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ABSTRACT

We describe a number of experiments that demonstrate the

usefulness of prosodic information for a processing module
which parses spoken utterances with a feature-based gram-

mar employing empty categories. We show that by requiring

certain prosodic properties from those positions in the input,
where the presence of an empty category has to be hypothe-

sized, a derivation can be accomplished more e�ciently. The

approach has been implemented in the machine translation
project Verbmobil and results in a signi�cant reduction of

the work-load for the parser.

1. INTRODUCTION

In this paper we describe how syntactic and prosodic infor-
mation interact in a translation module for spoken utteran-

ces which tries to meet the two { often con
icting { main

objectives, the implementation of theoretically sound soluti-
ons and e�cient processing of the solutions. As an analysis

which meets the �rst criterion but seemingly fails to meet the

second one, we take an analysis of the German clause which
relies on traces in verbal head positions in the framework of

Head-driven Phrase Structure Grammar (Hpsg, cf. [8]).

The methods described in this paper have been imple-

mented as part of the IBM-SynSem-Module and the FAU-
Erlangen/LMU-Munich{Prosody-Module in the MT project

Verbmobil (cf. [9]) where spontaneously spoken utterances

in a negotiation dialogue are translated. In this system, an

Hpsg is processed by a bottom-up chart parser that takes

word graphs as its input. In a preprocessing step it is sear-

ched for alternative string hypotheses contained in the graph.
They di�er in the wording and in the positions of empty ele-

ments and of segment boundaries. The individual segments

are then parsed one after the other. The output of the parser
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responsibility for the contents lies with the authors. We would like
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is the semantic representation for the best string hypothesis
in the graph. It is our main result that prosodic information

can be employed in such a system to determine possible loca-
tions for empty elements in the input. Rather than treating

prosodic information as virtual input items which have to

match an appropriate category in the grammar rules [3], or
which by virtue of being 'unknown' in the grammar force the

parser to close o� the current phrase [6], our parser employs

prosodic information as a�ecting the postulation of empty
elements. An extended description of the HPSG analysis

and the processing of empty elements can also be found in

[1]. In the present paper new results concerning the par-
sing of graphs are presented, where prosodic information is

also used for the segmentation of string hypotheses. Fur-

thermore, for the �rst time we employ the combination of a
trigram language model with an acoustic{prosodic classi�er

in the syntactic analysis.

2. AN HPSG ANALYSIS OF

GERMAN CLAUSE STRUCTURE

Hpsg makes crucial use of "head traces" to analyze the verb-

second (V2) phenomenon pertinent in German, i.e. the fact
that �nite verbs appear in second position in main clauses

but in �nal position in subordinate clauses, as exempli�ed in

(1a) and (1b).

1(a) Gestern reparierte er den Wagen.
(Yesterday �xed he the car)

`Yesterday, he �xed the car.'

1(b) Ich dachte, da� er gestern den Wagen reparierte.
(I thought that he yesterday the car �xed)

`I thought that he �xed the car yesterday'.

Following [5] we assume that the structural relationship bet-

ween the verb and its arguments and modi�ers is not a�ected
by the position of the verb. The overt relationship between

the verb `reparierte' and its object `den Wagen' in (1b) is

preserved in (1a), although the verb shows up in a di�erent
position. The apparent contradiction is resolved by assu-

ming an empty element which serves as a substitute for the

verb in second position. The empty element �lls the position
occupied by the �nite verb in subordinate clauses, leading to

the structure of main clauses exempli�ed in Fig. 1.
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Figure 1: Syntax tree for 'Gestern reparierte er den Wagen.'

The empty verbal head in Fig. 1 carries syntactic and seman-
tic information. Particularly, the empty head licenses the

realization of the syntactic arguments of the verb according

to the rule schemata of German and Hpsg's Subcategoriza-
tion Principle. The structure of the main clause presented

in Fig. 1 is widely assumed in the linguistic literature and

can be justi�ed on syntactic and semantic grounds { for a
detailed discussion see [5]. Technically this analysis is imple-

mented by ensuring that each lexical entry for a �nite verb

in second (or �rst) position in a sentence is associated with
a corresponding empty head. A special feature { the Dsl

(Double Slash) feature { establishes the necessary connection

between these two structures and ensures the percolation of
grammatical information indicated by the coindexation of

reparierte and X0 in Fig. 1.

