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Abstract: We use a random gap model to describe a metal–insulator transition in three-dimensional
semiconductors due to doping, and find a conventional phase transition, where the effective scattering
rate is the order parameter. Spontaneous symmetry breaking results in metallic behavior, whereas the
insulating regime is characterized by the absence of spontaneous symmetry breaking. The transition
is continuous for the average conductivity with critical exponent equal to 1. Away from the critical
point, the exponent is roughly 0.6, which may explain experimental observations of a crossover of the
exponent from 1 to 0.5 by going away from the critical point.
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1. Introduction

The particle-hole symmetry plays a crucial role in solid state physics. In particular in semi- as
well as in superconductor physics [1], this symmetry appears due to the existence of two separate
bands. Recent theoretical studies of three-dimensional Weyl materials has renewed interest in the
disordered driven metal–insulator transition [2–26]. It was shown recently that Anderson localization
can be prevented even in the strong disorder regime when particle-hole symmetry is present [27,28].
This can be understood by the simple picture that particle-hole pairs can be created by an infinitesimal
excitation energy.

Undoped semiconductors have a small gap between the valence and the conduction band,
typically of the order of 0.2, ..., 1.2 eV [1]. This gap is strongly affected by doping, which allows us to
engineer a variety of useful technological applications. In particular, sufficiently strong doping closes
the gap such that a metallic phase appears. A classical example for this type of metal–insulator
transition is doped silicon, where typical dopants are phosphorus (Si:P) or boron (Si:B) [29–33].
Disorder plays a crucial role in these materials due to the inhomogeneous distribution of the dopants.
This suggested that Anderson localization must play a crucial role in these systems, where the
quantum states would undergo a transition from extended to localized states for increasing disorder.
This transition should be reflected in the transport properties, where extended states lead to a metal
and localized states to an insulator at vanishing temperatures.

Measurements of the conductivity σ(N) as a function of doping concentration N in Si:P at low
temperatures has indeed revealed a critical behavior. Above a critical concentration Nc a power law
was found

σ(N) ∼ σ0(N/Nc − 1)µ (N ≥ Nc)

and a vanishing conductivity for N ≤ Nc. The exponent µ was determined as µ ≈ 0.5 for some
experiments [29–32], whereas a crossover from µ ≈ 0.5 at some distance from the critical point to µ ≈ 1
in a vicinity very close to Nc was observed in other experiments [32,33].

Although the picture of an Anderson transition is quite appealing, an alternative description
can be provided by a random gap model. The idea is that the dopants create energy levels inside
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the semiconductor gap. These levels are associated with states that can overlap with the states in the
semiconductor bands and eventually fill the semiconductor gap by forming extended states. The effect
can be described by a random distribution of local gaps. Then the locally filled gaps can be distributed
over the entire system and form eventually, after sufficient doping, a conducting “network”. This is
associated with a second-order phase transition which will be described in this article. The transition
is distinguished from the Anderson transition by the fact that the metallic phase appears at strong
disorder (i.e., high dopant concentration) and the insulating phase at weak disorder. This does not rule
out an Anderson transition if we increase the disorder inside the metallic regime. However, in realistic
systems it is more likely to see the transition caused by the random gap than the more sophisticated
Anderson transition for N � Nc.

In the following, we will discuss and analyze the insulator-metal transition due to random gap
closing in a three-dimensional system. This will be based on a two-band model with particle-hole
symmetry. The latter is essential for the existence of metallic states in the presence of strong disorder.

2. Model and Symmetries

We consider a two-band model with a symmetric Hamiltonian. This can be expressed in terms of
Pauli matrices σj (j = 0, ..., 3). A simple case is

H = h1σ1 + h3σ3 (1)

with symmetric matrices h1, h3 in three-dimensional (real) space. To be more specific, we can choose

the Fourier components h1 = k/
√

2m with k ≡
√

k2
1 + k2

2 + k2
3. For a uniform gap ∆ implies h3 = ∆/2

we obtain two bands with the dispersion Ek = ±
√

k2/2m + ∆2/4. Subsequently we will consider
a random gap h3 with mean values ∆/2 to describe the effect of an inhomogeneous distribution of
dopants and rescale k/

√
2m→ k.

The one-particle Hamiltonian H is invariant under an Abelian chiral transformation:

eασ2 Heασ2 = H . (2)

In order to reveal the relevant symmetry for transport in this system, we construct the
two-body Hamiltonian

Ĥ =

(
H 0
0 H

)
, (3)

where the upper block H acts on bosons and the lower block H on fermions. The reason for introducing
this two-body Hamiltonian is that we can transform the distribution of the random Hamiltonian H into
a distribution of the Green’s function Ĝ(z) = (Ĥ− z)−1 [34,35], which is often called a supersymmetric
representation of the Green’s function.

Next we introduce the transformation matrix

Û =

(
0 ϕσ2

ϕ′σ2 0

)
(4)

and obtain the anti-commutator relation

{Ĥ, Û}+ = 0 . (5)

This implies the non-Abelian chiral symmetry

eÛ ĤeÛ = Ĥ , (6)
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which is an extension of the Abelian symmetry (2). The Green’s function Ĝ(z) does not obey this
symmetry for z 6= 0. Therefore, z plays here the role of a symmetry-breaking field. An interesting limit
is z→ 0, which we will study in the next section.

