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Abstract
Depression is an affective disorder characterised by psychomo-
tor retardation; in speech, this shows up in reduction of pitch
(variation, range), loudness, and tempo, and in voice qualities
different from those of typical modal speech. A similar reduc-
tion can be observed in sleepy speech (relaxation). In this pa-
per, we employ a small group of acoustic features modelling
prosody and spectrum that have been proven successful in the
modelling of sleepy speech, enriched with voice quality fea-
tures, for the modelling of depressed speech within a regression
approach. This knowledge-based approach is complemented by
and compared with brute-forcing and automatic feature selec-
tion. We further discuss gender differences and the contribu-
tions of (groups of) features both for the modelling of depres-
sion and across depression and sleepiness.
Index Terms: depression, acoustic features, brute forcing, in-
terpretation, paralinguistics

1. Introduction
Depression is a frequent affective disorder; as a rough esti-
mate, [1] report a one year prevalence of major depression of
around 5% for Western European countries. It is characterised,
amongst others, by psychomotor retardation, avolition, sadness,
maladjusted circadian rhythm (sleep disorder) – all these symp-
toms showing frequently up in speech in reduction of pitch
(variation, range), loudness, and tempo [2], and in voice quali-
ties different from those of typical modal speech. [3] summarise
that the “typical speech profile of depression [...] consisted of a
triad of reduced stress, monopitch, and monoloudness.” [4] re-
port that “the combination of glottal and prosodic features pro-
duced better discrimination [of depressed speech] overall than
the combination of prosodic and vocal tract features.” Not fully
in line with these results, [5] point out that detailed spectral fea-
tures (MFCC) are well suited for detecting depressed speech.

We can expect some similarity between depressed, sleepy,
and sad speech: from a functional point of view [6], these
states display low arousal and partly negative valence, from a
formal point of view, this is mirrored by slowed down and re-
duced activity in the speech organs: for these speaker states, we
might encounter characteristics such as centralisation of vow-
els, smaller pitch range, lower pitch mean, lower intensity, re-
duced speech tempo, longer pauses, and atypical voice quality
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characteristics such as higher breathiness or a tendency towards
laryngealised (creaky) speech.

So far, this is the point of view of phonetics: to try and find
most important acoustic features. From an engineering point
of view, performance has higher priority, i. e., obtaining highest
performance in classification or regression. Both points of view
have their raison d’être: performance for applications, interpre-
tation for basic research. Here, we want to combine these two
different aspects – performance vs. interpretation – in the same
way as we addressed acoustic characteristics of sleepy speech
in [7, 8] where we used, on the one hand, a very large feature
vector and brute forcing, and on the other hand, hand-picked
promising features based on the pertinent literature. Moreover,
we look into the possibility to transfer the feature vector estab-
lished for sleepy speech onto depressed speech, while enriching
this vector with voice quality information.

2. Data and Annotation
We employ a database with audio recordings of participants in
a human-computer interaction experiment, recruited from psy-
chosomatic clinics and universities. The dataset comprises 1122
recordings from 219 German subjects (66 male); mean age 31.5
years, sd 12.9 years, and a range of 18 to 63 years; total du-
ration of all files 29.7 hours. Each speaker filled out a self-
assessment questionnaire, amongst others with a score on the
Beck Depression Inventory (BDI) scale [9], which ranges from
0 to 63 (severe depression ≥ 29). This highly reliable and stan-
dardised questionnaire is the most widely used instrument for
measuring the severity of depression. Strong correlations be-
tween clinician-rated scales and self-report questionnaires sug-
gest that the two modes of measuring depression may indeed
be interchangeable [10]. In our data, mean/sd for recordings of
females is 11.2 ± 10.9, of males: 13.1 ± 10.7. The database
consists of different tasks: read speech (excerpts of the novel
‘Homo Faber’ by Max Frisch; the fable ‘Der Nordwind und die
Sonne’ (The North Wind and the Sun)); spontaneous speech
(telling a story from the subject’s own past describing the best
present ever received; telling an imagined story applying the
Thematic Apperception Test (TAT), containing, e. g. pictures of
a crying person or of a housewife and children who are trying
to reach the cookies). The length of the speech tasks is between
5.8 seconds and 5.3 minutes (mean = 1.6 minutes).

