive factors in goodness-of-fit gains.

· Computation inefficiencies can be ruled out by exploiting given features, for example
pre-allocation of storage, parallelisation and vector based programming in Matlab’s
software environment, see Appendix A.2.

Of course, there exist many other modelling advancements when it comes to efficient sim-
ulation techniques. For example, various variance reduction techniques come to mind
in order to enhance the efficiency of Monte Carlo simulation. For example, importance
sampling, stratified sampling, moment matching methods or control variates are some of
the methods (Glasserman, 2004). Tractable features of a model are presumed to be able
to conduct adjustments or correct simulation outputs. Model (4.32) is by construction
rather complex, thus applying any variance reduction technique could actually lead to
no improvements at all without exactly knowing the starting point. In recent years, the
alternative of quasi Monte Carlo has received greater attention. Compared to variance
reduction techniques quasi Monte Carlo suppresses randomness in order to seek for more
accuracy. Furthermore, from an implementation stand point it is easily realisable as the
random numbers from the (ordinary) Monte Carlo simulation just need to be replaced.
However, an initial implementation in combination with a Brownian bridge in combina-
tion with a Sobol sequence have not shown noteworthy improvements (compared to the
gains under (Section 4.3.2) so that it has been omitted and left for future research.
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5. Reduced-Form Model

The newly proposed model in the context of modelling the German Pfandbrief is in-
troduced here. In general, we incorporate information on credit migrations into bond
prices — a rating based approach. Before commencing on modelling aspects in greater
depth we dedicate a motivational section on the idea of applying a reduced-form type of
model. Next we give an initial and simplified version of the reduced-form model. Cer-
tain shortcomings of this simplification are identified and addressed which are revisited in
proposed remedies in sections thereon. Some effort is dedicated to obtaining appropriate
default probabilities and future scenarios. Furthermore, a large homogeneous portfolio
is postulated reflecting the balance sheet’s asset side of a Pfandbrief bank consisting of
individual mortgages.

5.1. Motivation

A call for an innovative valuation model in the context of the Pfandbrief framework
(Chapter 3) arises from three motivational aspects having the mutual goal of gaining
improvements on risk assessments of the bank’s cover pool and ultimately of the Pfand-
brief product itself. Thereby, emphasis is laid upon asset default risk, the third most
important cover pool associated risk according to Spangler and Werner (2014), see also
Section 3.1. Firstly, modelling advancements are motivated from the insights gained in
the review of the structural model proposed by Sünderhauf (2006). Secondly, we find
that major rating agencies have advanced analysis tools implemented for assessing the
credit quality of a Pfandbrief bank’s cover pool in their covered bond rating method-
ologies which can be regarded as modelling standards. Thirdly, new developments in
the covered bond, respectively, Pfandbrief market as well as in the banking and also
real estate industry, along with imposed regulatory requirements, make a more refined
modelling approach, particularly, of the cover pool necessary.

5.1.1. Modelling Advancements

From a modelling perspective the introduced structural based credit risk model of Chap-
ter 4 relies on large-scale simulations which can potentially exhaust available resources.
Without the modelling enhancements, for example, consisting of efficient algorithms
introduced for the volatility component in Section 4.1.3 or for the jump component in
Section 4.1.4 first simulations of model (4.32) applying the nested Monte Carlo approach
in Section 4.3.1 amounted to several minutes. Although significant improvements wrt
computational time have been accomplished the Monte Carlo simulation approach of
the structural model still poses a considerable burden on storage allocation. Resorting
to the LSMC (Section 4.3.2) technique may provide some effective tools in reducing
the number of paths necessary for adequately modelling the balance sheet positions at
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T1. However, even though this numerically advanced technique is readily realisable, the
amount of storage (random access memory) needed will be in the range of several giga-
bytes1 since (4.32) is a five dimensional process. Furthermore, incorporating additional
cover pool positions or also applying the structural model to a multi-period modelling
setting will substantially contribute to more involved computational requirements and
considerations.
Moreover, the model (4.32) possesses 24 parameters (six cover pool, six other assets, two
interest rate market and ten dependency parameters) where a complete calibration of the
model to market data, respectively, estimation to internal bank data becomes more art
than science. Consequently, parameters (except for the interest rate market model, see
Section 3.7) are chosen subjectively, rather than objectively. This fact, apart from the
aforementioned computational issues, embodies the greatest weakness of the structural
model in Chapter 4. Thus, it would be advantageous to derive a more tangible model,
in particular, focussing on obtaining more accurate risk assessments of the underlying
cover pool portfolio.

5.1.2. Rating Methodologies

In their covered bond rating methodologies major rating agencies have some type of asset
risk assessment tool implemented for analysing assets contained in the Pfandbrief bank’s
cover pool. Often cover pool assets are further stressed in order to evaluate the impact of
deteriorating asset quality on covered bond ratings. Rating agencies periodically publish
their risk reports of covered bonds and covered bond issuers where various other risk
factors are taken into consideration. Due to their complexity a brief reflection on relevant
parts in the context of credit risk assessments of cover pool assets are extracted form the
respective rating methodologies. We mainly refer to ECBC (2016, p. 501-542) where the
methodologies of five rating agencies, DBRS, Fitch, Moody’s, S&P and Scope Ratings,
are accurately described. Here, the focus lies upon the methodologies of DBRS and
Scope Ratings due to their similar modelling features compared to the newly proposed
reduced-form model. An excerpt of their implemented cover pool modelling practices
are:

DBRS The cover pool credit assessment in DBRS’s covered bond rating methodology
is comparable to the analysis of residential mortgage backed securities (RMBSs) or
collateralized loan obligations (CLOs) of small and medium sized enterprises (SMEs),
thus other forms of securitisation (as opposed to the Pfandbrief) of homogeneous asset
pools. The assessment mainly consists of (ECBC, 2016):
1. Estimates of the probability of default (PD) and loss given default (LGD) for each

rating category of the underlying assets are established.
2. Analysis of the stressed asset cash flows (including interest rates and exchange

rates) from the underlying assets is conducted.
3. An analysis is undertaken of the manner in which the cash flows are allocated to

the liabilities based on transaction documents.
1Suppose we want to simulate 100,000 paths of seven years with a discretisation of 250 days with

the LSMC method in Section 4.3.2. We need to preallocate storage space for the five process objects
and again for the dependent random number objects amounting to an object of total size with 2 × 5 ×
7× 250× 100, 000 ≈ 14GB.
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Jointly, the probability of default of the issuer and the cover pool credit assessment,
are taken into account to determine the probability of default of covered bonds. Fur-
thermore, DBRS incorporates a certain time lag for covered bonds receiving cover pool
cash flows with a certain recovery rate attached, thus cash flows are not always paid
out in full.

Scope Ratings Main focus of Scope Ratings’ asset credit analysis is laid upon assessing
the performance of relevant assets in the cover pool which are highly issuer-specific
where additionally, for example, country-specific aspects are incorporated. Besides
relying on Monte Carlo methods for simulating asset default and other market-standard
modelling approaches to evaluate concentrated portfolios, respectively cover pools,
Scope Ratings utilises the large homogeneous portfolio (LHP) approximation approach
assuming homogeneous, granular cover pools, which typically consist of residential and
commercial mortgage loans. Stress scenarios applied to the cover pool are triggered
in order to find out about the perseverance of cover pool cash flows and the credit
differentiation a cover pool can support.

In summary, we retain the following main features of above utilised methods of the rating
agencies DBRS and Scope Ratings which constitute important parts of the proposed
reduced form approach for modelling the Pfandbrief:

· Incorporating probabilities of default of cover pool assets categorised by rating classes,

· assuming a LHP approximation for the cover pool, and

· conducting stress tests on the cover pool distribution by shifting probability mass to
lower rating classes.

5.1.3. Market, Industry and Regulatory Developments

Recent market developments (Chapter 2) in the Pfandbrief (Section 2.2) as well as in
the covered bond (Section 2.1) market as a whole have contributed to shifting more
attention to the mortgage type of Pfandbriefe due to the persistent decline of public
sector Pfandbriefe and non-existent relevance of ship and aircraft Pfandbriefe. Thus, a
more refined assessment of the mortgage Pfandbrief and subsequently of the mortgage
cover pool in the Pfandbrief modelling framework of Chapter 3 becomes necessary.
The necessity of banks complying with Basel II regulations issued by the ‘Basel Com-
mittee on Banking Supervision’ implies that also ratings wrt bonds contained in the
cover pool are mandatory, be it externally from rating agencies (see Section 5.1.1) or
internally, in order to perform the IRB (internal ratings-based) approach to calculate
capital requirements for credit risk. Thereby, entirely relying on credit risk information
from rating agencies may be problematic since ratings are usually updated not more
than once a year. Although having access to credit information of individual banks,
presumably, rating agencies will however not have a complete picture of single assets
contained in the mortgage cover pool. Consequently, only crude credit risk aggregations
are feasible.
However, when dealing with mortgage loans banks conduct their own scoring assessments
of individual mortgage borrowers or of businesses mortgaging residential and commer-
cial properties. Based on these credit scores eligibility for granting a mortgage loan
and the charge to the borrower are established. This is confirmed by the study of EBF
(2014) where, apart from scoring models, the main drivers of PD, are the length of
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historical defaults in internal databases, PD calibration and cyclical adjustment, regu-
latory/supervisory constraints, the scope of the definition of default used by banks and
the importance of back-testing. Notably, since 2005 data collections regarding PD and
LGD on mortgage portfolios have intensified. Building up a consistent and continuous
internal database of historical defaults is advantageous since PDs and LGDs are main
inputs for the determination of risk weights in the IRB ansatz.
Furthermore, efforts have been undertaken to develop a common LGD-grading data base
of member institutes of the VDP for assessing losses of real estate financiers to value,
primarily, the collateral of Pfandbriefe. LGD-grading is an essential part of the advanced
IRB approach of Basel II and specifies the amount of the expected loss if the debtor fails
to repay his or her loan. A common data base of mortgage banks, firstly, allows all
members of the VDP to have access to the same information on which they base their
counterparty’s credit risk and, secondly, assures a higher standard of data quality. Two
main features are (Hagen and Marburger, 2002):

· Data on losses of different types of real estate in various regions are historically
accumulated.

· Real estate market forecasts, necessary to assess how certain types of properties in
particular regional markets will develop in the future, are based on transaction data
of the mortgage banks.

An expansion of including PD-rating to the LGD-grading data base is also taken into
consideration: “At the moment, the association is considering the possibility to develop a
PD-rating for the real estate customer segment in addition to LGD-grading. In this way,
the member institutes, which would require or wish for support for a PD rating, would
have a ‘one-size-fits-all’ system that would be recognized for applying the advanced IRB
approach in Basel.”, (Hagen and Marburger, 2002). Additionally, in the interview of
Hagen (2002) it is also held out in prospect that the data base may be accessed by third
parties, other than VDP members, contributing to the transparency initiative of the
Pfandbrief2. More recent articles suggest that the database is already in use, see Eilers
(2017a) and Eilers (2017b), upon which real estate market forecasts are conducted. To
determine the required regulatory capital, WIB for example, has been applying the IRB
approach estimating not only PDs but also LGDs which is based on internal historical
data and the LGD-grading database provided by vdpExpertise GmbH (WIB, 2015, p.
10). On an international scale Global Credit Data (GCD) (formerly named PECDC
or the Pan-European Credit Data Consortium) is an important initiative in the area of
EAD and LGD modelling where currently over 50 member banks across Europe, Africa,
Asia, Australia and North America are working on a joint data pool. The project created
‘by banks, for banks’ originated in 2004. GCD also claims to have “the world’s largest
database of defaults and PD estimates for large corporates, banks, SMEs and specialised
lending” on there website3. Separate asset classes are installed, including a real estate
finance class, where in each segment calculations on default rates, migration rates and
average PDs can be conducted.
In summary, we can confidently assume that a sufficient amount of IRB related data

2The data base today is operated by vdpExpertise GmbH (https://www.vdpexpertise.de) which
is a service company of the VDP. The current data pool (as of 2015) comprises more than 60,000 real
estate realisations in Germany and allows a profound statistical risk analysis of the most important LGD
parameters.

3https://www.globalcreditdata.org
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exists, in particular, PD-ratings on a micro level of mortgage loans which we are in-
terested in. At the latest since the onset of Basel II regulations, data bases are per
default internally implemented at Pfandbrief banks (see EBF (2014)). In addition, we
have learnt that pooling initiatives by organisations like the VDP or GCD have been
established where multiple banks commit to share their counterparty credit risk mea-
sures. In fact one of the main criticisms of EBF (2014) is the lack of standardised and
consistent approaches wrt risk weighted asset (RWA) computations of banks’ mortgage
IRB models across Europe. Common data pools contribute to counteract data related
inconsistencies to which member banks can contrast, for example, their internal PD
systems. Although not having access to bank internal or conglomerate data bases it is
sufficient for our purposes to know that they at least exist.

5.2. A Simplified Model

During the review of Sünderhauf (2006)’s one-period model of Chapter 4, Figure 4.9
emerged as motivation for developing an innovative approach for modelling the Pfand-
brief in a one-period setting. The first modelling attempt stems from the idea to sig-
nificantly simplify the structural model (Chapter 4) while preserving its main features.
Primarily, the overall aim is achieving a considerable parameter reduction and, simulta-
neously, gaining degrees-of-freedom.
An important property of our simplified model is assuming a real-world modelling set-
ting (Assumption 5.1). This is necessary because we estimate model parameters from
historical time series and simply project the obtained estimates into the future.

Assumption 5.1. Analysis is conducted under the real-world measure P.

Largely, we orientate ourselves to the modelling considerations and mathematical formu-
lations of the Pfandbrief modelling framework (Chapter 3). Thus, as in the structural
model (Chapter 4), the asset side consisting of CP and OA are likewise at the core of
the model’s redesign in a one-period setting. Assumption 5.2 provides the setup of the
simplified model.

Assumption 5.2. Assume that at T1 (maturity of liabilities) the following distributions
hold:

· The cover pool position is modelled by a Vašìček distribution (see Definition B.24 at
T1, so that

VCP (T1, T2) ∼ Vasi(pCP , %CP )[= FCP (xCP )],

where pCP ∈ [0, 1] and %CP ∈ [0, 1], denote the probability and correlation parameter
of the Vašìček distribution.

· A log-normal distribution is postulated for the other asset position at T1 with

VOA(T1) ∼ LN(µOA, σ2
OA)[= FOA(xOA)],

where µOA ∈ R and σ2
OA > 0 are the mean and variance parameters of the log-normal

distribution.
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· The joint cdf of VCP (T1, T2) and VOA(T1) is provided by the bivariate copula, denoted
by

VA(T1) ∼ C(FCP (xCP ), FOA(xOA))

where VA(T1) stands for the asset values at T1 of the joint distribution and C can
take on any copula defined in Appendix B.5.

We intentionally leave it open for now to specify a suitable copula from Appendix B.5.
This gap will be filled during an estimation example to real data below. First, em-
phasis is laid upon analysing the justification of the marginal distribution specifications
in Assumption 5.2 for the cover pool and other assets positions. Thereby, we utilise
the structural model of Chapter 4 as reference with the basic parameter setting in Ta-
ble C.14. The procedure consists of fitting the postulated distributions to the simulated
values and applying equations (3.5) and (3.8). Therefore, the values of the respective
asset position are divided into two sets, a calibration and a validation set from the same
sample of structural simulation in Chapter 4. For example, if we simulate 10,000 paths
with the NMC (Section 4.3.1) or LSMC (Section 4.3.2) technique then the two sets are
equally divided in 5,000 values each. The distribution parameters are fitted to the cal-
ibration set. With the resulting estimates a new sample of 5,000 random numbers are
drawn which are then compared to the validation set. The comparison is conducted by
applying appropriate test procedures. The following goodness-of-fit tests are taken into
consideration:

Kruskal-Wallis (KW) test Returns the p-value for the null hypothesis that the data
comes from the same distribution. The alternative hypothesis is that not all samples
come from the same distribution.

Kolmogorov-Smirnov (KS) test Non-parametric test of the equality of continuous,
one-dimensional probability distributions that can be used to compare two samples.
The test rejects the null hypothesis at the 5% significance level.

Anderson-Darling (AD) test Anderson-Darling k-sample procedure to test whether k
sampled populations are identical. The Anderson-Darling k-sample procedure assumes
that i-th sample has a continuous distribution function and we are interested in testing
the null hypothesis that all sampled populations have the same distribution, without
specifying the nature of that common distribution:

H0 : F1 = F2 = . . . = Fk (5.1)

5.2.1. Cover Pool Distribution

In Section 3.6.1.1 we laid the groundwork for modelling the cover pool taking on values
of a risky zero-coupon bond. The structural model utilises MC techniques (Section 4.3)
to generate the desired present values at T1. This is to be replicated. Zero-coupon
bonds are normally bounded by one since ‘money today is worth more than money to-
morrow’. Consequently, it is natural to assume a cover pool distribution on a domain
of [0, 1]. The Vašìček distribution of Assumption 5.2 is suitable to fulfil this task. How-
ever, with the full model of (4.32), including the HW1F model, the boundedness at
one for VCP (T1, T2) is not necessarily guaranteed. This phenomenon can be observed
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in Figure 5.1. It follows from the fact that we allow negative short rates to occur by
simulating r(t) with the HW1F model. When decreasing r(0) and fM (0, t) by -100 bp,
-200 bp and -300 bp respectively, it clearly shifts the distributions of the present values
to the right, exceeding the value of one. This may seem an unsatisfactory result at
first. Yet, if we move to a more normalised market environment of non-negative interest
rates then also the expected situation of ‘capped’ VCP (T1, T2) values sets in. This can
be simulated by exchanging the HW1F model by the CIR1F model (Section 4.1.3) due
to it’s non-negativity property. Repeating the experiment of shifting the initial short
rate value (r(0)) and mean reversion level (θr) towards zero we observe that VCP (T1, T2)
does not breach the predefined boundary of one. Letting r(0) and θr converge to zero
will, simultaneously, let VCP (T1, T2) converge to one (leaving all other parameters un-
changed in Table C.14), as depicted in Figure 5.1. With the basic parameter set of
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Figure 5.1.: Comparison of VCP (T1, T2) densities, where the initial interest rate and
mean reversion level parameters in Table C.14 are changed by r(0) = fM (0, t) =
0.05 + x, with x = {−100,−200,−300} basis points (bp) for the HW1F model (left
picture) and r(0) = θr = 0.05 + x, with x = {−100,−200,−300} basis points (bp) for
the CIR1F model (right picture), where θr is the mean reversion parameter.

Table C.14, Figure 5.2 reveals that the Vašìček distribution overall does a good job of
fitting the simulated values where maturities, T1 and T2, are further apart. Only when
the time gap decreases the peakedness of the simulated values can not be fully captured.
Also when choosing different parameter sets we see that the Vašìček distribution has
difficulties adapting to the new situation. For example, we can reuse the stressed values
of Table 4.5 to show the rather poor goodness-of-fit outcome. As described above, the
Vašìček distribution is fitted to the calibration set providing the estimates of Table 5.1.
Vašìček parameters are obtained via ML estimation. Sampling from the fitted Vašìček
distribution and comparing to the validation set yields the test statistics of Table 5.2.
We see that for the ‘Basic’ scenario the KW test can not reject the H0 of equal me-
dian and equal distributions, thus an alignment of both sets can be assumed. KS and
AD tests do reject this hypothesis. When moving towards more extreme scenario sets
(‘Stressed I’ & ‘Stressed II’) the outcome is not in favour of our initial assumption of
emulating the one-period structural approach of simulating the cover pool distribution
at T1. The peakedness and poor adaptability to parameter changes is explainable by
the naturally given low parametrisation of the Vašìček distribution. We shall summarise
further observations at the end of Section 5.2.
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Figure 5.2.: Depiction of the cover pool present values (VCP (T1, T2))) of the Monte
Carlo simulations (blue histograms) with the corresponding distribution fit of the Vašìček
distribution (red curves) for different maturities.

Parameter Basic Stressed I Stressed II

p̂ 0.809 0.677 0.613
%̂ 0.040 0.094 0.139

Table 5.1.: Vašìček fit for ‘Basic’ (Table C.14), ‘Stressed I’ and ‘Stressed II’
(Table 4.5) parameter sets.

KW test KS test AD test
p-value Hn p-value Dn p-value An

Basic 0.205 1.609 0.015 0.031 0.003 6.705
Stressed I 0.001 11.726 0 0.073 0 24.158
Stressed II 0.001 11.438 0 0.080 0 35.528

Table 5.2.: Goodness-of-fit tests of the Vašìček distribution at confidence level α = 0.05.
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5.2.2. Other Assets Distribution

Let us now take a closer look at the other assets distribution at T1. We can confidently
assume that the other assets position (approximately) takes on the log-normal distri-
bution. This is due to the fact of the established definition in Section 3.6.1.2 of not
possessing a loan-like payment profile, in line with Merton’s (Merton, 1974) approach
where a firm’s assets value is assumed to obey a log-normal diffusion process. Still the
log-normal assumption with a parametrisation of two variables (as in the Vašìček case of
the previous section) is a gross simplification to the SDEs with stochastic interest rates,
volatility and jumps in (4.32). However, this is intentional. The results are similar to
those of Section 5.2.1, yet, overall better wrt the goodness-of-fit tests. In Figure 5.3
we see the same behaviour of not fully reaching the peakedness when T1 and T2 are
further apart. Again, we divide the sample set from Section 4.3.1 at T1 into two sets
as described above. The parameter estimates, obtained via ML estimation, for the log-
normal distribution on the calibration set can be viewed in Table 5.3. These are used
to simulate the corresponding samples to compare to the validation sets. The results
are mixed. While for ‘Stressed I’ the test results unanimously keep the assumption of a
log-normal distribution this can not be confirmed by the more stricter tests of KS and
AD test for ‘Basic’ and ‘Stressed II’ scenarios.
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Figure 5.3.: Depiction of the other assets present values (VOA(T1)) of the Monte Carlo
simulations (blue histograms) with the corresponding distribution fit of the log-normal
distribution (red curves) for different maturities.

Parameter Basic Stressed I Stressed II

µ̂ 0.130 0.014 -0.022
σ̂ 0.215 0.550 0.600

Table 5.3.: Log-normal fit for ‘Basic’ (Table C.14), ‘Stressed I’ and ‘Stressed II’
(Table 4.5) parameter sets.
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KW test KS test AD test
p-value Hn p-value Dn p-value An

Basic 0.195 1.682 0.003 0.036 0 6.453
Stressed I 0.180 1.797 0.134 0.023 0.163 1.561
Stressed II 0.317 1.000 0 0.068 0 25.038

Table 5.4.: Goodness-of-fit tests of the log-normal distribution at confidence level α =
0.05.

5.2.3. An Estimation Example to Real Data

The salient, overall advantage of this simplified version is the fact that it can be easily
estimated to market data and only a handful of parameters need to be estimated (alto-
gether five parameters). The selected Pfandbrief bank is the Münchener Hypotheken-
bank eG. Beforehand it is necessary to take a closer look at the input data (see Ap-
pendix C) used for calibration.
Table C.11 contains the ratings of the cover pool assets divided into regional segments
which in turn are divided into sub-segments containing the mortgage type. Given are the
default probabilities (pdi), intra-correlations (ici) and weights (wi) of the corresponding
asset segments. These rating and correlation specifications are provided by Moody’s4.
These data will be used for the purpose of calibrating the parameters of the Vašìček
distribution, respectively cover pool position. For modelling the other assets and depen-
dency between the cover pool and other assets an obvious choice would be to resort to the
time series of these positions obtained from §28 PfandBG and respective balance sheets.
Unfortunately, the data have only quarterly time steps5, so that only 60 observations in
the period Q4 1999 to Q4 2016 (Figure 2.42 in Section 2.3) could be retrieved which
proved to be insufficient for conducting a proper time series analysis (especially in the
case of the dependency structure as a filtering process, based on GARCH estimation,
needed to be applied). Instead, proxies are utilised in the form of the RX-REIT-Index6

and RX-Real-Estate-Index7 (left picture of Figure 5.4). To take an index related to
real estate seems to be an appropriate choice for the cover pool. Also the other assets
will consist, to some extent, largely of real estate assets, so that a similar index may be a
good choice. It can be assumed that these particular indices will be positively correlated,
which is a reasonable assumption to make. Daily data is available since November 7th,
2007 (base year starting level at 1,000).
To filter any kind of autocorrelation and/or heteroskedasticity a so called AR-GJR-
GARCH model is fitted to the return data, to hopefully, produce a series of i.i.d. obser-
vations. The filtering procedure is as follows:

1. Fit an AR(1) (first order autoregressive) model to the conditional mean of the returns

Rt = ϕ0 + ϕ1Rt−1 + εt,

accounts for autocorrelation.
4 www.moodys.com
5A Pfandbrief bank will, internally, have the means to provide more granular observations based on

daily data, due to the mandatory daily liquidity checks of PfandBG.
6http://www.boerse-frankfurt.de/index/kurshistorie/RX-REIT-Index
7http://www.boerse-frankfurt.de/index/kurshistorie/RX-Real-Estate-Index
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2. Fit a GJR(1)-GARCH(1,1) (asymmetric GARCH, with p = q = r = 1) model to the
conditional variance (cf. (Glosten et al., 1993))

σ2
t = α0 + α1ε

2
t−1 + βσ2

t−1 + γ[εt−1 < 0]ε2t−1,

accounts for heteroskedasticity. The GJR(1) term γ[εt−1 < 0]ε2t−1 incorporates asym-
metry (leverage) into the variance by a boolean indicator that takes the value 1 if
the prior model residual is negative and 0 otherwise.

3. To compensate for the fat tails often associated with equity returns distributions are
considered which can account for extreme values. The standardized residuals are
modelled as a standardised Student’s t distribution

vt = εt/σt
iid∼ t(ν),

where ν > 0 is the degrees-of-freedom parameter.

The calibration procedure is outlined below, with the corresponding results:

Cover pool Strictly speaking, Table C.11 displays a heterogeneous finite portfolio with
weights wi where the probability bucketing approach in the one factor Gaussian model
would be a realistic modelling choice resembling the underlying data ((Andersen et al.,
2003) and (Hull and White, 2004)). For simplicity reasons, we intentionally ignore
the granularity of the portfolio and instead compute the weighted probability mean
with p̂ = 1−

∑n
i=1 pdiwi = 0.9949 (probability of not defaulting). Further, we average

the intra-correlations by means of Fisher’s z-transformation ((Bushman and Wang,
1995) and (Corey et al., 1998)) with %̂ = tanh−1(

∑n
i=1 tanh(ci)/n) = 0.2747 (correla-

tion). These approximations allow us to obtain the needed parameters of the Vašìček
distribution.

Other assets The complete AR-GJR-GARCH estimation is conducted on the RX-
REIT-Index time series as specified above. The mean of the log-normal distribution
is computed as the average of the sum over the log-returns µ̂ = 1

n

∑n
i=1 ln RXi

RXi−1
=

3.4685 · 10−04 ≈ 0. The long-term variance can be extracted from the GARCH(1,1)
part of the model, with σ̂2 = VL = α̂0

1−α̂1−β̂1
= 0.0148 and estimates α̂0 = 0.0004,

α̂1 = 0.0546, β̂1 = 0.9169.
Asset position dependency Due to its flexibility of the copula approach it is possible
to replace the copula family with a preferred choice. A selection of suitable copulas is
given in the following, with their corresponding bivariate density and parameter ranges
in Appendix B.5.
· Elliptical copulas — The most prominent copulas in this family are the Gaussian

and Student’s t copula possessing elliptical distributions, as its name already states,
and therefore are symmetric in the tails.

· Archimedean copulas — The three main Archimedean copulas are the Clayton,
Frank and Gumbel copulas. The Frank copula is a symmetric copula, whereas
Clayton and Gumbel copulas are asymmetric. The Clayton exhibits greater depen-
dence in the negative, and the Gumbel in the positive tail.

The euclidean distance (L2 norm) to the empirical copula is then computed in order to
have a goodness-of-fit measure which is valid for comparing all above introduced copulas.
The estimated copula distributions and goodness-of-fit can be seen in Table 5.5.
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Remark 5.1. A more refined analysis of the dependency structure would be to include tail
dependency. An extreme value theory (EVT) can be utilised for obtaining the tail depen-
dence structure and easily amended to the above asymmetric GARCH model. Specifically,
when modelling the tails of a distribution with a generalised Pareto distribution (GPD)
it is necessary to have approximately independent and identically distributed (i.i.d.) ob-
servations. This allows for capturing the residuals lying in the upper and lower tail
(Prob(X ≤ x) ≤ α and Prob(X ≤ x) ≥ 1− α, where α = 0.1). The parametric GPD is
fitted, via maximum likelihood (ML) estimation, to the extreme tail values (also known
as the distribution of peaks over threshold method) with

εt
iid∼ GPD(µ, σ, ξ), (5.2)

where εt are the standardised residuals, µ ∈ R is the location, σ > 0 is the scale and
ξ ∈ R is the shape parameter, The CDF of the GPD is defined as

F(ξ,µ,σ)(x) = 1−
(

1 + ξ(x− µ)
σ

)−1/ξ
, (5.3)

where x are the exceeding values.

Remark 5.2. In the 2016 appeared scientific paper by Tasche (2016) an alternative, yet
quite similar, estimation approach is proposed. In Tasche (2016), one-period structural
modelling approaches for covered bonds and senior unsecured debt losses are investigated.
He also acknowledges the fact that “(...) two-assets models with separate values of the
cover pool (as we refer to ‘CP’) and the issuer’s remaining portfolio (as we refer to
‘OA’) allow for more realistic modelling.”, cf. (Tasche, 2016). The extra dimension
adds additional complexity where an exact calibration is nearly impossible according to
Tasche (2016). The method of moments technique is applied where a joint distribution
of CP and OA values is fitted to given PD and LGD data. Alternatively, “the cover pool
is reflected by a risk-based adjustment of the encumbrance ratio of the issuer’s assets”
(Tasche, 2016) reducing to an one-asset model.

Gaussian t Clayton Frank Gumbel

Estimate 0.4338 0.4419 0.6567 2.9974 1.3740
L2 norm 6.5289 5.7113 18.3302 8.8995 14.1877

Table 5.5.: Copula fit — estimates and euclidean distance between the empirical and
fitted copula.

From Table 5.5 we can deduce that the t-copula (having the smallest L2 norm) is
the appropriate modelling choice with regard to the underlying dependence structure.
Having completed the real world calibration procedure, it is now possible to obtain
the bivariate joint distribution of the assets which is depicted in the right picture of
Figure 5.4.

5.2.4. Summary

The introduced simplified reduced-form model provides a first insight to a novel Pfand-
brief modelling approach in a one-period setting. It purposely reduces the complexity of
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Figure 5.4.: Estimation of simplified model to real data. Left side: Proxy index values
for cover pool and other assets; Right side: Joint distribution of assets with estimated
parameters.

the structural model (4.32) in Chapter 4 at the cost of some shortcomings (as opposed
to its structural) counterpart which will be addressed in following:

· Currently, the market is in an abnormal phase of negative interest rates (Sec-
tion 3.7.1). Resorting to the HW1F model (Section 3.7.3) in (4.32) represents a
more realistic modelling environment allowing negative short rates. Consequently,
cover pool values (VCP (T1, T2)) greater than one may occur at T1. The Vašìček dis-
tribution can only handle values VCP (T1, T2) ∈ [0, 1] which restricts the modelling
to market situation of positive interest rates or one knowingly blends out the zero
interest rate policy of recent years. As pointed out above (Figure 5.1) the CIR1F
model lets VCP (T1, T2) be bounded below one for (4.32).

· The drastic parameter reduction from 24 parameters in (4.32) to five in Assump-
tion 5.2 cannot account for all market situations as revealed by the poor outcomes
of the goodness-of-fit tests in the numerical comparison of the two approaches. This
observation applies to the cover pool values as well as the other asset values. The
log-normal assumption for OA performing only slightly better than the Vašìček as-
sumption for CP. Further tests have shown when maturities of liabilities and assets
(T1 and T2) are chosen more closely the distribution fit for the cover pool values
further deteriorates. But in reality, the maturity gap is usually observed to be larger
than three years.

Arguably, comparing the structural model of (4.32) to the simplified model of Assump-
tion 5.2 feels more like ‘comparing apples to oranges’. It is not surprising when con-
trasting the distributions from both worlds the outcome is not very satisfactory, espe-
cially, when moving to more extreme scenarios (see Table 4.5) for (4.32). Allowing for
greater flexibility one could opt for distributions which have a higher parametrisation
(e.g. the normal inverse Gaussian (NIG) distribution possesses four parameters (Kale-
manova et al., 2007) which, potentially, could be a candidate in case of modelling the
cover pool. However, this comes at the cost of additional complexity. Also, the Vašìček
distribution holds desired credit risk related properties which other distributions may
not.
Concluding, we can state that our first modelling attempt has achieved the goal of
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significantly simplifying the structural model of, yet, at the cost of some of some note-
worthy insufficiencies as mentioned above. Furthermore, it strongly resembles the model
of Tasche (2016) in the sense that two asset positions, CP and OA, are modelled as
two marginal distributions with an underlying dependency structure between both po-
sitions which is embedded in a one-period setting at T1. Nevertheless, some unanswered
questions remain:

· The simplified version of this model is based on the real-world measure P. How-
ever, as we have specified in Section 3.2, based on Characterisation 3.1, we want to
model under the risk-neutral measure. The question of how to accomplish this is
one of the central challenges throughout the next sections where necessary modelling
advancements and complexities are introduced.

· How is asset-liability mismatch accounted for? Assets naturally have longer maturi-
ties than liabilities, thus how is the term transformation (0 ≤ T1 ≤ T2) adequately
incorporated?

· What are suitable parameter estimates for pCP , %CP , µOA, σ2
OA and ρ as well as

suitable data for the estimation thereof? Particularly, what are the correct cover
pool default probabilities, pCP , at some future point in time T1?

· Postulating a recovery rate of zero (δ = 0) for the Vašìček distribution in Assump-
tion 5.2 raises some doubt that this is a justifiable choice, since cover pool assets are
mortgage loans backed by the value of the real estate. What is the accurate recovery
rate for cover pool assets and how can it be adequately incorporated into (3.6)?

· The above simplified model does not account for a proper modelling of the established
reduced form model of (3.6) in Section 3.6.1.1. Formula (3.6) can be divided into two
components, a riskless interest rate component represented by the stochastic discount
factor and a risky factor represented by the defaults occurring in the underlying cover
pool (with a certain discovery rate). Lastly, what would such a model look like where
a strict distinction between both components is maintained?

5.3. Model Setup

Conceptually, for the reduced-form model we postulate a bivariate distribution for mod-
elling the complete asset side with the cover pool (CP) and other assets (OA) postions as
marginals linked by a (bivariate) copula for capturing the underlying dependence struc-
ture. Figure 5.5 depicts the default process where random numbers are drawn from
the joint asset distribution at T1, yielding VA(T1). Formulas (3.11), (3.14) and (3.15) are
then applied so that the liability values VPB(T1), VOL(T1) and VEQ(T1) can be obtained.
This procedure requires that equations (3.6) and (3.8) are specified appropriately linked
by a suitable copula. Ultimately, the overall aim is to reproduce Figure 4.9 of the
structural model in Example 4.2 at T1 in order to obtain the corresponding liability
values of Figure 4.10.
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Assets (A) Liabilities (L)


VCP (T1,T2) ∼ (3.6)
VA(T1) ∼

C(FCP (xCP ),FOA(xOA))
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Figure 5.5.: Overview of the reduced-form model.

5.3.1. Linking Cover Pool and Other Assets

Proceeding the framework specifications in Chapter 3, more specifically in Section 3.6.1,
we regard cover pool and other assets as two separate entities with an underlying de-
pendence structure. Each possessing a marginal distribution, a natural choice of linkage
is via bivariate copulas (Mai and Scherer, 2012). The motivation of using copulas also
arises from the modelling of collateralised debt obligations (CDOs), see for example Li
(2000), Hull and White (2004) and Laurent and Gregory (2005), amongst many others.
Equivalently to the tranche structure of a CDO with different assigned ratings, for ex-
ample senior (AAA), junior (AA, A, BBB) and residual (lower than BBB), the asset
structure of a Pfandbrief bank can be divided similarly. The cover pool asset composi-
tion and the range of eligible collateral is restrictively regulated by the PfandBG which
stipulates high quality requirements8 and represents the senior tranche. Everything else,
including mortgage loans not considered in the cover pool, constitute the other assets
defining the junior tranche.
Given the fact that no Pfandbrief has ever defaulted in its over 200 year history it is
of importance to resort to modelling options which are able to capture extreme events.
Wrt to copulas the t-copula and likewise Archimedean copulas (Appendix B.5) would
be suitable choices being leptokurtic (thickness in the tails) and which are able to model
tail dependency. See Example 5.1 for the contrast of the behaviour at the distribution
tails of the normal and t-copula.