Now we consider the case of a random gap with mean 〈h3,r〉 = ∆/2 and variance 〈h3,rh3,r′〉 −
∆2/4 = gδr,r′ and its effect on the average conductivity at frequency ω. The conductivity is obtained
from the Kubo formula as [35,36]

σkk = −
e2

2h
ω2 lim

ε→0
Re

{
∑

r
r2

k Tr2 [〈G0r(ω/2 + iε)Gr0(−ω/2− iε)〉]
}

, G(z) = (H − z)−1 . (7)

In particular, we are interested in the DC limit ω → 0. This limit restores the chiral symmetry of
Ĥ in (6) for the Green’s functions. However, the symmetry can be spontaneously broken now. Since it
is a continuous symmetry, this creates a massless mode, which represents fluctuations on arbitrarily
large length scales.

Here it should be noticed that σ2(H + z)−1σ2 = −(H − z)−1. This has the consequence that the
product in (7) reads G0r(z)Gr0(−z) = (H − z)−1

0r (H + z)−1
r0 = −(H − z)−1

0r σ2(H − z)−1
r0 σ2 such that

elements of Ĝ(ω/2 + iε) are sufficient to express the conductivity.
A common approximation for the average two-particle Greens function is the factorization of

the average

〈G0r(ω/2 + iε)Gr0(−ω/2− iε)〉 ≈ 〈G0r(ω/2 + iε)〉〈Gr0(−ω/2− iε)〉 (8)

and a subsequent self-consistent Born approximation for the two factors. There are corrections though,
which might be divergent [35,36]. The reason is that the expression on the left-hand side decays like a
power law with distance r while the expression on the right-hand side decays exponentially. The power
law is a consequence of the massless mode associated with the spontaneously broken non-Abelian
symmetry. This problem will be discussed and solved in Section 4.

3. Self-Consistent Approximation

We start with the self-consistent Born approximation of the average one-particle Green’s function

〈G(z)〉 ≈ G0(z + iη), G0(z) = (〈H〉 − z)−1 , (9)

where the self-energy η is a scattering rate, which is determined by the self-consistent equation
iη = G0,0(z + iη) [37]. This reads in our case with momentum cut-off λ

iη = γ(z + iη)
[

λ− α

2
log
(

α + λ

α− λ

)]
(γ = g/2π2, α =

√
(z + iη)2 − ∆2/4)

and for z = 0 this simplifies to the relation η = η I with

I = γ [λ− β arctan(λ/β)] , β =
√

η2 + ∆2/4 .

In this case there are two solutions of the self-consistent equation, namely η = 0 and η 6= 0 with

γ =
1

λ− β arctan(λ/β)
. (10)
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A nonzero η reflects spontaneous symmetry breaking with respect to (6). Such a solution exists
for (10) only at sufficiently large γ. Moreover, η vanishes continuously as we reduce γ. Then there is a
phase boundary which separates the symmetric and the symmetry-broken regime:

γ(∆) =
2

2λ− ∆ arctan(2λ/∆)
(11)

which is plotted in Figure 1. The average density of states then reads

ρ(E) =
1

2π
lim
ε→0

Im {Tr2 [〈Grr(E + iε)〉]} ≈ 1
2π

lim
ε→0

Im {Tr2G0,0(E + iε + iη)}

=
1
π

Im
{
(E + iη)

[
λ− α

2
log
(

α + λ

α− λ

)]}
, α =

√
(E + iη)2 − ∆2/4) . (12)

As a qualitative picture the average density of states is plotted for a fixed η in Figure 2.
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Figure 1. Phase diagram of the metal–insulator transition of the three-dimensional random gap model
from Equation (11), where disorder is the parameter γ and the average gap is ∆.
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Figure 2. Average density of states of the three-dimensional random gap model for fixed η = 0.04 and
average gap ∆ = 0.4 (full curve) and ∆ = 0.8 (dashed curve).
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4. Scaling Relation of the Average Two-Particle Green’s Function

Using the factorization of the averaged product of Green’s functions in Equation (8), the
conductivity in Equation (7) is approximated as [36]

ω2 ∑
r

r2
k Tr2 [〈G0r(y)Gr0(−y)〉] ≈ ω2 ∑

r
r2

k Tr2 [〈G0r(y)〉〈Gr0(−y)〉] (y = ω/2 + iε) , (13)

where the constant prefactor e2/2h has been omitted here. This can be combined with the self-consistent
Born approximation in Equation (9) to obtain

ω2 ∑
r

r2
k Tr2 [〈G0r(y)〉〈Gr0(−y)〉] ≈ ω2 ∑

r
r2

k Tr2 [G0,r(y + iη)G0,−r(−y− iη)] . (14)

For the expression (7) this approximation leads to the Boltzmann (or Drude) conductivity, which
reads in our specific case

σkk ≈
e2

2h
ω2

π2

∫ λ

0

∆2/4− z2

(∆2/4− z2 + k2)3 k2dk (z = ω/2 + iη) . (15)

Thus the conductivity vanishes in the DC limit ω → 0 for η > 0. The reason is that
the self-consistent Born approximation creates the Green’s function G0,r(y + iη), which decays
exponentially on the scale 1/η. Consequently, the sum over the real space coordinates on the right-hand
side of Equation (14) is finite.