We now describe shortly the data from the Sleepy Language
Corpus (SLC) from the Interspeech 2011 Speaker State Chal-
lenge which we use in a sort of figure-ground manner: we con-
centrate on depressed speech but, based on the assumed similar-
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ities of depressed and sleepy speech, discuss the characteristics
of depressed speech in relation to those of sleepy speech; more
details on SLC are given in [11, 12, 13, 14]. Ninety-nine Ger-
man speakers (29 male) took part in six partial sleep depriva-
tion studies (mean age 24.9 years, sd 4.2, range 20–52). We use
five subsets (read speech: The story of “Der Nordwind und die
Sonne” (‘the North Wind and the Sun’); commands/requests:
simulated driver assistance system commands/requests; simu-
lated pilot-air traffic controller communication statements (non-
native English); descriptions of pictures; a PowerPoint guided,
but non-scripted 20 minutes presentation in front of 50 listen-
ers). The data amount to 7745 recordings with a duration be-
tween 0.7 seconds and 3.9 minutes (mean: 9.2 seconds), in to-
tal about 20 hours of speech. A well established, standardised
subjective sleepiness questionnaire, the Karolinska Sleepiness
Scale (KSS, [15]) from 1 (extremely alert) to 10 (extremely
sleepy), was used by the subjects (self-assessment) after each
recording session, and after all recordings – using all avail-
able information (audio/video/context) – by the three assistants
who had supervised the experiments. Self-assessment and ob-
server scores are averaged to form the reference sleepiness val-
ues (mean/sd: 6.1 ± 2.3 for females, 5.9 ± 2.5 for males).

3. Features
We employ 3805 acoustic features; apart from voice quality fea-
tures, cf. below, they are described in more detail in [7]; here,
we only can give the general idea. For segmenting pauses, vow-
els, consonants, and speaker noise, we use a phoneme recog-
niser. Then, pseudo-syllables are derived in four different ways,
for instance, by taking nucleus + coda (consecutive vowels plus
trailing consecutive consonants). We compute four low-level
descriptors on a frame-by-frame1 basis: F0, formants, formant
bandwidths, and Mel frequency cepstral coefficients (MFCC)
as a more fine-grained and robust, yet less explicit represen-
tation of articulators. For each syllable, we compute micro-
structural prosodic descriptors such as loudness; additionally,
longer-term qualities such as jitter and shimmer are estimated
over up to 15 neighbouring syllables [16]. F0 is suitably inter-
polated, normalised per recorded item, and perceptually trans-
formed. Normalised versions of energy and duration remove
phoneme-intrinsic influences. To obtain a fixed number of fea-
tures per item, we compute twelve functionals characterising
statistical and temporal properties of these local descriptors:
mean, standard deviation, seven quantiles (minimum, 5%, 25%,
median, 75%, 95%, maximum), average absolute local change
(similar to Grabe’s raw pairwise variability index rPVI [17]),
root average squared local change, and slope of the regression
line. Depending on the type of descriptor, these functionals are
computed across all syllables, across all vocalic frames, or sep-
arately across all vocalic and all consonantal frames. Addition-
ally, rhythm features are computed [17, 18, 19].

For modelling voice quality, the features mentioned above
already contain jitter and shimmer. To complement these, we
add the logarithmic harmonicity-to-noise ratio, and the spectral
harmonicity of the openSMILE toolkit [20]. Further, we com-
pute four low-level descriptors on a frame-by-frame-basis with
a relatively large frame size of 50 ms suitable for pitch analysis:
logarithmic energy, local pitch estimate, a harmonicity measure
(ratio of the pitch estimates’ autocorrelation to energy), and
spectral tilt [21] (logarithmic ratio of first harmonic and F0).
The twelve functionals described above are applied separately

1Frame shift is always 10 ms; frame size depends on the descriptor.

to the descriptors of all vocalic, and of all consonantal frames.
From this brute-force set, we now present the subset that

has been proven suitable for modelling sleepiness [12, 8],
adding most promising voice quality features. (A detailed mo-
tivation is given in [8].) In the following, due to space restric-
tions, we just shortly motivate groups of features, apart from the
new spectral features which are described in more detail.

