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AN ONTO-NOMOLOGICAL THEORY OF MODALITY

ABSTRACT. This paper is dedicated to the formulation of a restricted theory of ontic modality 
(for example, I do not address questions that arise when modal operators interact with quantifiers, 
although some of the theoretical developments presented here certainly suggest such questions). As 
will be seen, notwithstanding its restrictions, the theory has a pleasing richness to it, as well as 
formal rigor and intuitive satisfactoriness. It also offers an unusual perspective on modality.

1. What Statements of Possibility and Necessity Mean

Besides a semantical problem there is also an epistemological and an ontologi­
cal problem connected with modality: How can we justifiably determine which 
statements of necessity and possibility are true, and which false? What are the 
ontological requirements of modal theory? Answers to these questions I will 
leave almost totally implicit. (Draw your own conclusions.)

The semantical problem for ontic modalities can be formulated as the fol­
lowing question:

What are the (necessary and sufficient) truth conditions of sentences 
with objective meaning having the forms “it is possible that A", 
“it is necessary that A,” and “if A, then 5”?

Here is an answer to this question in the form of an explicit definition:

O"(x) := S(x) A -i P(neg(x), bn ),
Gn (x) := P(x,bn ),

n ^»(x,y) := P(i/, conj(i>",x)),
:= O"(that A),

□"A := □"(that A),
B n —> A := "—»(that B, that A).

Of course, this, at the moment, is quite incomprehensible. So let me explain.
The predicate P(x, y) expresses that the state of affairs x is an intentional part 

o f the state o f  affairs y. Hence Vx¥y(P(x, y) D S(x) A S(y)) is analytically true. 
What is meant by a state of affairs x being an intensional part of a state of affairs 
y can be effectively illustrated by an example: the state of affairs that this object 
has a surface is an intensional part of the state of affairs that this object is colored.
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The notion of parthood —or its inverse: containment — in the intensional 
sense is readily comprehensible with respect to states of affairs (and also with re­
spect to properties). No antecedent comprehension of the term “possible world” 
is necessary for grasping that notion, and there is no checking on possible worlds 
in applying that notion either positively or negatively. The concept of inten­
sional parthood is more basic than the concept of possible world. For the sake 
of brevity, I will usually omit the modifier “intensional”, and simply speak of a 
state of affairs being a part of another state of affairs (or of itself).

“b"” designates the Nth basis o f  necessity (hence “bx” designates the first 
basis of necessity, “b2” the second basis of necessity, etc.). A basis of necessity 
is always some state of affairs or other. Hence S(b") is analytically true.

The functor “conj(x, y f  designates the conjunction of x and y; for states of 
affairs x  and y, their conjunction, conj(x, y), is identical with is [S(z) A P(x, z) A 
P ^ z )  A VM(P(X, M) A P(y, u) 3  P(z,«))] (“the unique state of affairs of which x 
and y are parts, and which is a part of every state of affairs of which x and y 
are parts”). This definition does of course have a theoretical background: there 
are principles that guarantee that there is exactly one state of affairs that fulfills 
the defining predicate, given that x  and y are states of affairs; this theoretical 
background will be stated shortly.

The functor “neg(x)” designates the negation o f x, and is defined as follows: 
neg(x) := CON J j/(QA(i/) A -> P(y, x)) (“the conjunction of all quasi-atomic states of 
affairs that are not parts of x”). This definition will be elucidated shortly, when 
its theoretical background has been stated.

We are now in a position to grasp the content of the above series of defini­
tions. The first three definitions define modal predicates, the three other defini­
tions define the corresponding modal sentence connectives.

According to the first and fourth definition, it is possible in the Nth sense that 
A if, and only if, the negation of the state of affairs that A  is not a part of the Nth 
basis o f necessity. In other words: OnA s  -> P(neg(that A), b") is a logical truth 
(due to the first and fourth definition).

According to the second and fifth definition, it is necessary in the Nth sense 
that A if, and only if, the state of affairs that A is part of the Nth basis o f necessity. 
In other words: □"A = P(that A, b”) is a logical truth (due to the second and 
fifth definition).

According to the third and sixth definition, “if B, then A” in the Nth sense 
is true if, and only if, the state of affairs that A is part of the conjunction of the 
Nth basis o f necessity with the state of affairs that B. In other words: B 
A = P(that A, conj(if, th a t B}) is a logical truth (due to the third and sixth 
definition).

Clearly, the above definitions do not fully specify modal concepts: modali­
ties. For this, one needs to specify a basis o f necessity. If we intend to speak 
about an ontic modality, then the corresponding basis of necessity needs to be
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specified ontically. But there certainly seems to be not only one ontically speci­
fiable basis of necessity. For the time being, let me indicate two salient ontic 
bases of necessity:

b 1: the basis of logical (or conceptual) necessity — this is simply the minimal (or 
“tautological”) state of affairs (for further clarification, see the next section). 

b2 : the basis of nomological (or natural) necessity — this is the state of affairs 
which is the conjunction of all states of affairs that are laws of nature.

Given the above definitions, it is now clear that O!A means as much as “it 
is logically possible that A”, O2A as much as “it is nomologically possible that 
A” (and correspondingly the intended sense of o'A and D2A is likewise clear). 
Even so, as long as the general theory of states of affairs that provides the back­
ground for the above definitions is not specified, the content of an assertion of 
O*A remains vague, and the content of an assertion of O2A remains vague even 
after that specification (which is provided in the next section). For giving pre­
cise content to O2A, one has to specify, in addition to the general theory of states 
of affairs, the concept of law of nature, and one has to specify which states of 
affairs are laws of nature in the sense of the specified concept of law of nature. 
These tasks generate considerable philosophical difficulties, which are just con­
spicuous aspects of a more general problem: Can just any state of affairs be a 
basis o f necessity, and i f  not, what distinguishes a state o f affairs that can be a 
basis o f necessity from a state o f affairs that cannot? This question, and to some 
extent the problem of nomological necessity, will be addressed in due course.

Remark. Note that the bases of necessity implicitly invoked in making asser­
tions of the form “if A, then B” are singularly unstable, even if those assertions 
are meant ontically, and vary from context to context much more so than the 
bases of monadic modalities do; in fact, they may even vary in the same context 
(of utterance). This generates the illusion that inferences that are prima facie 
logically valid for “if A, then B” — for example, the transitivity-inference: I f  A, 
then B. I f  B, then C. Therefore: I f  A, then C —are, enfin, not logically valid 
for it. (The transitivity-inference will be logically valid for “if A, then B” if 
the same basis of necessity is employed for all three conditionals involved; the 
transitivity-inference can easily fail to be logically valid if the basis of necessity 
is allowed to vary.) □

2. The Mereology of States of Affairs

The semantics of modality outlined above (without the use of model theory, 
simply by presenting explicit definitions of modal terms) is incomplete without 
stating the ontological background theory that is connected with it. Here is this
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background theory:
(P0) VxVy( P(x, y) D S(X) A S(y)),
(Pl) VxVt/Vz( P(x, y) A P(y, z) D P(x,Z)),
(P2) Vx(S(x) D P(x,x)),
(P3) VxVy( P(x, y) A P(y, x) D x  = y),
(P4) 3z [ S(z) A Vx( S(x) A A[x] 3 P(x, z)) A

Vy( S(y) A Vx(S(x) A A[x] 3 P(x, y)) □ P(z, J/))],
(P5) VzVz'( S(z) A S(z') A Vx(QA(x) A P(x, z) □ P(x, z')) □ P(z, z)),
(P6) Vx [ P(x, CONJ yA[y]) A M(x) D

a r (  P(k', x) A -> M(k') A 3z(P(k', z) A A[z]))],
(P7) w *  k ',
(P8) QC(w‘),
(P9) w* * f ,
(PIO) A = 0(that A).

These eleven principles state the most basic principles of a mereology of states 
of alfairs; they contain some defined terms which I will explain as I go through 
them.

The first four principles describe the basic properties of P as a relation of 
(proper or improper) intensional parthood between states of affairs. (Note that 
P3 formulates an identity criterion for states of affairs.)