Example 5.1 (Normal vs t-copula). We choose the t-copula (5.4) with appropriate
given marginal distributions for CP and OA where

C(xCP , xOA; ρ, ν) = tρ,ν(FCP (xCP ), FOA(xOA)), (5.4)

with ν > 0 degrees of freedom and ρ ∈ [−1, 1]. Figure 5.6 illustrates the difference in
tail behaviour of the t-copula compared to the Gaussian copula with linear dependency
coefficient of ρ = 0.5. Evidently from (3.11), the tail behaviour of the asset positions is
passed on to the resulting Pfandbrief distribution. The chosen copula can then be plugged
into the asset model, Figure 5.5.

8On the eligibility of cover pool assets and its requirements refer to Spangler and Werner (2014).
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Figure 5.6.: Depiction of a stylised example of the joint asset distribution with given
marginal distributions of the cover pool and other assets. Left side: Gaussian copula
with ρ = 0.5. Right side: T-copula with ρ = 0.5 and ν = 2.

5.3.2. Cover Pool

The foundation of (3.6) lies in the seminal reduced-form approach by Jarrow et al.
(1997), which has its origins in Litterman and Iben (1991) and Jarrow and Turnbull
(1995). Jarrow et al. (1997)’s model, also referred to as JLT model, postulates a firm’s
bankruptcy process as exogenously given which is independent of the firm’s underlying
assets. Thereby, the bankruptcy process is modelled as a finite state Markov process.
More precisely, information in form of a firm’s credit ratings and default probabilities is
taken into account for pricing corporate bonds. In the context of modelling a Pfandbrief
bank’s default and the default of issued Pfandbriefe by the respective bank, we once
again replace ‘firm’ with ‘asset’ where particularly assets contained in the cover pool are
of interest. Thus, instead of pricing a corporate bond, as in the case of the JLT model,
we are modelling the risky zero-coupon bond price(s) of a Pfandbrief bank’s cover pool.
As in Jarrow et al. (1997), we consider a frictionless economy with a finite horizon
[0, T ∗] where trading can be in discrete or continuous time. Specifying the model of
Jarrow et al. (1997) we refer to Bielecki and Rutkowski (2004) where we find a more
exact mathematical formulation concerning the filtration included in the underlying
probability space. This elaboration becomes necessary, firstly, due to an applied change
of measure from real world to EMM. Secondly, we are dealing with several sources of
market and credit risk which also have an impact on the Markovian assumption of
Section B.3. In order to separate market and credit risk in a proper manner we need to
again take additional considerations regarding the filtration into account. We define the
following notation (Bielecki and Rutkowski, 2004):

· We introduce the filtration H where the associated sub-filtrations F and FX of H
are formally identified by F with F ⊗{∅, Ω̂} and by FX with {∅, Ω̃}⊗FX . Thereby,
we set Ω = Ω̃ ⊗ Ω̂ and H = F ⊗ FX , where F (FX , respectively) is a filtration of
events in Ω̃ (in Ω̂, respectively).

· F denotes the filtration of the market risk, whereas FX represents the corresponding
credit risk filtration which support the assumption of independence between market
risk and default risk. Assuming independence impliesH = F⊗FX where the required
Markov property holds while incorporating market and credit related risks.
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· In such a model, the migration process X is essentially supported by Ω̂. An appro-
priate change of the product probability measure with P = P̃ ⊗ P̂ to an equivalent
product probability measure Q = Q̃ ⊗ Q̂ would preserve the H-Markov property of
X as well as the independence assumption of F and FX .

Hereinafter, we will simply use the H filtration admitting both, market and credit risk,
where any distinction thereof is explicitly mentioned. Apart from this standard setup
we state three main assumptions wrt reduced form modelling (Bielecki and Rutkowski,
2004):

Assumption 5.3. There exists a (unique) equivalent martingale measure Q, equivalent
to P on (Ω,HT ∗), such that all default-free and risky zero-coupon bond prices follow H-
martingales, after discounting by the savings account.

Assumption 5.4. The interest rate risk is modelled by means of an F-adapted stochas-
tic process r(t) of the default-free short-term interest rate, where F is some sub-filtration
of H.

Assumption 5.5. The default time τ is a random variable (the bankruptcy process)
independent of the default-free interest rate process r, conditionally upon the filtration H
under the martingale measure Q.

Other than the original model specification of Jarrow et al. (1997) we relax the assump-
tion of a constant recovery coefficient, allowing random recovery rates denoted as δ̃.
Hence, there exists a dependency between recovery and default, compare Andersen and
Sidenius (2004). The adjusted JLT pricing formula (3.6) at time T1 results to

VCP (T1, T2) = EQ
(
BT1

BT2

(
δ̃1{τ≤T2 | τ>T1} + 1{τ>T2 | τ>T1}

) ∣∣∣∣HT1

)
= EQ

(
BT1

BT2
− BT1

BT2

(
(1− δ̃)1{τ≤T2 | τ>T1}

) ∣∣∣∣HT1

)
= P (T1, T2)− EQ

(
BT1

BT2

(
(1− δ̃)1{τ≤T2 | τ>T1}

) ∣∣∣∣HT1

)
= P (T1, T2)− P (T1, T2)EQ

[
(1− δ̃) | {τ ≤ T2 | τ > T1};HT1

]
·

Q(τ ≤ T2 | τ > T1). (5.5)

In other words, Equation (5.5) is the value of a riskless zero-coupon bond minus the value
of the conditional expected recovery on default loss under the risk-neutral measure.

Remark 5.3. With constant recovery rate δ (5.5) reduces to

VCP (T1, T2) = P (T1, T2)− P (T1, T2)(1− δ)Q(τ ≤ T2 | τ > T1).

5.3.2.1. Forward Measure

Assuming that the default time is independent of the interest rate process (Assump-
tion 5.5) is unrealistic and far stretched. In order to relax Assumption 5.5 we apply
a change of measure, from risk-neutral to forward measure (see also in Bielecki and
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Rutkowski (2004)), in form of the Radon-Nikodým derivative in Definition B.14. This
is a similar way to what we have seen in Section 4.2.1 by means of zero-coupon bonds.
The risky zero-coupon bond value of the cover pool under the forward measure amounts
to

VCP (T1, T2) = P (T1, T2)−

EQT2

(
BT1

BT2

(
(1− δ̃)1{τ≤T2 | τ>T1}

)( dQ
dQT2

)
|HT1

∣∣∣∣∣HT1

)
= P (T1, T2)−

EQT2

(
BT1

BT2

(
(1− δ̃)1{τ≤T2 | τ>T1}

)(BT2P (T1, T2)
P (T2, T2)BT1

) ∣∣∣∣HT1

)
= P (T1, T2)− P (T1, T2)EQT2

[
(1− δ̃) | {τ ≤ T2 | τ > T1};HT1

]
·

QT2(τ ≤ T2 | τ > T1) (5.6)

where QT2 is the forward martingale measure for T1 ≤ T2 ≤ T ∗.

5.3.2.2. Loss Distribution

Continuing on the modelling of the cover pool we rely on the forward measure as for-
mulated in Section 5.3.2.1. Further, we assume the cover pool is a portfolio consisting
of single assets m, m = 1, . . . ,M in an universe of M assets, with an intrinsic value of
a risky zero-coupon bond V m

CP (T1, T2). Thereby, Equation (5.6) consists of two compo-
nents, namely

· the riskless zero-coupon bond P (T1, T2), and

· the expected default loss

EQT2

[
(1− δ̃m) | {τm ≤ T2 | τm > T1};HT1

]
QT2(τm ≤ T2 | τm > T1), (5.7)

representing the risk of the bank holding a cover pool asset m.

The latter, (5.7), is modelled as a loss distribution embedded in a large homogeneous
portfolio (LHP) which is specified in the upcoming section. According to Andersen and
Sidenius (2004), negative correlation between recovery rates and default frequencies ex-
ists which calls for the necessity of taking random recovery rates into account. Moreover,
in the context of the Pfandbriefe cover pool assets are likely to have a high recovery at
default of the outstanding mortgages. A certain assurance is given by the mortgage
lending limit of 60% (compare Spangler and Werner (2014)). This is considered as an
extension to the well known Gaussian copula model of the portfolio default loss.
In general, the Gaussian copula approach transforms τm, the default time of an as-
set m, into new standard normal random variables Xm via a ‘percentile-to-percentile’
transformation. Asset m defaults at time τm, when

Xm ≤ Φ−1(Fm(τm)), m = 1, . . . ,M,

where Fm is the distribution function (e.g. the exponential distribution) of the default
time τm. This allows a multivariate normal interpretation of Xm with an underlying
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correlation matrix Σ. Consequently, the complex correlation structure of τm is replaced
by a more manageable one, where Xm can be interpreted as some kind of standardised
asset returns. Instead of computing the pairwise correlation between Xm and Xn for
each pair m, n, underlying correlation structure can be substituted by using a common
market factor Z (here representing housing market data of a specific economy, or similar,
adequately characterising the systematic credit risk of the portfolio). This represents the
simplifying idea behind the factor copula model first introduced by Vašìček (1987), and
Li (2000) being the first to apply the Gaussian model to multi-name credit derivatives.
We apply the extended version of factor copula model under stochastic recovery rates for
the period (T1, T2] and state the LHP representation thereof. For a complete derivation
of the Gaussian copula model and LHP with stochastic recovery rates, refer to Andersen
and Sidenius (2004).
Following Andersen and Sidenius (2004), consider a portfolio of M default-risky cover
pool assets. For a fixed time horizon (T1, T2] default occurs before T2 and after T1. We
connect Xm and τm by the known9 forward default probabilities

qm := QT2(τm ∈ (T1, T2] | τm > T1), m = 1, . . . ,M

for each cover pool asset m. The one factor Gaussian copula model with random re-
covery is given in Definition 5.1 where factor loadings remain constant over time and
idiosyncratic factors for asset m are mutually independent random variables. Under this
copula model the variable Xm is mapped to default time τm of the mth asset using a
percentile-to-percentile transformation, i.e. the asset m defaults when

Φ(Xm) ≤ qm ⇔ Xm ≤ Φ−1(qm), m = 1, . . . ,M.

Definition 5.1 (One factor Gaussian copula with random recovery). Consider
a cover pool portfolio of M assets. The standardised asset return for the time period
(T1, T2] of the mth asset in the portfolio, Xm, is assumed to be of the form

Xm = amZ +
√

1− a2
mεm, (5.8)

where

· Z
iid∼ N(0, 1) is the systemic common market factor,

· 0 ≤ am < 1, m = 1, . . . ,M are factor loadings,

· εm
iid∼ N(0, 1), m = 1, . . . ,M are idiosyncratic factors and

· Z and εm are independent.

The loss of the mth asset is modelled as

lm = lmax
m (1− δ̃m)

= lmax
m (1− Φm(µm + bmZ + ξm)), (5.9)

where
9A detailed description on how to obtain risk-neutral forward probabilities is provided in the suc-

ceeding sections.
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· each lm is bounded, i.e. lm ∈ [0, lmax
m ], with lmax

m ∈ R+,

· δ̃m ∈ [0, 1] are random recovery rates,

· µm, m = 1, . . . ,M are constants,

· bm ≥ 0, m = 1, . . . ,M are factor loadings, and

· ξm
iid∼ N(0, σ2

ξm
), m = 1, . . . ,M are idiosyncratic factors and independent of Z and

εm.

Given a common market factor Z, it follows from above specification and Definition 5.1,
that (Andersen and Sidenius, 2004)

Qm(Z = z) = Prob(Xm ≤ Φ−1(qm) |Z = z)
= Prob(τm ∈ (T1, T2] | τm > T1, Z = z)

= Φ
(

Φ−1(qm)− amz√
1− ‖am‖

)
, m = 1, . . . ,M

and

lm(Z = z) = lmax
m

1− Φ

µm + bmz√
1 + σ2

ξm

 , m = 1, . . . ,M.

Remark 5.4. More sophisticated models other than the Gaussian copula model may well
be utilised and can easily be further extended. However, emphasis is laid upon recovery
rates and providing an initial modelling groundwork.

Now, we assume that each asset m has the same default probability, the same factor
loadings and the same recovery rate and that assets are equally weighted, meaning there
exists no asset m dominating the total portfolio amount whereas a sufficiently large
number of assets M exists. Then, according to Andersen and Sidenius (2004) the total
portfolio loss experienced on (T1, T2] is

L =
M∑
m=1

lmax
m (1− δ̃m)1{τm≤T2 | τm>T1}

which can be approximated by the homogeneous portfolio of Definition 5.2.

Definition 5.2 (Large Homogeneous Portfolio (LHP) under random recovery
rates). Consider a homogeneous portfolio in an one-factor version of the cumulative
Gaussian model, with

F∞(y) = lim
M→∞

Prob (L/M ≤ y) = Φ
(
−h−1(y)

)
h(z)/lmax = Q(z)l (z)

= Φ
(

Φ−1 (q)− az√
1− a2

)1− Φ

µδ̃ + bδ̃z√
1 + σ2

ξ
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for constants a, µδ̃, bδ̃, σ2
ξ , where 0 ≤ y ≤ 1, 0 < a < 1 and bδ̃ ≥ 0.

Remark 5.5. Since Q(z) and l (z) are continuous and strictly decreasing, h(z) = y in
Definition 5.2 has a unique solution z∗ for 0 ≤ y ≤ 1 and {Q(z)l (z) ≤ y} = {z ≥ z∗}.
Thus, we have

Prob(L ≤ y) = E[Prob(Q(z)l (z) ≤ y | z)]
= E[Prob(z ≥ z∗ |Z)]
= Prob(z ≥ z∗) = 1− Φ(z∗).

Remark 5.6. With constant recovery rate δ, the LHP model reduces to

h(z) = y = Φ
(

Φ−1(q)− az√
1− a2

)
lmax(1− δ)

⇔
Φ−1(q)− az√

1− a2
= Φ−1

(
y

lmax(1− δ)

)
⇔

Φ−1(q)− az = Φ−1
(

y

lmax(1− δ)

)√
1− a2

⇔

z =
Φ−1(q)− Φ−1

(
y

lmax(1−δ)

)√
1− a2

a
⇒

P (L ≤ y) = Φ

Φ−1
(

y
lmax(1−δ)

)√
1− a2 − Φ−1(q)

a

 , (5.10)

yielding a closed form solution to Definition 5.2.

The expectation and variance of the recovery rate and dependence between recovery rate
and asset returns is given by

E(δ̃) = Φ
(

µδ̃√
1 + σ2

)
V(δ̃) = Φ2

(
µδ̃√

1 + σ2
,

µδ̃√
1 + σ2

; σ2

1 + σ2

)
− Φ

(
µδ̃√

1 + σ2

)2

τ(δ̃, X) = 2π−1 sin−1(bδ̃a/σ).

Example 5.2 (Gaussian model with stochastic recovery rate). To illustrate the
difference between stochastic recovery and constant recovery (bδ̃ = 0) we set E(δ̃) = 0.6,
V(δ̃) = 0.01 and τ(δ̃, X) = {0, 0.3, 0.8}. q and the parameter a are determined with
the help of Table C.11 containing the interdependencies and default probabilities of m
cover pool assets grouped by s segments and sub-segments with corresponding weights.
We conduct the same calculation as in Section 5.2.3. The average factor loading and the
weighted sums one-year default probability are â = tanh−1(

∑n
i=1 tanh(ci)/n) = 0.2747

and q̂(0, 1) =
∑S
s=1 pdsws = 0.0051, respectively. However, we are interested in the con-

ditional forward default probability of q on the interval (T1, T2]. For reasons of simplifi-
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cations we assume a constant hazard rate model with λ̂ = q̂(0, 1) = 0.0051 for computing
the forward default probabilities which amounts to q̂(τ ≤ 7 | τ > 3) = 0.0201.
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Figure 5.7.: Loss distributions of random recovery model with given values E(δ̃) = 0.6,
V(δ̃) = 0.01, τ(δ̃, X) = {0, 0.3, 0.8} and estimated values â = 0.2387, q̂(τ ≤ 7 | τ > 3) =
0.0201.

5.3.3. Other Assets

Since we only simulate to T1 for the other assets the computational burden is manageable.
Thus, there is no immediate need of changing the proposed full model of (4.32) for
VOA(t), respectively (3.8). However, other assets only account for a smaller amount
of the overall asset side of a mortgage Pfandbrief bank (see type ‘Hyp’ in Table C.2)
so that a complexity reduction of (4.32) for VOA at T1 seems reasonable. Nonetheless,
the position of OA still plays an important role in the overall Pfandbrief modelling
framework. Sünderhauf (2006) concludes that it is advisable for a Pfandbrief bank
to hold a minimum percentage of other assets in its asset portfolio in order to have
additional collateral for the Pfandbrief as Pfandbrief investors also have, amongst other
potential creditors, a privileged claim over it, compare formula (3.11) and Figure 3.2.
Thus, we are seeking a viable model which accounts for the modelling considerations
and mathematical properties of Chapter 3 and at the same time using less parameters
to approximately achieve a similar outcome of the structural model of Chapter 4. Inline
with classical financial modelling of log-normal prices (Hull (2009) and Wilmott (2006))
and, simultaneously, inline with Tasche (2016)’s assumption of a log-normal distribution
for the issuer’s remaining portfolio (OA), we also apply this simplification for modelling
(3.8). Furthermore, the results of the goodness-of-fit tests of Section 5.2.2 are reassuring
to postulate this approximation of (4.32) for OA.
Following the groundbreaking works of Samuelson (1965) and Black and Scholes (1973)
and since no further restrictions are imposed to the other assets (Equation (3.8)), the
values at time T1 resemble future stock prices, which are assumed to be a geometrical
Brownian motion and log-normally distributed

lnVOA(T1) ∼ N
[
lnVOA(0) +

(
r −

σ2
VOA

2

)
T1, σ

2
VOA

T1

]
. (5.11)
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Remark 5.7. For a more realistic modelling approach one can opt for at least including
stochastic interest rates as in Briys and de Varenne (1997)’s model where we modify the
original model with time-dependent κ(t) and σ(t) parameters to be constant, amounting
to (5.12). (5.12) can be regarded as a compromise between (4.32) and (5.11) with

dVOA(t)
VOA(t) = r(t)dt+ σVOAdWQVOA(t), (5.12)

dr(t) = (θ(t)− κr(t)) dt+ σrdWQr (t),
dWQVOA(t)dWQr (t) = ρVOA, rdt.

Remark 5.8. When utilising the model specified with constant interest rates r there
is no need to apply the change into the forward measure. Should, however, stochastic
interest rates be incorporated as in (5.12) then the derivation of the forward measure can
be applied analogously to Section 4.2.1.

5.4. Obtaining Future Probabilities

One of the issues of the simplified approach in Section 5.2 wrt modelling the cover pool
is obtaining default probabilities at some time in the future. Crucial to the rating based
model is assessing default probabilities correctly. More precisely, the forward default
/ survival probabilities need to be calculated which arises from (5.6). Given a default
time τ , the probability of survival in T years is Prob(τ > T ) = 1 − Prob(τ ≤ T ) =
1−E[1{τ≤T}]. Several other related quantities can be derived from the basic probability.
For instance

Prob(S ≤ τ ≤ T ) = Prob(τ > S)− Prob(τ > T )

is the unconditional probability of default occuring in the time interval [S, T ]. Using
Bayes’s rule for conditional probability, one can deduce that the probability of survival
in T years conditioned on survival up to S ≤ T years is

Prob(τ > T | τ > S) = Prob({τ > T} ∩ {τ > S})
Prob(τ > S) = Prob(τ > T )

Prob(τ > S) ,

since {τ > T} ⊂ {τ > S}. From this we can define the forward default probability for
the interval [S, T ] as

Prob(S ≤ τ ≤ T | τ > S) = 1− Prob(τ > T | τ > S) = 1− Prob(τ > T )
Prob(τ > S) .

Assuming that Prob(τ > T ) is strictly positive and differentiable in T , we define the
forward default rate function as

h(T ) = −∂ log Prob(τ > T )
∂T

.

It then follows that Prob(τ > T | τ > S) = exp
(
−
∫ T
S h(u)du

)
. The forward default rate

measures the instantaneous rate of arrival for a default event at time T conditioned on
survival up to T . Indeed, if h(T ) is continuous we find that for a short time interval
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[T, T + ∆T ]

h(T )∆T ≈ Prob(T ≤ τ ≤ T + ∆T | τ > T ).

5.4.1. Historical Mortgage Defaults

At first, we consider macroeconomic mortgage default rates for inferring future default
probabilities based on (constant) hazard rate computations. Certainly, this practice
represents a gross simplification and generalisation of the underlying default structure
of a Pfandbrief bank’s mortgage cover pool, however, a first entry point in forecasting
required probabilities in a reduced form modelling framework is thereby provided and
can be viewed as an initial benchmark evaluation.
Most recent (years 2014 and 2015) default rates for Germany are given by the Bunde-
sanstalt für Finanzdienstleistungsaufsicht (BaFin), see Table 5.6. Here a distinction
between residential and commercial properties is undertaken where a slightly higher risk
profile can be observed for commercial mortgages in 2015. Hagen and Marburger (2002)
state10 similar average default rates for commercial finance for multi-purpose office and
office buildings in Germany are 0.08%, or only 0.05% for up to 60% of the borrowing
outflows which constitutes exceptionally low contingency risks. Interestingly, mortgage
default rates have not changed dramatically over the years — at least in Germany. This
observation is reflected in Table 5.7 where “overall, default rates for German securi-
tisation transactions on residential mortgages, consumer loans and SME credits, which
form the largest share of issuance activity, are around 0.30% — or less than half of the
European average of 0.65%” (Staff Team of IMF, 2011) even during the years of the
financial crises. While mortgage default rates are traditionally low in Germany and rest
of Europe, the USA reveals a completely different picture. Rates doubled twice in two
consecutive years from 2.27% to 8.43% since the onset of subprime mortgage crisis.
In Section B.3.1 we have introduced the hazard rate. Survival analysis relies on the ex-
ponential distribution with parameter λ and mean 1/λ. The simplest possible survival
distribution is obtained by assuming a constant risk over time, so the hazard, survival
function and distribution amount to

λ(t) = λ

S(t) = exp(−λt)
f(t) = λ exp(−λt)

for all t. The density is obtained by multiplying the survivor function by the hazard
rate.
Inserting the values of Table 5.6 or Table 5.7 for λ(t) = λ into (B.55) we are, in
generic terms, able to forecast sector or country wide future default probabilities. More
plausible results can be obtained by resorting to Pfandbrief bank related data. Therefore,
we utilise Moody’s default data given in Table C.11 of Münchener Hypothekenbank eG.
The one-year default probability is computed by p̂(0, 1) =

∑M
i=1 pdiwi = 0.0051. We set,

as in Section 5.2.3, λ̂ = p̂(0, 1) = 0.0051 which again can be plugged into (B.55) resulting
in, for example, the conditional forward default probability p̂(τ ≤ 7 | τ > 3) = 0.0201 of
the time period t ∈ (3, 7] years.

10Unfortunately, it is not explicitly stated on which year or years the default rates are based on, but
presumably 2001 preceding the year of publication of Hagen and Marburger (2002).
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CCR upper limit 2015 2014

Residential Art. 125 (3) a) & 199 (3) a) 0.30% 0.04% 0.05%
Art. 125 (3) b) & 199 (3) b) 0.50% 0.07% 0.10%

Commercial Art. 126 (3) a) & 199 (4) a) 0.30% 0.04% 0.05%
Art. 126 (3) b) & 199 (4) b) 0.50% 0.15% 0.10%

Table 5.6.: Default rates for real estate risk positions in Germany, according to Art.
125, 126 and 199 Regulation (EC) No. 575/2013 according to the Capital Requirements
Regulation (CRR) (source: www.bafin.de11)

Country 2007 (%) 2008 (%) 2009 (%)

Germany 0.30 0.30 0.30
France 0.44 0.40 0.44
United Kingdom 1.88 2.42 2.45
USA 2.27 4.66 8.43
Poland 1.20 1.00 3.20
EU ∅ 0.65 0.65 0.65

Table 5.7.: Evolution of mortgage default rates of selected countries during the financial
crisis (source: Commission Staff Working Paper (2011))

Remark 5.9. We have found a simple way of forecasting default probabilities based
on historical macro economic figures. Yet, we still owe an approach for risk-neutral
modelling under Q. In Lando (2004), for example, we find the formula

S(t, T ) = Prob(τ > T |Ht) = EQ

(
exp

(
−
∫ T

t
λ(s)ds

) ∣∣∣∣∣Ht
)
.

This reduced-form model framework constitutes the relation between the stochastic inten-
sity process λ(t) and the random survival probabilities at future times t provided τ > t.
It allows us to model the default probability of a Pfandbrief bank’s cover pool surviving
at time t of which we have no knowledge at time 0. Thus, the expectation is constructed
where λ is a process which is adapted to (in fact predictable with respect to) the filtration
Ht.
Duffie (1999) also proposes a model based on constant default hazard rates where a risk-
neutral valuation is feasible by knowing the asset swap spread value instead of the risky
bond price. The amount by which the value of the risk-free bond exceeds the value of
the risky bond is the asset swap spread. This fact allows to obtain risk-neutral con-
stant hazard rates of λ. “In that case, default occurs at a time that, under ‘risk-neutral
probabilities’ is the first jump time of a Poisson process with intensity λ”, (Duffie, 1999).

11https://www.bafin.de/SharedDocs/Downloads/DE/Auslegungsentscheidung/dl_ae_161222_
verlustraten_2015_ba.pdf?__blob=publicationFile&v=3
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5. Reduced-Form Model

5.4.2. Cover Pool Credit Ratings

From Section 5.1.3 we know that mortgage loan ratings exist, either within a Pfandbrief
bank itself or submitted to external data pools consisting of multiple intermediaries,
ensuing Assumption 5.6.

Assumption 5.6. Credit risk transition matrices aggregated into rating classes are
readily available. More precisely, default and migration (from higher to lower rating
classes and vice versa) probabilities of mortgage cover pool assets are given, or can be
estimated from historical default data.

Assumption 5.6 requires some additional insight into Markovian theory wrt transition
matrices12 and their estimation which is outsourced to Appendix B.3. Ideally, modelling
is embedded in continuous time which complicates matters but solutions thereof are
made available. The very basic approach of Section 5.4.1 can be refined to more
suitably reflect the cover pool’s risk profile of a Pfandbrief bank where forecasting cover
pool default probabilities are treated in a granular sense. The major advantage of a
rating based approach is being able to divide the cover pool assets into different rating
classes. Moreover, continuous probabilities, meaning at any point in time, are obtainable.

5.4.2.1. Embedding Problem

Forecasting default probabilities can be accomplished by projecting Markov chain tran-
sition matrices into the future. In discrete time, a t-step transition probability denotes
the probability that in t time units later the chain will be in state j, given it is now in
state i. In the case of homogeneity the t-step transition probabilities can be computed by
the t-th power of the (one-period) transition matrix (basically Theorem B.12 in matrix
notation), i.e.

p
(t)
ij := Prob(Xt = j |X0 = i) =

(
P t
)
ij
,

or in matrix notation

p
(t)
ij := P t = P · · ·P︸ ︷︷ ︸

t−times
, (5.13)

where p(t)
ij > 0,

∑K
j=1 p

(t)
ij = 1, for i, j = 1, . . . ,K ∈ S (discrete state set) and t ∈ N0.

However, for the continuous time case, when t ≥ 0 or t ∈ R+
0 , it becomes necessary to

transform the given one-year transition matrix to a generator matrix.

Remark 5.10. This section can also be regarded as supplementing theoretical background
to Hughes and Werner (2016).

12A note on notation of the underlying Markov chains: In general we use {Xt} for discrete-time
and {X(t)} for continuous-time Markov chains. However, to avoid any confusion with the price of a
zero-coupon bond, P (t, T ), we denote transition matrices in general in bold font P . Further, we denote
the n-step transition matrix in discrete time by P0,n with n ∈ N0. E.g. P0,1 is the given one-year
transition matrix published by rating agencies which is frequently used in upcoming sections. The t-step
transition matrix in continuous time is denoted by Pt with t ∈ R+

0 . Inline again with the Markov chain
in continuous time the generator matrix is given as G(t), ∀t ≥ 0 for the inhomogeneous case.
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The common approach, in the context of embedding a transition matrix in continu-
ous time, is based on the notion of the generator of a continuous-time Markov process
(Definition B.17). Bielecki and Rutkowski (2004) offer this compact definition of the
embedding problem:

Definition 5.3 (Embedding Problem). Find a K ×K matrix G satisfying (a) and
(b) of Properties B.3 (non-negative off-diagonal entires and all rows summing to 0), such
that exp(G) = P .

As P0,1 = exp(G) from Definition 5.3 needs to hold, a feasible candidate may be the
matrix logarithm of a given transition matrix. However, this is most times not the case
in the context of credit migration matrices, as more restrictive conditions of the embed-
ding problem itself will reveal. Consequently, it becomes necessary to apply techniques
in order to satisfy (a) and (b) of Properties B.3. In many publications, e.g. Jarrow et al.
(1997) or Israel et al. (2001), it is suggested to simply compute the matrix logarithm
and do some adjustments (diagonal adjustment (DA) and weighted adjustment (WA))
to the resulting matrix, eliminating negative off-diagonal entries by simply adding these
to the diagonal. This seems a rather crude approach. Hughes and Werner (2016) show
that Definition 5.3 can be formulated as a non-linear optimisation problem and be solved
numerically with sufficient accuracy, thus rendering approximations unnecessary. Fur-
thermore, this direct approach via non-linear optimisation allows one to consider credit
risk-relevant constraints.
Having received a valid generator (for example in Table C.13) one can easily compute
future default probabilities for any t > 0, namely by (B.60). The numerical calculation
then can be conducted via the eigenvalue decomposition of G, yielding

G = Udiag(d1, . . . , dK)U−1, (5.14)

where U are the eigenvectors and diag(d1, . . . , dK) is the diagonal matrix containing the
eigenvalues. Then the transition matrix can be obtained by

P (t) = Udiag(ed1t, . . . , edKt)U−1. (5.15)

Next, existence and uniqueness conditions are formulated wrt the matrix logarithm M ,
with P = exp(M) and generator matrix G, with exp(G) = P . The motivation of com-
puting the matrix logarithm is twofold. First, computing the matrix logarithm may yield
a valid generator and second, the upcoming optimisation approaches rely on the matrix
logarithm as start matrix. In either cases a resulting real-valued solution is needed. In
this context, it may also occur that more than one feasible matrix logarithm may exist,
from which it follows that multiple solutions to the generator may be derived. Culver
(1966) gives two necessary and sufficient conditions on the existence and uniqueness
(corresponding proofs are also stated in Culver (1966)):

Theorem 5.1 (Existence of the Logarithm). Let P be a real square matrix. Then
there exists a real solution M to the equation P = exp(M) if and only if

(a) P is non-singular, and

(b) each elementary divisor (Jordan block) of P belonging to a negative eigenvalue
occurs an even number of times.
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5. Reduced-Form Model

Theorem 5.2 (Uniqueness of the Logarithm). Let P be a real square matrix. Then
the equation P = exp(M) has a unique real solution M if and only if

(a) all the eigenvalues of P are positive real and

(b) no elementary divisor (Jordan block) of P belonging to any eigenvalue appears
more than once.

Remark 5.11. It follows from Theorem 5.1 and Theorem 5.2 that if P0,1 is diagonal-
isable and if all eigenvalues are positive, real and distinct then the matrix logarithm
uniquely exists.

The existence of the logarithm is given for all three annual transition matrices from Ta-
ble C.12, meaning all matrices have full rank and in all three cases the eigenvalues are
positive thus fulfilling Theorem 5.1 (a) and (b). Israel et al. (2001) state that repeated
eigenvalues are commonly not observed for credit risk transition matrices. Also both
8× 8 matrices have a unique real solution as Theorem 5.2 (a) and (b) are satisfied, due
to positive, real and distinct eigenvalues. However, PMoodys XXL

0,1 yields a complex con-
jugate eigenvalue pair (0.5932− 0.0201i and 0.5932 + 0.0201i), hence (a) does not hold.
A summary of the conditions for the matrix logarithm is given in Table 5.8. Lastly, we

Theorem 5.1 — Existence Theorem 5.2 — Uniqueness
(a) (b) (a) (b)

P S&P
0,1 X X X X

PMoodys
0,1 X X X X

PMoodys XXL
0,1 X X × −

Table 5.8.: An overview of where the existence (Theorem 5.1) and uniqueness (Theo-
rem 5.2) conditions on the matrix logarithm apply to the given annual transition matrices
from Table C.12.

need to show that simply computing the matrix logarithm may not yield valid generator
matrices. This is usually observed specifically for transition matrices in credit risk as
negative off-diagonal entries arise, compare Israel et al. (2001). For real eigenvalues the
principal logarithm13 is simply computed which is the case for P S&P

0,1 and PMoodys
0,1 . For

PMoodys XXL
0,1 the situation is different. Here a complex conjugate eigenvalue pair exists

so that one needs to search in every branch of the matrix logarithm. Applying the search
algorithm proposed by Singer and Spilerman (1976) and Israel et al. (2001) three real-
valued solutions of the matrix logarithm can be found for this particular matrix. Yet,
not one single valid generator according to (a) and (b) of Properties B.3 arises. The
smallest negative off-diagonal entries of the corresponding matrix logarithm are given in
Table 5.9.
At this point many publications addressing the matter resort to the diagonal adjust-
ments (DA and WA) to eliminate the negative off-diagonal entries. Both methods are
thoroughly described for example in Israel et al. (2001). Also it becomes evident that
the embedding problem itself relies on more restrictive conditions for obtaining valid
generators, as analysed in the next section. To this end many publications address the

13For computing the principal logarithm Matlab’s inbuilt function logm(), which is based on the
Schur-Parlett algorithm, is utilised.
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Branch mS&P
min (0, 1) mMoodys

min (0, 1) mMoodys XXL
min (0, 1)

-1 − − -13.390
0 -0.0003 -0.0003 -0.0013
1 − − -19.061

Table 5.9.: Minimum off-diagonal values of the resulting matrix logarithm computa-
tions, where mmin(0, 1) = minmij(0, 1), i 6= j,∀i, j = 1, . . . ,K in all branches of the
logarithm function.

embedding problem, consisting of the existence of an embeddable matrix in continuous
time and its uniqueness (also referred to as identification), reaching back as far as Elfv-
ing (1937). In these works the authors give conditions as to when a discretely obtained
transition matrix can be embedded in a continuous time setting. Thus far necessary and
sufficient conditions have only been formulated for 2×2 (see Kingman (1962) attributed
to D. G. Kendall, and Guerry (2013)) and 3×3 matrices (see Cuthbert (1973), Johansen
(1974), Frydman (1980), Carette (1995) and Guerry (2014)). For higher dimensions the
issue still remains vague.
Necessary conditions (Lin (2011) also states the same list in her dissertation) for the exis-
tence in chronological order are (corresponding proofs are given in the stated references):

Theorem 5.3 (Necessary conditions for existence of a generator G with
exp(G) = P ). Let P be a transition matrix.

(a) No eigenvalue λi of P can satisfy |λi| = 1 other than λi = 1. In addition, any
negative eigenvalue must have even (algebraic) multiplicity. (cf. Elfving (1937))

(b) If pij = 0, then p
(n)
ij = 0 for any integer n ≥ 2. If pij 6= 0, then p

(n)
ij 6= 0 for any

integer n ≥ 2. (cf. Chung (1960))

(c) For every pair of states i and j such that j is accessible from i, pij > 0. (cf. Chung
(1960) and Grimmett and Stirzaker (2001))

(d) det(P ) > 0 (cf. Kingman (1962))

(e) All eigenvalues of P must lie inside a heart-shaped region Hn in the complex plane
whose boundary is the curve x(v) + iy(v), where 0 ≤ v ≤ π/ sin(2π/n) and

x(v) = exp(−v + v cos(2π
n

)) cos(v sin(2π
n

)),

y(v) = exp(−v + v cos(2π
n

) sin(v sin(2π
n

)),

together with its symmetric image with respect to the real axis. (cf. Runnenberg
(1962))

(f) det(P ) ≤
∏K
i=1 pii (cf. Goodman (1970))

(g) If P has distinct eigenvalues, then each eigenvalue λi of P satisfies |λi| ≤
| log(det(P ))|. (cf. Singer and Spilerman (1976) and Israel et al. (2001))
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(h) For any K ×K transition matrix P which can be embedded in a continuous time
Markov chain, there exist distinct indices i, j such that for all k

pik = 0 implies pjk = 0,

and likewise distinct indices i′, j′ such that, for all k,

pki′ = 0 implies pkj′ = 0.