Spectral Features (spec):
For the spectrum, we choose formants and, as a robust rep-

resentation of the articulators, MFCC, for modelling centralisa-
tion and muscular relaxation (dampening).
Formants: (1) The geometric mean of formants F1–F4 per
frame, averaged across vocalic frames. (2) The arithmetic mean
of the formant bandwidths of formants F1–F4 per frame, aver-
aged across vocalic frames. (3) The product of the standard
deviations of F1 and F2 across vocalic frames. (4) The average
of F1 across vocalic frames.
MFCC: (5) The average of the second MFCC across vocalic
frames as an estimate of the negative spectral slope. (6) The
ratio of the first MFCC averaged across vocalic frames to its
average over consonantal frames. (7–10) The standard devia-
tions of the second and third MFCC computed separately across
vocalic and consonantal segments.

Prosodic Features (pros):
The selected prosodic features model relaxation/reduction

and loss of tension in several aspects (mono-pitch, mono-
loudness, lower range, lower tempo).
Pitch: (11) The average of F0 estimates across vocalic frames.
(12) The standard deviation of F0, normalised to the mean F0,
across vocalic frames. (13) The standard deviation of the sylla-
bles’ average F0; here and in the following, we use the ‘nucleus
+ coda’ pseudo-syllables. Now we apply our micro-structural
prosodic features, where F0 undergoes normalization and per-
ceptual scaling. (14) The syllables’ F0 maxima, averaged.
(15) The syllables’ F0 minima, averaged. (16) The F0 slope
within syllables, averaged.
Energy: (17) The standard deviation of the syllables’ nor-
malised mean energy. (18) A medium-term estimate of the
relative energy (computed for energy normalization purposes
[16] from up to 15 neighbouring syllables, taking into account
phoneme-intrinsic properties), averaged across syllables. (19)
The average energy slope within syllables.
Duration: (20) medium-term estimates of the syllables’ relative
durations, averaged. (21–22) The average duration of silent
and of filled pauses between syllables.
Rhythm: (23) Ramus’ %V, the percentage of vocalic intervals
[18]. (24–25) Grabe’s normalised pairwise variability index
nPVI [17], a rate-of-speech-normalised measure of local dura-
tional variability, separately for vocalic and consonantal seg-
ments. (26–27) Dellwo’s variation coefficient [19], a measure
of global durational variability (rate-of-speech-normalised stan-
dard deviations of duration), computed separately for vocalic
and consonantal segments.

Voice Quality Features (vq):
We chose features modelling breathy, laryngealised [21, 22,

23] (creaky), ‘shaky’ or otherwise irregular phonation:
(28) Jitter, i. e. the average cycle-to-cycle (relative) variation of
fundamental frequency, which may rise due to less controlled
phonation. (29) Shimmer, i. e. the average cycle-to-cycle (rela-
tive) variation of loudness, which might rise with reduced con-
trol, or with increased laryngealisation (creakiness). (30) Raw
jitter – the normalised absolute average local change (similar
to Grabe’s nPVI [17]) of frame-to-frame pitch estimates. These
pitch estimates do not undergo smoothing with context infor-
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mation; irregular phonation might therefore be reflected in an
increased value for this feature. (31) Raw shimmer – the nor-
malised absolute average local change of frame-to-frame loud-
ness (frame size 50 ms). An increase could be a sign of laryn-
gealisation. (32) logarithmic harmonics-to-noise-ratio (HNR),
which should decrease with breathy or hoarse phonation. (33)
spectral harmonicity, another measure of harmonic clarity, us-
ing the mean of consecutive local min-max differences in the
spectrum [20]. (34) The spectral tilt, averaged over all vocalic
frames. A positive tilt should result for laryngealisation, values
around zero for modal voices, and negative values for breathy
speech [21].