P4 states that the states of affairs falling under an arbitrary description A[x] 
have a smallest state of affairs that comprises them all. In other words (in view 
of P3), for any description A[x], there is the state of affairs which is the conjunc­
tion of all states of affairs that satisfy A[x], And accordingly we can formulate 
the following definition:

(DI) CONJ x A[x] := tz [ S(z) A Vx( S(x) A A[x] D P(x, z)) A
S(y) A Vx(S(x) A A[x] D P(x, y)) D P(z, {/))]■

The fulfillment of the so-called existence-condition1 for this definition (using the 
operator of definite description, i) is guaranteed for all predicates A[x] by P4. 
The fulfillment of the uniqueness-condition2 for this definition is guaranteed for 
all predicates A[x] by P3. Here are two prominent states of affairs that can be 
defined as conjunctions:

'One should rather call it “the at-least-one-condition”.
2One could also call it “the at-most-one-condition”.

(D2) t* := CONJx-iS(x),
(D3) k* := CONJ x S(x).
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One can easily prove that CONJ x ^  S(x) is identical with iz [S(z) A Vy(S(y) D 
P(z,!/))] (“the state of affairs that is a part of every state of affairs”), and that 
CONJ x  S(x) is identical with iz [S(z) A Vx(S(x) D P(X, Z))] (“the state of affairs 
of which every state of affairs is a part”). Thus, for obvious reasons, k' can 
be called “the maximal [or total] state of affairs,” and because intensional part­
hood is the ontological counterpart of logical implication, k* can also be called, 
metaphorically, “the self-contradictory state of affairs”. In turn, for obvious 
reasons, t* can be called “the minimal state of affairs”, and again because inten­
sional parthood is the ontological counterpart of logical implication, a metaphor­
ical designation of t* is “the tautological state of affairs”. It is useful to have the 
following defined predicates (although they provably apply only to one state of 
affairs: f ,  respectively k ‘):

(D4) M(z) := S(z) A Vy( S(y) D P(z, y)),
(D5) T(z) := S(z) A Vx( S(x) D P(x, z)).

The fact (provable on the basis of P3) that there is only one “tautological” 
state of affairs, and only one “self-contradictory” one, reveals that the conception 
of states affairs here employed is coarse-grained. A coarse-grained conception 
of states of affairs is not adequate if the aim is to employ states of affairs as 
meanings of sentences that are either true or false; for if states of affairs are to 
be the meanings of such sentences, then, under the coarse-grained conception of 
states of affairs, all logically true sentences turn out to have the same meaning 
(i.e., t*), and all logically false sentences turn out to have the same meaning too 
(i.e., k"), which does not seem to be at all desirable. Nevertheless, although 
coarse-grained states of affairs cannot serve adequately as the meanings of true 
or false sentences, they can serve in a respectable semantical function: namely, 
as the intensions of true or false sentences, where intensions are taken to be 
rough approximations to meanings.3 For the logic of ontic modalities, and quite 
generally for the purposes of a philosophical theory of ontic modalities, coarse­
grained states of affairs are entirely sufficient; fine-grained states of affairs need 
not be considered.

The following predicate is useful to the point of being indispensable:

(D6) 0(x) := S(x) A A(x).

In other words, to obtain (to be the case, to be a fact) is nothing else than to be 
an actual state o f affairs. Hence it is clear what is meant by PIO, and hence it 
is also clear which other prominent state of affairs is defined by the following 
definition:

(D7) w* := CONJ x 0(x).

^Identity o f meaning implies identity of intension, but not vice versa. Identity of intension im­
plies identity of truth-value, but not vice versa.
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It is the world in Wittgenstein’s sense: the totality of all obtaining states of 
affairs. The import of principles P7 and P9 is now clear; according to them, 
the world is neither the minimal (or “tautological”) nor the maximal (or “self­
contradictory”) state of affairs.

Note, furthermore, that the “small” conjunction of states of affairs can be 
defined on the basis of the “big”:

(D8) conj(x, y) := CONJ u(u = x V v = y).

As can easily be seen, CONJ v(v = x  V v = y) is for all states of affairs x and y 
identical with u  [S(z) A P(x, z) A P(y, z) A Vu(P(x, u) A P(y, u) D P(z,«))], in other 
words: the conjunction of states of affairs x  and y  is the smallest state of affairs 
of which both x  and y are parts.

Moving on to the next principle after P4, it becomes clear that P5 is an atom­
istic principle, once the predicate QA(x) is defined:

(D9) QA(x) := S(x) A Vy( P(y, x )D y  = x V  H(y)).

According to D9, a quasi-atomic state o f affairs is a state of affairs whose only 
proper part (if it has a proper part) is the minimal state of affairs (considering 
that Vj/(M(y) = y = t*)). One does well to distinguish quasi-atomic states of 
affairs, atomic states of affairs — states of affairs that have no proper part — and 
elemental states of affairs — states of affairs that have exactly one proper part. 
It can easily be shown that all atomic or elemental states of affairs are quasi- 
atomic, and vice versa: that all quasi-atomic states of affairs are either atomic 
or elemental. In the mereology of states of affairs, there is exactly one atom: 
f ,  and thus, in the mereology of state of affairs, atomicity coincides with mini­
mality. For this reason, I do not here introduce a formally defined predicate for 
expressing atomicity of states of affairs. But I do formally introduce a predicate 
for expressing elementalness of states of affairs:

(DIO) EL(x) := QA(x) A M(x).

While there is exactly one atomic state of affairs, which is a consequence of P4 
and P3, the above eleven principles do not determine the exact number of ele­
mental states of affairs. Some mereologists have argued that entities that have 
the same proper parts must be identical — which, if correct, would imply that all 
elemental states of affairs are identical with each other, since they all have ex­
actly one proper part, and the very same proper part, namely t*. But the invoked 
identity-principle is false for nonmaterial mereologies, like the mereology of 
states of affairs, or the mereology of sets.4 Thus there can easily be more than

4 Its validity is also dubious for material mereologies: Since material atoms have no proper parts 
(in the relevant material sense), they all have the same proper parts, and hence, according to the
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one elemental state of affairs, and in fact the eleven principles already require 
that there be at least two elemental states of affairs.

P5 states that states of affairs are, in a manner, exhausted by the quasi-atomic 
states of affairs that are parts of them: if all the quasi-atomic states of affairs that 
are parts of one state of affairs are also parts of the other, then this is already 
sufficient for concluding that the former state of affairs is itself a part of the 
latter. Equivalently, one can say that states of affairs are exhausted by the el­
emental states of affairs that are parts of them (for the quasi-atomic states of 
affairs nearly coincide with the elemental states of affairs, and the one state of 
affairs that blocks their coincidence — that is, t* — is a part of every state of af­
fair, and therefore does not make a difference regarding the exhaustion of states 
of affairs by parts of them that belong to a certain kind).

Moving on to the next principle after P5, P6 is a very important principle 
that regulates how the parts of a conjunction of states of affairs stand to the 
description (or the property) used in specifying that conjunction. P6 states that 
every nonminimal part of a conjunction of states of affairs has a nonminimal 
overlap with some state of affairs that satisfies the description used for specifying 
that conjunction. Thus stated, P6 is a perfectly evident principle for a mereology 
of states of affairs.

Given the principles P0-P6, one can prove: Vx(S(x) D X = CONJ y(QA(z/) A 
P(j/, x)), and Vx(S(x) D X = CONJ y(EL(y) AP(i/, x)). In fact, as is suggested by the 
second theorem, the number of elemental states of affairs determines the total 
number of states of affairs according to the simple equation: card(S) = 2card<EL) 
(“The cardinal number of states of affairs is 2 put to the power of the cardinal 
number of elemental states of affairs”). But for proving this the system has to be 
set-theoretically embedded.

Furthermore, given the principles PO—P6, it can be shown that if the functor 
of negation is defined as follows:

(D ll) neg(x) := CONJ y (QA(i/) A ->P(y,x)),

then the general truths that one would expect from a negation of states of af­
fairs become provable (for example, Vr(SW □ neg(neg(x)) = x), neg(i*) = k*, 
VxVj/(S(x) A S(y) A neg(x) = neg(j/) 3  x = y)). It should not go unmentioned — 
as a further demonstration of the great definitional power of the proposed mere­
ology of states of affairs — that the “big” disjunction can be defined on the basis 
of the “big” conjunction as follows:

(D12) DIS J x A[x] := CONJ y(Vx(A[r| D P(y, x)).

identity-principle at issue, all material atoms are identical with each other—a consequence which is 
simply absurd, unless there are no material atoms. If, on the other hand, material atoms are excepted 
from the identity-principle at issue, the obvious question is: why not make more exceptions? If 
material atoms can differ from each other although they all have no proper parts, why may not 
elemental states o f affairs differ from each other although they all have the same proper part?
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Then the “big” disjunction can be used for defining the “small” disjunction:

(D13) disj(x, y) := DISJ v(v = x  V v = y).