3. PROCESSING EMPTY

ELEMENTS

Direct parsing of empty elements can become a tedious task,

decreasing the e�ciency of a system considerably. Note �rst,
that a reduction of empty elements in a grammar in favor of

disjunctive lexical representations, as suggested in [8], can-

not be pursued. [8] assume that an argument may occur on
the Subcat or on the Slash list. A lexical operation re-

moves the argument from Subcat and puts it onto Slash.

Hence, no further need for a syntactic representation of em-
pty elements emerges. This strategy, however, will not work

for head traces because they do not occur as dependents on

a Subcat list. If empty elements have to be represented syn-
tactically, a top-down parsing strategy seems better suited

than a bottom-up strategy. Particularly, a parser driven by

a bottom-up strategy has to hypothesize the presence of em-

pty elements at every point in the input. In Hpsg, however,

only very few constraints are available for a top-down regime

since most information is contained in lexical items. The par-
ser will not restrict the stipulation of empty elements until

a lexical element containing restrictive information has been

processed. The apparent advantage of top-down parsing is
thus lost when Hpsgs are to be parsed. The same criticism

applies to other parsing strategies with a strong top-down

orientation, such as left corner parsing or head corner par-
sing.

We have thus chosen a bottom-up parsing strategy where the

introduction of empty verbal heads is constrained by syn-

tactic and prosodic information. The syntactic constraints
build on the facts that a) a verb trace will occur always to

the right of its licenser and b) always 'lower' in the syntax
tree. Furthermore c) since the Dsl percolation mechanism

ensures structure sharing between the verb and its trace,

a verb trace always comes with a corresponding overt verb.
Although a large number of bottom-up hypotheses regarding

the position of an empty element can be eliminated by pro-

viding the parser with the aforementioned information, the
number of wrong hypotheses is still signi�cant. In a verb-

2nd clause most of the input follows a �nite verb form so

that condition a) indeed is not very restrictive. Condition b)
rules out a large number of structures but often cannot pre-

vent the stipulation of traces in illicit positions. Condition

c) has the most restrictive e�ect in that the syntactic poten-
tial of the trace is determined by that of the corresponding

verb. If the number of possible trace locations could be re-

duced signi�cantly, the parser could avoid a large number of
subanalyses that conditions a)-c) would rule out only at later

stages of the derivation. The strategy that will be advocated

in the remainder of this paper employs prosodic information
to accomplish this reduction.

Empty verbal heads can only occur in the right periphery

of a phrase, i.e. at a phrase boundary. The introduction

of empty arcs is then not only conditioned by the syntactic
constraints mentioned before, but additionally, by certain re-

quirements on the prosodic structure of the input. It turns

out, then, that a �ne-grained prosodic classi�cation of ut-
terance turns, based on correlations between syntactic and

prosodic structure is not only of use to determine the seg-

mentation of a turn, but also, to predict which positions are
eligible for trace stipulation. The following section sketches

the prosodic classi�cation, section 5 features the results of

the current experiments.

4. PROSODIC BOUNDARY

CLASSIFICATION

For the segmentation of turns into syntactically meaning-
ful units, we used two classi�ers: Mulit{layer perceptrons

(MLP) were trained based on perceptual{prosodic bounda-

ries using a large prosodic feature vector. Trigram language
models (LM) were trained with word chains annotated with

coarse syntactic boundaries. Both methods are outlined in

[2]. With this the probability for a boundary being after each
of the words in a turn was computed. The test set compri-

ses 3 dialogs (64 turns of 3 male and 3 female speakers, 12

minutes in total). Each word boundary was manually labe-
led with S3+ (syntactic main boundary), S3{ (no syntactic

main boundary), S3? (ambiguous boundary). The LM alone

yielded already good recognition results because it was trai-
ned with a very large data base; the combination with an

MLP improved the recognition rate further, and it is especi-

ally needed for the classi�cation of the S3? boundaries that
cannot be covered by the LM. We obtained an overall re-

cognition rate of 94% (average of the class{wise recognition



rates: 86%) for the two classes S3+ and S3{ not counting
the turn �nal boundaries.1 .