(cf. Fuglede (1988))

(i) The entries of P must satisfy

pik ≥ mmrr(m+ r)−m−r
∑
j

(pij − bm)(pjk − br)1pij>bm, pjk>br ,

for any positive integers m and r. Here bm =
∑∞
l=m+1 e−µµl/l! = 1−

∑m
l=0 e−µµl/l!

which equals the probability that N ′ > m, where N ′ is a Poisson random variable
with mean µ ≡ maxi(−gii), with maxi(−gii) ≤ −trace(G) = − log(det(P )). Fur-
thermore 1B is the indicator function of the Boolean event B. (cf. Israel et al.
(2001))

The necessary conditions of Theorem 5.3 can be divided into two classes: conditions (a),
(d), (e), (f) and (g) examine the eigenvalues (respectively determinant), while conditions
(b), (c), (h) and (i) look at the matrix entries themselves more closely.
Following Israel et al. (2001) the most important conditions to be checked are (c), (d)
and (f). While conditions (d) and (f) of Theorem 5.3 are satisfied by all given ma-
trices in Table C.12, condition (c) is not. For example, in P S&P

0,1 it is possible to
migrate from class AAA to CCC-C via class A (pS&P

1,3 (0, 1) > 0 and pS&P
3,7 (0, 1) > 0),

but not directly, as pS&P
1,7 (0, 1) = 0. This violation is a frequently observed phenomenon

when examining credit risk transition matrices (due to non-observable defaults for high
ratings in historical data, as also pointed out in Israel et al. (2001)). Therefore, Is-
rael et al. (2001) established a more quantitative version of (c), being the most re-
cent condition added to the list, (i). For example, we get the new probabilities for
pMoodys

7,1 (0, 1) ≥ 4.9210 · 10−9, pMoodys
7,2 (0, 1) ≥ 1.2563 · 10−7, pMoodys

1,4 (0, 1) ≥ 7.0681 · 10−7,
pMoodys

1,6 (0, 1) ≥ 1.6223 · 10−7, pMoodys
1,7 (0, 1) ≥ 1.6473 · 10−10, pMoodys

2,7 (0, 1) ≥ 1.6348 · 10−8

and pMoodys
1,8 (0, 1) ≥ 2.6519 · 10−8 for the original zero entries. Similarly, for P S&P

0,1 new
lower bounds with moderately low integer values (m and r) could be extracted. How-
ever, as also indicated by Israel et al. (2001) the bounds are not sufficiently large to rule
out the possibility that the observed zero entries are due to rounding off. Also replacing
the zero entries of PMoodys

0,1 with the newly obtained bounds and computing the matrix
logarithm thereof have not resulted in a valid generator, as still negative off-diagonal
values occur, corroborating the claim of the new bounds not being large enough. In fact
tests have shown that only values larger than 10−4 make the negative values disappear.
In the case of the large matrix PMoodys XXL

0,1 integer values m and r needed to be set very
high (e.g. m, r = 80) in order to even get strictly positive bounds. With positive higher
integers also lower probabilities are obtained, vanishing to zero. When computing the
matrix power, for any given RCMM (Properties B.2) and n ≥ 2, it can not always be
guaranteed that zero entries remain zero entries so that (b) does not hold. A further
important condition specifically addresses the situation when complex eigenvalues occur
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5.4. Obtaining Future Probabilities

(condition (e)). Here the Runnenberg boundary (cf. Runnenberg (1962)) is not to be
exceeded. Figure 5.8 depicts the Runnenberg boundary with the real eigenvalues of
P S&P

0,1 and PMoodys
0,1 . Also the complex conjugate eigenvalue pair of PMoodys XXL

0,1 lies
within this boundary (see Figure 5.9). An extensive analysis of complex eigenvalues
is given in Singer and Spilerman (1976). Checking the necessary condition (h), ac-
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Figure 5.8.: Depiction of the eigenvalues pair of P S&P
0,1 (left side) and PMoodys

0,1 (right
side) lying within the Runnenberg boundaries of a 8× 8 matrix (Theorem 5.3 (e)).
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Figure 5.9.: Depiction of the eigenvalues of PMoodys XXL
0,1 lying within the Runnenberg

boundaries of a 21 × 21 matrix (Theorem 5.3 (e)). Right plot rescales the imaginary
axis, revealing the complex conjugate pair lying in close proximity.

cording to Fuglede (1988), reveals that the right stochastic matrices P S&P
0,1 , PMoodys

0,1 and
PMoodys XXL

0,1 possess the same pattern of zero entries, satisfying this necessary criterium.
The least restrictive condition is (a), as it relates closely to the existence of the matrix
logarithm in Theorem 5.1. Negative eigenvalues in general are usually not observed for
credit risk transition matrices and λK = 1, so that |λK | = 1. A summary of all existence
conditions of the embedding problem is given in Table 5.10.

Remark 5.12. From this rather brief, although representative investigation of common
credit risk transition matrices it becomes evident that especially conditions (b) and (c)
will, with high probability never apply to credit migration matrices. However, a longer
history of default data would mean a higher probability that defaults have occurred even
for higher rating classes. Also (i) gives a certain amount of assurance to be able to
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Theorem 5.3 — Existence
(a) (b) (c) (d) (e) (f) (g) (h) (i)

P S&P
0,1 X × × X X X X X ×
PMoodys

0,1 X × × X X X X X ×
PMoodys XXL

0,1 X × × X X X X X ×

Table 5.10.: An overview of where the existence (Theorem 5.3) conditions for the
embedding problem apply to the given annual transition matrices from Table C.12.

correct these entries (yet these need to be sufficiently large).

It can be concluded that specifically credit risk transition matrices have problems ful-
filling the conditions class of matrix entries ((b), (c), and (i)) while on the other hand
the eigenvalue related conditions are usually all met.
To this end, we need to ascertain the fact that theoretically no valid generators for our
given transition matrices exist as three out of nine necessary conditions do not hold.
However, for the sake of completeness and to show the feasibility of checking we will
also discuss the case where more than one generator might arise, hence non-uniqueness
(Theorem 5.4). It is sufficient (compare Singer and Spilerman (1976)) to show that if
at least one of the conditions holds then only one valid generator exists (corresponding
proofs are given in the stated references):

Theorem 5.4 (Sufficient conditions for uniqueness of a generator G with
exp(G) = P ). Let P be a transition matrix.

(a) If P has distinct eigenvalues and det(P ) > e−π(≈ 0.0432), then only one possible
generator for P exists. (cf. Cuthbert (1972), Cuthbert (1973) and Israel et al.
(2001))

(b) If min
i

(P )ii > 1/2 ∀i = 1, . . . ,K, and P is diagonally dominant, then it can be
guaranteed that the generator is unique. (cf. Cuthbert (1972) and Cuthbert (1973))

(c) If the eigenvalues of P are distinct, real, and positive, then only one possible gen-
erator for P exists. (cf. Singer and Spilerman (1976))

(d) If det(P ) > 1/2, then P has at most one generator. (cf. Israel et al. (2001))

(e) If det(P ) > 1/2 and ‖P − I‖ < 1/2 (using any matrix norm), then only one
possible generator for P exists. (cf. Israel et al. (2001))

All matrices in Table C.12 do not fulfil Theorem 5.4 (d) nor (e) by Israel et al. (2001).
These conditions seem to be quite restrictive as the threshold of 1/2 is rather high, as
compared to condition (a) (P S&P

0,1 and PMoodys
0,1 yield a determinant value of 0.269 and

0.256 respectively). In general, requirement (b) is in most cases satisfied as in credit risk
the annual transition matrix has the larger amount of probability mass on the diagonal.
Also if pii > 0.5, for all i = 1, . . . ,K then also det(P ) > 0, cf. Israel et al. (2001)14.
Regarding condition (c), it is simply due to the fact that should real eigenvalues exist
only the principal branch of the logarithm can be computed.

14For further interesting relations of strictly diagonally dominant matrices refer to Israel et al. (2001).
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Remark 5.13. Should however, more than one valid generator be obtained then Israel
et al. (2001) propose to minimise the possibility of “jumping too far too quickly”, based
on some simple calculations.

A summary of all uniqueness conditions of the embedding problem is given in Ta-
ble 5.11.

Theorem 5.4 — Uniqueness
(a) (b) (c) (d) (e)

P S&P
0,1 X X X × ×
PMoodys

0,1 X X X × ×
PMoodys XXL

0,1 × X × × ×

Table 5.11.: An overview of where the uniqueness (Theorem 5.4) conditions for the
embedding problem apply to the given annual transition matrices from Table C.12.

5.4.2.2. Forecast Procedure with Updated PDs

In Hughes and Werner (2016) we show how credit risk migration matrices in contin-
uous time are received for any given one-year transition matrix based on a non-linear
optimisation procedure. Furthermore, constraints are imposed so that not only a valid
generator matrix results, but also the outcome is manipulated to a more desirable struc-
ture of matrix entries of G, respectively P0,1, before forecasting into the future. A
general forecast procedure may be as follows:

1. Obtain an one-year transition matrix P0,1 either via estimation (Section B.3.2) or
assume as given.

2. Embed P0,1 in continuous time to obtain the corresponding generator G by using
an accurate numerical embedding procedure as in Hughes and Werner (2016) where
additional constraints can be incorporated if desired.

3. Use formula (B.60) or the numerical more efficient formula (5.15) in combination
with (5.14) to obtain a future (or past < 1 year) transition matrix version, P0,t, with
t ∈ R+

0 .

Here we add another optimisation problem where updated PDs are incorporated into
an existing one-year transition matrix. Subsequently, we shall forecast into the future
and compare the non-updated PDs to the updated PDs. Needless to say that any other
constraint introduced in Hughes and Werner (2016) can be applied a priori.

Remark 5.14. This additional optimisation problem of updated default probabilities has
its origin in Kealhofer et al. (1998) and is picked up again by Bluhm et al. (2002). The
conclusion of Kealhofer et al. (1998) is: “There is a wide range of default probabilities
within a rating range because the rating agencies are slow in upgrading and downgrad-
ing firms whose default probabilities have changed.” These findings are based on KMV’s
expected default frequencies (EDF) methodology. Translated to our modelling setting
of rating mortgage assets contained in the cover pool we can incorporate the exogenous
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changes in default probabilities and redistribute probability mass to the rest of the transi-
tion matrix in order to obtain a valid transition matrix as in Definition B.16 where the
row sums amount to one.

As in Hughes and Werner (2016) we rely on the best approximation of the annual transi-
tion matrix (BAM) method. Until 2010, it remained open if there were a (weak/strong)
relation between BAM and its approximation QOG. Then, Davies (2010) derived Theo-
rem 5.5, which gives the distance of any solution of a generator matrix G to the matrix
logarithmM = log(P ). In the context of optimisation, it follows that should G be close
to log(P0,1), then so is exp(G) to P0,1.

Theorem 5.5. Let P be a transition matrix such that all eigenvalues are strictly positive,
and put M = log(P ). If G lies within the set of (a) and (b) of Properties B.3 and
‖M −G‖∞ = ε, then:

‖P − exp(G)‖∞ ≤ min{2, exp(ε)− 1} ≤ min{2, 2ε},

where the used norm is ‖A‖∞ = max{‖Aν‖∞ : ‖ν‖∞ ≤ 1} = max
1≤i≤n

{
∑n
j=1 |Ai,j |}.

For the optimisation problems, we need to define the set of all valid generators, thus
Definition 5.4 is derived from (a) and (b) of Properties B.3.

Definition 5.4 (Generator matrix constraints).

G :=
{
X ∈ RK×K :

K∑
j=1

xij = 0, i = 1, . . . ,K; (G1)

xij ≥ 0, ∀i 6= j and i, j = 1, . . . ,K
}

(G2)

Now lets assume new PDs are estimated, for example due to external shocks, which need
to be incorporated into a subsequent risk assessment. An ad-hoc solution is to update
an existing one-year transition matrix with the new PDs in order to retain the benefits
of a modified generator matrix. Even though the condition of a right stochastic matrix
of each row summing to one (

∑K
j=1 pij = 1 for i, j = 1, . . . ,K ∈ S) is violated at first by

the updated PDs, the non-linear optimisation approach is able to rectify this with (G1)
and (G2) of Definition 5.4. Definition 5.5 defines the required PD update constraint.

Definition 5.5 (Updated default probability constraint).

U :=
{
P ∈ RK×K : Pi,K = P update

i,K , i = 1, . . . ,K − 1
}

(U1)

Remark 5.15. Definition 5.5 can easily be rewritten to that the update resembles a
change of the diagonal, so that

U :=
{
P ∈ RK×K : Pi,i = P update

i,i , i = 1, . . . ,K − 1
}
, (U2)

or even a combination of both (U1) and (U2). For illustration purposes we only show
(U1).
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5.4. Obtaining Future Probabilities

The constraint of Definition 5.5 together with the constraint of the generator matrix in
Definition 5.4 we can now formulate the optimisation problem of BAM (Problem 5.1).

Problem 5.1 (Best approximation of the annual transition matrix
(BAM)). Find a generator matrix G that, when exponentiated (by the matrix expo-
nential), most closely matches a given annual transition matrix P0,1, with:

G = arg min
X∈G

‖ exp(X)− P0,1‖2F, (BAM)

subject to exp(X) ∈ U

where ‖ · ‖F denotes the Frobenius norm.

For illustration purposes lets suppose the PDs of PMoodys
0,1 in Table C.12 may have

risen by 20bp for investment (Aaa, Aa, A, Baa) and 50bp for speculative (Ba, B, Caa-
C) grades so that P update

i,K = [0.0020, 0.0023, 0.0021, 0.0036, 0.0196, 0.0756, 0.2666], with
i = 1, . . . ,K − 1 in Definition 5.5. The results are given in Table 5.12 where the
range of deviation from the P update

i,K PDs lie in the interval [2bp; 8bp]. It seems also
that the PDs obtained from optimisation are underestimated wrt to the updated PDs
which other outcomes for various P update

i,K , i = 1, . . . ,K − 1 have, in general, confirmed.
Adding to the PDs has forced the optimisation to subtract the equivalent probability
mass from previous states in each row. This can be clearly seen when comparing P update

0,1
in Table 5.12 to PMoodys

0,1 in Table C.12. Definition 5.5 can also be combined with any
other constraint defined in Hughes and Werner (2016) and applied to larger transition
matrices, e.g. PMoodys XXL

0,1 .
A five-year forecast is conducted on the non-updated PMoodys

0,1 and updated P update
0,1

transition matrices as in the described procedure above. Comparisons of the non-updated
and updated default probabilities are depicted in Figure 5.10. It can be concluded that
an update of PDs, thus taking new information on default changes into account, has a
significant impact on any subsequent risk assessments.

P update
0,1 Aaa Aa A Baa Ba B Caa-C D
Aaa 0.8861 0.1024 0.0096 0.0003 0.0001 0.0001 0.0000 0.0015
Aa 0.0105 0.8868 0.0952 0.0032 0.0011 0.0011 0.0000 0.0020
A 0.0003 0.0285 0.9018 0.0589 0.0071 0.0015 0.0000 0.0018

Baa 0.0003 0.0031 0.0704 0.8521 0.0603 0.0098 0.0006 0.0033
Ba 0.0000 0.0001 0.0049 0.0561 0.8350 0.0802 0.0047 0.0190
B 0.0000 0.0000 0.0010 0.0058 0.0652 0.8263 0.0269 0.0749

Caa-C 0.0000 0.0001 0.0057 0.0097 0.0297 0.0603 0.6289 0.2658
D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Gupdate Aaa Aa A Baa Ba B Caa-C D
Aaa -0.1216 0.1156 0.0046 0.0000 0.0000 0.0000 0.0000 0.0015
Aa 0.0118 -0.1226 0.1067 0.0000 0.0009 0.0012 0.0000 0.0020
A 0.0002 0.0318 -0.1077 0.0672 0.0058 0.0011 0.0000 0.0017

Baa 0.0003 0.0023 0.0803 -0.1651 0.0711 0.0082 0.0004 0.0025
Ba 0.0000 0.0000 0.0029 0.0664 -0.1865 0.0964 0.0046 0.0163
B 0.0000 0.0000 0.0007 0.0041 0.0780 -0.1960 0.0370 0.0763

Caa-C 0.0000 0.0000 0.0070 0.0114 0.0371 0.0815 -0.4656 0.3287
D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 5.12.: Result of the 8× 8 matrices P update
0,1 and Gupdate.
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Figure 5.10.: Comparison of non-updated and updated default probabilities with a
five-year forecast horizon. Left: Investment grade rating classes Aaa - Baa; Right:
Speculative grade rating classes Ba - Caa-C.

5.5. Obtaining Risk-Neutral Probabilities

A crucial component of the proposed model of Section 5.3, in particular Section 5.3.2,
is the conversion form real-world to risk-neutral probabilities. This is also a weakness of
the simplified model in Section 5.2 which could only handle PDs based on historical time
series yielding estimates in a real-world setting. Essentially, the upcoming reduced-form
approach models spreads between a riskless and a risky bond for which Assumption 5.5
is of central importance. This shall be briefly illustrated in the following where we addi-
tionally assume, for reasons of simplicity, zero recovery δ = 0 (bonds are not redeemed
in the event of default).

Remark 5.16. To be inline with the model specification and notation of Jarrow et al.
(1997) we return to the assumption of a constant recovery rate, δ, for this section. See
also Remark 5.3.

Let V (t, T )1{τ>T} be the price at time t ≤ T of a defaultable zero-coupon bond with
maturity T and face value equal to one unit of currency. Then, with δ = 0, the JLT
pricing formula (Jarrow et al., 1997) amounts to

V (t, T )1{τ>T} = EQ

(
exp

(
−
∫ T

t
r(s)ds

)
1{τ>T}

∣∣∣∣∣Ht
)
.

Applying Assumption 5.5 this simplifies to

V (t, T )1{τ>T} = P (t, T )Q(τ > T |Ht).

Therefore, as long as τ > t the risk-neutral survival probability is given by

Q(τ > T |Ht) = V (t, T )
P (t, T ) = exp

(
−
∫ T

t

(
fd(t, s)− f(t, s)

)
ds
)
. (5.16)
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5.5. Obtaining Risk-Neutral Probabilities

Comparing (5.16) to the credit spread measure

s(t, T ) = − 1
T − t

log V (t, T )
P (t, T ) = − 1

T − t

∫ T

t
h(t, s)ds, (5.17)

which is the difference of the continuously compounded yield to maturity of a default-free
zero-coupon bond P (t, T ) and of a defaultable zero-coupon bond V (t, T ) with h(t, s) =
fd(t, s) − f(t, s), we see that the term structure of risk-neutral survival probabilities
is determined by the term structure of both defaultable and default-free zero-coupon
bonds. Further, we can state that depending on the credit-worthiness of a risky zero-
coupon bond it will sell for less than a riskless zero-coupon bond which will be useful
for modelling the credit risk of the underlying cover pool assets.
Following Jarrow et al. (1997), the idea now is to let Q(τ > T |Ht) depend on a rating
class i of allocated cover pool assets where Qi(τ > T |Ht) denotes the probability of
survival past T given the information up to time t under the risk-neutral measure Q for
assets starting out in category i. Let Vi(t, T ) be the value of a zero-coupon bond issued
by an asset in credit class i at time t, then

Vi(t, T ) = P (t, T )(δ + (1− δ)Qi(τ > T |Ht)). (5.18)

With (5.16) and (5.17) it follows from the pricing formula (5.18) that

si(t, T ) = − 1
T − t

log (δ + (1− δ)Qi(τ > T |Ht)) (5.19)

where Qi(τ > T ) = 0 if τ ≤ t. The forward rate for the risky zero-coupon bond in credit
class i by inserting (5.18) is

fi(t, T ) = − log
(
Vi(t, T + 1)
Vi(t, T )

)
= f(t, T ) + 1{τ>t} log

(
δ + (1− δ)Qi(τ > T |Ht)

δ + (1− δ)Qi(τ > T + 1 |Ht)

)
(5.20)

where in bankruptcy fK(t, T ) = f(t, T ). To get the spot rate, set T = t in Equation
(5.20) and simplify

ri(t) = r(t) + 1{τ>t} log
( 1

1− (1− δ)qiK(t, t+ 1)

)
(5.21)

where in bankruptcy rK(t) = r(t).
We now need to give some more theoretical background on how to obtain the risk-neutral
survival probabilities Qi(τ > T |Ht). In general there exist larger differences between
real-world and risk-neutral default probabilities. The difference between actual and risk-
neutral probabilities is reflected in risk-premiums required by market participants to take
risks. In the real-world, investors demand risk premiums, whereas under the risk-neutral
probabilities all assets have the same expected rate of return, the risk-free rate (or short
rate), and thus do not incorporate any such premium. Consequently, risk-neutral default
probabilities must be higher than actual real-world probabilities.
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5. Reduced-Form Model

5.5.1. Discrete Time

The narrative of mainly being interested in modelling in continuous time has not changed,
however, it makes sense, from a comprehensibility perspective, to consider the discrete
case first before moving on to its continuous counterpart. One of the central assumptions
of Jarrow et al. (1997) is the independence of a particular bond on the history of the
market or past ratings, thus future credit ratings of this bond depend only on the current
rating of a bond. Following Bielecki and Rutkowski (2004), this key forgetfulness feature
in Markovian theory is reflected in Assumption 5.7.

Assumption 5.7. The migration process Xt, with 0 ≤ t ≤ T ∗ follows a time-
homogeneous Markov chain under the real-world probability P. The transition matrix of
the migration process Xt under P is defined as in Definition B.16 with Properties B.1.

However, under the equivalent martingale measure, more precisely moving from the real-
world to the risk-neutral measure, two potential issues concerning the Markov chain Xt

arise, namely forfeiting

1. the property of time-homogeneity, and

2. of greater concern the Markov property itself.

The loss of the homogeneity property is less problematic. In order to prepare for the
change of measure we formulate the general case of a inhomogeneous transition matrix
from time t to time t+ 1 under the equivalent martingale probability with qij(t, t+ 1) =
Q(X∗t+1 = j |X∗t = i) for every t = 0, . . . , T ∗−1 which leads to Assumption 5.8 (Bielecki
and Rutkowski, 2004).

Assumption 5.8. The migration process X∗t , with 0 ≤ t ≤ T ∗ follows a time-
inhomogeneous Markov chain under the martingale measure Q, with the time-dependent
transition matrix

Qt,t+1 = (qij(t, t+ 1))1≤i,j≤K (5.22)

where

Qt,t+1 =


q1,1(t, t+ 1) q1,2(t, t+ 1) · · · q1,K(t, t+ 1)
q2,1(t, t+ 1) q2,2(t, t+ 1) · · · q2,K(t, t+ 1)

...
... . . . ...

qK−1,1(t, t+ 1) qK−1,2(t, t+ 1) · · · qK−1,K(t, t+ 1)
0 0 · · · 1

 ,

and

qii(t, t+ 1) = 1−
K∑
j=1
j 6=i

qij(t, t+ 1),

with i = 1, . . . ,K.

Property 5.1.

(a) qij(t, t+ 1) ≥ 0, ∀i 6= j and i, j
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5.5. Obtaining Risk-Neutral Probabilities

(b)
∑K
j=1 qij(t, t+ 1) = 1, i = 1, . . . ,K

(c) qKj(t, t+ 1) = 0 for every j < K and t = 0, . . . , T ∗−1, so that once more the state
K is absorbing

(d) qij(t, t+ 1) > 0 if and only if pij > 0 for 0 ≤ t ≤ T ∗ − 1

Also computing future transition matrices can easily be accomplished. The cumulative
transition matrix, that is the T ∗-step K ×K transition matrix Q0,T ∗ whose i, jth entry
is qij(0, T ∗), satisfies

Q0,T ∗ = Q0,1Q1,2 · · ·QT ∗−1,T ∗ =
T ∗−1∏
t=0

Qt,t+1, (5.23)

for inhomogeneous matrices Qt,t+1, t = 0, . . . , T ∗− 1. Lemma 5.1 computes the survival
probability at any future date T , starting from credit class i at time t, with (5.23) where
Qi(τ > T |Ht) denotes the conditional probability on the filtration Ht. The result of
Lemma 5.1 becomes useful when calibrating the model.

Lemma 5.1 (Probability of Solvency in Terms of Q). Let a mortgage asset be
in state i at time t, denoted by X∗t = i and define τ := inf{t ∈ {0, . . . , T ∗} : X∗t = K},
which represents the first time of bankruptcy. Then, the probability that default occurs
after time T is

Qi(τ > T |Ht) =
∑
j 6=K

qij(t, T ) = 1− qiK(t, T ).

Addressing the issue of preserving the Markov property is more complex where addi-
tional restrictions need to be imposed. As pointed out by Bielecki and Rutkowski (2004)
we are dealing with different sources of uncertainty (market risk, credit risk and other
economic factors) when switching from one measure to another. More precisely, “the
Radon-Nikodým densities are assumed to be only adapted wrt the natural filtration of
the Markov chain, rather than adapted to the filtration H”, (Bielecki and Rutkowski,
2004). The potential effect thereof on the risk-neutral transition probabilities of As-
sumption 5.8 is unknown to this end. In fact, Bielecki and Rutkowski (2004) present
two sufficient conditions for the preservation of the Markov property yielding a more
rigorous theoretical background to the issue. We orientate ourselves towards the readily
established concept of risk premium adjustments constituting the solution to our prob-
lem, as proposed by Jarrow et al. (1997). The transition probabilities are, in general,
given by

qij(t, t+ 1) = πij(t)pij , i, j ∈ S, (5.24)

where πij(t) are the risk-premia adjustments that may depend on the whole history up to
time t and pij are the actual transition probabilities of the observed time-homogeneous
Markov chain {Xt : 0 ≤ t ≤ T ∗}. We see that the underlying chain of qij(t, t + 1),
conditional on the history up to time t, is then no longer of Markovian nature. Jarrow
et al. (1997) impose the restriction

πij(t) = πi(t), i 6= j, (5.25)
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with πi(t) being deterministic functions of time t. This ensures that after risk neutrali-
sation the process {X∗t : 0 ≤ t ≤ T ∗} is a non-homogeneous Markov chain. Further, the
independence of j (column-independence) provides additional analytical tractability to
the model. The column-independence restriction only requires the estimation of K − 1
unknowns, instead of (K − 1)2. However, this assumption is not necessarily realistic as
pointed out by Jarrow et al. (1997). Risk premiums, πi(t), are interpreted as propor-
tionality factor which may depend on i and t but not on j since for any state i, the
probability under the martingale measure Q of jumping to the state j 6= i is assumed
to be proportional to the corresponding probability under the real-world probability P
(moving from i to j receives the same risk premium as moving from i to K). In matrix
form we can write (5.24) with (5.25) as

Qt,t+1 = I + Π(t)[P − I]

where I is the K×K identity matrix and Π(t) = diag(π1(t), . . . , πK−1(t), 1) is a K×K
diagonal matrix.

Remark 5.17. It is immediately clear that higher risk premiums cause higher default
probabilities. Higher default probabilities imply lower prices for defaultable zero-coupon
bonds, through (5.18).

Remark 5.18. Since, the last row in the transition matrix for Qt,t+1 in conjunction
with Equation (5.25) implies that πK(t) ≡ 1 for any t, we shall refer to the vector
(π1(t), . . . , πK−1(t)) as the risk premium at time t.

Remark 5.19. In the special case that Π(t) is a constant matrix, independent of t,
Q0,t = Qt, where Qt is the t-fold matrix product. Then, Qi(τ > T |Ht) = Qi(τ >
T − t |H0), as the process is time-homogeneous.

5.5.2. Continuous Time

Having sufficiently introduced the discrete-time formulation in Section 5.5.1 we move
on to the continuous-time representation of the reduced form model, again referring to
Bielecki and Rutkowski (2004). Essentially, Assumption 5.7 and Assumption 5.8 get
replaced by Assumption 5.9 and Assumption 5.10.

Assumption 5.9. Under the real-world probability measure P, the migration process
X follows a time-homogeneous Markov chain, with the intensity matrix G as in Defini-
tion B.17.

Assumption 5.10. Under the spot martingale measure Q, the credit migration pro-
cess X∗ follows a (time-inhomogeneous) Markov chain, with a time-dependent intensity
matrix G̃(t), where

G̃(t) =


g̃1,1(t) · · · g̃1,K−1(t) g̃1,K(t)

... . . . ...
...

g̃K−1,1(t) · · · g̃K−1,K−1(t) g̃K−1,K(t)
0 · · · 0 0


and the entries of the matrix G̃(t) are functions g̃ij(t) are functions g̃ij(t) : [0, T ∗]→ R+.
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As in the discrete-time setting, it is of interest to obtain the risk-neutral generator matrix
of Assumption 5.10 where the real-world setting is the initial situation. Once again, it is
of importance to retain the Markov property whereas the time-homogeneity will be lost
during the conversion. Likewise, at default time τ the Markov chain will migrate to the
the absorbing state K, with

τ := inf{t ∈ [0, T ∗] : X(t) = K}.

The transition from a real-world to risk-neutral model is then achieved by the multi-
plication of the risk premia matrix U(t) and the generator matrix G where the risk
adjustments transform the actual probabilities into the pseudo-probabilities suitable for
valuation purposes, see Assumption 5.11.

Assumption 5.11. There exists a matrix function U(t) of the form:

U(t) =


u1,1(t) · · · 0 0

... . . . ...
...

0 · · · uK−1,K−1(t) 0
0 · · · 0 1


where the entries, uii, i = 1, . . . ,K − 1, are strictly positive, integrable functions, such
that the risk-neutral and real-world intensity matrices satisfy

G̃(t) = U(t)G (5.26)

for every t ∈ [0, T ∗].

Under the assumption in Equation (5.26), the credit rating process is still Markovian,
but it is inhomogeneous since the U(t) = diag(u1(t), . . . , uK−1(t), 1) is a K×K diagonal
matrix whose first K − 1 entries are strictly positive deterministic functions of t that
satisfy ∫ T

0
ui(t)dt < +∞

for i = 1, . . . ,K−1, where conditions in Remark B.17 are widely preserved. In conclusion
of the continuous-time JLT model, the same bond valuation formula (5.18) can be applied
as in the discrete-time case.

Remark 5.20. Following Jarrow et al. (1997), the K ×K probability transition matrix
from time t to time T for X(t) under the equivalent martingale measure is given as the
solution to the Kolmogorov differential equations (see Section B.3.1):

∂Q(t, T )
∂t

= −G̃(t)Q(t, T ) (5.27)

and

∂Q(t, T )
∂T

= Q(t, T )G̃(T ) (5.28)

with the initial condition Q(t, t) = I.
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5.5.3. Jarrow et al. (1997) Model Calibration

In order to be able to calibrate the Jarrow et al. (1997) model we need to first assume
that the following inputs are given, resulting from Equation (5.18):

· the initial term structure of default free-free bonds, that is, the market values P (t, T ),

· the observed initial term structures of risky zero-coupon bonds, Vi(t, T ), from credit
classes i = 1, . . . ,K − 1, and

· the recovery rate δ.

Resuming, the key result of Jarrow et al. (1997) is summarised in Assumption 5.12 which
transforms the actual probabilities to probabilities used in (risk-neutral) valuation.

Assumption 5.12. We assume that the risk premium adjustments are such that the
credit rating process under the martingale probabilities satisfy

qij(t, t+ 1) =
{
πi(t)pij , j 6= i,

1 + πi(t)(pii − 1), i = j
(5.29)

for all i, j ∈ S where

· πi(t) is a time-dependent, deterministic function (interpreted as discrete-time risk
premiums), such that

· qij(t, t+ 1) ≥ 0 for all i, j, j 6= i, and

·
∑
j=1
j 6=i

qij(t, t+ 1) ≤ 1 for i = 1, . . . ,K.

The positivity of qij(t, t+ 1) results from the the equivalence of the two measures Q and
P. In addition, we see that from (5.29) for i = j (and qij(t, t+ 1) > 0) the risk premium
adjustments πi(t) must satisfy the condition

0 < πi(t) <
1

1− pii
, ∀i 6= K − 1, t ∈ N. (5.30)

Further, we assume a given empirical, usually an one-year, transition matrix P0,1 which is
abbreviated to P for this segment. With (5.23) and Assumption 5.12 we can compute

Q0,t+1 = Q0,t[I + Π(t)(P − I)]. (5.31)

From (5.31) and Lemma 5.1 we get

Qi(τ ≤ t+ 1 |H0) =
K∑
j=1

qij(0, t)πj(t)pjK . (5.32)

With above specification we can now formulate a recursive procedure given in Algo-
rithm 5.1. Thereby, we mainly refer to Bielecki and Rutkowski (2004) and enrich by
some additional details from Jarrow et al. (1997).

Algorithm 5.1 (Calibration JLT in discrete-time). Assuming that Q−1
0,t exists

then solving (5.35) leads to the recursive procedure in discrete-time:
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1. For t = 0, compute from (5.35) the initial values of credit risk premiums, i.e. the
vector (π1(0), . . . , πK−1(0)). In more detail: Equation (5.18) will be matched if
Qi(τ ≤ T |H0) is selected such that

Qi(τ ≤ T |H0) = P (0, T )− Vi(0, T )
P (0, T )(1− δ) (5.33)

for i = 1, . . . ,K and T = 1, 2, . . . , T ∗. Given the empirical transition matrix P , we
have

Q0,1 = I + Π(0)(P − I).

From this matrix, and Lemma 5.1, we get

Qi(τ ≤ 1 |H0) = πi(0)piK .

Substitution into Equation (5.33) and since Q0,0 = I gives

πi(0) = P (0, 1)− Vi(0, 1)
P (0, 1)(1− δ)piK

, (5.34)

for i = 1, . . . ,K − 1.

2. By combining equations (5.29) and (5.23) find the one-step risk-neutral probability
matrix Q0,1.

3. Substituting (5.32) into Equation (5.33) yields

Q0,t


π1(t)p1K

...
πK−1(t)pK−1,K

1

 =


P (0,t+1)−V1(0,t+1)
P (0,t+1)(1−δ)

...
P (0,t+1)−VK−1(0,t+1)

P (0,t+1)(1−δ)
1

 , (5.35)

where Q0,0 = I. At time t = 1 we solve (5.35) for the credit risk premiums
(π1(t), . . . , πK−1(t)) where we use the the matrix Q0,1 from the 2. step.

4. Repeat steps 2. and 3. until all vectors of the risk premiums (π1(t), . . . , πK−1(t)),
t = 2, . . . , T ∗ − 1, and, simultaneously, all values Q0,t, t = 3, . . . , T ∗, (and likewise
Qt,t+1, t = 2, . . . , T ∗ − 1 from Assumption 5.12) are found.

Remark 5.21. Let us examine the JLT model at t = 0 in view of formulae (5.34)
and inequality (5.30). If piK are sufficiently close to zero compared to the nominator
in (5.34) then condition (5.30) is violated. Clearly, Algorithm 5.1 is valid only if the
one-period default probability is non-zero for every credit class. One option to overcome
the possibility of exploding risk premiums in the JLT model is to manipulate the default
probabilities, hence impose a upward shift as proposed by Jarrow et al. (1997) where piK
are specified to have a minimum value of 0.0001, which again needs to be subtracted from
the main diagonal of P0,1. One may argue that this is a rather crude approach and does
not necessarily reflect the market as it is not unusual that no defaults occur for bonds
with high credit ratings within a time period of one year. This may lead to incorrect
pricing results and to arbitrage opportunities.
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5. Reduced-Form Model

Finally, we can use Algorithm 5.1 to obtain the continuous-time calibration procedure
by taking Assumption 5.11 into consideration in order to find the risk-neutral intensity
matrices G̃(t) at time t for given δ and G. Again, this is accomplished by matching
the observed market prices Vi(0, T ) with the theoretical values predicted by the model
via the starting position given by (5.18), the credit-risky zero-coupon bond price curves.
Substituting T = t+ ∆t on the left and right side of the forward equation (5.28) we get
for small ∆t and Q(t, t) = I (the initial condition) an appropriate approximation where
(Jarrow et al., 1997)

Q(t, t+ ∆t) ≈ I + G̃(t)∆t = I +U(t)G∆t, (5.36)

with

∂Q(t, T )
∂T |T=t+∆t

≈ Q(t, t+ ∆t)− I
∆t

and

Q(t, t+ ∆t)G̃(t+ ∆t) ≈ Q(t, t)G̃(t) = G̃(t).

It is assumed that U(t) is right continuous over [t, t + ∆t) for small ∆t (Jarrow et al.,
1997). Algorithm 5.2 yields the desired calibration procedure for the risk premia U(t)
for the continuous-time pendant of Algorithm 5.1.