As can easily be seen, DISJ v(v = x  V v = y) is for all states of affairs x  and y 
identical with \z [S(z) A P(z, x) A P(z, y) A Vu(P(u, x) A P(M, y) D P(u, Z))], in other 
words: the disjunction of states of affairs x and y is the largest state of affair that 
is a part both of x  and of y. Given the definitions of the three functors neg(x), 
conj(x, y), and dis j(x, y), all the well-known and less well-known Boolean prin­
ciples that form the stock of truth-functional propositional logic can be proved 
on the basis of P0-P6.5

5 TO be precise: Every logically true formula 0 [p i , . . . ,  p„] of truth-functional propositional logic 
can be translated (in the obvious way) into a functional term ^*[xi,. . . ,  x„| of the mereology of 
states of affairs such that Vxi . . .  Vxn (S(xi) A • • • A S(x„) D . . . , =  r ')  is provable on the 
basis of P0-P6.

The one principle that has not yet been touched on is P8, which contains one 
more as yet undefined predicate: QC(x). Here is its definition:

(D14) QC(x) := S(x) A Vy( P(x, y) D x  = y V 1(y)).

According to D14, a quasi-complete state o f affairs is a state of affairs which is 
a proper part (if it is a proper part of anything) only of the total (or maximal) 
state of affairs (considering that Vt/(T(z/) = y = k*)). The predicate QC(x) is 
the counterpart of the predicate QA(x). As the quasi-atomic states of affairs are 
divided into the one minimal state of affairs, f ,  and all the other quasi-atomic 
states of affairs: the elemental state of affairs, so the quasi-complete state of 
affairs are divided into the one maximal state of affairs, k*, and all the other 
quasi-complete states of affairs: the maximally consistent states o f affairs:

(D15) MC(x) := QC(x) A T(x).

It can be shown that the maximally consistent states of affairs are precisely the 
negations of the elemental states of affairs (and therefore the elemental states 
of affairs precisely the negations of the maximally consistent states of affairs). 
It is easily verified on the basis of P8 and P7 that w* — the world — is a max­
imally consistent state of affairs. Because of this fact, it is justified to call the 
states of affairs that are maximally consistent “possible worlds”. The following 
remarkable theorems are provable on the basis of P0-P6: VxVt/[MC(x) A S(y) D 
(P(i/,x) = -.P(neg(i/),x))]; VxVi/Vz[MC(x) A S(y) A S(z) D (P(disj(y,z),x) = 
P{y,x) VP(z,x))].

This concludes my brief survey of the basic mereology of states of affairs. 
(It is explored in much greater detail in my book Axiomatic Formal Ontology.) 
Some philosophers would prefer that the present theory of states of affairs be
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not called “a mereology”. There may be historical reasons for restricting the use 
of the term “mereology” to theoretical systems that deal with individuals and 
their part-relations, but there are no compelling systematical reasons for this 
restriction. The present theory of states of affairs is indeed a powerful Boolean 
algebra, but at the same time it is a mereology: a nonmaterial mereology, and 
a mereology that has a minimal element, indeed exactly one minimal element, 
which one might call “its center”.

This centered or Boolean mereology of coarse-grained states of affairs re­
quires universes o f states o f affairs that have a spindle-shaped structure, with k* 
at one end and t* at the other. If, for example, we put the number of elemen­
tal states of affairs at three,6 and call the elemental states of affairs that we are 
considering “a”, “b” and “c”, then we obtain the universe U3:

6 This number is wildly unrealistic if we are talking about reality; but it may be entirely appro­
priate if we are talking about some very restricted “virtual reality” , for example the reality of a very 
simple game.

7 I omit, as obvious, any arrow that indicates that the state of affairs from which the arrow orig­
inates is a part of the state of affairs at which the arrow ends (with its head). Inserting the arrows 
would, by the way, also be misleading, because it would suggest that there are more states of affairs 
in the universe U3 than are designated by the eight designators used. Note that the universe Uj can 
be a  small part of a much larger universe o f discourse.

[F  :]abc
ab ac [to* :]bc

a b c
r

If S(x) is interpreted to be true of exactly the eight elements in U3 and if P(x, y) 
is interpreted to hold true of exactly those ordered pairs {x, y) of elements in U3 
such that x  is part of y (in the obvious sense suggested by the diagram), then this 
universe of states of affairs7 fulfills the principles P0-P9.

There are smaller universes than U3 that also fulfill P0-P9. In fact, three 
such universes are contained in U3. One of them is U2:

[£‘ :]ac 
a [in* :]c 

t*
There is no smaller universe of states of affairs than U2 that fulfills the principles 
P0-P9.

3. The Actuality of States of Affairs in the Mereology of States of Affairs

The stated mereology of states of affairs is basic, but it is far from complete. 
First of all, two principles for actuality have to be added. They are obviously
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true, but nevertheless not provable on the basis of the principles already stated:

(Pl 1) VxVy( S(x) A A(x) A P(y, x) D AQ/)),
(P12)

P l l  states that every intensional part of an actual state of alfairs is itself actual 
(an actual state o f affairs, according to PO); P12 states that the world is actual.

Given the mereology of states of affairs as it now stands, there is a sober 
truth about the nonactuality of states of affairs. It is this: If the number of 
elemental states of affairs is N  (and the number of elemental state of affairs 
is > 2 according to the stated principles), then the number of nonactual (or 
nonobtaining) states of affairs is this: 2N  -  2W -1 . And this implies that actualism 
about states of affairs — the doctrine that there are no nonactual (or nonexistent) 
states of affairs, that all states of affairs are facts — is not merely false, it is also 
incoherent.

But how is the equation card(S A-> A) = 2card(EL)—2card<EL^ 1 obtained? Central 
for obtaining it is the following theorem:

Vx[ S(x) D ( A(x) = P(x, w*))] -
“A state of affairs is actual if, and only if, it is a part of the world”.

PROOF. It is easily seen —given P3, P4, the definition of to* and the definition 
of 0(x) —that Vx[5(x) D (A(X) D P(X, W*))] is true. It remains to be seen that 
Vx[S(x) D (P(x, w*) D A(x))] is also true. Suppose, therefore, P(x, w*) (the 
additional supposition S(x) is not needed, since it follows from the supposition 
already made by PO). From this, it follows on the basis of P l 1 and P12: A(x), 
because we (provably) have S(w*).

The number of nonactual states of affairs is obtained by subtracting from 
the number of all states of affairs —that is, from 2card(EL) — the number of all 
actual states of affairs. According to the theorem just proven, this number is the 
number of all states of affairs that are parts of w*. How many states of affairs are 
there that are parts of w*l For determining their number, one needs to determine 
the number of the elemental states of affairs that are parts of w*. This number, 
as can be proven, is equal to card(EL) -  1 (since it can be proven that there is 
exactly one elemental state of affairs that is not a part of w*, namely, neg(w*)). 
Since every subset of the set of elemental states of affairs which are parts of w* 
determines a different part of w*, and vice versa, the number of parts of w* is: 
2card(EL)-i Hence one obtains that the number of nonactual states of affairs is: 
2Card(EL) _ 2cani(EL)-l Q

Looking at the five principles that (disregarding PIO, which has a special sta­
tus) govern the actuality of states of affairs: P7, P8, P9, P l 1, and P12, one may 
well wonder which of them are true for conceptual reasons only, and which are
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indeed true, but not for conceptual reasons only. Incidentally, there can be no 
reasonable doubt about the purely conceptual nature of the truth of the princi­
ples P0-P6. Who finds this doubtful should consider that the truth of P0-P6 is 
compatible with there being only one state of affairs: the prodigious definitional 
power of the subsystem P0-P6 is combined with an utter ontological weakness. 
Not even t* + k* can be deduced from these principles. This ontological weak­
ness should go a long way towards removing doubts about the truth of P0-P6 
being of a purely conceptual nature. True, one can deduce from these principles: 
3x S(x). But that seems to be a safe conceptual truth.