5. RESULTS

All experiments were conducted on word graphs with more

than 5 (experiments 1{3) and 10 hypotheses (experiment 4)
per spoken word. In the �rst two experiments the word graph

was parsed without the use of prosodic information and then

the word chain found during the parse was manually evalua-
ted. The third and fourth experiments compare parse times

of word graphs. The word graphs used in the fourth experi-

ment were obtained from real spontaneous dialogs. All other
word graphs were generated during tests of non{naive per-

sons with the Verbmobil demonstrator. The hypotheses in

the word graphs were automatically annotated with proba-
bilities for S3+ using the classi�er described in Section 4.

Experiment 1: In order to approximate the usefulness of

prosodic information to reduce the number of verb trace hy-

potheses for the parser we examined a corpus of 104 utteran-
ces with prosodic annotations denoting the probability of a

syntactic boundary after every given word. For every word

hypothesis where the S3+ boundary probability exceeds an
experimentally optimized threshold value, we considered the

hypothesis that this node is followed by a verb trace. These

hypotheses were then rated valid or invalid by the grammar
writer. The observations were rated according to Table 32:

Evaluation of these �gures for our test corpus yielded the

results presented in Table 4. In practice this means that the
number of locations where the parser has to assume the pre-

sence of a verb trace could be reduced by 63% from 1121

to 412 while only 6 (4%) necessary trace positions remai-
ned unmarked. These results were obtained from a corpus

of spoken utterances many of which contained several in-

dependent phrases and sentences. These, however, are also
often separated by an S3+ boundary, so that the error rate

is likely to drop considerably if a segmentation of utterances

into syntactically well-formed phrases is performed prior to
the trace detection (cf. experiment 2). Since cases where the

verb trace is not located at the end of a sentence (i.e. where

extraposition takes place) involve a highly characteristic ca-
tegorial context, we achieved a further improvement by the

trace/no-trace classi�cation based on prosodic information

combined with a language model (cf. Table 7 below).

The problem with the approach described so far is that a
careful estimation of the threshold value is necessary and

this threshold may vary from speaker to speaker or between

1Note that this combination of MLP and LM was only used
in the fourth experiment. Furthermore, for the �rst three expe-
riments reported in the following, an older version of the MLP
trained on a smaller data base was used. It achieved an average
recognition rate of 85%. Therefore, if these experiments were re-

peated even better results could be expected.
2X0 position means that the relevant position is occupied by

a X0 gap, X0 prop. means that the classi�er proposes an X0 at
this position.

certain discourse situations. The analysis fails in those cases
where the correct position is rated lower than this value, i.e.

where the parser does not consider the correct trace position
at all. Thus, in a second experiment we examined how the

syntactically correct verb trace position is ranked among the

positions proposed by the prosody module w.r.t. its S3+
boundary probability. If the correct position turns out to

be consistently ranked among the positions with the highest

S3+ probability within a sentence then it might be prefe-
rable for the parsing module to consider the S3+ positions

in descending order rather than to introduce traces for all

positions ranked above a threshold.

X0 position no X0 position

X0 prop. Correct: 138 False Alarm : 274

no X0 prop. Miss : 6 X : 703

Table 3: Classi�cation results for verb trace positions

Recall = Correct

(Correct+Miss)
= 95.8

Precision = Correct

(Correct+False)
= 33.5

Error = (Miss+False)

(Correct+False+Miss+X)
= 25.0

Table 4: Results for the identi�cation of possible verb trace

positions.

Experiment 2: We considered only those segments in the

input that represent V2 clauses, i.e. we assumed that the
input has been segmented correctly. Within these 134 sen-

tences we ranked all the spaces between words according to

the associated S3+ probability and determined the rank of
the correct verb trace position. Table 5 shows that in the ma-

jority of cases the position with the highest S3+ probability

turns out to be the correct one. It has to be added though,
that in many cases the correct verb trace position is at the

end of the sentence which is often very reliably marked with

a prosodic phrase boundary, even if this sentence is uttered
in a sequence together with other phrases or sentences. This

end-of-sentence marker will be assigned a higher S3+ proba-

bility in most cases, even if the correct verb trace position is
located elsewhere.