Algorithm 5.2 (Calibration JLT in continuous-time). Follow the recursive pro-
cedure in Algorithm 5.1 with steps 1. to 4. by setting (in matrix notation)

Π(t) ≡ U(t)

in (5.34),

Q− I ≡ G∆t

in (5.35) and taking the approximation (5.36) of the Kolmogorov forward equation into
consideration.

Remark 5.22. To overcome the drawback of Remark 5.21, Kijima and Komoribayashi
(1998) (KK) developed a slight modification of the JLT model where the denominator
(5.34) allows for small default probabilities piK . The central difference of the KK to
the JLT model is the handling of the risk premiums in (5.24) with (5.25). Kijima and
Komoribayashi (1998) assume that the risk premium adjustments are such that the credit
rating process under the martingale probabilities satisfy

qij(t, t+ 1) =
{
πi(t)pij , ∀j 6= K,

1 + πi(t)(pii − 1), j = K
(5.37)

for all i, j ∈ S where

· πi(t) is a time-dependent, deterministic function (interpreted as discrete-time risk
premiums), such that

· qij(t, t+ 1) ≥ 0 for all i, j, j 6= i, and
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5.5. Obtaining Risk-Neutral Probabilities

·
∑
j=1
j 6=i

qij(t, t+ 1) ≤ 1 for i = 1, . . . ,K.

Note the difference between (5.29) and (5.37). In (5.29) the risk premium adjustments
πi(t) are independent of j for j 6= i, while in (5.37) they are independent of j for j 6= K.
Similarly, to the boundary condition (5.30) in Jarrow et al. (1997) we can state that the
risk premium adjustments πi(t) in case of Kijima and Komoribayashi (1998) lies within

0 < πi(t) <
1

1− piK
, ∀i 6= K − 1, t ∈ N, (5.38)

resulting from (5.37) for i = j (and qij(t, t+ 1) > 0).

5.5.4. Constrained Optimisation

During the review of the JLT (and KK) model above we have identified some weaknesses
when incorporating risk premiums, moving from P toQ, which are briefly summarised:

· The resulting adjusted transition matrix under Q is not a transition probability ma-
trix since Properties B.1 may be violated. Likewise, the one-step transition matrices
calculated from cumulative transition probability matrices do not necessarily have to
be transition probability matrices.

· Equivalence of P and Q is not guaranteed. For example, Assumption 5.3 claims
that the underlying probability measures, P and Q, are equivalent. However, apart
from the drawback described in Remark 5.21 it can be frequently observed that
Algorithm 5.1 yields values of πi(t) which thereunto result in negative risk-neutral
probabilities.

We shall address above issues by introducing constrained optimisation techniques to
the JLT and KK model. Imposing constraints to a linear optimisation problem allows
us to additionally infer the recovery rate from market prices with the condition that
0 ≤ δ ≤ 1 if desired. Jarrow et al. (1997) already acknowledge the issues related to the
Algorithm 5.1 and therefore propose to opt for the constrained optimisation technique
where ui(t) ≥ 0, i = 1, . . . ,K−1 (the risk premiums need to be non-negative for all credit
classes i and times t). Furthermore, as pointed out by Jarrow et al. (1997) arbitrage
opportunities may arise due to the existence of negative risk premia which caused by
the so called ‘yield-to-worst issue’ when stripping bonds to obtain zero-coupon bond
prices. These potential mispriced zero-coupon bonds are taken care of by Problem 5.2
yielding “the best values for the risk premia consistent with no arbitrage”, cf. (Jarrow
et al., 1997). Here Jarrow et al. (1997)’s constrained optimisation is slightly modified to
Problem 5.2 where G̃ ∈ G implies (u1(t), . . . , uK−1(t)) ≥ 0. The proposed optimisation
problem amounts to the sum of squared differences between model and market risk
zero-coupon bonds using (5.18) at each time step t and each credit class i.

Problem 5.2. Let Vi(0, t; G̃) be the model zero-coupon bond prices and VM
i (0, t) be the

market zero-coupon bond prices, then

min
G̃∈G

uK(t)=1

K∑
i=1

(
Vi(0, t; G̃)− VM

i (0, t)
)2

(5.39)
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where the set G is defined as in Definition 5.4.

Further, the additional risk-relevant constraints introduced in Hughes and Werner (2016)
can be added to the generator matrix G̃ where the continuous-time modelling properties
are met. The best approximation of the annual transition matrix (BAM) is applied
at each time step t for (5.39) with selective or all proposed structural corrections to
the generator yielding the desired credit risk relevant outcomes. This adds additional
flexibility when moving from P to Q. Note that the ‘yield-to-worst issue’ due to ‘bad
data’ as described in Jarrow et al. (1997) may also be improved upon when applying the
additional constraints in Hughes and Werner (2016) and simultaneously satisfying G in
Definition 5.4 at all times.

5.6. Extended Jarrow et al. (1997) Approach

So far, in the context of the JLT model, we assumed that prices of risky zero-coupon
bonds, Vi(t, T ), from credit classes i = 1, . . . ,K − 1 are exogenously given. Yet, in our
framework we face the problem that the respective present values of the bonds belonging
to the corresponding rating classes are unknown to us. Moreover, it is precisely the
value we desire to obtain. Thus, we must find a way of incorporating risk premiums
exogenously in order to obtain the risk-neutral zero-coupon bond prices. We refer to
Dubrana (2011) where an elegant remedy to our issue is proposed allowing for stochastic
spreads which originates from Arvanitis et al. (1999). Here, risk premiums are modelled
as a stochastic differential equation in form of the CIR1F model as already introduced
in Section 4.1.3 and partly in Appendix B.2. This leads us to an extension of the Jarrow
et al. (1997) model, the so called extended JLT (EJLT) model.

Remark 5.23. The classical usage of the CIR1F model is in the context of interest
rates. However, it possesses many other application possibilities due to its non-negativity
property, for example as variance process (Section 4.1.3), as intensity process (referring
to the conversation between a trader and a quantitative analyst in Brigo and Mercurio
(2007)) and, as proposed here, as risk premium process.

Assume the real world generator matrix is diagonalisable,

G = ΣDΣ−1

where the column of Σ ∈ RK×K are the right eigenvectors of G and D is the diagonal
matrix of eigenvalues of G. Similarly, assume the risk-neutral generator matrix is given
by

G̃(t) = ΣD̃(t)Σ−1,

where D̃(t) is a time-dependent stochastic diagonal matrix in order to allow for stochastic
spreads, considering that

D̃(t) = π(t)D
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where we postulate π(t) to be stochastic risk premiums. I.e. the model of Arvanitis et al.
(1999) relies on modifying the eigenvalues of the historical transition rates while leaving
the eigenvectors Σ unchanged resulting in the generator matrix G̃ under the martingale
measure. The risk-neutral transition matrix is

Qt,T = ΣEQ

[
exp

(∫ T

t
D̃(s)ds

) ∣∣∣∣∣Ht
]

Σ−1, (5.40)

where D̃(t) = diag(d̃1(t), d̃2(t), . . . , d̃K(t)). Default probabilities can be obtained via

qiK(t, T ) =
K−1∑
j=1

σij σ̂iK

{
EQ

[
exp

(∫ T

t
d̃j(s)ds

) ∣∣∣∣∣Ht
]
− 1

}

=
K−1∑
j=1

σij σ̂iK

{
EQ

[
exp

(
dj

∫ T

t
π(s)ds

) ∣∣∣∣∣Ht
]
− 1

}
. (5.41)

for 1 ≤ i ≤ K − 1 and where σij is the ijth element of Σ and σ̂iK is the ijth element of
Σ−1, which follows from

Qt,T − I = ΣEQ

[
exp

(∫ T

t
D̃(s)ds

)
− I

∣∣∣∣∣Ht
]

Σ−1

and d̃K = 0.

Remark 5.24. Assuming that D̃(t) is a deterministic function, then the risk-neutral
probabilities are given by

Qt,T = Σ
[
exp

(∫ T

t
D̃(s)ds

)]
Σ−1,

and respectively

qiK(t, T ) =
K−1∑
j=1

σij σ̂iK

{
exp

(∫ T

t
d̃j(s)ds

)
− 1

}
.

The stochastic short rate spreads for a given rating can be written as

(1− δ)g̃iK(t) = (1− δ)π(t)
K−1∑
j=1

σij σ̂jKdj .

Now, it is the objective to derive a closed form solution of (5.41) for a rating class j,
more precisely of the term

EQ

[
exp

(
dj

∫ T

t
π(s)ds

) ∣∣∣∣∣Ht
]
.

Therefore, we resort to the affine term structure solution of Section B.2.3.2, in particular
of the CIR1F model derived in Remark 4.6 where we simply can replace r(t) by π(t),
respectively ς2(t) by π(t), solving the stochastic differential equation for the CIR model
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5. Reduced-Form Model

with

dπ(t) = απ(µπ − π(t))dt+ σπ

√
π(t)dWQ(t), π(0) = π0. (5.42)

The square root process π(t) ensures that the credit spreads are positive (see Section 4.1.3
and Appendix B.2 for more details on the CIR1F model; we additionally refer to Brigo
and Mercurio (2007) and Björk (2004), amongst others, for theoretical supplementation).
The ATS, according to Dubrana (2011), takes on the formulation

EQ

[
exp

(
dj

∫ T

t
π(s)ds

) ∣∣∣∣∣Ht
]

= exp(Aj(t, T )− π(t)Bj(t, T )), (5.43)

where

Aj(t, T ) = 2απµπ
σ2
π

ln

 2νje
1
2 (απ+νj)(T−t)

(νj + απ)
(
eνj(T−t) − 1

)
+ 2νj

 ,
Bj(t, T ) =

−2dj
(
eνj(T−t) − 1

)
(νj + απ)

(
eνj(T−t) − 1

)
+ 2νj

with νj =
√
α2
π − 2djσ2

π and dj ≤ 0 a constant value15. The proof of (5.43) can be
derived analytically16 in a similar way as already outlined in Remark 4.6.
Proof. Let us reformulate (5.43) to

Zj(t) := exp
(
dj

∫ t

0
π(s)ds

)
Fj(t, π(t);T ) = EQ

[
exp

(
dj

∫ T

0
π(s)ds

) ∣∣∣∣∣Ht
]

where

Fj(t, π(t);T ) = EQ

[
exp

(
dj

∫ T

t
π(s)ds

) ∣∣∣∣∣Ht
]

which is abbreviated to Fj(t, π;T ). For s ≤ t ≤ T and EQ
[
exp

(
dj
∫ T

0 π(s)ds
) ∣∣∣Ht]

being finite (see Theorem 4.1 in Dufresne (2001)), by using the tower property of the
conditional expectation, we get

EQ[Zj(t) |Hs] = EQ
[
exp

(
dj

∫ t

0
π(u)du

)
Fj(t, π;T )

∣∣∣∣Hs]
= EQ

[
EQ

[
exp

(
dj

∫ T

0
π(u)du

) ∣∣∣∣∣Ht
] ∣∣∣∣∣Hs

]

= EQ

[
exp

(
dj

∫ T

0
π(u)du

) ∣∣∣∣∣Hs
]

= exp
(
dj

∫ s

0
π(u)du

)
EQ

[
exp

(
dj

∫ T

s
π(u)du

) ∣∣∣∣∣Hs
]

15dj is an eigenvalue of the generator matrix G. We know that the spectral radius of the transition
matrix is one. The eigenvalues of a generator matrix are thus equal to the logarithm of eigenvalues of
the transition matrix, so that we have dj ≤ 0.

16My expression of gratitude to Yan Yang for providing the proof of the EJLT model.
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= exp
(
dj

∫ s

0
π(u)du

)
Fj(s, π;T )

= Zj(s). (5.44)

(5.44) explicitly shows that Zj(t) is a martingale wrt to Q. With µπ(t, π) = απ(µπ−π(t))
and σπ(t, π) = σπ

√
π(t) and the product rule of Itô’s Lemma we get

dZj(t) =
(

d exp
(
dj

∫ t

0
π(u)du

))
Fj(t, π;T ) + exp

(
dj

∫ t

0
π(u)du

)
dFj(t, π;T )

= exp
(
dj

∫ t

0
π(u)du

)[(
djπ(t)Fj(t, π;T ) + ∂Fj

∂t
(t, π) +

µπ(t, π)∂Fj
∂π

(t, π) + 1
2σ

2
π(t, π)∂

2Fj
∂π2 Fj(t, π;T )

)
ds+

σπ(t, π)∂Fj
∂π

(t, π)dW (t)
]

In order to show that Zj(t) is a martingale the ‘ds-term’ needs to be zero with

djπ(t)Fj(t, π;T ) + ∂Fj
∂t

(t, π) + µπ(t, π)∂Fj
∂π

(t, π) +

1
2σ

2
π(t, π)∂

2Fj
∂π2 Fj(t, π;T ) != 0. (5.45)

We consider the case where dj ∈ R and dj ≤ 0. Further we assume that (5.43) holds.
We substitute (5.43) in (5.45) where

∂Aj(t, T )
∂t

− ∂Bj(t, T )
∂t

π(t) + µπ(t, π)(−Bj(t, T )) + 1
2σ

2
π(t, π)B2

j (t, T ) + djπ(t) = 0(
∂Aj(t, T )

∂t
− απµπBj(t, T )

)
+
(
dj −

∂Bj(t, T )
∂t

+ απBj(t, T ) + 1
2σ

2
πB

2
j (t, T )

)
π(t) = 0

For all t, T, π the following equations muss hold:

∂Bj(t, T )
∂t

− απBj(t, T )− 1
2σ

2
πB

2
j (t, T ) = dj (5.46)

∂Aj(t, T )
∂t

= απµπBj(t, T ) (5.47)

We know that (5.46) is a Riccati differential equation. For time independent factor απ,
µπ we extend Corollary B.2 to (Schlüchtermann and Pilz, 2010, p. 335)

2
d2
jσ

2
π

Aj(t, T ) = a2c2 ln(a2 +Bj(t, T )/dj) + c2a1 ln
(−Bj(t, T )/dj + a1

a1

)
−

a2c2 ln a2 (5.48)

and

Bj(t, T ) = −2dj(ec1(T−t) − 1)
(απ + c1)(ec1(T−t) − 1) + 2c1

(5.49)
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with

a1 = −
απ −

√
α2
π − 2djσ2

π

−djσ2
π

, a2 = −
−απ −

√
α2
π − 2djσ2

π

−djσ2
π

,

c1 =
√
α2
π − 2djσ2

π, c2 = απµπ
a1 + a2

.

Inserting (5.49) into (5.48) (with a1, a2, c1 and c2) we get

Aj(t, T ) = 2απµπ
σ2
π

ln
(

2c1e
1
2 (απ+c1)(T−t)

(c1 + απ)(ec1(T−t) − 1) + 2c1

)
. (5.50)

�

The above EJLT model (5.40), respectively (5.41), with (5.42) and (5.43) by Dubrana
(2011) allows us to obtain yield credit spreads as in (5.19). These yield spreads of
credit class i ∈ {AAA,AA,A,BBB,BB,B,CCC} depicted in Figure 5.11 assume risk
neutrality and can be adjusted to reflect any desired situation, e.g. increasing the risk
premiums in stressed times of a Pfandbrief bank’s cover pool.
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Figure 5.11.: Yield credit spreads based on the EJLT model, with given transition
matrix PMoodys

0,1 of Table C.12, recovery rate δ = 0.8, input parameters απ = 0.1,
µπ = 1, σπ = 1 and initial value π0 = 3. Left: Investment grade yield spreads in
basis points as a function of maturity for credit classes AAA, AA, A and BBB; Right:
Speculative grade yield spreads in basis points as a function of maturity for credit classes
BB, B and CCC.

Remark 5.25. The proposed calibration method of Arvanitis et al. (1999) can be applied
to a constant as well as stochastic generator matrix G̃ introduced in the EJLT model of
Section 5.6. Instead of calibrating a time-dependent intensity matrix at each time step
of (5.39) a time-invariant intensity matrix is sought matching a set of pre-specified bond
prices as accurately as possible. Additionally, a penalty term is added keeping calibrated
transition intensities close to the historical transition intensities. The resulting adjusted
intensity matrix and parameters of the SDE in (5.42) are then used to simulate the credit
spreads into the future. Each credit class i is extended by j = 1, . . . , J bonds, expressed
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as

V̂ j
i (G̃) =

T∑
h=1

Cji (h)Vi(h, G̃)

where Cji (h) is the coupon of bond j in state i at date h and Vi(h, G̃) is the price of a
zero-coupon bond in state i with maturity h. Again a least squares optimisation is used
obtaining a solution closest to the historical generator matrix G, see Problem 5.3.

Problem 5.3. Let V̂ j
i (G̃) be the model bond prices and V̂ j,M

i be the market bond prices,
then

min
G̃∈G

απ ,µπ ,σπ≥0
d̃K=0

[
K∑
i=1

J∑
j=1

(
V̂ j
i (G̃)− V̂ j,M

i

)2
+

K∑
i,j=1

(
(g̃ij − gij)2

βij

)
︸ ︷︷ ︸

penalty term

]
(5.51)

where the set G is defined as in Definition 5.4, απ, µπ and σπ are the parameters of the
SDE in (5.42) and βij is some confidence level. A penalty term is added, keeping the
eigenvectors close to their historical counterparts.

5.7. An Application

In the upcoming section we will apply some of the introduced methods from above
within the reduced-form model, summarise the modelling outcomes and point out the
modelling characteristics. On the one hand with above model specification (Section 5.3
with Figure 5.5, Section 5.4, Section 5.5 and Section 5.6), the weaknesses of the initial
model pointed out in Section 5.2 are largely ironed out. However, on the other hand,
we have added a higher degree of complexity to the modelling of the Pfandbrief to our
reduced-form model, particularly to the CP position. Nonetheless, these advancements
turn out to be necessary for an adequate representation of the asset present values at
time T1 in a risk-neutral setting. Here, we purposely apply above theory by means of
stylised examples.

Linking Cover Pool and Other Assets As in the model setup of Section 5.3 let us start
off with linking of CP and OA. Thereby, let us assume we already have obtained the
marginal distributions of CP and OA at time T1 and build upon Example 5.1. We plug
in the simulated joint distribution from the t-copula into equations (3.11), (3.14) and
(3.15) to obtain the PVs of the liabilities, see Figure 5.12. Since we are interested in
capturing the Pfandbrief defaults adequately, the tail end of the downside risk needs
to be focused on. Figure 5.13 depicts the impact the choice of the used copula has on
the outcome of the PB distribution. Evidently, the cases of Pfandbrief defaults have
increased with the t-copula as opposed to the Gaussian copula since the probability
mass has shifted more to the left of the threshold nominal of NPB = 1.

Remark 5.26. Noteworthy, at this point, is the fact that we have no closed solution
for the CP distribution at T1 with (5.6) and Definition 5.2 so that we need to resort to
numerical methods of the empirical inverse cdf with the Matlab function ksdensity.
For the OA values we can simply use the Matlab inbuilt function logninv.
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Figure 5.12.: Left: Joint distribution of present values of cover pool and other assets
at time T1.; Right: Present values of Pfandbrief, other liabilities and equity at time T1.
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Figure 5.13.: Left: Pfandbrief distribution at time T1, with Gaussian Copula. Right:
Pfandbrief distribution at time T1, with Student’s t Copula.

Other Assets For the OA we moved in the opposite direction as in the CP case, taking
complexity out compared to the structural model of Chapter 4. We postulate a log-
normal distribution for the OA position as specified in Section 5.3.3. In order to
obtain suitable model parameters of the other assets distribution at T1 we resort to
Monte Carlo simulations, partly derived on the findings in Chapter 4 of Sünderhauf’s
structural model (4.32). We calibrate the risk-neutral parameters mVOA and s2

VOA
to

the distribution of VOA obtained at T1 from (4.32), so that

VOA(T1) ∼ LN
(
mVOA , s

2
VOA

)
.

Figure 5.14 shows densities for different T1 with corresponding input parameters of
the log-normal distribution.

Cover Pool Most modelling advancements and complexities are attributed to the CP
to adequately reproduce the PVs of the CP at T1. Above approaches allow us to
simulate downgrading during stressed periods which shall be illustrated in what follows.
We shall start off by assuming that the cover pool is classified into different rating
buckets to make use of the methods introduced in Section 5.4 and Section 5.6 (based
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Figure 5.14.: Other assets distribution with different input parameters for T1 =
{1, 2, . . . , 7}.

on Section 5.5), namely, being able to forecast into the future and model risk-neutrally.
After we have successfully forecasted and stressed the portfolio to time T1 we shall then
aggregate over all rating buckets assuming a LHP with stochastic recovery rates as
specified in Section 5.3.2.2. A LHP approximation constitutes a considerable modelling
simplification. However, there also seems to be evidence to justify the LHP assumption.
In Table 5.13 the mortgage Pfandbrief credit ratings of the seven mortgage banks
defined in Table C.2 are displayed. Noticeable is the fact that five of them have been

AAR BHH MHB MMW NAT WBP WIB

Rating Aaa Aaa Aaa NA Aaa AAA NA

Table 5.13.: Ratings for mortgage Pfandbriefe of ‘Hyp’ type issuers as defined in Ta-
ble C.2 (sources: AAR: (Lenhard, 2017); BHH: (Widmayer and Yamanaka, 2018);
MHB: (Homey and Soriano, 2010); MMW: No ratings found for mortgage Pfandbriefe;
NAT: (Rast and Soriano, 2013); WBP: (Isopel and Lanza, 2017); WIB: No ratings found
for mortgage Pfandbriefe)

accredited a triple A rating either by Moody’s or S&P. Two could not be determined
due to lack of information provided by the issuer or rating companies. However, in
general it can be observed that a high credit class is attributed to the Pfandbrief over
most issuers. The credit quality of the Pfandbrief is highly correlated with the credit
quality of its underlying cover pool. Among other factors, also the credit strength
of the issuer, the German legal framework for Pfandbriefe and the maintenance of a
certain voluntary (above the legal requirements) over-collateralisation contribute to
the overall credit quality, compare also Spangler and Werner (2014).
We want to focus on the cover pool. Based on Table 5.13, it is fair to assume that
a large majority of cover pool assets will consequently also have a triple A status,
resulting in a homogeneous cover pool portfolio. Unfortunately, ratings of single nor
of bucketed cover pool assets are provided by the Pfandbrief banks. Thus, we need
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to establish our own cover pool portfolio with a predominant triple A bucket. In
Table 5.14 we see the percentage holdings of each credit class. Hence, initially we
assume that the cover pool, starting with an overall average credit quality of triple
A in t = 0. Further, we assume we are given an one year transition matrix P0,1 of
the corresponding cover pool portfolio. The proposed modelling steps for obtaining a

Rating Category AAA AA A BBB BB B CCC-C

Holdings (in %) 86.5% 9.7% 2.4% 1.0% 0.2% 0.1% 0.1%

Table 5.14.: Cover Pool portfolio quality breakdown to the percentage holdings in the
portfolio.

(forward) risk-neutral distribution of V (T1, T2) are:
1. The initial term structure of default free bonds P (T1, T2) can be obtained under
Q via the HW1F model based on calibration to the market yield curve (see Exam-
ple 3.1) or under QT2 via the given market term structure.

2. We forecast QiT2
(τ ≤ T2 | τ > T1) by using P0,1 and the EJLT model (Section 5.6).

Suitable parameters of the EJLT model can be obtained by calibrating to bond
data as outlined in Problem 5.3. Additional constraints to the generator matrix
can be imposed if desired, see Hughes and Werner (2016).

3. We aggregate QiT2
(τ ≤ T2 | τ > T1) to one global default probability of all rating

classes i with the help of Table 5.14.
4. We apply the LHP model (Section 5.3.2.2) with stochastic recovery rates to obtain

the forward risk-neutral CP distribution at T1.
Let us define scenarios to test our modelling proposal. At first a basis scenario is
introduced upon which two stressed scenarios are derived to obtain a CP distribution
where the downside risk is focussed upon. Therefore, we stress the PDs of each rating
class i and increase the risk premia needed to reflect the risk-neutral PDs correctly.
Figure 5.15 depicts the impact of the two stressed scenarios compared to the basis
scenario. Clearly, the distribution has shifted significantly to the left when simulating
under stressed PDs or risk premia. This will prove as a valuable feature should the
overall CP credit quality of a Pfandbrief bank deteriorate during, for example, a sub-
prime crisis where adaptions can be made quickly and accurately.
Basis
· The base parametrisation of the factor model under Section 5.3.2.2 is as in Fig-

ure 5.7 with µδ̃ = 0.4, bδ̃ = 0.2, σξ = 0.01, lmax = 1, E(δ̃) = 0.6, V(δ̃) = 0.01 and
τ(δ̃, X) = 0.8.

· We use PMoodys
0,1 as given in Table C.12.

· For the stochastic risk premia we assume that the parametrisation is as stated in
Figure 5.11 with απ = 0.1, µπ = 1, σπ = 0.75, π0 = 3.

· With T1 = 3 and T2 = 7, the riskless component P (T1, T2) = 0.9409 obtained via
calibration as in Example 3.1 (without constraining κ̂).

· Corr(CP,OA) = 0.5
Stressed PDs Let us use Definition 5.4 and Definition 5.5 in conjunction with
Problem 5.1 to stress the PDs on PMoodys

0,1 where now investment (Aaa,
Aa, A, Baa) and speculative (Ba, B, Caa-C) grades have risen by 50bp
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and 100bp, respectively. We obtain the updated default vector P update
i,K =

[0.0050, 0.0053, 0.0051, 0.0066, 0.0246, 0.0806, 0.2716], with i = 1, . . . ,K − 1 where
we additionally apply all correction constraints as in Hughes and Werner (2016),
yielding the valid transition matrix

P stressed
0,1 =



0.885 0.102 0.009 0.000 0.000 0.000 0.000 0.004
0.010 0.886 0.095 0.003 0.001 0.000 0.000 0.004
0.001 0.028 0.901 0.058 0.007 0.001 0.000 0.004
0.000 0.003 0.070 0.852 0.060 0.009 0.000 0.006
0.000 0.001 0.004 0.055 0.834 0.079 0.004 0.023
0.000 0.001 0.002 0.007 0.063 0.824 0.025 0.078
0.000 0.000 0.002 0.006 0.030 0.061 0.629 0.271
0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000


which is a stressed version of PMoodys

0,1 in Table C.12.
Stressed Risk Premia We have the additional possibility to simulate stressed risk
premiums by utilising the EJLT model of Section 5.6 where we raise the initial risk
premium to π0 = 7 leaving απ = 0.1, µπ = 1 and σπ = 1 unchanged.

5.8. Summary

In Section 5.2 we introduced a simplified rating based model which, however, is associated
with several issues from a modelling perspective, see summarised in Section 5.2.4. In
the sections thereafter (Section 5.3, Section 5.4, Section 5.5 and Section 5.6) we have
addressed these problems and, besides, set up a viable reduced-form model which is
considered to be a refined alternative to the structural model of Chapter 4, as outlined
in Section 5.1. Thereby, we have established two common reduced-form methods, the
hazard rate approach and the rating-based approach by utilising transition matrices, in
conjunction with the LHP where the relaxed assumption of stochastic recovery rates is
postulated. Primarily, we opt for the widely used JLT model where one-year transition
matrices given by rating agencies can be inserted serving as a proxy for the credit
quality of the cover pool. Further, by extending to the EJLT model (Section 5.6) we can
exogenously integrate stochastic risk premiums into the advancement of the reduced-form
model for modelling Pfandbriefe. Hence, we have received a model which accounts for
forward default probabilities and ensures a risk-neutral modelling environment. These
additional complexities are necessary in order to adequately capture the underlying
credit risk quality of the cover pool and consequently the Pfandbrief which is effectively
revealed in Section 5.7.
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Figure 5.15.: CP distributions with scenarios ‘Basis’ (top), ‘Stressed PDs’ (middle)
and ‘Stressed Risk Premia’ (bottom).
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6. Default Analysis

Risk assessments wrt Pfandbriefe, or more broadly covered bonds, are to this day rare.
The simple reason for this is that no reference data exists due to no covered bond
defaults in over 100 years. “The extreme scarcity of historical data seriously hampers the
analysis of covered bonds and the approximation of PDs”, cf. (Golin, 2006) where further
a statement by ABN-AMRO reads as follows: “(...) The composition of the collateral
pool is of core relevance to the LGD of covered bonds but (...) Basel II prohibits the
use of any data provided by the issuer itself effectively making a profound analysis (...)
impossible.”, cf. (Golin, 2006). Here we shall apply the two introduced one-period models
of Chapter 4 and Chapter 5 based on the Pfandbrief framework of Chapter 3 to shed
some light, and partly bridge the above mentioned gap, on the overall default modelling
of Pfandbriefe. Thereby, we utilise real published data according to §28 PfandBG and
balance sheet data from the respective Pfandbrief as gathered in Appendix C. Yet, the
available data is still far from complete to conduct fully realistic risk assessments. At
first we give some definitions of credit risk measures on which the credit risk assessment
of the Pfandbrief is based on. Our main focus lies on the mortgage Pfandbrief bank
MHB before we also analyse the other six identified mortgage (type ‘Hyp’) Pfandbrief
banks of Table C.2.

6.1. Credit Risk Measures

For our risk assessment in the context of modelling the Pfandbrief in a one-period setting
(Chapter 3) we shall mainly orientate ourselves to the described IRB approach in Golin
(2006). However, other than Golin (2006, p. 47), we can actually insert the PDs of the
Pfandbrief themselves obtained from the application of the structural and reduced-form
models instead of the issuer PDs.

Probability of default (PD) Based on (3.11), we define the (risk-neutral) Pfandbrief
PDs, for both our approaches by

PDPB = Prob(VCP + VOA < NPB) =
#Sim{VCP+VOA<NPB}

#SimTotal
(6.1)

where #Sim denotes the number of simulated paths or random variables. Hence, (6.1)
is simply the frequency of defaults relative to the total events (default and non-default).

Exposure at default (EAD) As a general rule, the Basel Committee on Banking defines
EAD (BIS, 2001): “For on-balance sheet transactions, EAD is identical to the nominal
amount of exposure.” Then, EAD amounts to the (constant) Pfandbrief nominal, with

EADPB = NPB. (6.2)
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Loss given default (LGD) Under the IRB approach, a predefined LGD ratio of 11.25%
for covered bonds (as stated in Capital Requirements Regulation (CRR) Article 161(1),
see also Golin (2006) or more recently Izzi et al. (2012) and Gogarn (2015)) has been
agreed upon, assuming that covered bonds meet certain criteria (see Capital Require-
ments Regulation (CRR) Article 129(4) or (5) on covered bonds eligible for the treat-
ment). According to Golin (2006), Germany’s mortgage bank association recommend
using a lower LGD ration of 7% which is also applied in Ineke et al. (2006). An average
LGD of 7% is based on a conducted default analysis consisting of five years of historical
data. Thus, we set a constant rate of

LGDPB = 0.07 (6.3)

which is the fraction of the Pfandbrief’s exposure expected to be lost in case of default.

Remark 6.1. Note that we insert a LGD based on a real-world estimation into our
risk-neutral risk assessment models because we simply do not have any other source at
our disposal. To obtain an estimate of LGD, for which multiple possibilities exist, it is
quite common to resort to a statistical analysis of historical LGD data and to fix it as
a deterministic parameter, compare Agrawal et al. (2004) and Izzi et al. (2012).

Expected Loss (EL) Let us define the Pfandbrief’s loss by (Bluhm et al., 2002)

L̃PB = EADPB · LGDPB · LPB with LPB = 1DPB , Prob(DPB) = PDPB

(6.4)

where DPB denotes the event that Pfandbriefe default. The expected loss is then
defined as (Bluhm et al., 2002)

ELPB = E[L̃PB] = PDPB · LGDPB · EADPB, (6.5)

with 1DPB being a Bernoulli random variable and equations (6.1), (6.2) and (6.3). For
simplicity reasons we assume that the exposure, the loss given default and the default
event DPB are independent. EADPB and LGDPB are considered as constants.

Unexpected Loss (UL) With (6.4), the unexpected loss is defined as (Bluhm et al.,
2002)

ULPB = V[L̃PB]
1
2 =

(
E[L̃2

PB]− E[L̃PB]2
) 1

2

=
(
E[EAD2

PB · LGD2
PB · L2

PB]− E[EADPB · LGDPB · LPB]2
) 1

2

=
(
EAD2

PB · LGD2
PB · PDPB − EAD2

PB · LGD2
PB · PD2

PB

) 1
2

=
√
PDPB(1− PDPB) · LGDPB · EADPB (6.6)

where again we can insert (6.1), (6.2) and (6.3) with EADPB and LGDPB being
constants. Hence, ULPB amounts to the standard deviation of the Pfandbrief loss,
or in other words, measures the magnitude of deviation of Pfandbrief losses from the
ELPB.
Remark 6.2. Notice that the unexpected loss representation of (6.6) slightly differs
to the definition in Bluhm et al. (2002). We assume that EADPB and LGDPB are
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constant, whereas in Bluhm et al. (2002) loss given default is the expectation of ‘severity
of loss in case of default’ being a random variable.

6.2. Adjusted Nominal Values for Coupon Payments

The upcoming proposed procedure provides a more realistic representation of a mortgage
Pfandbrief bank’s balance sheet at t = 0. This basic approach is divided into assets
and liabilities. The aim is to calculate adjusted nominal values by allowing coupon
payments. Therefore, the given balance sheet and §28 Reporting nominals are discounted
by the risk-free rate to today which are equated to the present values according to §28
Reporting. The constant risk-free interest rate of 4th quarter 2016 at t = 0 amounts to
r = −0.00218. Resulting adjusted values of the seven mortgage (type ‘Hyp’) Pfandbrief
banks in Table C.2, which can be found in Appendix C.2, are then plugged into the
one-period setting of Chapter 3. The computed spreads, sCP∗ and sPB∗ , are given in
Table 6.1 of each bank. In Table 6.2 the OC and OA shares are displayed which are
based on the adjusted balance sheet and §28 Reporting data. Table 6.2 will be useful
for interpreting the outcomes of the credit risk measures of Section 6.1 when applying
the structural (Chapter 4) and reduced-form (Chapter 5) models.

Position AAR BHH MHB MMW NAT WBP WIB

sCP∗ 2.9% 2.6% 1.7% 1.1% -0.2 2.3% 4.2%
sPB∗ 3.1% 2.0% 2.7% 1.5% 1.0 3.1% 3.0%

Table 6.1.: Spread estimates of seven mortgage Pfandbrief banks.

Position AAR BHH MHB MMW NAT WBP WIB

OC 29.4% 7.4% 9.4% 11.9% 50.6% 45.2% 22.6%
OA 71.4% 44.3% 35.1% 29.3% 49.3% 65.1% 30.5%

Table 6.2.: Shares of OC and OA of seven mortgage Pfandbrief banks.

6.2.1. Adjusted Asset Nominals

In Table 6.3 we denote the cover pool assets with different maturities as CP1, . . . , CP9,
the cash account as CA and other assets as OA. The maturity ranges are according to
§28 Reporting where e.g. for CP9 the mean over 10 years and 15 years is taken. Further,
no maturity over 15 years exists. Cash is only invested until the next point in time so
that TCA = 0. The maturity of OA is simply set to TOA = max

i
(TCPi ). In total we have

eleven assets where the buckets for CP amount to nine. Additionally, Assumption 6.1
holds throughout the calculation of the adjusted asset values.

Assumption 6.1. All CPi, i = 1, . . . , 9 are zero-coupon bonds. The risk-free rate r
and the CP spread sCP are time-independent. CA pays the risk-free rate r.
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6. Default Analysis

CP1 CP2 CP3 CP4 CP5 CP6 CP7 CP8 CP9 CA OA

Nom. NCP
1 NCP

2 NCP
3 NCP

4 NCP
5 NCP

6 NCP
7 NCP

8 NCP
9 NCA NOA

Mat. TCP1 TCP2 TCP3 TCP4 TCP5 TCP6 TCP7 TCP8 TCP9 TCA TOA

Years 0.5 1.0 1.25 1.75 2.5 3.5 4.5 7.5 12.5 0 12.5

Table 6.3.: Definitions of the asset types, with corresponding nominals and maturities.