In my view, indeed, numbering-statements o f any kind are not excluded 
from being conceptually true. And in fact, in my view, “card(S) > N” and 
“card(S) = N' ” are conceptually true for whatever numbers N  and N' they are 
true (therefore, since “card(S) > 1” is true —being deducible from true prin­
ciples — it is also conceptually true; and since “card(S) > 2” is true as well — 
being deducible from true principles — it is conceptually true as well). The idea 
that true numbering-statements cannot be conceptually true is rooted in the pos­
itivistic prejudice that conceptual truths cannot say anything informative about 
the universe of discourse (also sometimes called “the world”, which designa­
tion, however, is here reserved for something else), cannot say, for example, 
how many entities of a certain kind are (at least or exactly) in it.

But back to P7, P8, P9, P ll ,  and Pl 2. The only principle out of these five 
whose purely conceptual truth is, I think, evident is P ll .  The purely conceptual 
truth of the other four is not evident, and perhaps some of them are, though true, 
not conceptually true after all. But it seems clear (1) that k* is purely for concep­
tual reasons a nonactual state of affairs, and (2) that f  is purely for conceptual 
reasons an actual state of affairs (accepting (1) and (2) is, by the way, another 
way to establish that it is a conceptual truth that there are at least two states of 
affairs).8 Moreover, one can plausibly hold (3) that the conjunction of all ac­
tual states of affairs is purely for conceptual reasons itself actual. (1) and (3) 
have the consequence that P12 and P7 are conceptual truths. (Unlike P12, P7 is

8 The propositions (1) and (2) can be shown to be true; they are, however, not immediately forced 
upon us.

The statement A(r*) is on the basis of P0-P6, P l l  equivalent with 3x(S(x) A A(x)). Is this in­
dubitably a conceptual truth? Is it indubitably a conceptual absurdity to suppose that no state of 
affairs is actual? Yes, indeed, it is: Suppose ^lxiS(x) A A(x)); hence on the basis of the conceptually 
true principle PIO: Ofthat -W S W  A Afar))); hence by applying D6: SC that ^3  XS(x) A A(x))) A 
A(that -izk(S(x) A A(x))); hence: BxfSW A A(x)).

Intum, the statement - I A (F )  is on the basis of PO-P6, P l l ,  P12 equivalent with TX(S(X ; A -- A(x)), 
with ~-P[k',uj'f and with w’ * k”. Is Tr(S(x) A -A(r)) indubitably a conceptual truth? Is it 
indubitably a conceptual absurdity to suppose that all states of affairs are actual? Yes, indeed, it 
is: Suppose Vx(S(x) D A(x)); S(that 3x(S(x) A -A(x))) is a conceptual truth (it is an instance 
of a conceptually true general principle staled in the next section: P13); hence, according to the 
supposition made: A(that Hx(S(x) A ->A(x))); hence by applying D6: OCTxCS(x) A  ^A (X))); hence 
on the basis of PIO: 3x(S(x) A A(x)).
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not an independent principle, since not only A(t*) but also -> A(A:*), and therefore 
->P(k*,w*), and consequently w* + k*, are theorems logically deducible from 
the rest of the given conceptually true principles; see footnote 8.) But we still 
have no hint why P8 and P9 should also be conceptual truths.

We can, however, make a case for P8 □ P9 — i.e., QC(w’) D W* + t* — being 
a conceptual truth. I have said above that “card(S) > 2V” is a conceptual truth 
i f  it is a truth. But “card(S) > 4” is certainly true; and therefore it is concep­
tually true. Now, from this conceptual truth (“card(S) > 4”, or in other words: 
“3>4X S(X)”) it follows on the basis of the conceptually true principles P0-P6: 
QC(w‘) 3 w* i t* .  And therefore this latter statement is also a conceptual truth.

But this leaves it open whether (a) w* + t* is a conceptual truth, and QC(w‘) 
is not, or whether (b) both sentences are conceptual truths, or whether (c) neither 
sentence is a conceptual truth. How one decides in this matter depends on one’s 
theory of actuality, in particular, on one’s theory of the actuality of states of 
affairs. One might, for example, hold that a certain quasi-complete state of 
affairs is actual for purely conceptual reasons. But personally I do not believe 
that this position is very plausible. In my view, not even 3z/(S(y)Ky i  t* AA(y)) is 
a conceptual truth. But then w* t* (in view of S(w*) and A(w‘) being conceptual 
truths) and QC(w’) cannot be conceptual truths either.

4. Further Principles for “That”

In the previous section, I have added to the basic principles of the mereology 
of states of affairs, i.e., P0-P10, two further actuality-principles: P l 1 and P12. 
Thus there are now in addition to the seven principles o f intensional parthood, 
P0-P6, five principles o f actuality: P7, P8, P9, P l 1 and P12, of which P7 proved 
to be redundant — last but not least on the basis of the conceptual truth PIO (see 
footnote 8), which is, so far, the only principle for “that”.

More principles than PIO are needed for “that”:

(P13) S(that A),
(P14) th a t -A  = neg(that A),
(P15) th a t (A A B) = conj(that A, th a t B),
(P16) th a t VxA[x] = CONJ y3x(y = th a t A[x]).

Remark. Using the definition A V B := ->(-A A ->B) one can prove on the ba­
sis of P14 and P15: th a t (A V B) = neg(conj(neg(that A), neg(that B))) = 
d isj (that A, th a t B). Using the definition A D B := -A  V B one can prove 
in addition: th a t (A D B) = disj(neg(that A), th a t B). Using the definition 
Hx A[x] := ->Vx -A[x], one can prove on the basis of P14 and P16: th a t  3x A[x] 
= neg(CONJ y 3x(y = neg(that A[x]))) = DISJ y 3x{y = th a t  A[x]). □
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These four principles and PIO —each of which is rather obvious in itself— 
are, in conjunction, consistent with the twelve principles not concerning "that” 
that have already been stated. Those twelve principles — i.e., P0-P9, P ll ,  
and P12 — are consistent in themselves, since they have a verifying model (see 
above, at the end of Section 2, the universe of states of affairs U2; in order to 
accommodate also the principles P ll  and P12, imagine circles — symbolizing 
the property of actuality — drawn around c and f ,  but not around ac and a). And 
the consistency of all stated principles follows, because it is easily seen that the 
principles PIO and P13-P16 can be proven on the basis of the principles P0-P9, 
P ll  and P12 if the following definition of “tha t A” is adopted:

(D*) th a t A := CONJ y(y = y A iA).

Thus, the universe U2 is not only a verifying model for P0-P9, P ll  and P12, 
it is also a verifying model for P0-P16. This series of principles, or in other 
words: this theory of states of affairs, has herewith been proven consistent. (Of 
that theory, P13-P16 are conceptual truths, just like all the other principles, 
excepting P8 and P9.)

The above definition of “tha t A” allows to deduce this pleasing result. But 
of course it is not a definition that captures the intended meaning of “tha t A,” 
because, according to it, “th a t A” always designates either t* or k", whatever 
true or false sentence A we are looking at. Interesting enough, though, what is 
sometimes thought to initiate all by itself an inflation of intensional entities: the 
introduction of “that” as a name-forming operator applicable to sentences, does 
not necessarily do any such thing.

But the equation “th a t A = CONJ y(y = y A -A )” and the utter ontological 
restriction to which this equation gives rise (of the states of affairs that serve 
as intensions of sentences: according to it, all true sentences have the same 
intension, namely f ,  and all false sentences also the same intension, namely k’)9 
is not provable if  “th a t A” is a basic (and not a defined) operator — although 
one might think it to be provable according to an argument that is reminiscent 
of an argument of some notoriety, called “the slingshot”:

’Note that the intension of a statement that is designated by “A” (for A, substitute the statement)
is designated by “that AT  which, without further determinations, is an ambiguous designator that
can also be taken to designate at least two other things: naturally, the meaning of the statement, and
artificially, the truth-value of the statement.

1 0 l is a provable logical truth if the singular term b is appropriately chosen: b must be different 
from c* — the singular term that serves as designating the artificial referent of all definite descriptions 
tx A[x] for which 3~ l xA[x] is not true.