4. Experiments and Results
4.1. Analysis of Feature Groups

For estimating a speaker’s BDI or KSS score (cases are record-
ings, i. e. a whole read or told story) we apply multiple linear
regression (for robust estimation, ridge regression [24]). Since
the distribution of the BDI scores is skewed, we use Spearman’s
rank order correlation coefficient ρ between predicted and refer-
ence values. (In [8], Pearson’s correlation coefficient r was em-
ployed; the figures for KSS are thus not identical across the two
papers, but very similar.) For the depression data, we evaluate in
a 4-fold speaker-independent cross-validation (computing one
correlation coefficient for all predictions, which is more con-
servative than averaging over the correlation coefficient of each
fold). For the sleepiness data, we adopt the official (speaker-
independent) division of SLC and evaluate on the original test
set, using all remaining data for training (i. e. the union of the
original training and development set). Features are prepro-
cessed to normalise their scale (details in [7]). The necessary
parameters for that, plus the metaparameter α of the ridge re-
gression are estimated on the respective training set (i. e. the
training set of the respective fold in the case of depression, or
the union of the official SLC training and development set in
the case of sleepiness). For the metaparameter, an inner 4-fold2

speaker-independent cross-validation is used to optimise α up
to a power of ten w. r. t. the mean squared prediction error.

For comparison with our knowledge-based feature selec-
tion, we also perform a data-driven feature selection, using a
so-called wrapper approach, together with a greedy forward
search: each time that feature is added which yields the best per-
formance of the regression system in an inner 4-fold (speaker-
independent) cross-validation on the respective training set.
Due to the metaparameter optimization, this search incurs a
triple nested cross-validation for the depression data.

With all features (row ‘all (3805)’ in Table 1) and evaluat-
ing on all speakers, cf. columns ‘all’, the correlation is 0.44 both
for the predicted depression scores (column ‘depression’) and
the sleepiness scores (column ‘sleepiness’). Comparing results
on female (columns ‘f’) and male data (columns ‘m’), there is a
striking difference between the two targets: as already reported
in [8], the results for sleepiness are much better for male speak-
ers than for female speakers (0.49 vs. 0.35), even though the
majority (73%) of training items is from female speakers. The
gender-dependent results for depression do not exhibit such a
clear difference (e. g. 0.42 for females vs. 0.40 for males).

Looking at the manually selected features from different

2The rationale for choosing four folds was to have more than 50%
of the data available for training in the inner loop of the double nested
cross-validation for the depression data. Four folds yield 3

4
· 3

4
=

56.25% of the data.

Table 1: Regression performance when predicting depression or
sleepiness from different feature groups. All speakers were used
in training; Spearman correlation (cross-validated/on test) is
reported separately for all, female (f), and male speakers (m).
Higher correlation = darker.

Features (#) Depression Sleepiness
all f m all f m

all (3805) 0.44 0.42 0.40 0.44 0.35 0.49

spec (10) 0.29 0.26 0.31 0.28 0.20 0.40

pros (17) 0.36 0.35 0.33 0.22 0.33 0.21

vq (7) 0.38 0.36 0.36 0.36 0.33 0.40

spec + pros + vq (34) 0.39 0.36 0.39 0.42 0.38 0.40

data-driven sel. (34) 0.36 0.31 0.39 0.37 0.30 0.43

groups, voice quality (row ‘vq (7)’) seems to be most impor-
tant (all: ρ = 0.38 for depression; 0.36 for sleepiness). It is
followed for depression by prosody (all: 0.36) before spec-
tral features (all: 0.29), while it is the other way around for
sleepiness (0.28 for spectral features vs. 0.22 for prosody). Re-
garding gender dependence, Table 1 repeats the findings of [8]
for sleepiness: spectral features are more useful for detecting
male sleepiness (0.40 vs. 0.20), while prosody is more useful
for detecting female sleepiness (0.33 vs. 0.21). For depression,
there is only a slight, but similar tendency (spectral features:
males 0.31 vs. 0.26; prosody: females 0.35 vs. 0.33). The new
voice quality features perform better on male sleepiness (0.40
vs. 0.33); no difference is found in the case of depression (0.36
for both male and female).