The calculation procedure for the asset side is as follows:

Nominal CA The cover pool nominal cash account equals the values obtained from §28
Reporting with

NCA = ÑCA. (6.7)

Nominal CP According to §28 Reporting, ÑCP
i is the nominal for the different matu-

rities. We calculate the adjusted CP nominals NCP
i , i = 1, . . . , 9 of different maturity

buckets so that the corresponding present values of §28 Reporting result by discounting
the given CP nominals by the risk-free rate r and, simultaneously, considering coupon
payments. A problem is that NCA from (6.7) is already included in the total nominal
cover pool. As an intermediary step, we assume that NCA is evenly distributed for the
first seven maturity buckets in Table 6.3, so that

N̂CP
i = ÑCP

i − NCA

7 , i = 1, . . . , 7

N̂CP
i = ÑCP

i , i = 8, 9.
(6.8)

With TCP0 = 0, we compute the accumulated amount of outstanding cover pool nom-
inals in TCPi by

M̂CP
i =

9∑
j≥i

N̂CP
i , i = 1, . . . , 9

and

M̂CP
0 = M̂CP

1 +NCA.

Now, we determine the coupon payment cCPi (sCP ) in TCPi (dependent on the spread
sCP ) with cCP0 (sCP ) = 0, no coupon payment in TCP0 = 0, and

cCPi (sCP ) =
[
es(T

CP
i −TCPi−1) − 1

]
M̂CP
i , i = 1, . . . , 9.

The sum of payments at t = 0 discounted by the riskless rate amount to

V̂ CP
i (sCP ) = NCA +

9∑
i=1

[
N̂CP
i + cCPi (sCP )

]
e−rT

CP
i .

Determine sCP∗ , in order that

V̂ CP
i (sCP∗ ) != Ṽ CP

i , i = 1, . . . , 9
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where Ṽ CP
i denotes the given CP present value from §28 Reporting. Finally, we

calculate the adjusted CP nominal by

NCP
i = ÑCP

i + cCPi (sCP∗ ), i = 1, . . . , 9. (6.9)

Nominal OA The balance sheet nominal of OA is obtained by

ÑOA = ÑA − ÑCP

where ÑA is the sum of total assets from the bank’s balance sheet and ÑCP is the
nominal cover pool according to §28 Reporting. Since we do not know the present
value of OA we increase it by the same ratio as the cover pool with (6.8) and (6.9). It
follows the adjusted OA nominal given by

NOA = ÑOA

∑9
i=1N

CP
i +NCA∑9

i=1 N̂
CP
i +NCA

. (6.10)

6.2.2. Adjusted Liability Nominals

As in Section 6.2.1 we specify the liability positions with corresponding maturities, see
Table 6.4. We denote the Pfandbriefe with different maturities as PB1, . . . , PB9, the
other liabilities as OL and equity as EQ. For PB9 we compute the mean of 10 years
and 15 years and assume no maturity over 15 years exists. We set TOL = TEQ =
max
i

(TPBi ) = max
i

(TCPi ). The total number of liability positions amount to eleven
where the Pfandbriefe account for nine different maturity ranges as in §28 Reporting.
Additionally, Assumption 6.2 holds throughout the calculation of the adjusted liability
values.
Assumption 6.2. All PBi, i = 1, . . . , 9 are zero-coupon bonds. The risk-free rate r
and the PB spread sPB are time-independent.

PB1 PB2 PB3 PB4 PB5 PB6 PB7 PB8 PB9 OL EQ

Mat. TPB1 TPB2 TPB3 TPB4 TPB5 TPB6 TPB7 TPB8 TPB9 TOL TEQ

Nom. NPB
1 NPB

2 NPB
3 NPB

4 NPB
5 NPB

6 NPB
7 NPB

8 NPB
9 NOL NEQ

Years 0.5 1.0 1.25 1.75 2.5 3.5 4.5 7.5 12.5 12.5 12.5

Table 6.4.: Definitions of the liability types, with corresponding maturities and nomi-
nals.

The calculation procedure for the liability side is as follows:

Nominal PB We calculate the adjusted nominals NPB
i , i = 1, . . . , 9 so that by dis-

counting with the risk-free rate r the present values from §28 Reporting result where
coupon payments are considered. ÑPB

i , i = 1, . . . , 9 denote the nominals for the differ-
ent maturity ranges from §28 reporting. First, we determine the accumulated amount
in TPBi , i = 1, . . . , 9 outstanding PB nominals with

M̂PB
i =

9∑
j≥i

ÑPB
i , i = 1, . . . , 9.
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Then determine the coupon payment cPBi (sPB) in TPBi (dependent on the spread sPB)

cPBi (sPB) =
[
es(T

PB
i −TPBi−1 ) − 1

]
M̂PB
i , i = 1, . . . , 9

with TPB0 = 0. The sum of discounted payments by the risk-free rate r at t = 0 amount
to

V̂ PB
i (sPB) =

9∑
i=1

[ÑPB
i + cPBi (sPB)]e−rTPBi , i = 1, . . . , 9.

Determine sPB∗ , in order that

V̂ PB
i (sPB∗ ) != Ṽ PB

i , i = 1, . . . , 9

where Ṽ PB
i denote the PB present values from §28 Reporting. Finally, we can compute

the adjusted zero-coupon bond nominal with

NPB
i = ÑPB + cPBi (sPB∗ ), i = 1, . . . , 9. (6.11)

Nominal OL The balance sheet nominal of OL is obtained by

ÑOL = ÑL − ÑPB − ÑEQ, i = 1, . . . , 9

where ÑL(= ÑA) is the sum of total liabilities from the bank’s balance sheet, ÑPB is
the balance sheet nominal of PB and ÑEQ is the balance sheet nominal of EQ. Since
we do not know the present value of OL, it is increased in the same ratio as the PB.
Then with (6.11), determine the adjusted nominals

NOL = ÑOL

∑9
i=1N

PB
i∑9

i=1 Ñ
PB
i

. (6.12)

Nominal EQ The adjusted equity nominal is then simply the difference of the adjusted
asset nominal (from Section 6.2.1 with (6.7), (6.9) and (6.10)) and the adjusted liability
positions consisting of (6.11) and (6.12) with

NEQ = NA︸︷︷︸
=NCA+NCP+NOA

−
9∑
i=1

NPB
i −NOL. (6.13)

6.3. Results of the Structural Model

An extensive sensitivity analysis wrt the model parameters is already covered by Sünder-
hauf (2006) where numerous scenarios are simulated on different parameter sets which
are den compared wrt to their default outcome regarding the Pfandbrief. We also provide
stressed scenarios, thereby laying the focus on comparisons between the seven identified
mortgage (type ‘Hyp’) Pfandbrief banks of Table C.2 by applying above above credit
risk measures (Section 6.1). Further, one of the main takeaways from Sünderhauf (2006)
is the impact of asset-liability mismatch where the larger the maturity gap between
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assets and liabilities is, the higher the risk of defaulting becomes. Thus, we fix the ma-
turities to T1 = 3 years for the assets and T2 = 7 years for the liabilities which accounts
for a realistic setting. In order to sufficiently approximate NMC, the analysis is based
on LSMC simulations with 1,000,000 generated paths. For the default analysis of the
structural model we define additional scenarios to the basis scenario of Table C.14.

Remark 6.3. The hardware for simulating the structural model of (4.32) with 1,000,000
paths was only available for a certain (short) time period. Consequently, the HW1F
model parameters rely on Sünderhauf (2006)’s defined input as in Table C.14 and not
calibrated to the market as outlined in Section 3.7 since the calibration procedure was
not implemented into the framework at the time. Likewise, scenarios are only based on
T1 = 3 and T2 = 7 for the reason that other maturities were not considered at time.
However, the simulation outcomes for different maturities as well as calibrated HW1F
model parameters are obtained by the reduced-form model and displayed in Section 6.4
since it does not depend on higher memory and computing power.

Apart from adding parallel shifts to the interest rate process we also stress the volatility
and jump parameters which are displayed in Table 6.5 and Table 6.6, respectively.
These stressed scenarios are partly derived from Sünderhauf (2006) where similar varia-
tions of the parameter sets are given. For example, we apply scenario ‘Vola-Jump I’ to
MHB with balance sheet and §28 Reporting data of the 4th quarter 2016. Figure 6.1
depicts the resulting distributions of CP and OA present values at T1. Thereby, we insert
the adjusted nominal values of Table C.6 obtained from Section 6.2. By applying the
liability formulas of Section 3.6.2 we can produce the desired distributions for further
risk analysis as described in Section 6.1. In particular our focus is dedicated to the
PB distribution of Figure 6.2. For the scenario of ‘Vola-Jump I’ 70,772 defaults are
registered, amounting to a PD of 7.1% with (6.1), as displayed in Table 6.7. EL (6.5)
and UL (6.6) then result to e138.3 mn and e128.5, respectively.
In Table 6.7 results from other simulated scenarios are also given. In general, we can
state that parallel shifts, negative and positive, of the yield curve have little to no impact
on the the overall credit quality of the Pfandbrief in a one-period setting (compare also
Sünderhauf (2006, p. 115)). By stressing the volatility of the underlying processes of
(4.32) we see only a slight increase in higher PDs. Other simulations with increased
parameter values have shown similar results where the effect of the variance process
on the downside risk is limited. This comes without surprise since the resulting un-
derlying state variable processes take on the form of a geometrical Brownian motion
which again approximately is log-normal. Increasing the volatility of a log-normal dis-
tribution particularly affects the upper tail end while the lower tail end remains largely
unaffected. The only component of (4.32) which has a significant influencing leverage
on the overall Pfandbrief’s downside risk is the jump component. Thereby, we nega-
tively increase the mean jump-amplitude to µπVCP = µπVCP = −0.3 in ‘Vola-Jump I’
and µπVCP = µπVCP = −0.5 in ‘Vola-Jump II’. Compared to ‘Vola IV’ we observe a
seven-fold PD increase for ‘Vola-Jump I’, and another five-fold increase for ‘Vola-Jump
II’ with a PD of 38.7% (Table 6.7). In relation to the slightly altered parameter set of
‘Vola-Jump I’ and ‘Vola-Jump II’ this seems a considerable rise and reveals one of the
most revealing weaknesses of the structural model. Quantifying an appropriate jump
amplitude and frequency in order to adequately model the downside risk of the Pfand-
brief is evidently a difficult undertaking. An intuitive interpretation and direct linkage of
default risk wrt the asset side and how it affects the liability side is, in general, not given
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by jump component. Besides, the lack of related Pfandbrief defaults makes it virtually
impossible to further investigate what the correct downside impact of jumps should be.
A credit risk comparison of the seven identified mortgage Pfandbrief banks (Table C.2)
based on the ‘Vola-Jump II’ parameter set is depicted in Table 6.8. We see that issued
Pfandbriefe by MMW have the highest risk of defaulting followed by MHB, WIB and
BHH. For AAR, NAT and WBP the risk of defaulting Pfandbriefe is relatively low under
this stressed scenario. This outcome is primarily attributed to the amount of OC held by
the issuing Pfandbrief bank, and secondarily how much collateral can, potentially, addi-
tionally be utilised in the form of OA in the case of default, see Table 6.2. While AAR,
NAT and WBP have sufficient amount of additional collateral, BHH, MMW, MHB and
WIB do not. Although it is questionable how much of OA is actually appertained to
cover the Pfandbrief at default, the analysis gives answers to the general asset-liability
management of the underlying bank.

Parameter Vola I Vola II Vola III Vola IV

ς2
CP (0) 0.0081 0.0121 0.02 0.025
θςCP 0.0081 0.0121 0.02 0.025

ς2
OA(0) 0.0121 0.0225 0.03 0.035
θςOA 0.0121 0.0225 0.03 0.035

Table 6.5.: Structural model: Stressed sets for variance process parameters, while all
other parameters in Table C.14 remain unchanged.

Parameter Vola-Jump I Vola-Jump II

ς2
CP (0) 0.025 0.025
θςCP 0.025 0.025
λVCP 0.2693 0.2693
µπVCP -0.3 -0.5
σπVCP 0.1 0.1

ς2
OA(0) 0.035 0.035
θςOA 0.035 0.035
λVOA 0.6484 0.6484
µπVOA -0.3 -0.5
σπVOA 0.1 0.1

Table 6.6.: Structural model: Stressed sets for variance and jump process parameters,
while all other parameters in Table C.14 remain unchanged.

6.4. Results of the Reduced-Form Model

Now, we shall take a look at the results for the newly proposed reduced-form model
of Chapter 5. We already have seen a stylised application of the reduced-form model
in Section 5.7. In principal, we attain the procedure described there but apply real
balance sheet and §28 Reporting data as in the case of the structural model (Section 6.3).
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Figure 6.1.: Structural model: MHB’s asset present values of cover pool (3.5) and
other assets (3.8) at time T1.

Scenario DPB PDPB EADPB LGDPB ELPB ULPB
(in%) (in e mn) (in%) (in e mn) (in e mn)

Basis 542 0.1 27,913.1 7.0 1.1 1.1
IR −200bp 477 0.0 27,913.1 7.0 0.9 0.9
IR −100bp 485 0.0 27,913.1 7.0 0.9 0.9
IR −50bp 517 0.1 27,913.1 7.0 1.0 1.0
IR +200bp 810 0.1 27,913.1 7.0 1.6 1.6
IR +100bp 635 0.1 27,913.1 7.0 1.2 1.2
IR +50bp 581 0.1 27,913.1 7.0 1.1 1.1
Vola I 1,375 0.1 27,913.1 7.0 2.7 2.7
Vola II 2,941 0.3 27,913.1 7.0 5.7 5.7
Vola III 6,868 0.7 27,913.1 7.0 13.4 13.3
Vola IV 10,327 1.0 27,913.1 7.0 20.2 20.0
Vola-Jump I 70,772 7.1 27,913.1 7.0 138.3 128.5
Vola-Jump II 387,049 38.7 27,913.1 7.0 756.3 463.6

Table 6.7.: Structural model: Resulting credit risk measures of MHB wrt the PB
position for different stressed sets. Simulations are based on LSMC approach of various
stressed scenarios with 1,000,000 paths at T1 = 3 and T2 = 7.

Similarly to Section 6.3, we define stressed scenarios on which the credit quality of the
Pfandbriefe are tested and conduct comparisons between the seven identified mortgage
(type ‘Hyp’) Pfandbrief banks of Table C.2. For the OA position we utilise the results
from the structural model in Chapter 4 with the results of Figure 5.14 and fix T1 = 3
where also OA mature. Hence, we mainly concentrate on the modelling of the CP
position. The results are based on a sample size of 100,000 realisations of random
numbers with the base scenario of Table C.15 and Moodys’ 8 × 8 transition matrix
PMoodys

0,1 in Table C.12 used as proxy representing the credit credit quality of the cover
pool. Thereby, we also utilise the already established credit weightings of Table 5.14.
At first we investigate the default behaviour of the Pfandbrief position for different
maturity gaps between assets and liabilities. Thereby, we increase the maturity gap to
five, six, seven, nine and twelve years, respectively. The results of Table 6.10 are solely
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Figure 6.2.: Structural model: MHB’s liability distributions of Pfandbrief (3.11), other
liabilities (3.14) and equity (3.15) at time T1.
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Bank DPB PDPB EADPB LGDPB ELPB ULPB
(in%) (in e mn) (in%) (in e mn) (in e mn)

AAR 22,851 2.3 12,204.6 7.0 19.5 19.1
BHH 274,029 27.4 16,126.4 7.0 309.3 224.6
MHB 387,049 38.7 27,913.1 7.0 756.3 463.6
MMW 418,790 41.9 1,320.1 7.0 38.7 22.5
NAT 56,564 5.7 937.9 7.0 3.7 3.5
WBP 23,911 2.4 2,691.5 7.0 4.5 4.4
WIB 302,897 30.3 3,643.7 7.0 77.3 53.9

Table 6.8.: Structural model: Resulting credit risk measures of selected mortgage
Pfandbrief banks wrt the PB position. Simulations are based on LSMC approach of
stressed scenario ‘Vola-Jump II’ with 1,000,000 paths at T1 = 3 and T2 = 7.

based on the base scenario of Table C.15 for the Pfandbrief bank MHB. As expected,
the higher the maturity gap between assets and liabilities the higher also the resulting
PDs become and, consequently, EL and UL, see Table 6.10. This analysis of asset
maturities T2 ≥ 7 give Pfandbrief investors additional valuable information regarding
their investments wrt banks’ asset-liability mismatch. For example, for the maturity set
‘T1 = 3,T2 = 15’ 5,390 defaults occur where EL and UL amount to e105.3 mn and e99.6
mn, respectively.
Next we define stressed scenarios on which the reduced-form model is applied. Several
possibilities exist where parameters can be modified on the asset side regarding the cover
pool in order to force a deterioration of the overall Pfandbrief credit quality. E.g., as in
Section 5.7 we let the cover pool default probabilities of PMoodys

0,1 in Table C.12

PDCP = [0.0000, 0.0003, 0.0001, 0.0016, 0.0146, 0.0706, 0.2616]

increase by 50bp, 100bp, 150bp and 200bp. Also, we can raise the risk premiums as
specified in Table 6.9. Likewise, a combination of both is also conceivable given by
‘PDCP +200bp Prem I’ and ‘PDCP +200bp Prem II’. We adduce ‘PDCP +200bp Prem
II’ as an example for the distribution outcomes for assets (Figure 6.3) and liabilities
(Figure 6.4) at T1. We see a flatter slope on the lower end tail of the cover pool
and Pfandbrief distribution compared to the structural outcome of Figure 6.1 and
Figure 6.2. For the scenario ‘PDCP +200bp Prem II’ we obtain a PDPB of 9.5% where
the EL and UL amount to e185.6 mn and e168.0 mn, respectively. Overall, due to the
more flat lower tail end of the Pfandbrief distribution at T1 we also see a more gradual
increase in PDPB when stressing the underlying cover pool assets wrt the cover pool PDs
and risk premiums compared to its structural counterpart in Section 6.3. Besides, via the
reduced-form approach we have gained a more tangible method of accessing a Pfandbrief
default profile since we can actually quantify the parameters causing the resulting credit
risk measures to correspond to the stressed cover pool accordingly. Furthermore, the
reduced-form model allows a more precise default analysis since additional parameters
can be adjusted, in form of a 8×8 or larger transition matrix or the risk premium process
of the EJLT model in Section 5.6. Ultimately, the rating based approach provides a
realistic risk assessment of the Pfandbrief and interpretation thereof. Taking a look at
the output of the stressed scenarios of Table 6.11 we observe a near-linear increase
in PDPB for the stressed PDCP , and a near-exponential increase for the stressed risk
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premiums.
Of course, one can assume that the credit class weights in Table 5.14 will also shift when
the overall cover pool deteriorates. It may become difficult for an issuer to maintain
an overall triple A status for the Pfandbrief. Manipulating the weights poses another
possibility to further stress the Pfandbrief where a single A status may then become more
realistic as specified in Table 6.12. In Table 6.13 the results of the seven mortgage
Pfandbrief banks are displayed based on the scenario ‘PDCP +300bp Prem II’. Overall,
we see an outcome which is consistent with its structural counterpart of Table 6.8.
Yet, the results are less dramatic to the scenario of ‘Vola-Jump II’. This has partly to do
with the fact that here the OA position is not further stressed compared to ‘Vola-Jump
II’. This could easily be accomplished if desired by applying the structural approach
additionally for OA. However, this is deliberately omitted since it is desired to solely
see the effactes of the stressed CP. Once again, we see that AAR, NAT and WBP, as
opposed to BHH, MHB, MMW and WIB, have the lowest risk of defaulting Pfandbriefe
due to their sufficient means of collateral posed by OC and OA, see Table 6.2.

Parameter Prem I Prem II Prem III Prem IV

π(0) 5 7 9 11

Table 6.9.: Reduced-form model: Stressed sets for risk premium parameters, while all
other parameters in Table C.15 remain unchanged.

Maturity DPB PDPB EADPB LGDPB ELPB ULPB
(in%) (in e mn) (in%) (in e mn) (in e mn)

T1 = 3,T2 = 7 139 0.1 27,913.1 7.0 2.7 2.7
T1 = 3,T2 = 8 338 0.3 27,913.1 7.0 6.6 6.6
T1 = 3,T2 = 9 667 0.7 27,913.1 7.0 13.0 12.9
T1 = 3,T2 = 10 1,089 1.1 27,913.1 7.0 21.3 21.0
T1 = 3,T2 = 12 2,451 2.5 27,913.1 7.0 47.9 46.7
T1 = 3,T2 = 15 5,390 5.4 27,913.1 7.0 105.3 99.6

Table 6.10.: Reduced-form model: Resulting credit risk measures of MHB wrt the
PB position for different maturities. Simulations are based on asset maturities T2 =
{7, 8, 9, 10, 12, 15} with a sample size of 100,000 at T1 = 3.

6.5. Summary

Due to formula (3.11) above risk assessment is rather conservative. Nevertheless, it is
paramount for a Pfandbrief investor to be assured that sufficient funding exists during
financial distress of the issuer. As already alluded above it is arguable how much volun-
tary OC (>2%) and OA is actually utilised as collateral for the Pfandbrief in the case
of an issuer’s default. However, the applied models, the viable structural and reduced-
form approaches, provide verifiable and plausible results regarding the default outcomes
wrt the PB position. We argue that the reduced-form model, a rating based approach,
delivers a more accurate and subtle modelling option due to the numerous adjustment
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Figure 6.3.: Reduced-form model: MHB’s asset present values of cover pool (3.5) and
other assets (3.8) at time T1

Scenario DPB PDPB EADPB LGDPB ELPB ULPB
(in%) (in e mn) (in%) (in e mn) (in e mn)

PDCP +50bp 490 0.5 27,913.1 7.0 9.6 9.5
PDCP +100bp 991 1.0 27,913.1 7.0 19.4 19.2
PDCP +150bp 1,594 1.6 27,913.1 7.0 31.1 30.6
PDCP +200bp 2,310 2.3 27,913.1 7.0 45.1 44.1
Prem I 712 0.7 27,913.1 7.0 13.9 13.8
Prem II 1,900 1.9 27,913.1 7.0 37.1 36.4
Prem III 3,818 3.8 27,913.1 7.0 74.6 71.8
Prem IV 6,188 6.2 27,913.1 7.0 120.9 113.4
PDCP +200bp Prem I 5,559 5.6 27,913.1 7.0 108.6 102.6
PDCP +200bp Prem II 9,500 9.5 27,913.1 7.0 185.6 168.0

Table 6.11.: Reduced-form model: Resulting credit risk measures of MHB wrt the PB
position for different stressed sets. Simulations are based on various stressed scenarios
with a sample size of 100,000 at T1 = 3 and T2 = 7.

Rating Category AAA AA A BBB BB B CCC-C

Holdings (in %) 8.5% 9.0% 62.8% 15.3% 2.2% 1.5% 0.7%

Table 6.12.: Stressed cover Pool portfolio quality breakdown to the percentage holdings
in the portfolio.

possibilities given by the underlying cover pool transition matrix, risk premium process
and credit quality weights. Furthermore, the incorporation of random recovery rate into
the loss distribution at T1 lets us additionally control the recovery rate on the asset side.
There is reason to assume that the recovery rate is high among the mortgage assets in
the cover pool due to the standards enforced by the PfandBG wherein the minimum
mortgage lending value of 60% ensures a high asset quality. In the structural model,
downside risk can only be controlled by the jump component where fine tuning the
jump amplitude remains a challenge to adequately capture the default behaviour of the
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Figure 6.4.: Reduced-form model: MHB’s liability distributions of Pfandbriefe (3.11),
other liabilities (3.14) and equity (3.15) at time T1 and T2 = 7.
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Bank DPB PDPB EADPB LGDPB ELPB ULPB
(in%) (in e mn) (in%) (in e mn) (in e mn)

AAR 0 0.0 12,204.6 7.0 0.0 0.0
BHH 5,613 5.6 16,126.4 7.0 63.4 59.8
MHB 14,156 14.2 27,913.1 7.0 276.6 237.4
MMW 15,646 15.6 1,320.1 7.0 14.5 12.2
NAT 120 0.1 937.9 7.0 0.1 0.1
WBP 0 0.0 2,691.5 7.0 0.0 0.0
WIB 10,256 10.3 3,643.7 7.0 26.2 23.5

Table 6.13.: Reduced-form model: Resulting credit risk measures of selected mortgage
Pfandbrief banks wrt the PB position. Simulations are based on stressed scenario ‘PDCP

+300bp Prem II’ with a sample size of 100,000 at T1 = 3 and T2 = 7.

underlying cover pool assets, and ultimately of the Pfandbrief itself.
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7. Conclusion

The overall objective was to provide a mark-to-market risk assessment methodology for
the Pfandbrief in a one-period setting which comprises the most important character-
istics of a mortgage Pfandbrief bank. Ultimately, the motivation of deriving a credit
risk model is the situation during the financial crisis and aftermath where covered bond
spreads were on the rise and the liquidity squeeze largely affected Pfandbrief banks.
Even though not one single Pfandbrief has ever defaulted in its over 200 year history,
the nimbus of non-defaulting issuers is broken and the perception of practically risk-free
Pfandbriefe is at least since 2009 questionable. Three Pfandbrief banks needed to be
bailed out by the German government including one of the largest — HRE.
In Chapter 6 we present an application to real balance sheet and §28 Reporting data.
Unfortunately, we do not have complete information at our disposal which an issuing
Pfandbrief bank has, meaning the resulting credit risk assessment needs to be treated
with certain caution. Nevertheless, the main takeaways are, firstly, sufficient collateral in
the form of OC and OA is paramount for the assurance towards the Pfandbrief creditor.
Secondly, market changes or balance sheet mismanagement (asset-liability mismatch)
by the underlying Pfandbrief bank the creditworthiness may deteriorate and, simultane-
ously, the outlook for its issued Pfandbriefe. Therefore, stressed scenarios are considered
and analysed to obtain a more complete picture of the business practices of the issuer.
Moreover, different maturity gaps between assets and liabilities give further insight for
long-term investments where, as expected, the risk of defaulting rises with longer ma-
turities. Certainly, refinements regarding the actual allocation of collateral is something
further to look into, particularly, on how to distribute the OA adequately. Should CP
proceeds not suffice for the debt service the creditors of the bonds, normally, rank pari
passu with creditors of senior unsecured debt, hence have equal claim to the issuer’s
assets.
We have introduced quantitative methods for efficiently modelling the Pfandbrief in a
one-period setting based on §28 Reporting and balance sheet data of the respective
Pfandbrief bank. In light of Chapter 2, a certain trend towards the gaining importance
of the mortgage Pfandbrief type compared to the public type could be established. The
decline of the public Pfandbrief will according to market data and publications (e.g. by
the VDP or ECBC) most likely further persist. Seven mortgage Pfandbrief banks were
identified suitable for further analysis which predominantly issue mortgage Pfandbriefe.
Next, a viable Pfandbrief framework (Chapter 3) was derived providing a foundation
for the underlying structural (Chapter 4) and reduced-form (Chapter 5) model. The
framework has its origins in Merton (1974) where a typical mortgage bank’s balance
sheet structure and regulatory requirements imposed by PfandBG are considered (see
Spangler and Werner (2014)). In Chapter 3 we also find an extensive search for an ap-
propriate interest rate model which adequately reflects and handles the current market
situation of negative rates. A graphical depiction of both approaches is best summarised
by Figure 7.1. On the left hand side the structural model is represented where paths are
generated into the future and on the right we see a depiction of the reduced-form model
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Figure 7.1.: Summary of one-period approaches. Left: Structural model; Right:
Reduced-form model

where we draw random variables from a bivariate copula at T1. Although concentrating
on the mortgage type Pfandbrief in this work, a separate treatment of public sector and
mortgage PB types with corresponding CP positions (Figure 3.1) is also conceivable
by combining the presented structural (Chapter 4) and reduced-form (Chapter 5) ap-
proaches into one modelling framework, if required.
The structural model (Chapter 4) proposed by Sünderhauf (2006) is modelled via a
Lévy process with stochastic interest rates, volatility and jumps in order to simulate the
present values of CP and OA. Correlated Brownian motions are generated in order to
capture the dependencies between SDEs. Six cover pool, six other assets, two market
and ten correlation parameters are needed for the full model of (4.32). Significant im-
provements could be gained wrt simulation time and accuracy by introducing advanced
algorithms for the volatility and jump component. An enhanced LSMC procedure is pro-
posed where an almost perfect fit to the nested Monte Carlo values was accomplished
while keeping the complexity of the linear regression low. Besides, model flexibility could
be gained by deriving the forward and real-world representations of the underlying SDE
to simulate CP and OA. Onward research may be well-invested in the field of variance
reduction techniques in order to, potentially, further enhance the efficiency of Monte
Carlo simulations.
In the reduced-form setting the CP is modelled by combining a random recovery factor
model and assuming a LHP (Chapter 5) which constitutes the newly proposed model.
Forward probabilities can be obtained via forecasting the (given) annual transition ma-
trix where additional credit risk relevant constraints (Hughes and Werner, 2016) to the
embedding problem in continuous time can be added. A risk-neutral setting is ensured
by the EJLT model where stochastic risk premiums are incorporated. For capturing the
underlying dependency between CP and OA we resort to a copula model. A log-normal
distribution is assumed for OA. Altogether, four parameters are allocated to the factor
model, three for the EJLT model, two for the log-normal distribution and one to two
parameters for the copula. The probability bucketing approach, initially proposed by
Andersen et al. (2003) and Hull and White (2004), can help to model the cover pool in
a more granular sense should, for example, weightings of rating classes be more evenly
distributed. The numerical procedure then consists of iteratively building up the loss
distribution for a heterogeneous finite portfolio. Alternative factor models, e.g. Marshall-
Olkin copula (Andersen and Sidenius, 2004), the Student-t copula (Schlögl and O’Kane,
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2005), the double-t distribution in (Hull and White, 2004), the class of Archimedean
copulas (Schönbucher, 2002) and normal inverse Gaussian factor copula model (Kale-
manova et al., 2007) represent promising alternatives. Apart from the random recovery
LHP model also stochastic correlation can be considered as an additional stochastic fac-
tor (Andersen and Sidenius, 2004).
Both approach possess a ‘raison d’être’, however, we argue that the reduced-form model
for modelling the cover pool is superior as opposed to the structural model for a number
reasons. The downside risk of the CP can be controlled via the given transition matrix
where, for example, the PDs can be modified due to structural changes in the bank or
a changed housing market situation. A clear relationship between input PDs on the
CP side and output PDs on the PB side is comprehensible. Thus, a more adaptive
modelling procedure is given. Furthermore, as pointed out, rating agencies appear to
use the same approaches for the risk assessment of the cover pool. Fitch, for example,
identifies two important risk sources when stressing for timely payments of the cash
flows with recourse to the cover pool, namely “the credit risk of cover assets inferred
from default probabilities and recovery expectations (credit loss component), and the
cost of bridging maturity mismatches.”, cf. (ECBC, 2016, p. 501-542). In our model we
assume a given one-year transition matrix. However, one level beneath lies the challenge
to correctly determine the level of borrower loan losses. Moody’s includes a collateral
score for mortgage loans based on “the range and distribution of LtVs, and the quality
of the loan underwriting and, in particular, the calculation of whether the borrower can
afford the loan.”, cf. (ECBC, 2016, p. 501-542). Since the credit quality of the cover pool
may vary over time Moody’s has a monitoring system implemented which calculates the
collateral score on a quarterly basis. Thus, a collateral score analysis in conjunction with
a LtV analysis is certainly an area worthwhile for further investigation in the context
of modelling the risk assessment of Pfandbriefe. Lastly, regulatory developments also
seem to favour a rating based approach: “Due to the magnitude of banks’ exposure to
other banks, it is imperative that they have risk rating capabilities that incorporate all
available information and rapidly refreshes ratings when material information becomes
available.”, cf. (BIS, 2001).
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A. Implementation

Some insights regarding the implementation of the Pfandbrief framework (Chapter 3)
with its models (Chapter 4 and Chapter 5) are described here. Emphasis is laid upon the
object oriented structure and efficient programming, specifically, for Matlab’s vector
based language.

A.1. The Pfandbrief Framework Object Oriented (OO)

In Figure A.1 and Figure A.2 the structure1 of the OO Pfandbrief framework is
depicted. The implemented framework makes use of the inheritance principle built upon
object oriented classes. The folder structure is as follows:

+data Here data access objects (DAO) are provided representing an interface to
databases which can be anything from .csv or .xml files to relational database man-
agement systems (RDBMS). Hence, methods in the .m files are provided for handling
the data import which is necessary for modelling the Pfandbrief.

+model Main classes of the mathematical implementation of the underlying models are
invoked by calling a constructor and contain multiple calculation steps. Example A.1
depicts the inheritance logic behind an implemented model — here, the reduced-form
model of Chapter 5. Any model inherits from the so called BaseModel class which calls
the methods getInput() — handles retrieving and processing of input data needed for
the model calculation, model() — contains the implementation of the model logic and
getOutput() — handles results of the calculation model and processes the output.

+script Main execution scripts of methods and models are provided here.
+test Test scripts can be executed for initial testing of methods and models.
+utility Utility methods are provided here which are then invoked globally by the
respective models. Figure A.2 depicts all classes which are associated with utility
type of methods. Thereby, business utility holds methods related to mathematical
models and technical utility provides auxiliary functions which simplify and standardise
frequently used steps or transformations.

+visualise Visualisation methods are gathered here which are repeatedly used to pro-
duce plots specifically for the depiction of important results.

Example A.1.

1 classdef PfandbriefReducedFormModel < com.pfandbrief.model.BaseModel
2

3 properties
4 logger;
5 configID;

1My expression of gratitude to DEVnet GmbH for providing the underlying structure.
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Figure A.1.: Class structure of the OO Pfandbrief framework.
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Figure A.2.: Business and technical utility methods.
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6 referenceTimestamp;
7 end
8

9 % Contains the three methods (getInput, model, getOutput) that
10 % have to be accessible within a model.
11 methods (Access = public)
12

13 %%
14 function [input,parameter] = getInput(this, parameter)
15 % Input for the model calculation should be handled in
16 % this method. The input should be stored in the 'input'
17 % attribute of this class.
18

19 % < ... put your code here ... >
20

21 % eof
22 end
23

24 %%
25 function result = model(this, parameter, input)
26 % All model calculations are conducted in this method
27 % containing specific model relevant functions only
28 % accessible within this class.
29

30 % < ... put your code here ... >
31

32 % eof
33 end
34

35 %%
36 function outputData = getOutput(this, parameter, result)
37 % Results of the model calculation are handled in this
38 % method. This includes result transformations to other
39 % data structures. The output can be returned by this
40 % method.
41

42 % < ... put your code here ... >
43

44 % eof
45 end
46

47 end
48

49 methods (Access = private)
50

51 % < ... put your code here ... >
52

53 end
54

55 end
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A.2. Efficient Programming

Important and elementary efficient programming features are

· preallocation of storage,

· vectorisation and

· parallelisation.

Parallelisation may not always be feasible or not available due to special necessary soft-
ware packages. Here emphasis is laid upon vectorisation which is best demonstrated on
simulating stochastic differential equations (SDEs). A typical equation is of the form

dX(t) = µ(X(t), t)dt+ σ(X(t), t)dW (t), (A.1)

where W (t) denotes a Wiener process. On the basis of (A.1) coding examples are pre-
sented as a surrogate to the whole framework implementation in Appendix A.1. The
conveying of code vectorisation is emphasised upon where enormous gains in perfor-
mance can be made in Matlab. If possible loops should, in general, be avoided and
rather resort to native functions in order to take full advantage of Matlab’s vectorised
programming language. However, one negative side effect might be that the code itself
becomes abstract and difficult to read. The following basic examples are backed by the
corresponding theory and can be executed straight away.

A.2.1. Loop over Time

If the time-dependent component is attached to other components in a non-additive or
non-multiplicative fashion then one loop over time is necessary. Still, the vectorisation
for the propagation step works perfectly fine for the path dimension, see Example A.2.

Example A.2 (HW1F Model).

X(t) = r(t)
µ(X(t), t) = θ(t)− κr(t)
σ(X(t), t) = σ

1 nTimeSteps = 50; % Number of time steps
2 nPaths = 1000; % Number of paths
3 T = 1.0; % Simulation time horizon
4 dt = T/nTimeSteps; % Simulation time step
5 t = dt:dt:T; % Time
6

7 kappa = 0.1; % Mean reversion speed
8 sigma = 0.3; % Volatility level
9

10 Fc = repmat(0.05, nTimeSteps+1, 1); % Flat instantaneous forward curve
11

12 RN = randn(nTimeSteps,nPaths); % Draw random numbers
13 r = nan(nTimeSteps+1,nPaths); % Preallocate storage
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14 r(1,:) = 0.05; % Assign starting vector
15

16 for i = 1:nTimeSteps
17 theta(i) = (Fc(i+1) − Fc(i))/dt + kappa*Fc(i) + sigma^2/(2*kappa)*(1 − exp

(−2*kappa*t(i)));
18 r(i+1,:) = r(i,:) + (theta(i) − kappa*r(i,:))*dt + sigma*RN(i,:)*sqrt(dt);
19 end

A.2.2. Full Vectorisation

If the time-dependent component can be incorporated in an additive or multiplicative
manner then one can resort to cumsum() or cumprod() which are fully vectorised, see
Example A.3.