Suppose A is a true sentence, hence (provably) ID1: LX(X = b) = tx(A A 
x = b), and (provably) ID2: CONJ y(y = y  A ->A) = t*. Furthermore:

I. A = tx(x = b) -  tx(A A x = b) a (provable) logical truth10
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2. th a t A  = th a t (ix(x = b) = ix(A A x  = b)) from 1 by EQU (see below) 

3. th a t A  = th a t (tx(x = b) = ix(x = b)) from 2 and ID1

4. th a t (tx(x = b) = ix(x = bf) = t* a plausible assumption

5. th a t A  = CONJ y(y = y A --A) from 3,4, and ID2

In this argument, the principle designated by “EQU”, which is used in line 2, is 
the principle that logically equivalent sentences have the same intensions.

Suppose now that A is a false sentence, hence -A  is a true sentence, and 
therefore according to the above argument: th a t -A = CONJ y(y = y A A). But, 
according to P14, neg(that A) = th a t -A; and we also have: CONJ y(y = y 
\ A )  = ?  = neg(Jt*) = neg(CONJ y(y = y A -A)) (because CONJ y(y = y A 
-A ) = k*, since A, according to supposition, is false). Hence: neg(that A) = 
neg(CONJ y(y = y A ^A)). And therefore we obtain the same result as above: 
th a t A = CONJ y(y = y A -A).

This entire deduction of the equation corresponding to definition (D*) is al­
most impeccable. EQU, indeed, is not deducible in the system P0-P16. But one 
can add the provability-rule EQU* to the proof-rules of the system: If A = B 
is logically provable, then th a t A = th a t B is also logically provable.11 This 
proof-rule serves the same purpose as EQU, and there is nothing at all wrong 
with it. There is also nothing at all wrong with the plausible assumption in 
line 4; it, too, is not deducible in the system P0—P16, but it can be added to that 
system without scruples.

Well, what, then, is wrong with the deduction? —The false step occurs in 
moving from 2 to 3 on the basis of ID1. But there is nothing whatever wrong 
with ID1, the problem is the implicitly applied inference-rule: substitution of 
identicals. This rule is not universally valid; there are occasions when its ap­
plication leads from a true sentence to a  false one, and above we have such an 
occasion: 2 and ID 1 are true (2 purely logically, and ID1 on the basis of as­
sumption), but 3 is not true — at least not for any sentence A  that is not logically 
true. The rule of substitution of identicals is safe as long as identicals are not 
substituted for each other in contexts that are ruled by an occurrence of “that”; 
for the name-forming operator “that” creates intensional contexts — contexts in 
which the topical (or contextual) referential function of some singular terms can 
shear way from their factual referential function, creating an ambiguity that had 
better not be ignored. (Such singular terms are called “(referentially) unstable”; 
for more on this matter, see Section 9 below.)

P13-P16 and PIO are still not all the principles that are needed for “that”. 
In Section 7 and Section 9 below, more “that”-principles will follow.

"On the concept o f  (broadly) logical provability, see footnote 15.
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5. The Number of States of Affairs

The ontological weakness of the mereology of states of affairs has still been pre­
served up to this point. No principle demanding a dramatically high number of 
states of affairs has so far been added, and the principles already assumed do 
merely require that there be at least four states of affairs: according to them, 
there need not be more states of affairs than this. From one point of view, this 
is as it should be, since the mereology of states of affairs should be applicable 
to finite artificial universes of states of affairs, with more or less restricted num­
bers of states of affairs (with 4, or 8, or 16, or 32, or 64 states of affairs, for 
example). If the mereology of states of affairs is to remain thus applicable (as a 
multipurpose abstract machine), then it must remain open to having any princi­
ple o f finite number added to it that is appropriate to the occasion of application, 
i.e., some principle or other that looks like this: 3=wx EL(x) (“There are exactly 
N  elemental states of affairs”, where N  is some natural number > 2).

From the realistic point of view, however — i.e., if the mereology of states 
of affairs is to decribe the real universe of states of affairs — there are only two 
envisageable principles of the number o f states of affairs (via specifying the 
number of elemental states of affairs) that are not entirely arbitrary: (1) There is 
exactly one elemental state of affairs (in other words, there are exactly two states 
of affairs, namely, t* and k"). (2) There are infinitely many elemental states of 
affairs (in other words, there are infinitely many states of affairs). On the basis 
of the principles already stated (P0-P16), (1) has already been ruled out. This 
leaves us with (2) — every other envisageable principle of the number of states of 
affairs would be entirely arbitrary as an assertion about the real universe of states 
of affairs ((1) having been ruled out). And (2) can be formulated by employing 
the means of a first-order language, as follows:

(P17) 3*wx EL(x) D 3>;<+1x EL(x). for every natural number N 2.12

12The initial assertion 3*2 x EL(x) is already provable. Note that the reference to natural numbers 
is not necessary but can be eliminated, since EL(x) is definable without reference to natural 
numbers: B ^ x  EL(x) := B rE L « ; 3>2x ELW := lxV (EL(.r) A EL(x') A r # / ) ,  F ’x EL(x) := 
3X3J/3X"(EL(X) A EL(X') A EL(x") A r #  /  A r  # / '  A r #  r");etc .

6. Modal Bases and Modal Principles in the 
Mereology of States of Affairs

In Section 1 above, two bases of necessity were indicated: b ] — the basis of log­
ical necessity, and b2 — the basis of nomological necessity. For characterizing 
the basis of logical necessity completely we merely need to add the principle:
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(P18) S(b") A b1 = I*.13

13Strictly speaking, S(b") does nothing to characterize bx beyond what is already asserted by 
b1 = t ' (since one can already prove S(t“)). But S(b") will be needed frequently (for bases of 
necessity b" that are not described in any further way, so that their being states of affairs does not 
emerge as a consequence of their description), and it is better to assert it here explicitly (in as good 
as place as any other) than to make unacknowledged use of i t

For characterizing the basis of notnological necessity completely, one would 
have to indicate exactly which states of affairs are laws of nature, which I will 
not do here (and who can do it?). But the following principles clearly hold for 
the basis of nomological necessity, independently of any specification of the 
laws of nature:

(P19) P(b2 , w*),

(P20) h2 *  t*,

(P21) b2 £  w*.

In general we have: If P(fe",w*) is true of the basis of necessity IF, then the 
(corresponding) necessity □" is faithful to truth, and vice versa; if P(B", w*) is 
false of the basis kF, then the necessity □" is unfaithful to truth, and vice versa. 
For necessities □” that are faithful to truth one can prove in the mereology of 
states of affairs: uFB D B.

PROOF. Assume u nB, where □" is a necessity faithful to truth. Hence according 
to the definitions at the beginning of Section 1: P (that B, IF). Hence because of 
P(tF,w*) and Pl: P (that B,w*). Hence because of Vx[S(x) D (A(X) = P(x, w*))] 
and P13: A(that B). Hence because of D6 and P13: O(that B). Hence because 
of PIO: B. □

One can also prove in the mereology of states of affairs: P(A", w*) = Vx(d"(x) 
D 0(x)) (where Vx(d,'(x) □ 0(x)) is the obvious predicate-logical correlate of 
□"B D B if the latter is taken as a general schema). A question I leave open for 
the time being is whether one can deduce, in the mereology of states of affairs, 
P(tF, iv*) from assuming o nB 3  B as a general schema (but see Section 9).

Note that the fact that a necessity is faithful to truth does not by itself mean 
that the necessity is ontic or alethic, for the basis which is an intensional part 
of w*, making the corresponding necessity faithful to truth, may have been 
picked out according to criteria which are wholly or partly epistemic (for ex­
ample). Nor does it seem necessary that every ontic necessity is faithful to truth.

A property of necessities which is weaker than faithfulness to truth (in view 
of the provable statement P(uf, k*), P3, P7) is consistency: If IF + k* is true of 
the basis of necessity IF, then the necessity □" is a consistent necessity, and vice
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versa; if I f  + k* is false of the basis h", then □" is an inconsistent necessity, and 
vice versa. For necessities a n that are consistent one can prove in the mereology 
of states of affairs: n nB D -■□"-.FI.