Combining all manually selected features (‘spec + pros +
vq (34)’) improves correlation to 0.39 for depression and 0.42
for sleepiness. Intriguingly, these results come quite close to the
performance obtained with the full brute-force set (depression:
0.39 vs. 0.44; sleepiness: 0.42 vs. 0.44). Again, correlations are
a bit higher for males (0.39 vs. 0.36 for depression; 0.40 vs. 0.38
for sleepiness).

When selecting the same number of features that we se-
lected manually, i. e. 34 features, in an automatic, data-driven
manner (‘data-driven sel. (34)’), we get a performance similar to
our manual selection (e. g. 0.36 for automatic selection vs. 0.39
for manual in the case of depression, on all). The data-driven
search probably fails to outperform our knowledge-driven se-
lection due to the limited amount data, noise, plus the fact that in
order to limit computational effort for this combinatorial prob-
lem, we used a greedy search.

4.2. Analysis of single Features

We compute Spearman’s ρ between the reference values and the
individual features of each recorded item. To guarantee strict
comparability with the regression results, we use the whole
dataset for analysing depression, and the official SLC test set for
sleepiness. We show the results for the ‘most relevant’ of our
34 selected features in Table 2. A feature is defined as ‘most
relevant’ if, across all, females, or males, both for depression
and sleepiness, at least one value is ≥ 0.25. By that, we disre-
gard lower values that might be caused by noise (peculiarities
of the tasks, speakers, or simply random factors). This arbitrary
but meaningful criterion reduces 34 to 11 features. Overall, just
by estimating the grey level of the background in Table 2, we
can see that the values for depression are higher than those for
sleepiness, and there is less variety across genders. For most
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Table 2: Left: Most important manually selected features and their Spearman correlation to the BDI score of the speaker: for all,
females (f), and males (m). Right: (also) Spearman correlation for sleepiness KSS. Higher absolute value of correlation = darker.

Subgroup Feature Depression Sleepiness
all f m all f m

Formants (3) product of the standard deviations of F1 and F2 +0.13 +0.11 +0.26 +0.02 −0.04 −0.14

MFCC

(5) average of second MFCC across vocalic frames −0.09 −0.11 −0.10 −0.24 −0.10 −0.44
(7) std. deviation of second MFCC across vocalic segments −0.18 −0.14 −0.25 −0.04 +0.02 −0.23
(8) std. deviation of third MFCC across vocalic segments −0.29 −0.24 −0.30 −0.18 −0.18 −0.29
(10) std. deviation of third MFCC across consonantal seg. −0.25 −0.24 −0.26 −0.13 −0.09 −0.26

Pitch (11) average of pitch estimates across vocalic frames −0.23 −0.24 −0.33 +0.04 −0.26 −0.11
(13) standard deviation of syllables’ average F0 −0.25 −0.21 −0.29 −0.04 −0.07 +0.05

Duration (20) average syllables’ relative durations +0.17 +0.13 +0.26 +0.24 +0.22 +0.23

Voice Quality
(31) raw shimmer (local change of frame-to-frame loudness) −0.37 −0.31 −0.46 −0.33 −0.32 −0.26
(33) spectral harmonicity −0.33 −0.33 −0.32 +0.01 −0.13 −0.15
(34) spectral tilt, averaged over vocalic frames −0.17 −0.18 −0.14 +0.07 +0.09 +0.42

of the features, depression and sleepiness have the same ten-
dencies, although there are a few pronounced exceptions (pos-
itive correlation = higher value indicates more severe depres-
sion/sleepiness; negative = vice versa).3