A more careful inspection indicates that the averaged product of Green’s function on the left-hand
side of Equation (13) decays according to a power law as a consequence of the massless fluctuations
around the spontaneous symmetry breaking solution η 6= 0 [34]. We can perform the integration with
respect to these fluctuations and obtain the diffusion propagator [35]

Tr2 [〈G0r(y)Gr0(−y)〉] ≈ η − iy
4

∫ eiq·r

−iy + Dq2 d3q (16)

with diffusion coefficient

D =
η − iy

2 ∑
r

rk
2Tr2 [G0,r(y + iη)G0,−r(−y− iη)] . (17)

After summing over the real space coordinates we obtain the expression

ω2 ∑
r

r2
k Tr2 [〈G0r(y)Gr0(−y)〉] = ω2 f (η/y)∑

r
rk

2Tr2 [G0,r(y + iη)G0,−r(−y− iη)] , (18)

where the coefficient on the right-hand side is a result of the strong massless fluctuations, which didn’t
exist in the approximation given by Equation (14). It depends on the ratio of the order parameter of
spontaneous symmetry breaking η and the symmetry-breaking field y:

f (η/y) = (1 + iη/y)2 . (19)

This coefficient indicates that the correlations of the Green’s function fluctuations are negligible
only for f (η/y) ≈ 1. This is the case in the absence of symmetry breaking, where η = 0 and f (0) = 1.
This justifies the approximation by Equation (14) in the insulating regime. On the other hand, in the
presence of spontaneous symmetry breaking (i.e., for η > 0) the coefficient diverges for ω → 0 and
gives ω2 f (η/y)→ −1 in the limits ε→ 0 and then ω → 0.
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The diffusion coefficient in Equation (17) is easy to calculate and reads

∑
r

rk
2Tr2 [G0,r(y + iη)G0,−r(−y− iη)] =

1
4π

1√
∆2/4 + (η − iy)2

, (20)

which together with the scaling relation (18) gives for the conductivity of Equation (7) in the DC limit
ω → 0

σkk =
e2

4πh
η2√

∆2/4 + η2
. (21)

The solution η of the self-consistent Equation (10) is inserted into σkk and the conductivity is
plotted as a function of disorder strength γ in Figure 3. The conductivity vanishes linearly with
decreasing disorder strength (i.e., with decreasing doping concentration). To illustrate the crossover to
a power law with exponent 0.6, the calculated conductivity and the power-law fit are plotted together
in Figure 4.
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Figure 3. Conductivity as a function of disorder for an average gap ∆ = 0.004 (red curve), ∆ = 0.04
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5. Discussion and Conclusions

Our result for the DC conductivity in Equation (21), together with the solution of the order
parameter η in Equation (10), provides a simple description of a metal–insulator transition in doped
three-dimensional semiconductors. The metal–insulator transition is characterized by the scattering
rate η that vanishes in the insulating regime. Such a behavior is not an Anderson transition, since the
latter would have a scattering rate η 6= 0 on both sides of the transition [38]. Even more important is
the change of the coefficient f (η/y): It is always 1 in the insulating regime and infinite in the metallic
regime. This quantity describes the correlations of the Green’s function fluctuations in the relation (18).

There is a linear behavior near the metal–insulator transition and a crossover to a non-critical
power law, as depicted in Figure 4. For the linear part the slope of the conductivity is quite robust
with respect to the average gap ∆ (cf. Figure 3). Away from the transition point a negative curvature
appears though, which can be fitted by a power law with exponent µ ≈ 0.6 (cf. Figure 4). The change
of exponents can be related to the discussion in References [33,39] about a crossover of exponents
in Si:P from µ ≈ 1 very close to the critical point Nc to µ ≈ 0.5 further away from Nc. Rosenbaum
et al. have found that the conductivity close to the critical point varies from sample to sample [32].
This indicates strong conductivity fluctuations, which may also exist in our random gap model, as
indicated by the strong fluctuations of the Green’s functions due to the large values of f (η/y).

As mentioned in the Introduction, a related metal–insulator transition in three-dimensional Weyl
fermionic systems has attracted considerable attention recently [2–26]. Formally, this transition is
very similar, although the underlying Hamiltonian is that of Weyl fermions rather than our simple
semi-conductor Hamiltonian in Equation (1). This difference leads to the creation of two distinct
insulating phases, characterized by the Hall conductivity σxy = ∓e2/2h in the lower part of the phase
diagram in Figure 1 for Weyl fermions. But the role of the particle-hole symmetry, the existence of a
massless mode due to spontaneous breaking of this symmetry and the role of diffusion in the metallic
phase are the same in both types of models [26–28]. This indicates that metal–insulator transitions in
systems with particle-hole symmetry are based on the same type of mechanism.
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