PROOF. Assume □nB, where □" is a consistent necessity. Hence: P(that B, If). 
Assume also cf->B. Hence: P(that ->B,y). Hence: P(neg(that B), If), accord­
ing to P14. It is provable in the mereology of states of affairs: VxVy(P(x, y) A 
P(neg(x), y) = y = k*). Hence: I f  = k' — contradicting the consistency of 
Therefore: -^on ^B. □

One can also prove in the mereology of states of affairs: I f  + k* = VrlD^fx) D 
-■□"(neg(x))] (where Vx[a"(x) D -iDn (neg(x))] is the obvious predicate-logical 
correlate of n nB D if the latter is taken as a general schema). Another 
question I leave open for the time being is whether one can deduce, in the mere­
ology of state of affairs, V i k "  from assuming n n B D -■□"-d? as a general 
schema (but see again Section 9).

We also have in general: If I f  4-1* is true of the basis of necessity I f ,  then 
the necessity □” is a contingent necessity, and vice versa; if I f  f  t* is false of the 
basis I f ,  then □” is a noncontingent necessity, and vice versa. The designation 
“contingent necessity” is confusing, and still remains so when the gloss is added 
that what is meant by “contingent necessity” is logically contingent necessity. In 
what sense contingent necessities □" are called “(logically) contingent” becomes 
clear when one considers that the following is deducible in the mereology of 
states of affairs: I f  £ f  = 3X(D"(X) A - '□ '(X)).

Finally we have in general: If I f  w* is true of a basis of necessity I f ,  then 
the necessity □" is a proper necessity, and vice versa; if I f  + w* is false of the 
basis I f ,  then □" is an improper necessity, and vice versa. It is deducible in 
the mereology of states of affairs for every consistent necessity u”: I f  ut‘ = 
3x(0(x) A -.□"(X)).

PROOF. Let □" be a consistent necessity. Assume I f  = w", and 0(x). Hence 
according to D7, DI, P3 and P4: P(x, wf. Hence P(x, tf) . Hence □"(x). Assume 
conversely: Vx(O(x) o □n(x)). Hence because of S(w’) (a consequence of D7, 
DI, P3 and P4), P12, D6: 0(w‘). Hence: an(u>‘). Hence: P lu f t f ) .  According 
to P8: QC(w*), and hence (according to D14): w* = I f  V T(tf). Since □" is a 
consistent necessity, we have: I f  £ k*, and therefore: -■T(i/1). Hence: I f  -  i f .

□

Since there are, according to P l7, infinitely many states of affairs, there are 
infinitely many necessities faithful to truth, just as many necessities faithful to 
truth as there are bases for them. The extremes are marked, on the one side, 
by logical necessity, with the basis f  (= b'). which is a proper and noncontin­
gent necessity faithful to truth, and, on the other side, by factuality, with the
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basis w*, which is an improper and contingent necessity faithful to truth. There 
are infinitely many proper and contingent necessities faithful to truth in between, 
nomological necessity, with the basis b2 , being one of them. Most of these ne­
cessities do not have a designation. The sequence D2 , n 3 , O4 , n 5 , n 6 , ... — 
even if prolonged to infinity —does not contain enough terms to give a desig­
nation to every proper and contingent necessity faithful to truth. (But there are 
certainly enough designations in the sequence for every necessity we specifi­
cally refer to here.) It is a matter of fact that we do not give much thought to 
most of the infinitely many proper and contingent necessities faithful to truth. 
But this should not mislead us into thinking that somehow they are not “real” 
necessities.

The strength (or force) o f a necessity is inverse to the (intensional) strength 
of its basis. Logical necessity — having the absolutely weakest basis: the state of 
affairs t* which has no intensional content — is the absolutely strongest necessity. 
Factuality — having the strongest basis which is faithful to truth (and which is 
almost the absolutely strongest basis): the state of affairs w* — is the weakest 
necessity faithful to truth, so weak that it is quite rightfully called an improper 
necessity. We have the following correlation: □" is a stronger necessity than o'” 
if, and only if, b" is a proper intensional part of I f 1. There are of course many 
pairs of necessities which are such that the basis of each pair-member does not 
contain the basis of the other pair-member: neither one of the paired necessities 
is stronger than the other.

An important fact should be noted. General determinism is sometimes as­
serted as the thesis that every obtaining state o f  affairs is necessary, where “is 
necessary” is thought to express a necessity □" which is faithful to truth (and 
therefore consistent) and has more force than “obtains”. But as, a matter of fact, 
it cannot have more force. Who accepts Vx(O(x) D □n (x)) for a consistent ne­
cessity □" must, according to the theorem stated and proven above, also accept 
b” = w*, and therefore the necessity □" is not stronger than factuality, which is 
the weakest necessity faithful to truth. This shows that general determinism is 
an incoherent position: it intends to spread a proper necessity over more states 
of affairs than it can apply to, namely, over all obaining states of affairs.

Leibniz famously asserted that general logical determinism is true, i.e., that 
Vx(O(x) D □ , (x)) is true. But if Vx(O(x) D D^ X)) is true, then, according to 
the theorem b l + w* = 3x(0(x) A ->n1(x)), b l = w* is also true (□’ being a 
consistent necessity), or in other words: w’ = t* is true (since b1 = f ,  ac­
cording to P l8) — contradicting P9. General logical determinism is, therefore, 
false — provably false in the mereology of states of affairs. Leibniz is, therefore, 
provably wrong. But it should be noted that P9 is one of the two principles of 
the mereology of states of affairs (the other being P8) which are not concep­
tually true. Leibniz, therefore, did not commit a logical mistake in asserting 
the truth of general logical determinism. It seems, however, that Leibniz would
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have endorsed MC(w*) — “the world is maximally consistent” (which is equiv­
alent to the conjunction of P7: w* * k*, and P8: QC(w*)). And the only way 
to square w* = t* (to which Leibniz is committed by being a logical determin- 
ist) with MC(w*) is by assuming that there are less than four states of affairs 
(see the end of Section 3; MC(w*) definitionally implies QC(u/)), and more than 
one state of affairs. Therefore, the only way to square w* = t* with MC(w*) 
is by assuming that there are exactly two states o f affairs (because the mere- 
ology of states of affairs forbids that there are exactly three states of affairs): 
t* (= w*) and k*. Leibniz, therefore, as a logical determinist and “maximal- 
consistentist,” is committed to the view that there are only two states of affairs. 
It would be striking if there were any evidence in his works that he did be­
lieve this.

7. The Classical Modal Principles

We have already seen that for nomological necessity, D2 , two classical modal 
principles are true: aB  D B, and DB D -a-<B. (I leave out the index attached 
to if reference is made to some determinable necessity or other; I also leave 
out the index attached to “b” if reference is made to some determinable basis or 
other.) The same two principles are also true for logical necessity,

What about the following other classical principles: (1) D(A □ B) D (nA D 
oB), (2) aB  z> ODB, (3) -<nB o O - IQB? Let us see whether we need further 
principles for proving them, and which principles.

□(A B)D (nA □ nB) is provable without further assumptions.

PROOF. Assume n(A D B), and assume C1A. Hence P(that (A D B), b), and 
P(thatA ,h). Hence: P(disj(neg(that A), th a t B), b), according to P14, 
P15, etc., and P(thatA ,h). Hence P(that B,b) — because S(that A) and 
S(that B), according to P13, and because of the theorem VxVt/Vz[S(x) A S(y) A 
P(dis j(neg(x), y), z) A P(x, z) D P(y, z)l Hence DB. □

But the attempt to prove csB □ QOB reveals that there is need of further prin­
ciples: Assume oB. Hence P(that B,b) (b being the state of affairs which is 
the appropriate basis of necessity). From this one must derive: P(that oB, b), 
which, purely definitionally, implies □□B. The step from P(that B, b) to 
P(that nB, b) is, by definition alone, equivalent to the step from P(that B,b) 
to P(that P(that B, b), b), which, in turn, is a consequence of the following 
general principle:

Principle A VxVy( P(x, y) D P(that P(x, y), y)).
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Let us now see which further principle is necessary for proving -O B z> □-IQB. 
It is this (which is easily found, given Principle A):

Principle B ^x^y( S(x) A S{y) A -■ P(x, y) D P(neg(that P(x, yf), y)).