Example A.3 (Geometric Brownian Motion (GBM)).

X(t) = S(t)
µ(X(t), t) = µS(t)
σ(X(t), t) = σS(t)

dS(t) = µS(t)dt+ σS(t)dW,

S(ti)/S(ti−1) = exp
((

µ− 1
2σ

2
)

∆t+ σ
√

∆tZti
)

with drift rate µ and volatility respectively σ being constants.
1 nTimeSteps = 50; % Number of time steps
2 nPaths = 1000; % Number of paths
3 T = 1.0; % Simulation time horizon
4 dt = T/nTimeSteps; % Simulation time step
5

6 sigma = 0.3; % Annual volatility
7 mu = 0.05; % Annual drift rate
8

9 RN = randn(nTimeSteps−1,nPaths); % Draw random numbers
10 S = nan(nTimeSteps,nPaths); % Preallocate storage
11 S(1,:) = 100; % Asset price at t=0
12

13 S(2:end,:) = exp((mu − 0.5*sigma^2)*dt + sigma*sqrt(dt)*RN);
14 S = cumprod(S,1);
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Supplementary parts of the underlying theory can be found in this appendix chapter.
Fundamentals in mathematical finance (Section B.1) and interest rate (Section B.2)
theory are provided. Additionally, Markovian theory with application in credit risk
can be accessed in Section B.3. Applied special distributions (Section B.4) and copu-
las (Section B.5) in the modelling framework are displayed, completing the theoretical
supplements.

B.1. Mathematical Finance

Here we shall provide some useful mathematical tools and building blocks needed in
finance. The theory behind mathematical finance is vast and, thus, we shall only give an
excerpt of definitions and theorems which are frequently used in this thesis, namely, Itô’s
Formula (Section B.1.1), Girsanov Theorem (Section B.1.2) and change of numeraire
(Section B.1.3). We refer to the literature for additional insights in the underlying the-
ory in mathematical finance, see for example Björk (2004), Brigo and Mercurio (2007),
Schlüchtermann and Pilz (2010), Shreve (2004) and Shreve (2012), amongst many oth-
ers.

B.1.1. Itô’s Formula

Itô’s formula is based on some substantial stochastic calculus theory which represents a
key element in financial modelling since it provides a technique to integrate stochastic
processes, mainly consisting of the Wiener process W . Throughout this section we
assume that (Wt) is a Wiener process on the filtered probability space (Ω,F , (Ft),P).
Furthermore, we have a generic stochastic process X of the form{

dX(t) = µ(t,X(t))dt+ σ(t,X(t))dW (t),
X(0) = a

(B.1)

where X(0) is non-random and µ(t,X(t)) and σ(t,X(t)) are stochastic processes. Main
properties of a stochastic process are given in Definition B.1 and Definition B.2 which are
crucial building blocks for constructing a stochastic integral and deriving Itô’s formula.

Definition B.1 (Information and measurable, adaptive processes (Björk,
2004)). The symbol FXt denotes “the information generated by X on the interval
[0, t]”, or alternatively “what has happened to X over the interval [0, t]”. If, based upon

207



B. Underlying Theory

observations of the trajectory {X(s) : 0 ≤ s ≤ t}, it is possible to decide whether a given
event A has occurred or not, then we write this as

A ∈ FXt ,

or say that “A is FXt -measurable”.
If the value of a given stochastic variable Z can be completely determined given obser-
vations of the trajectory {X(s) : 0 ≤ s ≤ t}, then we also write

Z ∈ FXt .

If Y is a stochastic process such that we have

Y (t) ∈ FXt

for all t ≥ 0 then we say that Y is adapted to the filtration {FXt }t≥0.

Definition B.2 (Martingale Concept (Björk, 2004)). A stochastic process X wrt
P is called a (Ft)-martingale if the following conditions hold.

· X is adapted to the filtration {Ft}t≥0.

· X is integrable for all t, if

E[|X(t)|] <∞.

· For all s and t with s ≤ t the following relation holds

E[X(t) | Fs] = X(s).

Now, naturally, it is the objective to determine (solution to (B.1))

X(t) = a+
∫ t

0
µ(s,X(s))ds+

∫ t

0
σ(s,X(s))dW (s) (B.2)

where the ordinary Riemann-Stieltjes integral fails for integrating dW . To be able to
obtain the representation of X in (B.2) the concept of the Itô integral in Theorem B.3
is introduced where the trajectory-wise integration of dW -integral is relaxed. Instead,
for a large class of processes g in L2-space, integrals of the form∫ t

0
g(s)dW (s) (B.3)

are defined. The objective is now to define the stochastic integral for a process g ∈ L2.
Consider the following simplification (Björk, 2004): Suppose that there exist determinis-
tic points in time a = t0 < t1 < · · · < tn = b, such that g is constant on each subinterval.
In other words we assume that g(s) = g(tk) for s ∈ [tk, tk+1). Then we can define the
stochastic integral by

∫ b

a
g(s)dW (s) =

n−1∑
k=0

g(tk)[W (tk+1)−W (tk)].
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In order to guarantee the existence of the stochastic integral we have to impose integra-
bility conditions (Definition B.3 with Theorem B.1) on g where the class L2 turns out to
be natural. Further results are given by Theorem B.2, Corollary B.1 and Lemma B.1,
respectively.

Definition B.3 (Conditions Stochastic Integral (Björk, 2004)).

1. We say that the process g belongs to the class L2[a, b] if the following conditions are
satisfied:

·
∫ b
a E[g2(s)]ds <∞

· The process g is adapted to the FWt -filtration.

2. We say that the process g belongs to the class L2 if g ∈ L2[0, t] for all t > 0.

Theorem B.1 (Relations Stochastic Integral (Björk, 2004)). Let g be a process
satisfying the conditions 1. of Definition B.3. Then the following relations hold:

E
[∫ b

a
g(s)dW (s)

]
= 0 (B.4)

E

(∫ b

a
g(s)dW (s)

)2
 =

∫ b

a
E[g2(s)]ds (B.5)

∫ b

a
g(s)dW (s) is FWb -measurable (B.6)

Remark B.1. It is possible to define the stochastic integral for a process g satisfying
only the weak condition

Prob
(∫ b

a
g2(s)ds <∞

)
= 1.

For such a general g we have no guarantee that the properties (B.4) and (B.5) hold.
Property (B.6) is, however, still valid.

Theorem B.2 ((Björk, 2004)). For any process g ∈ L2[s, t] the following holds:

E
[∫ t

s
g(u)dW (u)

∣∣∣∣FWs ] = 0.

Corollary B.1 ((Björk, 2004)). For any process g ∈ L2, the process X, defined by

X(t) =
∫ t

0
g(s)dW (s),

is an (FWt )-martingale. In other words, modulo an integrability condition, every stochas-
tic integral is a martingale.

Lemma B.1 ((Björk, 2004)). Within the framework above, and assuming enough
integrability, a stochastic process X (having a stochastic differential) is a martingale iff
the stochastic differential has the form

dX(t) = g(t)dW (t),
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i.e. X has no dt-term.

Theorem B.3 (Itô(-Doeblin)’s formula (Björk, 2004)). Assume that the process
X has a stochastic differential given by

dX(t) = µ(t)dt+ σ(t)dW (t),

where µ and σ are adapted processes, and let f be a C1,2-function (i.e. f is once con-
tinuously differentiable in its first argument and twice continuously differentiable in its
second argument). Define the process Z by Z(t) = f(t,X(t)). Then Z has a stochastic
differential given by

df(t,X(t)) =
(
∂f

∂t
+ µ

∂f

∂x
+ 1

2σ
2∂

2f

∂x2

)
dt+ σ

∂f

∂x
dW (t). (B.7)

Hence, Itô’s formula (B.7) is obtained by a second order Taylor expansion

df = ∂f

∂t
dt+ ∂f

∂x
dX + 1

2
∂2f

∂x2 (dX)2 (B.8)

where we use the following formal multiplication table:
(dt)2 = 0,

dt · dW = 0,
(dW )2 = dt

Remark B.2. Strictly speaking, according to Schlüchtermann and Pilz (2010), stochastic
integrals rely on the class of progressively measurable processes g (Definition B.3) which
poses a stronger property than the notion of being adapted processes (see Definition B.1).
A progressively measurable process is important because it implies the stopped process is
measurable. In Schlüchtermann and Pilz (2010) we find the following conditions:

1. Every elementary adaptive process to the filtration (Ω,F , (Ft),P) is progressively
measurable.

2. All continuous adaptive processes to the filtration (Ω,F , (Ft),P) are progressively
measurable.

Generally speaking, not every adaptive process is progressively measurable. However,
as pointed out by Schlüchtermann and Pilz (2010), when imposing additional technical
prerequisites to the filtration (Ω,F , (Ft),P) there exists to every adaptive process a corre-
sponding version which is progressively measurable. Above conditions pose a sufficiently
large class of progressively measurable processes.

B.1.2. Girsanov Theorem

The groundwork for the Girsanov Theorem is given by Section B.1.1. More precisely, in a
‘Wiener world’, the integrability of the Girsanov kernel g is guaranteed by the conditions
defined in Definition B.3 with the relations in Theorem B.1. Particularly, we imply that
the stochastic integral is a square integrable martingale wrt the Wiener process. The
Girsanov Theorem allows us to conduct continuous measure transformations which is
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based on the mathematical tool of the Radon-Nikodým Theorem (see Björk (2004) or
Schlüchtermann and Pilz (2010) for more details).
We denote the likelihood process for the measure change from P to Q (and vice versa)
with L. The existence of L is covered by the Radon-Nikodým Theorem so that LT will be
the Radon-Nikodým derivative of Q wrt P so that Q << P (Q is absolutely continuous
wrt P) on FT which ensures also Q << P on Ft for all t ≤ T . For Theorem B.4 assume
that the filtration F is defined as

Ft = FWt , t ∈ [0, T ].

Theorem B.4 (Girsanov Theorem (Björk, 2004)). Let WP be a d-dimensional
standard P-Wiener process on (Ω,F ,P,F) and let g be any d-dimensional adapted col-
umn vector process. Choose a fixed T and define the process L on [0, T ] by

dLt = g>t LtdWPt ,
L0 = 1,

i.e.

Lt = e
∫ t

0 g>s dWPs − 1
2

∫ t
0 ‖gs‖

2ds.

Assume that

EP [LT ] = 1, (B.9)

and define the new probability measure Q on FT by

LT = dQ
dP , on FT .

Then

dWPt = gtdt+ dWQt ,

where WQ is a Q-Wiener process.

Remark B.3. An equivalent, but perhaps less suggestive, way of formulating the con-
clusion of the Girsanov Theorem B.4 is to say that the process WQ, defined by

WQt = WPt −
∫ t

0
gsds

is a standard Q-Wiener process.

Lemma B.2 (The Novikov Condition (Björk, 2004)). Assume that the Girsanov
kernel g is such that

EP
[
e

1
2

∫ T
0 ‖gt‖

2dt
]
<∞.

Then L is a martingale and in particular EP [LT ] = 1.
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Remark B.4. Following Björk (2004), we need to assume that g is such that L is a
martingale, Equation (B.9), in the Girsanov Theorem (Theorem B.4). In general it can
be that EP [LT ] < 1. The problem is to give a condition on g only, which guarantees the
martingale property of L. The most general result so far, apart from when the process
L · g is in L2, is the ‘Novikov Condition’ (Lemma B.2) which guarantees the martingale
property of L, respectively (B.9).

B.1.3. Change of Numeraire

With Girsanov’s Theorem (Theorem B.4) we additionally provide the following change of
measure toolkit represented by Theorem B.6. Likewise to Theorem B.4, the introduced
tools rely on the Radon-Nikodým Theorem (see Björk (2004) or Schlüchtermann and
Pilz (2010)).

Definition B.4 (Numeraire (Brigo and Mercurio, 2007)). A numeraire is any
positive non-dividend-paying asset.

Theorem B.5 (Change-of-numeraire (Brigo and Mercurio, 2007)). Assume
there exists a numeraire n and a probability measure Qn, equivalent to the initial Q0,
such that the price of any traded asset X (without intermediate payments) relative to n
is a martingale under Qn, i.e.

Xt

nt
= En

(
XT

nT

∣∣∣∣Ft) , 0 ≤ t ≤ T.

Let u be an arbitrary numeraire. Then there exists a probability measure Qu, equivalent
to the initial Q0, such that the price of any attainable claim Y normalised by u is a
martingale under Qu, i.e.

Yt
ut

= Eu

(
YT
uT

∣∣∣∣Ft) , 0 ≤ t ≤ T.

Moreover, the Radon-Nikodým derivative defining the measure Qu is given by

dQu

dQn
= uTn0

u0nT
.

Theorem B.6 (Change-of-numeraire toolkit (Brigo and Mercurio, 2007)). We
consider a numeraire C with its associated measure QC . We also consider an n-vector
diffusion process X whose dynamics under QC is given by

dXt = µCt (Xt)dt+ σt(Xt)RdWC
t ,

where µCt is a n × 1 vector and σt is a n × n diagonal matrix, and where we explicitly
point out the measure under which the dynamics is defined. HereWC is an n-dimensional
standard Brownian motion under QC , and the n × n matrix R is introduced to model
correlation in the resulting noise (RdW is equivalent to an n-dimensional Brownian mo-
tion with instantaneous correlation matrix ρ = RR>).
Now suppose we are interested in expressing the dynamics of X under the measure as-
sociated with a new numeraire D. The new dynamics will then be

dXt = µDt (Xt)dt+ σt(Xt)RdWD
t ,
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where WD is an n-dimensional standard Brownian motion under QD.
When changing the numeraire from D to C we use the following result: Let us assume
that the two numeraires C and D evolve under QD according to

dCt = (. . .)dt+ σCt RdWD
t ,

dDt = (. . .)dt+ σDt RdWD
t ,

where both σCt and σDt are 1×n vectors, WD is the usual n-dimensional driftless (under
QD) standard Brownian motion and R is a n × n correlation matrix of the resulting
noise. Then, the drift of the process X under the numeraire D is

µDt (Xt) = µCt (Xt)− σt(Xt)ρ
(
σCt
Ct
− σDt
Dt

)>
. (B.10)

Remark B.5 ((Brigo and Mercurio, 2007)). See the complete derivation of Theo-
rem B.5 in Brigo and Mercurio (2007). Generically, we can express the derived formula
(B.10) as

driftNum2
asset = driftNum1

asset −VolassetCorr
(VolNum1

Num1 −
VolNum2
Num2

)>
.

This formula allows us to compute the drift in dynamics of an asset price when moving
from a first numeraire (Num1) to a second one (Num2), when we know the asset drift
in the original numeraire, the asset volatility (that, as all instantaneous volatilities and
correlations, does not depend on the numeraire), and the instantaneous correlation in
the asset price dynamics as well as the volatilities of the two numeraires.

B.2. Interest Rate

The modelling of interest rates is an essential part of the Pfandbrief model in a one-
period setting. The underlying theory is vast so that only excerpts thereof relevant to
the Pfandbrief model for adequately capturing interest rate risks are displayed here. We
mainly refer to Björk (2004), Brigo and Mercurio (2007) and Schlüchtermann and Pilz
(2010).

B.2.1. Fundamentals

In this section we present the fundamental definitions in interest rate theory which build
the basis for any derived interest rate model. We solely use the definitions and notation
thereof as stated in Brigo and Mercurio (2007).

Definition B.5 (Bank (money-market) account (Brigo and Mercurio, 2007)).
We define B(t) to be the value of a bank account at time t ≥ 0. We assume B(0) = 1
and that the bank account evolves according to the following differential equation:

dB(t) = rtB(t)dt, B(0) = 1, (B.11)
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where rt is a positive function of time. As a consequence,

B(t) = exp
(∫ t

0
r(s)ds

)
. (B.12)

Remark B.6. Definition B.5 tells us that investing a unit amount at time 0 yields at
time t the value in (B.12), and r(t) is the instantaneous rate at which the bank account
accrues. The instantaneous rate is usually referred to as instantaneous spot rate, or
briefly short rate. In fact, a first order expansion in ∆t gives

B(t+ ∆t) = B(t)(1 + r(t)∆t),

which amounts to say that, in any arbitrarily small time interval [t, t+ ∆t),

B(t+ ∆t)−B(t)
B(t) = r(t)∆t.

Definition B.6 (Stochastic discount factor (Brigo and Mercurio, 2007)). The
(stochastic) discount factor D(t, T ) between two time instants t and T is the amount at
time t that is ‘equivalent’ to one unit of currency payable at time T , and is given by

D(t, T ) = B(t)
B(T ) = exp

(
−
∫ T

t
r(s)ds

)
.

Definition B.7 (Zero-coupon bond (Brigo and Mercurio, 2007)). A T -maturity
zero coupon bond (pure discount bond) is a contract that guarantees its holder the payment
of one unit of currency at time T , with no intermediate payments. The contract value
at time t < T is denoted by P (t, T ). Clearly, P (T, T ) = 1 for all T .

Definition B.8 (Time to maturity (Brigo and Mercurio, 2007)). The time to
maturity T − t is the amount of time (in years) from the present time t to the maturity
time T > t.

Definition B.9 (Year fraction, Day-count convention (Brigo and Mercurio,
2007)). We denote by d(t, T ) the chosen time measure between t and T , which is
usually referred to as year fraction between the dates t and T . When t and T are
less than one-day distant (typically when dealing with limit quantities involving time to
maturities tending to zero), d(t, T ) is to be interpreted as the time difference T − t (in
years). The particular choice that is made to measure the time between two dates reflects
what is known as the day-count convention.

Definition B.10 (Continuously-compounded spot interest rate (Brigo and
Mercurio, 2007)). The continuously-compounded spot interest rate prevailing at time
t for the maturity T is denoted by R(t, T ) and is the constant rate at which an invest-
ment of P (t, T ) units of currency at time t accrues continuously to yield a unit amount
of currency at maturity T . In formulas:

R(t, T ) := − lnP (t, T )
d(t, T )

Remark B.7. The short rate is obtainable as a limit of Definition B.10, that is for
each t,

r(t) = lim
T→t+

R(t, T ).
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Definition B.11 (Zero-coupon curve (Brigo and Mercurio, 2007)). The zero-
coupon curve (sometimes also referred to as ‘yield curve’) at time t is the graph of the
function

T 7→
{
L(t, T ) t < T ≤ t+ 1 (years),
Y (t, T ) T > t+ 1 (years),

where L(t, T ) is the simply-compounded spot interest rate and Y (t, T ) is the annually-
compounded spot interest rate1.

Remark B.8. Continuing Definition B.11, the continuously-compounded spot interest
rate is defined as follows

T 7→ R(t, T ), T > t,

which is the preferred rate used throughout this elaboration. The term ‘zero-coupon curve’
or ‘yield curve’ is used for any compounding convention.

Definition B.12 (Zero-bond curve (Brigo and Mercurio, 2007)). The zero-bond
curve at time t is the graph of the function

T 7→ P (t, T ), T > t,

which because of the positivity of interest rates, is a T -decreasing function starting from
P (t, t) = 1. Such s curve is also referred to as term structure of discount factors.

Definition B.13 (Instantaneous forward interest rate (Brigo and Mercurio,
2007)). The instantaneous forward interest rate prevailing at time t for the maturity
T > t is denoted by f(t, T ) and is defined as

f(t, T ) := lim
S→T+

F (t;T, S) = −∂ lnP (t, T )
∂T

, (B.13)

so that we also have

P (t, T ) = exp
(
−
∫ T

t
f(t, u)du

)
.

Remark B.9. The instantaneous forward interest rate is derived from the simply-
compounded forward interest rate

F (t;T, S) := 1
d(T, S)

(
P (t, T )
P (t, S) − 1

)
.

When the maturity of the forward rate collapses towards its expiry, we have the notion
of the instantaneous forward rate. Indeed, let us consider the limit

lim
S→T+

F (t;T, S) = − lim
S→T+

1
P (t, S)

P (t, S)− P (t, T )
S − T

= − 1
P (t, T )

∂P (t, T )
∂T

1Definitions for L(t, T ) and Y (t, T ) can be found in Brigo and Mercurio (2007).
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= −∂ lnP (t, T )
∂T

,

where we use our convention d(T, S) = S − T when S is extremely close to T .

B.2.2. Change of Measure

Following Musiela and Rutkowski (2006) and applying Theorem B.5, an arbitrage-free
family P (t, T ) of bond prices and the related saving account B are given. Note that by
assumption, 0 < P (0, T ) = EQ(B−1

T ) <∞.

Definition B.14. A probability mesure QT on (Ω,FT ) equivalent to Q, with the Radon-
Nikodým derivative given by the formula

dQT
dQ = B−1

T

EQ(B−1
T )

= 1
BTP (0, T ) , Q− a.s., (B.14)

is called the forward martingale measure (or briefly, the forward measure) for the settle-
ment date T .

Notice that the above Radon-Nikodým derivative, when restricted to the σ-field Ft,
satisfies for every t ∈ [0, T ]

ηt
def= dQT

dQ |Ft
= EQ

(
P (T, T )
BTP (0, T )

∣∣∣∣Ft) = P (t, T )
BtP (0, T ) ,

with P (T, T ) = 1.
Now, let X be a FT -measurable random number and (B.14) be the change of measure,
where QT is the forward measure and Q is the risk neutral measure, then:

BtEQ
(
B−1
T X

∣∣∣Ft) = P (t, T )EQT (X | Ft)

Proof.

P (t, T )EQT (X | Ft) = P (t, T )EQ (ηTX | Ft)
EQ (ηT | Ft)

=
P (t, T )EQ

(
1

BTP (0,T )X
∣∣∣Ft)

P (t,T )
BtP (0,T )

= BtP (0, T )EQ
( 1
BTP (0, T )X

∣∣∣∣Ft)
= BtEQ

(
B−1
T X

∣∣∣Ft) (B.15)

where ηT = dQT
dQ = 1

BTP (0,T ) , EQ (ηT | Ft) = P (t,T )
BtP (0,T )(= ηt) and Bt = exp

(∫ t
0 r(s)ds

)
denotes the bank account and numeraire under Q. �
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B.2.3. Affine Term Structure

The underlying interest rate theory is based on the idea of the so-called ‘term structure
equation’ (Theorem B.8) which represents the most important equation in theory of
interest rates. We will, however, deliberately omit delivering a complete picture and
derivation of an arbitrage free and complete representation for pricing bonds (and other
interest rate derivatives). Instead we shall present main results in form of assumptions
and established theorems in order to uniquely determine the bond prices under the
equivalent martingale measure (EMM) driven by the short rate dynamics, r(t). We
refer to the literature for more exhaustive insights into short rate, bond and generally
speaking interest rate modelling in this context, see for example Björk (2004), Brigo and
Mercurio (2007) and Schlüchtermann and Pilz (2010), amongst many others.

B.2.3.1. Preliminaries

Two fundamental assumptions regarding the modelling environment of interest rates are
(Vašìček, 1977):

Assumption B.1. The spot rate follows a continuous Markov process.

Assumption B.2. The market is efficient; that is, there are no transaction costs, in-
formation is available to all investors simultaneously, and every investor acts rationally
(prefers more wealth to less, and uses all available information).

Let us define a final time horizon T ∗ where T ∈ [0, T ∗]. Two key elements of interest rate
modelling are the spot rate process, {r(t) : t ≤ T ≤ T ∗}, over the term of the bond and
the term structure in form of the zero-coupon bond (Definition B.7), P (t, T ), at present
time t with maturity T and t < T which are embodied in Assumption B.3 (Björk, 2004),
respectively Assumption B.4 (Björk, 2004).

Assumption B.3. The term structure as well as the prices of all other interest rate
derivatives are completely determined by specifying the r-dynamics under the martingale
measure Q.

Assumption B.4. We assume that there is a market for T -bonds for every choice of
T . Furthermore, we assume that for every T the price of a T -bond has the form

P (t, T ) = F (t, r(t);T )

where F is a smooth function of three real variables, with the boundary condition
F (T, r;T ) = 1.

A first important result is given by Theorem B.7 which allows us to perform a risk-neutral
valuation of the bond prices. By utilising the technique of partial differential equations
(PDE) on the term structure equations one obtains the Feynman-Kač solution writing
the bond price as the conditional expectation (B.17) in Theorem B.7 (Björk, 2004). In
particular, the zero-coupon bond price (B.17) at time t for maturity T is characterised
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by a unit amount of currency available at time T , so that a contingent claim with payoff
is given by HT = 1 at time T and we obtain

P (t, T ) = EQ

(
exp

(
−
∫ T

t
r(s)ds

)
HT

∣∣∣∣∣Ft
)

= EQ

(
exp

(
−
∫ T

t
r(s)ds

)
· 1
∣∣∣∣∣Ft

)
. (B.16)

Theorem B.7 (Risk-neutral valuation). Bond prices are given by the formula
P (t, T ) = F (t, r(t);T ) where

F (t, r;T ) = EQ
(

e−
∫ T
t
r(s)ds

∣∣∣∣Ft) . (B.17)

Here, the conditional expectation on past information Ft under the martingale measure
Q shall be taken given the following dynamics for the short rate:

dr(t) = [µP(t, r(t))− ϕ(t, r(t))σP(t, r(t))]dt+ σ(t, r(t))dWQ(t) (B.18)

where µP is the drift term, σP is the diffusion term, ϕ is the market price of risk and
dWQ(t) is a Wiener process on (Ω,F ,Q, (Ft)0≤t≤T ∗).

We take a step back and shall briefly outline the attainment of a risk-neutral representa-
tion of the bond price and short rate process of Theorem B.7 which arises from deriving
an arbitrage-free price for any interest rate derivative based on a suitable locally-riskless
portfolio as in Black and Scholes (1973). Originally, referring to the seminal work of
Vašìček (1977), the instantaneous spot rate dynamics are specified under the real-world
measure P. Further, there exists one exogenously defined traded asset, namely the cash
account (Definition B.5)

dB(t) = r(t)B(t)dt

with the short rate of interest under the real-world measure P solving

dr(t) = µP(t, r(t))dt+ σP(t, r(t))dWP(t), (B.19)

which is modelled as an Itô diffusion and is therefore Markovian (Assumption B.1). The
drift and volatility parameters, µP and σP , are time-dependent deterministic functions
which also may depend on the short rate r, satisfying the usual Lipschitz and bound-
edness conditions that guarantee existence and uniqueness of solutions of the stochastic
differential equation. From Itô’s formula (Theorem B.3) we get the process for the
zero-coupon bond price (dWP(t) is a Wiener process on (Ω,F ,P, (Ft)0≤t≤T ∗))

dP (t, T ) = m(t, r;T )P (t, T )dt+ v(t, r;T )P (t, T )dWP(t)

where

m(t, r;T )F (t, r;T ) = ∂F (t, r;T )
∂t

+ µP(t, r)∂F (t, r;T )
∂r

+

1
2σP(t, r)2∂

2F (t, r;T )
∂r2 , (B.20)
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v(t, r;T )F (t, r;T ) = σP(t, r)∂F (t, r;T )
∂r

. (B.21)

The process m(t, r;T ) is regarded as a time-dependent drift parameter of the bond price
which is additionally dependent on the bond’s maturity T , whereas v(t, r;T ) represents
the volatility structure.
In the context of interest rate modelling an inherent issue arises, namely the (bond)
market is not necessarily complete. According to Björk (2004)’s heuristical approach,
the number of tradable assets (excluding the risk free asset B(t)) need to be equal to
the number of random sources (in form of Brownian motions) to ensure an arbitrage
free and complete market. Here, unlike in the Black-Scholes model, the short term rate
r(t) is not a tradable asset (per definition it is a rate and not a price). Consequently,
there are fewer tradable assets than sources of randomness and, thus, the market is
incomplete, respectively, uniqueness of Q is not guaranteed. In order to overcome this
issue a ‘benchmark bond’ is constructed from a portfolio consisting of two bonds at two
fixed maturities S and T (S < T ) with which all other bond prices can be uniquely
be determined. This ‘benchmark bond’ represents a tradable asset which has the r-
dynamics as underlying — resulting to one asset with one random source. Hence, we
have a arbitrage free and complete market (see Björk (2004) or Schlüchtermann and Pilz
(2010) for the complete derivation).
Once the S and T dependencies are successfully separated and assuming that the bond
market is arbitrage-free, we conclude that there exists an adaptive process ϕ(t, r(t))
denoting the market price of risk, given by

m(t, r(t))− r(t)
v(t, r(t)) = ϕ(t, r(t)) (B.22)

for each maturity T , with ϕ that may depend on t and r but not on T (the maturities
of the claims constituting the portfolio). In other words, “in a no arbitrage market all
bonds will, regardless of maturity of time, have the same market price of risk”, (Björk,
2004).

Remark B.10. The market price of risk is also referred to the risk premium per unit
risk or the sharp ratio. The numerator, m(t, r(t))− r(t), is called the risk premium for
the T -bond denoting the excess return over the risk-free rate of return on the market
(as opposed to simply investing money in a riskless bank account). The denominator,
v(t, r(t)), represents the volatility for the T -bond, thus dividing by the amount of risk
we are exposed to. Hence, the quotient amounts to the ‘market price of risk’ (or ‘risk
premium per unit of volatility’) for the T -bond.

Substitution of the expressions (B.20) and (B.21) into the equation (B.22) yield the
arbitrage-free bond prices F (t, r;T ) satisfying one of the most important equations in
the theory of interest rates — the term structure equation in Theorem B.8.

Theorem B.8 (Term structure equation). In an arbitrage free bond market,
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F (t, r;T ) will satisfy the term structure equation

∂F (t, r;T )
∂t

+ [µP(t, r)− ϕ(t, r)σP(t, r)]∂F (t, r;T )
∂r

+

1
2σ

2(t, r)∂
2F (t, r;T )
∂r2 − rF (t, r;T ) = 0

F (T, r;T ) = 1.

(B.23)

The term structure equation will yield the term of a basic (zero-coupon) T -bond (‘bench-
mark bond’) driven by a short rate process of interest. With these two components, the
term structure equation allows one to determine all other bond prices.
According to Björk (2004), by fixing (t, r) and applying Itô’s formula (Theorem B.3) to
the process

exp
(
−
∫ s

t
r(u)du

)
F (s, r(t), T )

where F (s, r(t), T ) satisfies (B.23), we obtain the Feynman-Kač representation (B.17)
in Theorem B.7.
Remark B.11. Comparing (B.19) and (B.18) we also see that the risk-neutral repre-
sentation of the short rate process (B.18) of Theorem B.7 is obtained with the help of
Girsanov (Theorem B.4) with which we can move from the real-world to the risk-neutral
measure. More precisely, there exists a risk-neutral measure Q that is equivalent to the
real-world measure P and is defined by the Radon-Nikodým derivative

dQ
dP |Ft

= exp
(
−1

2

∫ t

0
ϕ2(s, r)ds−

∫ t

0
ϕ(s, r)dWP(s)

)
(B.24)

where Ft is the σ-field generated by r up to time t, WP(t) is a P-Brownian motion and
ϕ denotes the market price of risk2. As a consequence with (B.24) and (B.22), the initial
process (B.19) under P then evolves under Q according to (B.18) of Theorem B.7 with
dWQ(t) = dWP(t) + ϕ(t, r)dt.

We see that a complete specification of an one-factor spot rate model amounts to spec-
ifying both dynamics of the short rate r(t) as an Itô diffusion under P and the market
price of risk process ϕ(t) = ϕ(t, r(t)). This is equivalent to selecting one equivalent
martingale measure Q of the form (B.24) and an Itô diffusion for the Q-dynamics of
r. Either way, interest rate derivatives can then be priced by expectations of their final
pay-off with respect to Q. Hence, the market (implicitly) determines Q and ϕ. Refer-
ring to Björk (2004) we know that the term µP(t, r(t)) − ϕ(t, r(t))σP(t, r(t)) in (B.18)
of Theorem B.7 resembles the desired drift term under the martingale measure Q of
the short rate process. However, under Q it is not necessary to specify µP(t, r(t)) and
ϕ(t, r(t)), so that the market price of risk will be implicit in the underlying dynamics.
Instead one models the short rate r(t) directly under the martingale measure Q with a
generic drift term µ(t, r(t)), with

ϕ(t, r(t)) = µP(t, r(t))− µ(t, r(t))
σP(t, r(t))

2Note the following relationship between the market price of risk (ϕ) the Girsanov kernel (g): ϕ(t) =
−g(t).
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σP(t, r(t)) = σ(t, r(t))

which leads to Assumption B.5.

Assumption B.5. We assume that the dynamics of the short term rate is given by

dr(t) = µ(r(t), t)dt+ σ(r(t), t)dWQ(t) (B.25)

where W (t) is a Wiener process and µ(r(t), t) is the drift and σ(r(t), t) the volatility,
both deterministic functions dependent on the short rate r and time t in the general form,
driving the behaviour of the short term rate.

The bond price dynamics under the risk-neutral measure are constituted by Theorem B.9
which is derived from Girsanov’s Theorem B.4 (Schlüchtermann and Pilz, 2010).

Theorem B.9. The scalar stochastic differential equation, in time t for each fixed time
of maturity T , of the bond price P (t, T ) under the risk-neutral measure Q is

dP (t, T ) = P (t, T )r(t)dt+ P (t, T )v(t, T )dWQ(t) (B.26)

where r(t) is the short-term risk-free interest rate at time t and v(t, T ) is the volatility
of P (t, T ), an adapted process parametrised by time of maturity T .

Henceforth, we shall postulate an equivalent martingale measure for all presented interest
rate models and introduced model parameters, if not explicitly stated otherwise.

Remark B.12. We postulate the general specification with drift

µ(r(t), t) = θ(t)− κ(t)r(t)

and volatility

σ(r(t), t) = σ(t)[r(t)]β.

Then, under the risk-neutral measure Q the mean-reverting process (B.25) evolves ac-
cording to

dr(t) = (θ(t)− κ(t)r(t))dt+ σ(t)[r(t)]βdWQ(t), r(0) = r0, (B.27)

where θ(t), κ(t) > 0 and σ(t) > 0 are time-varying and WQ(t) is a Wiener process. The
parameter β ≥ 0 basically determines the underlying short rate model. From this general
specification of (B.27) the following well known and widely used short rate models can
be derived:

Vašìček The Vašìček model (Vašìček, 1977) is obtained by setting β = 0 and constant
parameters θ(t) = θ, κ(t) = κ, σ(t) = σ.

HW1F The Hull-White one-factor model (Hull and White (1990) or Hull and White
(1993)) is defined by possessing a time-dependent mean reversion parameter θ(t), with
β = 0 and constant parameters κ(t) = κ, σ(t) = σ.

CIR1F The Cox-Ingersoll-Ross one-factor model (Cox et al., 1985) is received by setting
β = 0.5 and constant parameters θ(t) = θ, κ(t) = κ, σ(t) = σ.
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ExtVašìček With β = 0 (everything else unchanged) we obtain the extended Vašìček
(1977) model specified in Hull and White (1990) or Hull and White (1993).

ExtCIR1F With β = 0.5 (everything else unchanged) the extended Cox et al. (1985)
model emerges, as specified in Hull and White (1990) or Hull and White (1993).

The above model selection is far from exhaustive, however, these particular short rate
models are frequently mentioned throughout Section B.2.5 and should provide some ori-
entation without going into too much theoretical detail. In-depth model descriptions can
be found, for example, in Brigo and Mercurio (2007).

B.2.3.2. Tractability

From Section B.2.3.1 we know that modelling interest rates is driven by an underlying
short rate process r(t). However, the zero-coupon bond object of (B.16) is still not
satisfyingly tangible. A tractable solution delivers the so called ‘affine term structure’
(ATS) representation (Definition B.15) where (B.16) is reformulated to an affine equation
(B.28), compare Björk (2004). In the affine models, the functions A(t, T ) and B(t, T ) are
deterministic and must be continuously differentiable, otherwise the Riccati differential
equations can not be formulated. This is essential to obtain closed form solutions for
the respective models.

Definition B.15. If the term structure (bond value) has the form

P (t, T ) = F (t, r(t);T ), (B.28)

where F has the form

F (t, r;T ) = eA(t,T )−B(t,T )r

and where A and B are deterministic functions and A,B : R2 → R continuously differ-
entiable, then the model is said to possess an ATS.