Feature (3), a measure of the area occupied by the for-
mants, was expected to fall due to centralization. This does
not hold for depression (all correlations positive: +0.13, +0.11,
+0.26); a possible explanation could be interference by a
stronger presence of the first nasal formant. Feature (5) can
be interpreted as a negative spectral slope; the observed de-
crease could be due to a stronger lip high-pass, effected by a
more closed mouth position, compatible with the expected re-
duced muscular tension. Features (7), (8), (10) model, more
robust that (3), the occupied acoustic feature space, and should
fall with the expected less crisp pronunciation. The observed
correlations for depression and sleepiness (here, strongest for
males) match in 17 out of 18 cases (the weak exception is fea-
ture (7) for sleepiness of female speakers with ρ = +0.02). Level
and range of pitch (features (11), (13)) consistently fall with the
BDI score (ρ ≤ −0.21), perfectly compatible with the expected
reduced prosody. For sleepiness, there are again weak excep-
tions in 2 out of 6 cases. Feature (20) rises and thus shows a
decreased speech rate. Features (31), (33), (34), mostly nega-
tively correlated, indicate a more breathy phonation for depres-
sive and sleepy speech. One salient exception are sleepy males
with a correlation of +0.42 for spectral tilt, indicating at least
partly laryngealised speech. Similar to the more pronounced
centralisation (features (7), (8), (10)), this might be due to males
showing their sleepiness more than females do, see Sec. 5.

For nearly all features, depression has a more consistent ef-
fect across genders than sleepiness. To quantify this, we take
on the one hand the list of correlations of all 34 manually se-
lected features with the target value for females, and for males
on the other hand. Then, we compute the correlation between
the two lists to assess their similarity; there is much more sim-
ilarity between the genders for depression than for sleepiness
(Spearman’s ρ: 0.78 vs. 0.44; Pearson’s r: 0.76 vs. 0.40).

3Note that for weakly correlated features, contra-intuitive effects can
arise: For instance, feature (3) is negatively correlated to sleepiness
for female and male speakers separately, but positively for all speakers
together – this can occur due to slightly different distributions of feature
range and sleepiness score for female vs. male speakers.

5. Discussion and Concluding Remarks
The performance of our relatively small set of selected features
does not differ too much from the one obtained by brute forc-
ing with 3805 features. However, with some optimisations, we
might expect for brute forcing a gain of some 10% absolute, cf.
[7, 8]: leave-one-speaker-out evaluation, instance scaling [25],
and gender-dependent models (after a previous automatic gen-
der classification). Moreover, we have to consider that we only
model speech and not the other modalities, that the average BDI
in our data is 12±11 which represents only minimal or mild de-
pression [9], and that specific features or feature groups such
as spectrum or voice quality might be employed in speaker-
specific ways, making the modelling noisy across speakers.

In order to detect signs of depression in speech, we trans-
ferred and enriched a small, hand-picked feature set origi-
nally designed for the detection of sleepiness, which enables a
strict comparability of features and procedures across these two
states. The competitive performance of this small feature set
compared to brute forcing (cf. Table 1) confirms this approach
and corroborates the assumption that both states are charac-
terised by a general relaxation/reduction. All feature groups
contribute, containing some complementing information.

For sleepy speech, performance for male speakers is much
higher than for female speakers. We showed in [7, 8] that this
can mainly be attributed to females showing their sleepiness less
than males do. Additionally, sleepiness is expressed differently
[8]: “male sleepiness is mainly reflected by spectral changes to-
wards less canonical pronunciation [...] whereas female sleepi-
ness primarily implies prosodic changes such as lowered pitch
[... This is] in line with our explanation in [7], cf. [26, p. 130]
and [27], that women tend towards more canonical speech.”
Sleepiness is a medium-term state that is ‘normal’ and not in-
fluenced by personality disorders but by the circadian rhythm –
although ‘atypical’ compared to non-sleepy speech. Depression
is a long-term state that is ‘atypical throughout’, and most prob-
ably less influenceable by (partly conscious) speaker or speaker
group strategies. This might explain the much more system-
atic tendencies within depression across genders and features,
compared to sleepiness. Of course, the caveat has to be made
that all this is based on just two samples belonging to the same
language (German) and on specific speaking styles.
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