Both Principle A and Principle B are easily provable if one assumes the follow­
ing stronger principle:

(P22) VxVt/( P(x, y) D tha t P(x, y) = t*) /\
fx 'fy (^P (x ,y ) D th a t  P(x,y) = k‘).

I adopt this latter principle, since a relationship of intensional parthood, or a 
negation of such a relationship, is clearly a matter of logical necessity.14

14An equivalent formulation of P22 is this: VxV^(P(x, y) □ □’ P(x, y)) A VxVi/(-, P(x y) □ 
□ '-P (x ,y )).

’’ “Logically provable” means: provable purely on the basis o f principles and inference-rules that 
are conceptually (broadly logically, analytically) valid. Thus, if P8 or P9 are necessary for deducing 
a  certain theorem in the mereology of states of affairs, then that theorem is not logically provable — 
because P8 and P9 are not conceptually true (see Section 3).

Another classical modal principle is not really a principle but a provability­
rule: If B  is logically provable,15 then nB is logically provable. On the basis 
of the definition of □, this inference-rule amounts to: If B is logically provable, 
then P(that B, b) is logically provable (b being the state of affairs that is the 
appropriate basis of necessity). I put this, more compactly, into the following 
form:

(P23) F B=> F P(that B,b).

The provability-rule F B => F nB is an easy consequence of P23.
One should note that the modal propositional system S5, that is, classical 

truth-functional propositional logic (axiomatized in some way) plus

F OB D B,
F n(A D B) z> (nA D nB),
F oB D aaB ,
F - IDB D □-■□B,
F B => F DB,

(where “F” stands for “logically provable”) has now been justified as the correct 
system of modal propositional logic for all necessities that (a) can be represented 
as founded on a basis of necessity, and that (b) are faithful to truth. The foun­
dations of justification are the mereology of states of affairs and a conception
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of necessity that is expressed by the following two definitions: □(*) := P(x, b), 
□A := □ (that A). These definitions are expressive of a basis-theory o f necessity, 
since “b” refers to a state of affairs which is the basis of the necessity concerned. 

Remark. The basis-theoiy of necessity is not a theory of necessity that is appli­
cable to all kinds of necessity. There are some necessities for which the analysis 
in terms of a basis of necessity is inadequate, for example, epistemic neces­
sity: knowledge. What somebody knows is not what follows from his basis of 
knowledge (there is no such thing); it is what follows from his basis of belief 
and satisfies in addition several further conditions. Take the simplest concept 
of knowledge (which is implied by all other concepts of knowledge): true con­
viction. In this sense, what somebody knows is what follows from his basis of 
belief and is true. The principle ^nB  D □-■□B is not valid for knowledge in this 
sense, for the following situation frequently obtains:

B is false, and therefore - IDB is true; but (in this same situation) that B is 
an intensional part of the basis of belief of the person concerned, and therefore 
that person is convinced that B (i.e., n cB), hence convinced that she is convinced 
that B (i.e., n c DcB, according to P22), hence convinced that she knows that B 
(because of Dc a c B D a c (acB  A B)). Hence a-iuB  must be false. (For if it were 
true, then the person concerned would know, and therefore be convinced, that 
she does not know that B. Hence the person concerned would be both convinced 
that she knows that B (as we have already seen) and convinced that she does not 
know that B — which cannot be.)

Note that conviction — or doxastic necessity — can very well be treated ac­
cording to the basis-theory of necessity. Since one will not require that con­
viction be faithful to truth but only that it be consistent, nB D B needs to be 
replaced by oB D ->□-># in the above system; this replacement turns it into a 
system which defines a defensible modal propositional logic for — dispositional, 
rational — conviction. □

The theory of necessity advocated here is, moreover, an onto-nomological 
theory o f necessity, since it is grounded in ontological laws for the realm of states 
of affairs. By being an onto-nomological theory of necessity, it is automatically 
also an adequate onto-nomological theory of possibility, since possibility can be 
adequately defined on the basis of necessity (C>A := -■□->A) and is, therefore, 
completely determined by the latter concept. (But the onto-nomological theory 
of possibility can also be developed independently of the theory of necessity: 
on the basis of the mereology of states of affairs, and the definitions O"(x) := 
S(x) A -i P(neg(x), b") and O"A := O"(that A).)

It needs a separate paper to handle the question how far conditionals (or rela­
tional necessities) can be treated within the mereology of states of affairs on the 
basis of the definitions n -*(x,y) := P(y, conj(//',x)) and IT—>A := "—»(that B. 
th a t A).
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8. Necessity and Possible Worlds

The theory of modality developed here is a theory of modality in which the 
concept of possible world plays no essential role. Nevertheless, in view of the 
popularity of the possible-worlds-theory of modality, it will be good to see how 
that theory is derivable from, and therefore reducible to, the present theory.

We have seen above (in Section 2) that maximally consistent states of affairs 
can be regarded as possible worlds (and that there are exactly as many maximally 
consistent states of affairs as there are elemental states of affairs: negation is a 
function that maps elemental states of affairs onto maximally consistent states 
of affairs). This can only mean that the possible worlds (the entire set of them) 
can be identified with the maximally consistent states o f affairs (the entire set of 
them). (It would hardly make sense to allow that the maximally consistent states 
of affairs are possible worlds, but to demand that there are in addition some other 
possible worlds that are not maximally consistent states of affairs.)

We need to define another important concept of the mereology of states of 
affairs:

(D16) O(x,y) := P(x,y).

0(x, y) is read as “(the state of affairs) x  obtains in (the state of affairs) y”. One 
can then prove the following theorems:

Vx[ S(x) 2  ( 0(x) = 0(x, in*))],
Vx[ S(x) 3  (□"(x) EE Yy(HC(y) A 0(bn , y) D 0(x, y)))],
□"A = Vy( MC(y) A 0(1^, y) D O(that A, y)),
Vx[ S(x) □ (O”(x) = B^MCO/) A 0(bn , y) A 0(x, i/)))], 
OnA = 3i/( MQj/) A 0 (y , y) A O(that A, yf).

The first theorem states that a state of affairs obtains (simpliciter) if, and only 
if, it obtains in the world. The second theorem states that a state of affairs 
is n-necessary if, and only if, it obtains in every possible world in which the 
basis of the n-necessity obtains. The third theorem is a corollary of the second 
theorem: for the sentence connective of necessity (not the predicate). The fourth 
theorem states that a state of affairs is n-possible if, and only if, it obtains in some 
possible world in which the basis of the n-necessity obtains. The fifth theorem 
is a corollary of the fourth theorem: for the sentence connective of possibility 
(not the predicate).

PROOF. As an example, here is the (not altogether easy) proof of the second 
theorem:
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1. Suppose: S(x), □"(x), MC(i/), O(lf,y). Hence P(x, I f)  and P (tf,y) (accord­
ing to the definition of Dn(x), and D16). Hence by P l: P(x,y), hence by D16: 
O(x,y).

2. Suppose: S(x), Vy(MC(y) A 0(h", y) D O(x,y)). Hence (because of P3, P4, 
DI): P(x, CONJ zVy(MC(y) A D 0(z, y))). But CONJ zVy(MC(y) A O(Jf, y) □ 
0(z, y)) = I f ,  because (applying D16) CONJ zVt/(MC(g) A P(if, y) D P(z, y)) = bn . 
Therefore: P(x,lf), and consequently: □n (x).

CONJ zVz/(MC(y) A P(tf, y) 3  P(z, y)) = I f  remains to be proved. It is a conse­
quence of:

(t) P(bn , CONJ zVy(MC(y) A P(bn , y) D P(z, y))),
(t) P(CONJ zVyQKty) A P(bn , y) D P(z, y)), bn ),

according to P3.
(t)  holds, because Vy(MC(t/) A P(lf,y) □ P(tf, y)) and P4, P3, DI, P18.
For (J) assume QA(u), P(M,C0NJ ¿fy(^.C(y) A P (ff,y) z> P(z,y)))', what is in 

question is established according to P5 if P(w, I f)  can be deduced from this as­
sumption.