Remark B.13. Interest rate models assigned the term ‘affine’ (linear plus a constant)
is motivated by the term structure of interest rates (Definition B.10) being an affine
function with the short rate as argument, namely

R(t, T ) = −A(t, T )
T − t

+ B(t, T )
T − t

r(t). (B.29)

We make use of the partial differential equation (PDE) approach to briefly introduce, yet
provide some valuable insight thereof, the concept of the affine term structure. Thereby,
(B.23) is utilised in order to derive the affine term structure (ATS) Theorem B.10, as can
be found in Björk (2004). Theorem B.10 allows to derive the bond equations of interest
rate models with an affine term structure. Furthermore, in order to obtain an ATS
specification of µ and σ in (B.25) the partial derivatives of F (t, r;T ) of Definition B.15
need to be computed which are

∂F (t, r;T )
∂t

= F (t, r;T )
(
∂A(t, T )

∂t
− ∂B(t, T )

∂t
r

)
,

∂F (t, r;T )
∂r

= −F (t, r;T )B(t, T )
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and

∂2F (t, r;T )
∂r2 = F (t, r;T )B2(t, T ).

After substitution and dividing by F (t, r;T ) Equation (B.23) amounts to

1
2σ

2(t, r)B2(t, T ) + ∂A(t, T )
∂t

−
(

1 + ∂B(t, T )
∂t

)
r − µ(t, r)B(t, T ) = 0. (B.30)

With F (t, r;T ) = 1 it follows that A(T, T ) = B(T, T ) = 0 and by setting

µ(r, t) = α(t)r + β(t) and σ(r, t) =
√
γ(t)r + δ(t),

one obtains[
∂A(t, T )

∂t
− β(t)B(t, T ) + 1

2δ(t)B
2(t, T )

]
−(

1 + ∂B(t, T )
∂t

+ α(t)B(t, T )− 1
2γ(t)B2(t, T )

)
r = 0. (B.31)

As stated by Schlüchtermann and Pilz (2010), if (B.31) holds for all t, T and r and if
r ↓ 0 then the terms before r and in brackets [·] disappear, so that (B.32) and (B.33)
emerge in Theorem B.10. Reversing the argumentation proves Theorem B.10.

Theorem B.10 (Affine term structure). Assume that µ and σ are of the formµ(t, r) = α(t)r + β(t),

σ(t, r) =
√
γ(t)r + δ(t).

Then the model admits an affine term structure (ATS) of the form (B.16), where A and
B satisfy the system

dB(t, T )
dt + α(t)B(t, T )− 1

2γ(t)B2(t, T ) = −1,

B(T, T ) = 0
(B.32)

and 
dA(t, T )

dt = β(t)B(t, T )− 1
2δ(t)B

2(t, T ),

A(T, T ) = 0.
(B.33)

First the Riccati equation (B.32) is solved (not depending on A) which can then be
inserted into (B.33) and integrated in order to obtain A. Further, Schlüchtermann and
Pilz (2010) provide a general solution of the PDEs for constant parameters α, β, γ and
δ which is given in the following Corollary B.2 (from Theorem B.10).

Corollary B.2. For time-independent functions α, β, γ (γ 6= 0) and δ solving the
Riccati differential equations, yields for A with starting value A(t, t) = 0

2
γ
A(t, T ) = a2c2 ln(a2 −B(t, T )) + (c2 + 1

2δ)a1 ln
(
B(t, T ) + a1

a1

)
−
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1
2δB(t, T )− a2c2 ln a2 (B.34)

and for B

B(t, T ) = 2(ec1(T−t) − 1)
(−α+ c1)(ec1(T−t) − 1) + 2c1

, (B.35)

with constants

a1 = −α−
√
α2 + 2γ
γ

, a2 = −−α−
√
α2 + 2γ
γ

and

c1 =
√
α2 + 2γ, c2 = β − a2δ/2

a1 + a2
.

Conclusively, we also state the stochastic differential equation, derivable via Itô’s formula
(Theorem B.3), for the bond price (B.36) of Theorem B.11.

Theorem B.11. In an affine term-structure model in which the short rate satisfies
the SDE (B.25) with µ and σ as in Theorem B.10, the bond price dynamics under the
risk-neutral measure Q are

dP (t, T ) = r(t)P (t, T )dt− σ(t, r(t))B(t, T )P (t, T )dWQ(t), (B.36)

with v(t, T ) = σ(t, r(t))B(t, T ) in (B.26).

Remark B.14. Most short rate models possess a linear SDE which makes derivations
of closed form solutions more easy. The existence of closed form solutions highly depends
on the underlying distribution of r(t). Plugging in normally distributed processes, such
as the Vašìček (1977) or extended Vašìček (Hull and White, 1990) one-factor model
(see Remark B.12), into bond price equation of (B.16) results in the computation of
the expected value of a log-normal stochastic variable which is manageable. The Dothan
(1978), Black et al. (1990) and Black and Karasinski (1991) belong to the class of log-
normal short rate models. However, no closed form expressions for bond prices or options
are available, thus also no ATS formulation exists.

B.2.4. Hull-White One Factor (HW1F) Model — Extended

Here specific features of the HW1F model are elaborated to give a more complete picture
of the underlying theory and parameter estimation techniques.

B.2.4.1. Derivation ZCB Pricing Formula

We apply the general theory of the ATS introduced in Appendix B.2.3 to the HW1F
model. With µ(r, t) = θ(t)− κr(t) and σ(r, t) = σ, (B.30) becomes[

∂A(t, T )
∂t

− θ(t)B(t, T ) + 1
2σ

2B2(t, T )
]
−
(

1 + ∂B(t, T )
∂t

− κB(t, T )
)
r = 0.
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Again, by letting r ↓ 0 the terms in brackets should be equal zero, so that (B.37) and
(B.38) can be obtained. Alternatively, with the results of Theorem B.10 we can set
α(t) = −κ, β(t) = θ(t), γ(t) = 0 and δ(t) = σ2 resulting to

∂B(t, T )
∂t

= κB(t, T )− 1,

B(T, T ) = 0.
(B.37)

and 
∂A(t, T )

∂t
= θ(t)B(t, T )− 1

2σ
2B2(t, T ),

A(T, T ) = 0.
(B.38)

Equation (B.37) is solved with the boundary condition B(T, T ) = 0, so that ∂B(t,T )
∂t =

e−κ(T−t) yielding (3.24). Deriving A(t, T ), Equation (3.23), is more involved where the
integral (with

∫ T
t

∂A(t,T )
∂t ds = A(T, T )−A(t, T ))

A(t, T ) = −
∫ T

t

(
θ(s)B(s, T )− 1

2σ
2B2(s, T )

)
ds

= σ2

2

∫ T

t
B2(s, T )ds︸ ︷︷ ︸
(I)

−
∫ T

t
θ(s)B(s, T )ds︸ ︷︷ ︸

(II)

(B.39)

needs to be calculated. The necessary equations are derived in the following.

(I):

σ2

2

∫ T

t
B2(s, T )ds

= σ2

2κ2

∫ T

t

(
1− e−κ(T−s)

)2
ds

= σ2

2κ2

∫ T

t

(
1− 2e−κ(T−s) + e−2κ(T−s)

)
ds

= σ2

2κ2

(
(T − t) + 2

κ

(
1− e−κ(T−t)

)
− 1

2κ
(
1− e−2κ(T−t)

))
(B.40)

(II): ∫ T

t
θ(s)B(s, T )ds

= 1
κ

∫ T

t

(
1− e−κ(T−s)

)(∂fM (0, s)
∂T

+ κfM (0, s) + σ2

2κ
(
1− e−2κs

))
ds

= 1
κ

∫ T

t

(
∂fM (0, s)

∂T
+ κfM (0, s)

)
ds︸ ︷︷ ︸

(III)

−
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1
κ

∫ T

t
e−κ(T−s)

(
∂fM (0, s)

∂T
+ κfM (0, s)

)
ds︸ ︷︷ ︸

(IV)

+

σ2

2κ2

∫ T

t

(
1− e−κ(T−s)

) (
1− e−2κs

)
ds︸ ︷︷ ︸

(V)

(B.41)

(III):

1
κ

∫ T

t

(
∂fM (0, s)

∂T
+ κfM (0, s)

)
ds

= 1
κ

(
fM (0, T )− fM (0, t)

)
−
∫ T

t
fM (0, s)ds (B.42)

(IV):

1
κ

∫ T

t
e−κ(T−s)

(
∂fM (0, s)

∂T
+ κfM (0, s)

)
ds

= 1
κ

∫ T

t
e−κ(T−s)∂f

M (0, s)
∂T

+
∫ T

t
e−κ(T−s)fM (0, s)ds

= 1
κ

(
fM (0, T )− e−κ(T−t)fM (0, t)

)
−
∫ T

t
e−κ(T−s)fM (0, s)ds+∫ T

t
e−κ(T−s)fM (0, s)ds

= 1
κ

(
fM (0, T )− e−κ(T−t)fM (0, t)

)
(B.43)

(V):

σ2

2κ2

∫ T

t

(
1− e−κ(T−s)

) (
1− e−2κs

)
ds

= σ2

2κ2

∫ T

t
1− e−2κs − e−κ(T−s) + e−κ(T−s)−2κsds

= σ2

2κ2 (T − t) +

σ2

2κ3

(1
2
(
e−2κT − e−2κt

)
+
(
1− e−κ(T−t)

)
−
(
e−2κT − e−κ(T+t)

))
(B.44)

For illustrating the exact yield curve fitting, the time-dependent mean reversion level
function, θ(t), needs to be adapted in such a way that today’s (t = 0) theoretical bond
price matches the market price PM (0, T ) where r(0) is today’s observed short rate.
Taking the logarithm of (B.28) and inserting (B.39) for A(t, T ) and (3.24) for B(t, T )
we find that θ(s) has to satisfy the integral

−
∫ T

0
θ(s)B(s, T )ds

= logP (0, T ) + r(0)B(0, T )− σ2

2

∫ T

0
B2(s, T )ds
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= logP (0, T ) + r(0)
κ

(
1− e−κT

)
−

σ2

2κ2

(
T + 2

κ

(
1− e−κT

)
− 1

2κ
(
1− e−2κT

))
. (B.45)

This equation can be solved for θ(T ) by by differentiating twice wrt maturity T yielding

∂

∂T

∫ T

0
θ(s)B(s, T )ds = θ(T )B(T, T ) +

∫ T

0
θ(s)∂B(s, T )

∂T

=
∫ T

0
θ(s)eκ(s−T )ds

= e−κT
∫ T

0
θ(s)eκsds

and

∂2

∂T 2

∫ T

0
θ(s)B(s, T )ds = θ(T )− κe−κT

∫ T

0
θ(s)eκsds.

It follows that

θ(T ) = ∂2

∂T 2

∫ T

0
θ(s)B(s, T )ds+ κ

∂

∂T

∫ T

0
θ(s)B(s, T )ds

= − ∂2

∂T 2 logP (0, T )− κ ∂

∂T
P (0, T ) + σ2

2κ(1− e−2κT )

by inserting (B.45). Setting P (0, T ) = PM (0, T ) for all maturities T > 0 and with
fM(0, T ) := −∂lnPM(0,T )

∂T results to Equation (3.19).
Completing the model definition of the HW1F model, we state the bond price dynamics
under the risk-neutral measure Q which can be easily obtained via Ito’s formula, or via
(B.36) with σ(r, t) = σ, amounting to

dP (t, T ) = r(t)P (t, T )dt−B(t, T )P (t, T )σdWQ(t). (B.46)

From Definition B.13 we know that PM (0, t) = e−
∫ t

0 f
M (0,s)ds and PM (0, T ) =

e−
∫ T

0 fM (0,s)ds, so that ln
(
PM (0,T )
PM (0,t)

)
= −

∫ T
t fM (0, s)ds. Inserting (B.40) and (B.41)

with (B.42), (B.43) and (B.44) into (B.39) finally results to (3.23) in Section 3.7.3.1, the
closed form solution of A and B to Definition B.15.

B.2.4.2. Alternative Measures

It may be useful for modelling purposes to represent (3.18) in alternative measures. The
forward and real-world SDE formulations are derived in the following.

Forward Measure We resort to the change-of-numeraire toolkit (Theorem B.6) with
(B.10) provided by Brigo and Mercurio (2007). For the HW1F model we have

· Ct = B(t), the bank account numeraire (Definition B.5),

· σCt = 0, the volatility of the bank account process is zero, and

227



B. Underlying Theory

· Dt = P (t, T ), the T -bond numeraire (Definition B.7).

· Xt = r(t),

· µCt (Xt) = θ(t)− κr(t), the old drift term of (3.18) under the risk-neutral measure Q,

· σt(Xt) = σ, the volatility term of (3.18),

· ρ = 1, as Corr(dWD
t , dWD

t ) = 1 and

· σDt = −B(t, T )P (t, T )σ, the volatility term of the bond price process (B.46).

Then we obtain the new drift under the T -forward measure QT

µDt (Xt) = θ(t)− κr(t)− σ2B(t, T )

so that the SDE under QT becomes

dr(t) = (θ(t)− κr(t)− σ2B(t, T ))dt+ σdWQT (t). (B.47)

Thus, under the forward measure, the short rate process remains a Hull-White process
but the reversion level becomes θ(t)

κ −
σ2B(t,T )

κ where B(t, T ) is an adapted process
parametrised by time of maturity T .

Remark B.15. Discounting under the forward measure, QT , is deterministic where the
discount factor no longer needs to be simulated as under Q. This simplification results
from including the additional term −σ2B(t, T ) in the drift of r(t).

Additionally, the QT -Brownian motion WQT can be determined, amounting to

dWQT (t) = dWQ(t) + σB(t, T )dt.

Real-World Measure Retaining a tractable short rate process for the HW1F model
under the real-world measure P, Assumption B.6 is postulated. Tractability under the
objective measure can be helpful for historical-estimation purposes.

Assumption B.6. The market price of risk process, ϕ(t), needs to be of the particular
functional form

ϕ(t) = ϕr(t), (B.48)

where ϕ is a new parameter, contributing to the market price of risk.

With Assumption B.6 we obtain the Girsanov (Theorem B.4) change of measure

dQ
dP = exp

(
−1

2

∫ t

0
ϕ2r(s)2ds+

∫ t

0
ϕr(s)dWP(s)

)
and the SDE under the real-world measure P

dr(t) = (θ(t)− κr(t))dt+ σ
(
dWP(t)− ϕ(t)dt

)
= [θ(t)− (κ+ σϕ)r(t)]dt+ σdWP(t) (B.49)
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where ϕ is the additional market price of risk parameter compared to the Q-dynamics,
affecting the drift term. Under the P-dynamics the SDE is expressed again as a linear
Gaussian stochastic differential equation as under Q.

Remark B.16. For ϕ = 0 the two dynamics coincide, i.e. there is no difference between
the risk neutral and the real world.

B.2.5. Model Selection

Here additional selection criteria are presented in order to choose an appropriate interest
rate model for the underlying Pfandbrief model in a one-period setting.

B.2.5.1. Fitting the Yield Curve

Required components when fitting the yield curve (also known as inversion of the yield
curve) basically consists of having (Björk, 2004)

· a theoretical term structure

P (0, T ;ϑ), T ≥ 0,

with an underlying short rate model under the Q-dynamics as in Assumption B.5
expanded by a parameter vector ϑ, so that

dr(t) = µ(r(t), t;ϑ)dt+ σ(r(t), t;ϑ)dWQ(t),

· and an observed (market) term structure

PM (0, T ), T ≥ 0.

A potential issue wrt calibration arises, namely for each T a corresponding equation
needs to be solved consisting of the number of parameters contained in ϑ which can
amount to a cumbersome problem to solve. The goodness-of-fit largely depends on how
many parameters the model possesses. Naturally, a trade-off between model flexibility
and complexity arises, meaning a model must have few enough parameters that a good
fit is significant, and enough to ensure that a good fit is possible. Models where the term
structure is given endogenously, generally, do not fit the initially observed term structure
well, since the dynamics of the state variables need to be specified. For example the one-
factor affine models, Vašìček (1977) or Cox et al. (1985), do not have a large range of
shapes and will provide a poor fit to some initial yield curves which can be observed in
Example B.1. We deliberately omit any in-depth theoretical description at this stage
and refer to the literature, e.g. Brigo and Mercurio (2007) or also Section 4.1.3 for further
details on the one-factor Cox-Ingersoll-Ross model (CIR1F) model (see Remark B.12).
Emphasis is solely laid upon the calibration result.

Example B.1 (Calibration CIR1F). For illustrating an unsatisfying calibration re-
sult we choose the CIR1F model (Remark B.12) which is fitted to the EURIBOR6M yield
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curve on 16/09/2008 (Figure 3.4). The non-linear least-square optimisation problem
for the CIR1F model reads as follows

min
ϑ

m∑
k=1

(
RCIR
k (ϑ)−RM

k

)2
, (B.50)

subject to ϑ ∈ Θ ⊂ R3
+,

2κθ > σ2

where

· Θ ⊂ R3
+ is a non-empty and compact set,

· ϑ = (κ, θ, σ) is a vector containing the CIR1F parameters to be calibrated, and

· m is the number of observations of the yield curve (zero yields).

To ensure that the zero-coupon bonds, or other derivatives, are priced correctly in the
model we perform the calibration by minimising the squared difference between model and
market yield curves. We calculate the model rates by inserting the closed form solution,
postulating that an ATS for the CIR1F model exists (see Section 4.1.3 for more details),
of the CIR1F zero-coupon bond equation with the affine terms A(t, T ) and B(t, T ) into
Equation (B.29), so that

RCIR(0, Tk) = −A(0, Tk)
Tk

+ B(0, Tk)
Tk

r(0)

where Tk are the different maturities, e.g. Tk = { 1
12 ,

1
4 , . . . , 1, 2, . . . , 30} (in years). We

denote by RM the vector of market yields and by RCIR the vector of model yields. For
today’s short rate r(0) we use the market yield RM with the shortest maturity, e.g.
one-month rate. Next, it is necessary to specify the initial parameters (κ0, θ0, σ0) =
(10−4, 10−4, 10−4), where the Matlab routine starts searching the minimum of (B.50).
We use the inbuilt Matlab solver fmincon() with 'interior−point' algorithm. Further-
more, we impose the non-linear constraint in form of the Feller condition 2κθ > σ2,
guaranteeing non-negativity of the CIR1F model (see Section 4.1.3 for more details).
The results of the calibration are displayed in Table B.1 containing the calibrated model
parameters (κ̂, σ̂, θ̂) and objective function value at the solution (sum of squared errors).
Comparing the model curve to the market curve in Figure B.1 it becomes evident that
the CIR1F model fails to deliver a satisfactory fit.

Date κ̂ σ̂ θ̂ Error

16/09/2008 1.4268 0.0474 0.3676 2.31 · 10−5

Table B.1.: Calibration results of CIR1F

B.2.5.2. Extensions

Certain extensions to a specific model may yield overall better modelling results. Model
extensions can, however, also considerably contribute to the model complexity so that
any model amendment needs to be treated with great care. Yet, in general it is of great
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Figure B.1.: Calibration results of the CIR1F model of EURIBOR6M yield curve on
16/09/2008

advantage to possess some modelling flexibility within one model, rendering entire model
substitutions unnecessary. In the following we shall elaborate on adding more factors to
the model and allowing more flexibility through time varying parameters.

Factors In general, factor models assume that the term structure of interest rates is
driven by a set of state variables or factors. An economic interpretation can be assigned
to the chosen factors. Usually, the first factor is reserved for the short rate. Two factor
models where the short-term rate is modelled as the first factor combined with a second
factor consists of

· long-term rates (Brennan and Schwartz., 1979), respectively consol rates3 (Brennan
and Schwartz, 1982),

· inflation (Cox et al., 1985),

· spread between long and short-term rates, (Schaefer and Schwartz, 1987), and

· volatility of the short-term interest rate (Longstaff and Schwartz, 1992).

An example of a three factor model where the short-term interest rate, its volatility, and
its long-run mean are identified as factors can be found in Chen (1996) and Balduzzi
et al. (1996). Two main reasons stand out when incorporating more than one factor into
a model, namely

· avoidance of correlation between yield curves with different maturity resulting from
the model, and

· when a higher precision is desired, thus different sources may be responsible for
variations in the yield curve.
3The consol rate (a long-term rate) is defined as the yield on a consol (perpetual) bond.
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Thereby, we mainly refer to Brigo and Mercurio (2007) for introducing the idea of in-
corporating multiple factors into the model.
The issue regarding correlation between resulting yield curves can be summarised as
follows. If yield curves with different maturities are monotonically dependent, then oc-
curring shocks at some time point t are passed on throughout all yield curves. More
precisely, the shock originates at the starting point of the yield curve which is in turn
the corresponding short rate r(t) at time t. Thus, any shift to a single yield largely
causes a parallel shift to the whole yield curve in an one-factor model. Two or multiple
factor models avoid this behaviour. For example, in a two-factor model the correlation
is simply determined by the two underlying factors, thus a perfect correlation is not
possible, or highly unlikely. However, one could argue that correlation between yield
curves with different maturities is naturally high, particularly when maturities are not
far apart (e.g. one and two years). Yet, correlation of one is still extremely unrealistic.
To quantify the variation in the yield curve explained by the factors a principal com-
ponent analysis (PCA) can be conducted. The percent of variation of the first to last
factor is given by the ordered eigenvalues of the covariance matrix, the principal com-
ponents, of the standardised spot rate changes divided by the number of variables. We
summarise the results of PCA analyses of Brigo and Mercurio (2007). Brigo and Mer-
curio (2007) references two PCA analyses by Jamshidian and Zhu (1996) and Rebonato
(1998). While Rebonato (1998) concludes that the first component explains already 92%
of the total variance, Jamshidian and Zhu (1996) come to an explanation of over 90%
only after three components. Although both studies use historical yield curves (under
the real-world measure) for their analysis the utilised input variables are not. Brigo and
Mercurio (2007) summarises the outcomes as follows:

· Using a two or three factor model, thus a two- or three-dimensional process, is advis-
able for ensuring a realistic description of the yield curve.

· The same amount of factors (two to three) are also required when modelling under
the risk-neutral probability measure, since the instantaneous covariance structure of
the same process is invariant to measure changes.

Time Varying Parameters Another way of extending an existing model is to opt for
time varying parameters, simply by replacing constant parameters in the model. This al-
lows for additional flexibility. The motivation behind this extension is an economical one
(Hull and White, 1990): “The time dependence can arise from the cyclical nature of the
economy, expectations concerning the future impact of monetary policies, and expected
trends in other macroeconomic variables.” In Hull and White (1990) two extensions
to the original (affine) one-factor models of Vašìček (Vašìček, 1977) and Cox-Ingersoll-
Ross (Cox et al., 1985) are presented. The major advancements consist of firstly, being
consistent with the current structure of interest rates and the current volatilities of all
interest rates and secondly, the volatility parameter of the underlying short rate process
can be a function of time. In the case of the extended Vašìček model analytical pricing
formulas for bonds and other interest rate derivatives can be derived. For the extended
Cox-Ingersoll-Ross model one must rely on numerical estimation procedures for deter-
mining model parameters. The most general representation of both model extensions,
ExtVašìček and ExtCIR1F in Remark B.12, can be found in Hull and White (1993).
The three functions of time in (B.27) provide additional degrees-of-freedom fulfilling
different tasks. While the function θ(t) matches the prices of all discount bonds at the
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initial time, κ(t) and σ(t) are intended to match the initial volatility of all zero-coupon
rates and the volatility of the short rate at all future times. The main advantage is
that the generic representation of (B.27) can be calibrated exactly to the initial term
structure, yet, at the cost of no longer having analytical tractability wrt bond and bond
option pricing formulas. Furthermore, the issue of non-stationarity in the volatility term
structure arises when κ(t) and σ(t) are time-varying. This phenomenon is thoroughly in-
vestigated and confirmed in Hull and White (1996) and may have some unwanted effects.
For example, parameters can be a misspecified or misestimated resulting in potentially
distorted option prices and thus, should be treated with great caution. Concluding,
“Unless σ(t) and κ(t) are constants the volatility term structure is non-stationary. [...]
Using all the degrees of freedom in the model to fit the volatility exactly constitutes an
over-parameterisation of the model. It is our opinion that there should be no more than
one time varying parameter used in Markov models of the term structure evolution and
that this should be used to fit the initial term structure.”, (Hull and White, 1996).

B.3. Markovian Theory with Application in Credit Risk

Estimating and forecasting in a Markovian setting is more involved, thus additional the-
ory is introduced in the following. Basically, two kind of Markovian stochastic matrices
are the objects of interest on which further credit risk related assessments are based on,
namely

· transition matrix P containing transition and default probabilities of the Markov
chain, and the continuous time equivalent

· generator matrix G containing rates at which the Markov chain jumps.

The relationship between the two matrices in the context of estimation and forecasting
is briefly discussed in the following:

· Both matrices, P and G, can be estimated from historical data if data is available
based on various estimation methods. However, in research historical data is not
always available.

· Usually, P is given as one-year stochastic matrices, denoted by P0,1. Particularly
rating companies mostly publish the one-year transition matrix P0,1.

· Matrices transferred into the future, or also matrices projected to times less than one
year, from a given or estimated transition matrix, P0,1, can be only accomplished in
discrete time. For the generator matrix G future and past matrices can be obtained
in continuous time.

· The most frequent case is having a given one-year transition matrix P0,1 where it
becomes necessary to embed into continuous time which is known as the ‘embedding
problem’. A non-linear optimisation procedure is presented in Hughes and Werner
(2016) for obtaining Markovian credit migration matrices in continuous time.

· Even if historical default data is available and an one-year transition matrix P0,1 or
generator matrix G can be estimated certain corrections wrt default probabilities or
migration rates to the resulting matrix (P0,1 or G) may be desirable which can be
seen in Hughes and Werner (2016) incorporating credit risk relevant constraints.
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To this end we still owe some information on what P , respectively P0,1, or G exactly
are. Both the transition and generator matrix have their theoretical foundations in
Markovian theory, more precisely, the underlying process is a Markov chain in discrete-
time and continuous-time, respectively. We shall close this gap in the following. A more
complete picture of credit risk modelling and Markovian theory can be found for example
in Bielecki and Rutkowski (2004).
We start off by introducing the transition matrix embedded in the context of credit
risk modelling. Let us assume a frictionless, discrete-time trading economy with a finite
horizon [0, T ∗], with t ≤ T ≤ T ∗ and a finite state space S = {1, 2, . . . ,K} where state
1 represents the best rating, K − 1 the worst and K defines the default state (see also
Remark B.18 for further details). Moving from state i to state j in one step is quantified
by its corresponding probability

pij = Prob(Xt+1 = j |Xt = i) (B.51)

where Xt denotes a time-homogeneous Markov chain in discrete time which is stated in
Definition B.16 (Jarrow et al., 1997).

Definition B.16. The discrete time, time-homogeneous finite state space Markov chain
{Xt : 0 ≤ t ≤ T ∗} is specified by a K ×K transition matrix

P = (pij), ∀i, j ∈ S

where

P =


p1,1 p1,2 p1,3 · · · p1,K−1 p1,K
p2,1 p2,2 p2,3 · · · p2,K−1 p2,K
...

...
... . . . ...

...
pK−1,1 pK−1,2 pK−1,3 · · · pK−1,K−1 pK−1,K

0 0 0 · · · 0 1

 , (B.52)

and

pii = 1−
K∑
j=1
j 6=i

pij ,

with i = 1, . . . ,K and probabilities (B.51).

Properties B.1 of P follow immediately (Bluhm et al., 2002):

Property B.1.

(a) P has only non-negative entries: pij ≥ 0 for i, j = 1, . . . ,K.

(b) All row sums of P are equal to 1:
∑K
j=1 pij = 1 for i = 1, . . . ,K.

(c) The last column contains the 1-year default probabilities: piK = pDi for i =
1, . . . ,K − 1.

(d) The default state is absorbing: pKj = 0 for j = 1, . . . ,K − 1 and pKK = 1. This
means that there is no escape from the default state.
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(e) Low-risk states should never show a higher default probability than high-risk states,
i.e. pi,K ≤ pi+1,K for i = 1, . . . ,K − 1.

(f) It should be more likely to migrate to closer states than to more distant states (row
monotony towards the diagonal),

pi,i+1 ≥ pi,i+2 ≥ pi,i+3 . . .

pi,i−1 ≥ pi,i−2 ≥ pi,i−3 . . .

(g) The chance of migration into a certain rating class should be greater for more
closely adjacent rating categories (column monotony towards the diagonal).

pi+1,i ≥ pi+2,i ≥ pi+3,i . . .

pi−1,i ≥ pi−2,i ≥ pi−3,i . . .

(h) Insofar as a lower rating presents a higher credit risk:
∑
j≥k pij is a non-decreasing

function of i for every fixed k, which is equivalent to requiring that the underlying
Markov chain be stochastically monotonic.

Now we can generalise the defined one-step P transition matrix (Definition B.16) to a
t-step time horizon denoted by P0,t. This means that pij(0, t) is the probability going
from state i at time 0 to state j at time t. Under homogeneity the t-step transition
matrix P0,t = P t which amounts to the t-fold matrix product of P . The most frequent
representation one finds is an one-year (t = 1) transition matrix. This gives rise to
some additional Properties B.2 given in Kreinin and Sidelnikova (2001) where the term
‘regular credit migration model’ (RCMM) is introduced.

Property B.2 (Regular Credit Migration Model (RCMM)).

(a) The determinant of the annual transition matrix P0,1 is not equal to zero, and the
eigenvalues are distinct (this allows us to compute the logarithm of P0,1).

(b) For the (given) one-year transition matrix P0,1 the diagonal probabilities (proba-
bility of staying in the corresponding credit grade within the first year) dominate
the distribution of probability mass (i.e. pii > pij). This is a weak property as it
is not always the case, but should be kept in mind when addressing the embedding
problem. When moving on in time (t > 1) a dominant diagonal disappears.

(c) Eventually, with sufficient amount of time passed all companies in any starting
credit grade will default, thus

lim
t→∞

P0,t =


0 0 · · · 1
0 0 · · · 1
...

... . . . ...
0 0 · · · 1

 .

Now, let us assume a continuous-time trading economy with a finite horizon [0, T ∗], with
t ≤ T ≤ T ∗ and a finite state space S = {1, 2, . . . ,K}. A continuous-time Markov chain
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X(t) jumps from state i to j at rate

gij = lim
h→0

Prob(X(t+ h) = j |X(t) = i)
h

, (B.53)

with i 6= j yielding Definition B.17.

Definition B.17 (Generator matrix). A continuous-time, time-homogeneous
Markov chain {X(t) : 0 ≤ t ≤ T ∗} is specified in terms of its K × K generator ma-
trix

G = (gij), ∀i, j ∈ S

where

G =


g1,1 g1,2 g1,3 · · · g1,K−1 g1,K
g2,1 g2,2 g2,3 · · · g2,K−1 g2,K
...

...
... . . . ...

...
gK−1,1 gK−1,2 gK−1,3 · · · gK−1,K−1 gK−1,K

0 0 0 · · · 0 0

 , (B.54)

and

gii = −
∑
j=1
j 6=i

gij ,

with i = 1, . . . ,K and intensities (B.53).

We can assign the following Properties B.3 to Definition B.17:

Property B.3.

(a) Off-diagonal entries are non-negative: gij ≥ 0, ∀i 6= j and i, j = 1, . . . ,K

(b) Row sums amount to zero:
∑K
j=1 gij = 0, i = 1, . . . ,K

The necessary and sufficient conditions (a) and (b) of Properties B.3 defining a generator
matrix can be derived in three different ways, as can be seen in Norris (1998). A formal
proof thereof is given in Asmussen (2008).

Remark B.17. Note that for a generator matrix of Definition B.17, the (K−1)×(K−1)
sub-matrix of G has the structure of a birth-death chain and the default intensities in
the Kth column do not decrease as a function of row number. The last row of zeros in G
implies that bankruptcy (state K) is absorbing which amounts to (d) of Properties B.1.
Equivalent monotonicity conditions to (e) - (g) of Properties B.1 can be made for the
generator matrix simply by replacing P by G. The equivalent condition of (h) needs to
be reformulated to (compare Jarrow et al. (1997))∑

j≥k
gij ≤

∑
j≥k

gi+1,j

for all i, k such that k 6= i+ 1.
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Remark B.18. When applying Markov chain theory to credit risk, ratings are intro-
duced which stand for the corresponding states. An example of rating grades defined by
the major rating companies Moody’s, Fitch and S&P is given in Table B.2. The rating
granularity can vary, thus the size of a given one-year transition matrix changes with the
ratings (states). Most annual transition matrices published by the rating agencies have
eight credit states. The ratings are to be viewed as an ordinal scale, in descending order,
with ‘triple A’ being the best rating and where default is denoted as ‘D’ corresponding to
the worst case. Reformulated transition or migration probabilities4 from one rating class
to another with ratings are e.g. pAAA,AA+(t, t + 1) = Prob(Xt+1 = AAA |Xt = AA+),
pAA+,AAA(t, t+ 1) = Prob(Xt+1 = AA+ |Xt = AAA) or pD,C(t, t+ 1) = Prob(Xt+1 =
D |Xt = C). The difference (more precisely additional assumption) to above general
definition of a transition matrix (Definition B.16) is the default state, corresponding to
the last row K in (B.52), which in credit risk frameworks is absorbing. Hence once a
company migrated to ‘D’ (=̂ default) there is no possibility of an upgrade. Markov chains
in the context of RCMM can conveniently be grouped into transient states which are the
non-default rating classes (Table B.2) and an absorbing state (default probabilities).

Class Moody’s Fitch S&P

1 Aaa,Aa1,Aa2,Aa3 AAA,AA+,AA,AA- AAA,AA+,AA,AA-
2 A1,A2,A3 A+,A,A- A+,A,A-
3 Baa1,Baa2,Baa3 BBB+,BBB,BBB- BBB+,BBB,BBB-

Table B.2.: Excerpt of rating grades of the three major rating companies Moody’s,
Fitch and S&P.

B.3.1. Relationships

We introduce the hazard rate and Chapman-Kolmogorov equations emphasising on their
connections to the general Markovian theory and models used in this chapter. These
noteworthy relationships are briefly addressed which are mainly taken from Aalen et al.
(2008) where more in-depth explanations are given.

Hazard Rate We start off with the hazard rate since it connects the already intro-
duced Markovian theory of Definition B.17 and is an elementary component of survival
modelling in upcoming sections. The derivation of exponential default probability term
structure is based on the idea that credit dynamics can be viewed as a two-state time-
homogeneous Markov-chain, the two states being survival and default, and the unit time
between two time steps being ∆t = ti − ti−1 as in Definition B.18 (Lando, 2004).

Definition B.18 (Hazard Function). Let τ be a positive random variable whose
distribution can be described in terms of a hazard function λ, i.e.

S(t) = Prob(τ > t) = exp
(
−
∫ t

0
λ(s)ds

)
. (B.55)

4In some notations these are also denoted as Prob(AA+→ AAA), Prob(AAA→ AA+) or Prob(C →
D) which maybe gives a more intuitive representation.
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Then, the standard definition of the hazard rate λ(t) of τ is

lim
∆t→0

1
∆t Prob(t ≤ τ < t+ ∆t | τ ≥ t) = λ(t), (B.56)

so λ(t)∆t is approximately the conditional probability of a default in a small interval
after t given survival up to and including t where ∆t is ‘infinitesimally small’, that is,
the probability of something happening in the immediate future conditional on survival
until time t.

It is common to assume that the survival function S(t) (B.55) is absolutely continuous,
and let us do so for the moment. Let f(t) be the density of τ . Then λ(t) is obtainable
from S(t) by

λ(t) = f(t)
S(t) = −S

′(t)
S(t) . (B.57)

Inversely, when λ(t) is available S(t) solves the differential equation S′(t) = −λ(t)S(t),
which leads to S(t) = exp (−Λ(t)), where Λ(t) =

∫ t
0 λ(s)ds is the cumulative hazard rate.

Note that τ does not have to be finite; if Prob(τ = ∞) > 0 then
∫∞

0 f(s)ds < 1 and∫∞
0 λ(s)ds <∞, which is sometimes referred to as a defective survival distribution.

Remark B.19. The similarity of Definition B.17 with (B.53) to (B.56) is now more
clear. The hazard measures the infinitesimal probability of going from ‘alive’ to ‘dead’
at time t; the Markov intensity measures the more general infinitesimal probability of
going from state i to state j at time t. This is a basic connection between event history
analysis and Markov theory.