Rank 1 2 3 4 5 6 7 � 7

# of occ. 96 22 7 4 3 0 1 1

Table 5: Ranking of the syntactically correct verb trace po-

sition within a sentence according to the S3+ probability.

Experiment 3: Now, we were interested in the overall spee-
dup of the processing module that resulted form our ap-

proach. In order to estimate this, we parsed a corpus of 109

turns in two di�erent settings: While in the �rst round the

threshold value was set as described above, we selected a va-

lue of 0 for the second pass. The parser thus had to consider

every position in the input as a potential head trace location

just as if no prosodic information about syntactic bounda-

ries were available at all. Employing prosodic information

reduces the parser runtime for the corpus by about 46%, cf.
Table 6.



With Prosody Without Prosody

Overall 704.8 1304.2

Average 6.5 11.9

Speedup 45.96% ./.

Table 6: Runtimes (in secs) for parsing batch-jobs with and

without the use of prosodic information

Experiment 4: Finally, we were interested in the e�ect of
employing a language model (LM) in combination with the

MLP classi�er. In this setting not only the prosodic/acoustic

properties of the input but also the surrounding word forms
play a role in determining the probability of the presence or

absence of a phrase boundary. Such an LM can be expec-

ted to exhibit a signi�cant e�ect on the distribution of these
probabilities: The position immediately following a determi-

ner, e.g., will be marked with a low probability for a phrase
boundary. For this experiment, a sample corpus with word

graphs for 21 turns containing about 10 word hypotheses per

spoken word was automatically annotated with probabilities
for phrase boundaries with and without using the LM infor-

mation as described above. As expected, without the LM

information the number of positions that received a high
S3+ probability was much larger than in the setting which

did make use of the LM, because the LM accounts also for

the a priori probabilities. However, as mentioned above, the
boundary probabilities not only interact with the hypothe-

sized presence or absence of empty elements, but also play

a key role in the segmentation of turns into syntactically
autonomous units (segments). As can be seen in Table 7,

not using the LM information leads the processing module

to hypothesize a larger number of segment boundaries that
are less meaningful in the context of a further processing in

the full system than those that can be identi�ed in the al-

ternative setting. The seemingly unfavorable result that the
parser performed much slower on the LM corpus has to be

interpreted in the light of the observation that in the non-LM

setting the input was segmented into about twice as many
units. On the average the units are twice as large in the

with-LM setting, so that it can be seen as a positive result

that the overall runtime increased only by a factor of two.
Furthermore, for a subsequent analysis of the units in the full

Verbmobil system the larger units are much more useful as

a manual evaluation of the parsing results showed. This is
also indicated by the fact that in the no-LM setting the ave-

rage unit length is less than 3 words. With the LM even

a larger total portion of the input (52% of the units) could
be parsed than without the LM (44%). Note, that without

prosodic information we were not able to parse the corpus at

all due to memory limitations.

MLP+LM MLP

# of units in turns 60 117

# of successfully parsed units 31 52

# average runtime per unit 17.1 5.1

# overall runtime 1025.8 595.9

Table 7: Batchmode results on corpora with and without an

LM boundary classi�cation3

6. CONCLUSION

In [7] prosodic information was used to score alternative par-

ses of the same word sequence. Our approach di�ers from
that one, because we use the prosodic information in a pre-

processing step where alternative string hypotheses are se-

lected based on prosodic information and are parsed after-
wards. We showed that prosodic information can be em-

ployed in a speech processing system to determine possible

locations of empty elements and of segment boundaries. Alt-
hough the primary goal of the categorial labelling of pros-

odic phrase boundaries was to adjust the division of turns

into sentences to the intuitions behind the grammar used, it
turned out that the same classi�cation can be used to mini-

mize the number of wrong hypotheses pertaining to empty

productions in the grammar. We found a very useful cor-
respondence between an observable physical phenomenon {

the prosodic information associated with an utterance { and

a theoretical construct of formal linguistics { the location of
empty elements in the respective derivation. The method

has been successfully implemented and tested on real spon-

taneous speech data.
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