If M(M), then P(u, If). (S(tf) according to P18.)
If - IM(M), then (according to P6): 3i'[P(^',n) A -iM(A') A 3f(P(k',z') A 

Vi/(MC(g) A P(Jf,y) D P(z', (/)))]. Because of QA(u), P(k',u), -’M(V): k' -  u 
(according to D9), and also EL(M) (according to DIO). Hence: 3z'(P(u,z') A 
Vy(HC(y) A P ^ y )  D P tf,y))). Hence: 3z'(P(u,zT) A Vy(S(y) A EL(neg(j/)) A 
-i P(neg(j/), b") □ -iP(neg(j/),z'))).16 Hence: 3z'(P(u, z')AVt/(S(y)AEL(neg(t/))A 
P(neg(g), z') o  P(neg(i/), b"))). Hence: 3z'(P(u,z') AVt/(S(t/) AEL(neg(neg(t/))) A 
P(neg(neg(t/)),/) D P(neg(neg(t/)), If))). Hence: 3z\P(u,z')AVy(EL(y)AP(y,z') 
D P(y, If))).17 Hence because of EL(u): P(u, b"). □

16The theorems employed are Vi/[MC(t/) D VxfS(x) D (P(X, y) = P(ne^y).x)))l and Jy\HCty) = 
EL(negtyJ)]. b" is a state of affairs according to P18. The additional conjunct "Sty)" is simply a 
definitional consequence of “MC(g)”.

! 7 The theorem employed is Vy(S(y) J  negtneglg)) = y).

Note that the conjunct 0(£>", y) drops out of the five theorems for n = I, since 
b1 = f  (P18) and VyiSiy) D O(t*,y)). Thus one obtains, for example:

Vx [ S(x) D (O1 (x) 2  ^(MCfj/) D 0(x, I/)))],

Vx [ S(x) D (O1 (x) = 3y(HC(y) A 0(x, i/)))].

The Leibnizian conception of modality emerges as a pair of theorems of the 
mereology of states of affairs (which theorems also show that Leibnizian ne­
cessity is logical necessity, Leibnizian possibility logical possibility). 1 add the
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following two theorems that rather strikingly illuminate the relation between 
modality and basis o f modality1*:

bn = CON J {/□"(£/), 
bn = DIS J y On(y).

9. Final Observations: Another “That” — Principle 
and the Trickiness of “w* ”

In Section 6 ,1 left it open whether one can deduce, in the mereology of states 
of affairs, P(b", tv*) from assuming a"B D B as a general schema, and likewise 
whether one can deduce bn k* from assuming o n B D - a n -vB as a general 
schema. Let us try to make these deductions.

(1) Assume on B D B as a general schema. Hence: □" 0(b") D 0(bn). Accord­
ing to the definition of a"(x): ^ (b " ) , because of P(b", If1), which in turn is true 
because of P l 8 and P2. Now, there is another very plausible “that”-principle — 
a principle complementing P22 and P23:

(P24) Vx(S(x) D x  = th a t 0(x)).

Applying P24, one obtains □"(that 0(b")) from n"(b"), and therefore: □” 0(b"). 
Hence, since we already have □" 0(bn) D 0(b"): 0(b"). Therefore: P(b", w*) 
(according to Vx[S(x) □ (A(x) = P(x, w*))] and D6).

(2) Assume o"B D -■□"-■B as a general schema. Hence n"0(b")D ->n"-i0(b"). 
Just as in (1), one obtains □n 0(b"). Therefore: 0(bn), and hence (by def­
inition) -> P(that -> 0(b"), tf) , hence (applying P14) -> P(neg(that 0(b")), b"), 
hence (applying P24) -■ P(neg(b"), b"), hence f  k' (because P(neg(k*), k*)).

The designator W ” has been defined above as “CONJ x 0(x)” (D7). The des­
ignator “t*”, on the other hand, has been defined as “CONJ x-i S(x)” (D2). Though 
the two definitions have a very similar structure, there is a striking difference be­
tween the two defined designators. Of “i*,” one would say that it could not, not 
even in principle, have designated a different state of affairs than it designates 
in fact. Of “w*”, however, one would indeed say that it could, in principle, have 
designated a different state of affairs than it designates in fact.19 This is a conse­
quence of the predicate “0(x)” occurring in its definition: one would say that this 
predicate could have applied differently than it does in fact apply, because other 
states of affairs could have obtained (i.e., could have been actual) than in fact

18A basis of necessity b" is likewise a basis o f  possibility, in short: it is a  basis o f modality.
19Note that these are meta-inodal statements. They can, however, be represented in the object­

language: ^^ (t*  * i f  * / ) ) ,  o 'f u /  =  / ) ) .
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obtain, and if they had, “w*” would have designated a different state of affairs 
than it designates in fact.

This instability of “w*" leads to certain problems:

(1') Let y  be an obtaining (therefore, according to D6, actual) state of affairs 
that is neither w* nor t*. Hence according to a previously proven theorem 
(in Section 3): P(y,w’). Hence according to P22: th a t P(y, tv*) = t*, and 
therefore: □ ’ P(y, tv*).

(2') Since y  + t*, it follows according to P24: th a t  0(i/) + f .  But it seems 
that we have the following identity: th a t  0(y) = th a t P(y, w*). Therefore: 
th a t  P(y, tv*) + t*, and consequently: ->□' P(y, tv*).

We are confronted with a contradiction. It seems the only way of escaping from 
it — short of a modification of principles — is to reject the identity statement used 
in the second deduction, namely, the statement “th a t 0(y) = th a t  P(y, tv*)”. 
But, unfortunately, this is not a statement that can easily be rejected: it has intu­
ition on its side, and what is more important: purely on the basis o f  principles 
that are conceptually true one can prove Vy(f)(y) = P(y, tv*)) in the mereology 
of states of affairs, and therefore also the particular case 0(t/) = P(y, tv’).
Remark. See the proof of Vt/(S(^) □ (A(y) = P(y, tv*))) in Section 3. One merely 
needs to additionally consider PO and that “0(z/)” is defined as “S(i/) A A(t/)” 
(according to D6) in order to obtain a proof of Vy(O(y) = P(y,tv*)) from the 
already proven theorem. No principle or inference-rule that is not conceptually 
(or broadly logically) valid is used in the proofs. □
Using the provability-rule EQU*: “If A = B is logically provable, then th a t A = 
th a t  B  is also logically provable” (see Section 4), one obtains: th a t 0(y) = 
th a t  P(i/, tv*). There is no escaping this conclusion.

The real source of the contradiction derived above is not the statement “th a t 
0(y) = th a t  P(y, w*)” (which cannot be rejected, as has just been shown). The 
real source of the contradiction is an illicit step of inference, which is so un­
obtrusive as to be easily overlooked. In Section 4 an absurd conclusion was 
obtained by substituting, according to the rule of substitution of identicals, the 
term “tx(A A x  = by’, which is unstable for every sentence A that is neither 
conceptually true nor conceptually false,20 into a “that”-context. Above, an­
other absurd conclusion is obtained by substituting another unstable term — 
“w*” — into another “that”-context. But not by applying the rule of substi­
tution of identicals. Rather, the rule used in the second case is universal in­
stantiation: from the first conjunct of P22 [VxVy(P(x,y) D th a t P(x.y) = t ' ) ].

2 0 If A is a sentence that is neither conceptually true nor conceptually false, then 'u M  A  A b)" 
could have designated a different entity then it designates in fact: If A is true, then the factual 
referent of “u(A A x = b)” is b, but it could have been c’; if A is false, then the factual referent of 
“ix(A A x = b)” is c’, but it could have been b. (Concerning c’ , see footnote 10.)
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“P(y,w*) □ th a t P(y,w*) = f ” is obtained (in (1')) by universal instantiation. 
(And further: from the already established statement “P(y, w*)” and the newly 
won “P{y,w*) z> th a t P(y,w*) = one obtains by applying modus ponens: 
“th a t P(j/, w*) = f ”.) But universal instantiation, just like substitution of iden­
ticals, is not a universally valid inference-rule: it can lead from a true sentence to 
a false one when being applied in such a manner that substitution into a “that”- 
context occurs.21

21Note that all modal operators Q—ontic, epistemic, or otherwise — have “that”-contexts con­
nected to them, since they all can be defined on the basis of the corresponding predicate for states of 
affairs as follows: Q(B) := Q(that B). This is the reason why failures of the rules of substitution of 
identicals and of universal instantiation were first noticed in connection with substitutions into the 
scopes o f modal operators.
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