Chapman-Kolmogorov Equations Primarily, we are interested in modelling in con-
tinuous time, thus concentrating on the continuous-time representation of Chapman-
Kolmogorov equations and, intentionally, omitting the full discrete-time formulation.
However, we begin this section with the discrete-time formulation for a better under-
standing of the overall theory. Thereby, we mainly follow Aalen et al. (2008).
In general, it is of interest to be able to determine a n-step transition probability, meaning
what is the probability that n time units later the chain will be in state j given it is now
(at time m) in state i. Mathematically, this amounts to: Compute the n-step transition
matrix P (n) = (pnij), n ≥ 1, where pnij = Prob(Xm+n = j |Xm = i), given a Markov chain
{Xn} with transition matrix P . We can set m = 0 so that pnij = Prob(Xn = j |X0 = i),
since transition probabilities do not depend on the time m ≥ 0 at which the initial con-
dition is chosen. Summing over all intermediate time points yields the equations given
in Theorem B.12 where the Markov property holds. Given Xn = k, the future after time
n is independent of the past, so the probability that the chain m time units later (at
time n+m) will be in state j is pmkj , yielding the product pnikpmkj .

Theorem B.12. Let {Xk}k∈N0 be a Markov chain with transition matrix P and state
space S. Then for all n ≥ 0, m ≥ 0, i, j ∈ S

pn+m
ij =

∑
k∈S

pnikp
m
kj

=
∑
k∈S

Prob(Xm+n = i |Xm = j) Prob(Xm = i |X0 = j)
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= Prob(Xm+n = i |X0 = j).

Preparing for the Chapman-Kolmogorov forward and backward equations we restate
Definition B.17, again by following (Aalen et al., 2008). The Chapman-Kolmogorov
equations describe the relationship between P andG where we can extend the numerator
of (B.53) to the matrix notation

P (t+ ∆t)− P (t) = P (t)P (∆t)− P (t)
= P (t)(P (∆t)− I)
≈ P (t)G∆t. (B.58)

In fact, the Chapman-Kolmogorov equations are the matrix equivalents of (B.57).
With

G = P ′(0) = lim
∆t→0

1
∆t(P (∆t)− P (0)). (B.59)

we arrive at Theorem B.13 for time-homogeneous Markov chains (see full proof for
example in Norris (1998)) since P (0) = I.

Theorem B.13 (Kolmogorov forward and backward ODEs). Let {X(t)}t∈R+
0
be

a right-continuous process and i, j ∈ S a finite set. The transition probabilities satisfy
both

· the Kolmogorov forward differential equations

p
′
ij(t) =

∑
k

pik(t)gkj for all i, j,

or in matrix notation

P (t)′ = P (t)G;

· and the Kolmogorov backward differential equations

p
′
ij(t) =

∑
k

gikpkj(t) for all i, j,

or in matrix notation

P (t)′ = GP (t)

where P (0) = I.

The matrix equations in Theorem B.13 have exponential matrix solutions. Subject to
the boundary condition P0 = I (I is the identity matrix), these equations have the
formal solution (care is needed when S is not finite)

P (t) = exp(tG) := I + tG+ (tG)2

2! + (tG)3

3! + . . . =
∞∑
n=0

Gntn

n! , ∀ t ∈ R+
0 , (B.60)
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where G0 = I. Therefore, the transition probabilities are specified by the matrix of
transition rates G, and so the chain is specified by G and the initial distribution p(0).
Differentiating exp(Gt) wrt t will satisfy the Kolmogorov-Chapman equations.

Remark B.20. Aalen et al. (2008) points out that “time-discrete and time-continuous
homogeneous processes behave in a similar fashion and the resulting transition probabil-
ities behave like exponential (or geometric) functions of time”, cf. Aalen et al. (2008).

Finally, let us formulate the inhomogeneous Kolmogorov-Chapman equations. Therefore,
we need to extend by an additional time parameter for the transition probabilities where
P (s, t) with pij(s, t) = Prob(X(t) = j |X(s) = i). Furthermore, the generator G
additionally depends on the time parameter t to meet the additional complexity. With
(B.58) the Kolmogorov forward equation amounts to

∂

∂t
P (s, t) = P (s, t)G(t),

with

G(t) = lim
∆t→0

1
∆t(P (t, t+ ∆t)− I).

B.3.2. Estimation

In general we assume that P0,1 or G as given. However, this may not always be the case.
Then it becomes necessary to estimate transition or generator matrices from historical
default data. In the following we therefore present three different widely used estimation
procedures. Furthermore, in classical rating settings firms of a particular industry are
subject of investigation where transition probabilities are estimated. However, we are
interested in estimates for cover pool assets consisting of mortgages. Hence we reformu-
late the well-established estimation techniques to suit our needs.
First we look at the simplest estimation form at discrete times t = 0, . . . , T . We assume
a sample of N mortgages with observed transitions between different states to be inde-
pendent. We mainly follow Lando (2004) adopting the notation and derivation of the
discrete-time estimator:

· ni(t) is the number of mortgages in state i at time t.

· nij(t) is the number of mortgages which went from state i at time t to j at date t+ 1.

· Ni(T ) =
∑T−1
t=0 ni(t) is the total number of mortgage exposures recorded at the onsets

of transition periods.

· Nij(T ) =
∑T
t=1 nij(t) is the total number of transitions from i to j over the entire

period.

Assuming that rating migrations are independent across mortgages, we get products of
the individual likelihoods and hence the complete likelihood function takes the form

L(ϑ) =
K∏
i=1

K∏
j=1

p
Nij(T )
ij ,
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where ϑ = (pij)1≤i,j≤K (the transition matrix entries) and p0
ij = 1. Then, the log-

likelihood is

l(ϑ) =
K∑
i=1

K∑
j=1

Nij(T ) log pij .

Since we have the restriction
∑K
j=1 pij = 1 for every i, we have to maximise

ϑ̂ = arg max
ϑ

K∑
i,j=1

Nij(T ) log pij

subject to
K∑
j=1

pij = 1.

Solving this is a standard Lagrange multiplier exercise and one arrives at Definition B.19.

Definition B.19 (Discrete-Time Homogeneous ML Estimator). The ML esti-
mator in discrete time, or also referred to as the multinomial estimator, amounts to

p̂ij = Nij(T )
Ni(T ) ,

for all i, j ∈ S.

Remark B.21. As pointed out by Lando (2004) the estimator in Definition B.19 does
not, strictly speaking, resemble a multinomial estimator since the number of mortgage
exposures Ni(T ) in each category is random which would be true if Ni were fixed.

In Jarrow et al. (1997) (also in Lando (2004)) we find the homogeneous estimator in
continuous time (Definition B.20), adopted from Küchler and Sorensen (2006), where
we assume that we have observed a collection of mortgages between time 0 and time T .
The generator matrix is constructed in the following way. A mortgage asset remains in
rating state i for an exponentially distributed amount of time with parameter

gii = −
∑
j=1
j 6=i

gij .

When a transition takes place the new rating is determined by a multinomial experiment
in which the probability of a transition from state i to state j is given by gij/gii which
leads to the estimator for the generator matrix as in Definition B.20.

Definition B.20 (Continuous-Time Homogeneous ML Estimator). To estimate
the elements of the generator under an assumption of time-homogeneity we use the MLE

ĝij = Nij(T )∫ T
0 Yi(s)ds

where

· Yi(s) is the number of mortgages in rating class i at time s, and
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· Nij(T ) is the total number of transitions over the period from i to j, i 6= j over the
period [0, T ].

Note that Definition B.20 is the continuous-time analogue of the MLE in Definition B.19.
The major difference of Definition B.20 to Definition B.19 is that now all information
between the time points 0 and T is being used. The numerator counts the number of
observed transitions from i to j over the entire periods of observation whereas the de-
nominator represents the total time spent in state i by all mortgages in the cover pool,
respectively data set.
Lando and Skodeberg (2002) state an inhomogeneous estimator in continuous-time in
form of the Aalen-Johansen estimator (see also Küchler and Sorensen (2006)) in Defini-
tion B.21. This method is a useful tool for replacing the methods Definition B.19 or Def-
inition B.20 over longer periods of time. Consider a non-homogeneous continuous-time
Markov process with finite state space S = {1, 2, . . . ,K} whose transition probability
matrix for the period from time s to time t is given by Ps,t. Hence, the ij-th element
of this matrix describes the probability that the chain starting in state i at time s is in
state j at time t.

Definition B.21 (Continuous-Time Inhomogeneous Estimator). When we do
not assume homogeneity we can estimate the transition matrix P by the Aalen-Johansen
estimator

P̂s,t =
m∏
h=1

(I + ∆Ĝ(Th)),

where I is the identity matrix, Th is the jump time in the interval (s, t] and

∆Ĝ(Th) =



−∆N1(Th)
Y1(Th)

∆N12(Th)
Y1(Th) · · · · · · ∆N1K(Th)

Y1(Th)
∆N21(Th)
Y2(Th) −∆N2(Th)

Y2(Th) · · · · · · ∆N2K(Th)
Y2(Th)

...
... . . . . . . ...

∆NK−1,1(Th)
YK−1(Th)

∆NK−1,2(Th)
YK−1(Th) · · · −∆NK−1(Th)

YK−1(Th)
∆NK−1,K(Th)
YK−1(Th)

0 0 · · · · · · 0


where

· ∆Nij(Th) denotes the number of transitions observed from state i to j at date Th,

· ∆Nk(Th) counts the total number of transitions away from state k at date Th, and

· Yk(Th) is the number of mortgages in state k right before date Th.

The diagonal element in row k counts, at a given date Th, the fraction of the exposed
mortgages Yk(Th) which leaves the state at date Th. The off-diagonal elements count
the specific types of transitions away from the state divided by the number of exposed
mortgages. The general findings of Lando and Skodeberg (2002) are that difference be-
tween the time-inhomogeneous estimator of Definition B.21 to the time-homogeneous
estimator of Definition B.20 are small, however, significant accuracy is gained compared
to the cohort method of Definition B.19. For more details refer for example to Lando
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and Skodeberg (2002).
Plenty of numerical examples exist in the literature for estimating above transition or
generator matrix entries, for example Jarrow et al. (1997), Lando and Skodeberg (2002),
Lando (2004) and Trueck and Rachev (2009) amongst many others. Hence we shall not
give additional examples at this point and refer to the literature, since we do not have
access to any historical default data on mortgages to base any estimation on. Instead
we would like to address the issue of non-fulfilment of the conditions (e) - (h) of Proper-
ties B.1 by transition matrices sampled from historical data as also pointed out Bluhm
et al. (2002). In Hughes and Werner (2016) we show how to rectify violations of the
particular conditions either for transition matrices directly or for the generator matri-
ces, their continuous-time equivalents. This means whatever the estimation outcomes
are of the above proposed estimation techniques it is possible to obtain an appropriate
transition matrix posterior to any estimation by applying the non-linear optimisation in
combination with additional constraints in form of conditions (e) - (h).

Remark B.22. In Hughes and Werner (2016) condition (f) of Properties B.1 is not
included in the selection of additional constraints, however, it is very similar to condition
(e) and thus can be easily replaced or amended.

B.4. Special Distributions

If not stated otherwise, the distributions introduced in this section are taken from John-
son et al. (1992), Johnson et al. (1994) and Johnson et al. (1995).

Definition B.22 (Chi-squared distribution). If Z1, Z2, . . . , Zν are independent
standard normal variables, then

∑ν
i=1 Z

2
i has a chi-square distribution with ν degrees of

freedom (here ν has to be an integer by definition, but the distribution is defined for any
real ν > 0).
Let us denote a chi-square random variable with ν degrees of freedom by χ2

ν . Then the
probability density function of χ2

ν is

pχ2
ν
(x) = 1

2ν/2Γ (ν/2)
exp(−x/2)xν/2−1, x ≥ 0, (B.61)

where Γ(·) is the (complete) gamma function with

Γ(α) =
∫ ∞

0
e−uuα−1du.

Equation (B.61) is referred to as a χ2 distribution with ν degrees of freedom for any
positive ν (ν > 0). The abbreviated formulation of Definition B.22 is X ∼ χ2

ν .

Definition B.23 (Non-central chi-squared distribution). If Z1, Z2, . . . , Zν are in-
dependent standard normal variables and δ1, δ2, . . . , δν are constants then the distribution
of

ν∑
j=1

(Zj + δj)2
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depends on δ1, δ2, . . . , δν only through the sum of their squares. It is called the non-central
χ2 distribution with ν degrees of freedom and non-centrality parameter λ =

∑ν
j=1 δ

2
j .

The probability density function can be expressed as a mixture of central χ2 pdfs (Defi-
nition B.22):

pχ′2ν (λ)(x) =
∞∑
j=0

(
(1

2λ)j

j! exp(−λ/2)
)
p
χ
′2
ν+2j(0)(x)

=
exp

(
−1

2(λ+ x)
)

2ν/2
∞∑
j=0

(
λ

4

)j xν/2+j−1

j!Γ
(

1
2ν + j

)
= e−(λ+x)/2 1

2

(
x

λ

)(ν−2)/4
I(ν−2)/2(

√
λx), x > 0 (B.62)

where

Ia(y) =
(
y

2

)a ∞∑
j=1

(y2/4)j

j!Γ(a+ j + 1)

is the modified Bessel function of the first kind of order a (for integer or positive a) and
Γ(·) is the (complete) gamma function with

Γ(α) =
∫ ∞

0
e−uuα−1du.

Note:

· The distribution defined in (B.62) is a proper distribution for any positive ν.

· The abbreviated formulation of Definition B.23 is X ∼ χ′2ν (λ).

· If λ = 0, the non-central χ2-distribution (χ′2ν (λ)) becomes a central χ2-distribution
(χ2

ν) (see Definition B.22), so that p
χ
′2
ν+2j(0)(x) becomes pχ2

ν+2j
(x) with ν + 2j degrees

of freedom.

· Distribution limits: If X ∼ χ′2ν (λ), then

X − (ν + λ)√
2(ν + 2λ)

d→ N(0, 1)

(converges in distribution) when ν → ∞ or λ → ∞. This is briefly outlined by
decomposing X ∼ χ′2ν (λ) of Definition B.23 into a random variable Xχ = Z2

1 +. . .+Z2
ν

which has a (central) chi-square distribution with ν degrees of freedom, and the term
XN = 2δZ1 + δ2 which has a normal distribution N(δ2, 4δ2) where Zi ∼ N(0, 1),
i = 1, . . . , ν are independent standard normal variables. Since X depends only on the
sum δ2

1 + . . .+ δ2
ν and not on the individual means δi we can assume (without loss of

generality) that δ1 = δ and δ2 = . . . = δν = 0 and consequently we have

λ = δ2
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and

X = (Z1 + δ)2 + Z2
2 + . . .+ Z2

ν = Z2
1 + . . .+ Z2

ν︸ ︷︷ ︸
Xχ

+ 2δZ1 + δ2︸ ︷︷ ︸
XN

.

Moreover, variables Z2
1 and Z1 are uncorrelated, so that Xχ and XN are uncorrelated.

Further, the first two moments of Xχ are E(Xχ) = ν and V(Xχ) = 2ν. Then the
non-central chi-square distribution gets approximated by the normal distribution N(ν+
λ, 2(ν + 2λ)), when:

– λ→∞: For large values of the non-centrality parameter λ, the term XN becomes
dominant and hence the corresponding non-central chi-square distribution could
be well approximated by the normal distribution.

– ν →∞: Increasing the number of degrees of freedom ν, the distribution of random
variable Xχ (Definition B.22) approaches normal since it is defined by the sum of
ν i.i.d. random variables and thus the central limit theorem holds.

Definition B.24 (Vašìček distribution). According to Vašìček (1987) the Vašìček
distribution is defined as follows:

x ∼ Vasi(p, %)

p(x) =
√

1− %
%

exp

1
2

Φ−1(x)2 −
(√

1− %Φ−1(x)− Φ−1(p)
√
%

)2
 ,

with probability 0 < p < 1, correlation 0 < % < 1 and Φ−1(x) being the inverse cdf of the
standard normal distribution.

B.5. Special Copulas

A copula is a multivariate distribution function C defined on the unit hypercube
[0, 1]d, with uniformly distributed marginals. There exist two formal definitions of a
d-dimensional copula, namely Definition B.25 and Definition B.26. Knowing both defi-
nitions is of advantage depending on the given situation. The former is a probabilistic
definition via distribution functions while the latter, equivalently, defines copulas purely
analytically. Literature on copulas is given for example by Mai and Scherer (2012) and
Mai and Scherer (2014) on which this section is mainly based.

Definition B.25 (d-dimensional copula — probabilistic). A function C : [0, 1]d →
[0, 1] is called a ‘copula’ if there is a random vector (U1, . . . , Ud) such that each component
Uk has a uniform distribution on [0, 1], k = 1, . . . , d and

C(u1, u2, . . . , ud) = Prob(U1 ≤ u1, U2 ≤ u2, . . . , Ud ≤ ud) (B.63)

with u1, u2, . . . , ud ∈ [0, 1].

Definition B.26 (d-dimensional copula — analytic). C : [0, 1]d → [0, 1] is a
d-dimensional copula with properties:
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· C(u1, . . . , uk−1, 0, uk+1, . . . , ud) = 0, the copula is zero if one of the arguments is zero
(grounded property). This reflects 0 ≤ Prob(U1 ≤ u1, . . . , Uk ≤ 0, . . . , Ud ≤ ud) ≤
Prob(Uk ≤ 0) = 0.

· C(1, . . . , 1, uk, 1, . . . , 1) = uk, the copula is equal to uk if one argument is uk and
all others 1 (normalised marginals property). This reflects the uniform marginals
property, since Prob(U1 ≤ 1, . . . , Uk ≤ uk, . . . , Ud ≤ 1) = Prob(Uk ≤ uk) = uk.

· For each d-dimensional rectangle ×dk=1[ak, bk], being a subset of [0, 1]d, one has:

0 ≤
∑

(c1,...,cd)∈×d
k=1{ak,bk}

(−1){|k:ck=ak|}C(c1, . . . , cd) ≤ 1.

An example in form of the bivariate case of Definition B.26 is given in Example B.2.

Example B.2 (Bivariate case). C : [0, 1] × [0, 1] → [0, 1] is a bivariate copula if
C(0, u) = C(u, 0) = 0, C(1, u) = C(u, 1) = u and C(u2, v2) − C(u2, v1) − C(u1, v2) +
C(u1, v1) ≥ 0 for all 0 ≤ u1 ≤ u2 ≤ 1 and 0 ≤ v1 ≤ v2 ≤ 1.

In summary, Theorem B.14 (Sklar, 1959) states that every multivariate cumulative dis-
tribution function of a random vector (X1, X2, . . . , Xd) can be expressed in terms of its
marginals and a copula.

Theorem B.14 (Sklar’s theorem). A function F : Rd → [0, 1] is the distribu-
tion function of some random vector (X1, . . . , Xd) if and only if there are a copula
C : [0, 1]d → [0, 1] and univariate distribution functions F1, . . . , Fd : R→ [0, 1] such that

F (x1, . . . , xd) = C (F1(x1), . . . , Fd(xd)) , (B.64)

with x1, . . . , xd ∈ R.

The copula function from (B.63) can be rewritten to

C(u1, u2, . . . , ud) = Prob(X1 ≤ F−1
1 , X2 ≤ F−1

2 , . . . , Xd ≤ F−1
d ).

With a given procedure to generate a sample (U1, U2, . . . , Ud) from the copula distribu-
tion, then the desired sample can be obtained by

(X1, X2, . . . , Xd) = (F−1
1 (U1), F−1

2 (U2), . . . , F−1
d (Ud)).

We will consider the bivariate cases, in particular, the bivariate (log)-density functions
(denoted with a small c) and give examples with subjectively chosen dependency param-
eters in form of plots.

B.5.1. Gaussian Copula

Definition B.27 (Gaussian copula). Bivariate copula (Schepsmeier and Stöber,
2014):

c(u1, u2; ρ) = 1√
1− ρ2 exp

(
−ρ

2(x2
1 + x2

2)− 2ρx1x2
2(1− ρ2)

)
,
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with xk = Φ−1(uk), k = 1, 2 and ρ ∈ [−1, 1].
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Figure B.2.: Bivariate Gaussian copula with ρ = 0.7

B.5.2. Student’s T Copula

Definition B.28 (Student’s T copula). Bivariate copula (Schepsmeier and Stöber,
2014):

c(u1, u2; ρ, ν) = 1
2π
√

1− ρ2
1

dt(x1; ν)dt(x2; ν)

(
1 + x2

1 + x2
2 − 2ρx1x2

ν(1− ρ2)

)− ν+2
2

,

with dt(xk; ν) = Γ( ν+1
2 )

Γ( ν2 )√πν

(
1 + x2

k
ν

)− ν+1
2
, xk = t−1

ν (uk), k = 1, 2, ρ ∈ [−1, 1] and ν > 0.
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Figure B.3.: Bivariate Student’s T copula with ρ = 0.7 and ν = 2

B.5.3. Clayton Copula

Definition B.29 (Clayton copula). Bivariate copula (Schepsmeier and Stöber,
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B. Underlying Theory

2014):

c(u1, u2;α) = (1 + α)(u1u2)−1−α(u−α1 + u−α2 − 1)−
1
α
−2,

where α ∈ [0,∞].
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Figure B.4.: Bivariate Clayton copula with α = 3

B.5.4. Frank Copula

Definition B.30 (Frank copula). Bivariate copula (Schepsmeier and Stöber, 2014):

c(u1, u2;α) = α(1− exp(−α)) exp(−α(u1 + u2))
(1− exp(−α))− (1− exp(−αu1))(1− exp(−αu2))2 ,

where α ∈ [−∞,∞] \ {0}.
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Figure B.5.: Bivariate Frank copula with α = 8

B.5.5. Gumbel Copula

Definition B.31 (Gumbel copula). Bivariate copula (Schepsmeier and Stöber,
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B.5. Special Copulas

2014):

c(u1, u2;α) = C(u1, u2;α) 1
u1u2

(h1 + h2)−2+ 2
α (ln(u1) ln(u2))α−1 ×(

1 + (α− 1)(h1 + h2)−
1
α

)
, (B.65)

with C(u1, u2;α) = exp (−(h1 + h2)), hk = (− ln(uk))α, k = 1, 2 and α ∈ [1,∞].
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Figure B.6.: Bivariate Gumbel copula with α = 4
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C. Data Catalogue

C.1. Covered Bonds by Country and Bank

Country Abbr. Model Public Sector Mortgage
Outstanding Onset Outstanding Onset

Australia AUS model V no - yes 2011
Austria AUT model III yes pre 2008 yes pre 2008
Belgium BEL model III yes 2014 yes 2012
Canada CAN model V no - yes pre 2008
Cyprus CYP model III no - yes 2011
Czech Republic CZE model IV no - yes pre 2008
Denmark DNK model II no - yes pre 2008
Finland FIN model I no - yes pre 2008
France FRA model I yes pre 2008 yes pre 2008
Germany DEU model III yes pre 2008 yes pre 2008
Greece GRC model IV no - yes 2008
Hungary HUN model II no - yes pre 2008
Iceland ISL model III no - yes pre 2008
Ireland IRL model I yes pre 2008 yes pre 2008
Italy ITA model V yes pre 2008 yes 2008
Latvia LVA model III no - no -
Luxembourg LUX model II yes pre 2008 no -
New Zealand NZL model V no - yes 2010
Norway NOR model I yes - yes 2009
Panama PAN other no - yes 2012
Poland POL model II no - yes pre 2008
Portugal PRT model IV yes 2008 yes pre 2008
Singapore SGP model V no - yes 2015
Slovakia SVK model IV no - yes pre 2008
South Korea KOR model IV no - yes 2009
Spain ESP model IV yes pre 2008 yes pre 2008
Sweden SWE model I no - yes pre 2008
Switzerland CHE model I no - yes pre 2008
Turkey TUR other no - yes 2016
The Netherlands NLD model V no - yes pre 2008
United Kingdom GBR model V yes pre 2008 yes 2009
United States USA other no - yes pre 2008

Table C.1.: Issuing covered bond countries in 2016.

C.2. Balance Sheet and §28 Reporting Data — Adjusted
Values

Position AAR BHH MHB MMW NAT WBP WIB

Equity 6,715.5 2,711.1 4,418.4 241.8 525.8 1,644.8 1,279.4
Total 55,268.7 29,427.7 45,443.4 2,087.8 2,787.4 11,192.6 6,430.5

Table C.3.: Equity and total sum of liability and assets.
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C.2. Balance Sheet and §28 Reporting Data — Adjusted Values
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C. Data Catalogue

AAR, 4th Quarter 2016
(in mn e)

Cover
Pool (CP)

Other
Assets
(OA)

Pfandbrief
(PB)

Other
Liabilities

(OL)

Present Value total 15,933.3 — 12,300.0 —

Nominal Value total 15,797.3 39,471.3 12,204.6 37,048.1

maturity 0.50 1,030.2 — 1,448.8 —
1.00 929.4 — 1,034.1 —
1.25 947.2 — 1,747.4 —
1.75 1,142.0 — 1,182.4 —
2.50 3,337.1 — 2,099.1 —
3.50 2,657.1 — 719.0 —
4.50 1,736.9 — 704.0 —
7.50 2,948.4 — 2,443.5 —

12.50 1,068.9 — 826.2 —

Table C.4.: Input data for the present values and adjusted nominals when allowing
coupon payments of Aareal Bank AG, according to Section 6.2.

BHH, 4th Quarter 2016
(in mn e)

Cover
Pool (CP)

Other
Assets
(OA)

Pfandbrief
(PB)

Other
Liabilities

(OL)

Present Value total 17,301.6 — 16,258.8 —

Nominal Value total 17,140.1 12,287.6 16,126.3 11,773.2

maturity 0.50 1,885.1 — 2,476.7 —
1.00 1,508.7 — 468.9 —
1.25 1,203.3 — 1,847.8 —
1.75 1,154.1 — 1,596.6 —
2.50 1,173.5 — 2,863.8 —
3.50 1,819.4 — 1,323.6 —
4.50 2,061.4 — 1,420.2 —
7.50 5,083.5 — 2,433.1 —

12.50 1,251.1 — 1,695.8 —

Table C.5.: Input data for the present values and adjusted nominals when allowing
coupon payments of Berlin Hyp AG, according to Section 6.2.
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C.2. Balance Sheet and §28 Reporting Data — Adjusted Values

MHB, 4th Quarter 2016
(in mn e)

Cover
Pool (CP)

Other
Assets
(OA)

Pfandbrief
(PB)

Other
Liabilities

(OL)

Present Value total 32.550.1 — 28,321.9 —

Nominal Value total 32,116.1 13,327.2 27,913.0 13.658,0

maturity 0.50 1,267.1 — 675.5 —
1.00 1,262.5 — 1,264.8 —
1.25 1,496.7 — 865.8 —
1.75 1,327.2 — 954.9 —
2.50 2,425.1 — 1,658.0 —
3.50 2,705.0 — 2,218.8 —
4.50 2,403.7 — 1,800.6 —
7.50 10,860.3 — 1,848.8 —

12.50 8,368.0 — 11,319.8 —

Table C.6.: Input data for the present values and adjusted nominals when allowing
coupon payments of Münchener Hypothekenbank eG, according to Section 6.2.

MMW, 4th Quarter 2016
(in mn e)

Cover
Pool (CP)

Other
Assets
(OA)

Pfandbrief
(PB)

Other
Liabilities

(OL)

Present Value total 1,492.9 — 1,332.9 —

Nominal Value total 1,476.6 611.2 1,320.0 595.9

maturity 0.50 62.9 — 74.3 —
1.00 30.8 — 65.0 —
1.25 102.6 — 55.3 —
1.75 88.5 — 124.1 —
2.50 183.4 — 231.1 —
3.50 145.2 — 115.3 —
4.50 138.1 — 167.3 —
7.50 678.3 — 464.0 —

12.50 46.3 — 23.2 —

Table C.7.: Input data for the present values and adjusted nominals when allowing
coupon payments of M. M. Warburg & CO Hypothekenbank AG, according to Sec-
tion 6.2.
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C. Data Catalogue

NAT, 4th Quarter 2016 (in
mn e)

Cover
Pool (CP)

Other
Assets
(OA)

Pfandbrief
(PB)

Other
Liabilities

(OL)

Present Value total 1,428.8 — 947.3 —

Nominal Value total 1,412.5 1,374.8 937.9 1,448.6

maturity 0.50 51.4 — 15.9 —
1.00 40.8 — 51.4 —
1.25 31.2 — 24.1 —
1.75 26.2 — 32.0 —
2.50 237.7 — 236.5 —
3.50 224.9 — 76.1 —
4.50 92.0 — 162.8 —
7.50 600.2 — 338.6 —

12.50 107.7 — 0 —

Table C.8.: Input data for the present values and adjusted nominals when allowing
coupon payments of Natixis Pfandbriefbank AG, according to Section 6.2.

WBP, 4th Quarter 2016
(in mn e)

Cover
Pool (CP)

Other
Assets
(OA)

Pfandbrief
(PB)

Other
Liabilities

(OL)

Present Value total 3,942.9 — 2,713.0 —

Nominal Value total 3,908.6 7,284.0 2,691.5 7,171.2

maturity 0.50 468.3 — 578.7 —
1.00 252.6 — 332.6 —
1.25 328.9 — 181.4 —
1.75 291.6 — 151.6 —
2.50 489.8 — 299.0 —
3.50 389.2 — 189.9 —
4.50 368.9 — 91.1 —
7.50 1,120.5 — 712.3 —

12.50 198.3 — 154.5 —

Table C.9.: Input data for the present values and adjusted nominals when allowing
coupon payments of Wüstenrot Bank AG Pfandbriefbank, according to Section 6.2.
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C.2. Balance Sheet and §28 Reporting Data — Adjusted Values

WIB, 4th Quarter 2016 (in
mn e)

Cover
Pool (CP)

Other
Assets
(OA)

Pfandbrief
(PB)

Other
Liabilities

(OL)

Present Value total 4,498.6 — 3,677.1 —

Nominal Value total 4,466.1 1,964.3 3,643.6 2,392.9

maturity 0.50 434.6 — 434.8 —
1.00 443.1 — 389.7 —
1.25 462.0 — 305.2 —
1.75 489.1 — 224.4 —
2.50 819.3 — 488.6 —
3.50 351.5 — 216.3 —
4.50 265.1 — 292.6 —
7.50 1,015.1 — 931.6 —

12.50 186.0 — 360.0 —

Table C.10.: Input data for the present values and adjusted nominals when allowing
coupon payments of Westdeutsche ImmobilienBank AG, according to Section 6.2.

Segment Sub-Segment PD (pds) Intra
Corre-

lation (ics)

Weights
(ws)

Germany (D) residential 0.348 10.00 55.429
commercial 0.856 46.55 10.722

PIGS(∗) residential 0.856 10.00 0.000
commercial 4.746 44.76 0.343

Central Europe (CE) residential 0.541 10.00 0.000
commercial 1.365 18.00 0.000

Europe (ex D, PIGS, CE) residential 0.348 10.00 6.776
commercial 0.856 52.00 3.915

Rest of World residential 0.348 10.00 1.773
commercial 0.856 44.76 9.022

Supranational residential 0.541 10.00 0.000
commercial 1.365 52.00 0.000

Residual — 0.541 52.00 12.021

Table C.11.: PDs, intra correlations (see for example Fisher (1992) for its computation)
and weights of the Münchener Hypothekenbank eG, in % (source: Moody’s). ((∗) PIGS
states consist of Portugal, Ireland, Greece and Spain.)
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C. Data Catalogue

C.3. Parameter Input

P S&P
0,1 AAA AA A BBB BB B CCC-C D

AAA 0.9193 0.0746 0.0048 0.0008 0.0004 0.0000 0.0000 0.0000
AA 0.0064 0.9180 0.0676 0.0060 0.0006 0.0011 0.0003 0.0000
A 0.0007 0.0227 0.9168 0.0512 0.0056 0.0025 0.0001 0.0004

BBB 0.0004 0.0027 0.0556 0.8789 0.0483 0.0102 0.0017 0.0023
BB 0.0004 0.0010 0.0061 0.0775 0.8148 0.0789 0.0111 0.0101
B 0.0000 0.0010 0.0028 0.0046 0.0695 0.8280 0.0396 0.0546

CCC-C 0.0019 0.0000 0.0037 0.0074 0.0243 0.1212 0.6046 0.2370
D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

PMoodys
0,1 Aaa Aa A Baa Ba B Caa-C D
Aaa 0.8866 0.1030 0.0102 0.0000 0.0003 0.0000 0.0000 0.0000
Aa 0.0108 0.8870 0.0955 0.0034 0.0015 0.0015 0.0000 0.0003
A 0.0006 0.0288 0.9021 0.0592 0.0074 0.0018 0.0001 0.0001

Baa 0.0005 0.0034 0.0707 0.8523 0.0605 0.0101 0.0008 0.0016
Ba 0.0003 0.0008 0.0056 0.0568 0.8358 0.0808 0.0053 0.0146
B 0.0001 0.0004 0.0017 0.0065 0.0660 0.8270 0.0276 0.0706

Caa-C 0.0000 0.0000 0.0066 0.0105 0.0305 0.0611 0.6297 0.2616
D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

A
aa

A
a1

A
a2

A
a3

A
1

A
2

A
3

B
aa1

B
aa2

B
aa3

B
a1

B
a2

B
a3

B
1

B
2

B
3

C
aa1

C
aa2

C
aa3

C
a-C

D

Aaa
Aa1
Aa2
Aa3
A1
A2
A3

Baa1
Baa2
Baa3
Ba1
Ba2
Ba3

B1
B2
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Table C.12.: Selection of transition matrices containing the 8× 8 matrices P S&P
0,1 and

PMoodys
0,1 adopted from Israel et al. (2001) and the visual depiction of the 21× 21 matrix
PMoodys XXL

0,1 (companies without ratings (WR) are simply removed by computing pWR
ij =

pij
1−pi,WR

for i, j = 1, . . . ,K) is given as in Metz and Cantor (2007).

GMoodys Aaa Aa A Baa Ba B Caa-C D
Aaa -0.1212 0.1160 0.0051 0.0000 0.0001 0.0000 0.0000 0.0000
Aa 0.0121 -0.1223 0.1069 0.0002 0.0012 0.0015 0.0000 0.0003
A 0.0005 0.0321 -0.1075 0.0674 0.0061 0.0014 0.0000 0.0000

Baa 0.0006 0.0025 0.0805 -0.1650 0.0713 0.0085 0.0008 0.0008
Ba 0.0003 0.0007 0.0036 0.0671 -0.1857 0.0970 0.0054 0.0116
B 0.0001 0.0004 0.0014 0.0049 0.0787 -0.1952 0.0380 0.0717

Caa-C 0.0000 0.0000 0.0080 0.0124 0.0380 0.0825 -0.4644 0.3236
D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table C.13.: Example of a resulting valid generator matrix based on BAM and (G1),
(G2).
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C.3. Parameter Input

(a) For a general modelling setup the starting values for the cover pool and other assets
are set to one.

(b) Setting the nominal value of the cover pool to one is motivated by its defintion of
a risky zero coupon bond.

(c) Parameters for the Hull-White model are simply taken from Hull and White (1993),
compare Sünderhauf (2006).

(d) At first, Sünderhauf (2006) derives the constant volatility ςx in an iterative pro-
cedure (together with the zero-coupon bond nominals and state present values),
by considering the risk-neutral default probability in case of the cover pool pdQCP ,
which in turn are obtained from the real-world default probability. The equality
ς2
x(0) = θςx = ς2

x holds.

(e) The given values are obtained from the basic and realistic scenario as in Sünderhauf
(2006).

(f) As the overall result in Sünderhauf (2006) is that correlation risk has low impact
on results, the parameters are simply set to a moderate positive correlation value.

(g) The maturities from assets and liabilities can be derived from the amount in each
maturity range divided by its total amount and multiplied by the mean maturity
of its corresponding maturity range (see Sünderhauf (2006) for more details). The
maximum maturity gap between assets and liabilities is 3.3 years, as calculated in
Sünderhauf (2006).
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D. Supplementary Graphics
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Figure D.1.: ACF plot of asset and liability positions with ARIMA fit
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Figure D.2.: ACF plot of asset positions with ARIMA fit

261



D. Supplementary Graphics

−1.0

−0.5

0.0

0.5

1.0

0 5 10 15
Lag

A
C

F

Signif. at 
 0.95 level

False
True

Pfandbrief − Hyp (residuals)

−1.0

−0.5

0.0

0.5

1.0

0 5 10 15
Lag

A
C

F

Signif. at 
 0.95 level

False
True

Pfandbrief − Oef (residuals)

−1.0

−0.5

0.0

0.5

1.0

0 5 10 15
Lag

A
C

F

Signif. at 
 0.95 level

False
True

Other Liabilities (residuals)

−1.0

−0.5

0.0

0.5

1.0

0 3 6 9 12
Lag

A
C

F

Signif. at 
 0.95 level

False
True

Equity (residuals)

Figure D.3.: ACF plot of liability positions with ARIMA fit
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